
28

A Survey on UML-Based Aspect-Oriented Design Modeling

MANUEL WIMMER, ANDREA SCHAUERHUBER, and GERTI KAPPEL, Vienna University
of Technology
WERNER RETSCHITZEGGER, University of Vienna
WIELAND SCHWINGER and ELISABETH KAPSAMMER, Johannes Kepler University Linz

Aspect-orientation provides a new way of modularization by clearly separating crosscutting concerns from
noncrosscutting ones. While aspect-orientation originally has emerged at the programming level, it now
stretches also over other development phases. There are, for example, already several proposals for Aspect-
Oriented Modeling (AOM), most of them pursuing distinguished goals, providing different concepts as well
as notations, and showing various levels of maturity. Consequently, there is an urgent need to provide an in-
depth survey, clearly identifying commonalities and differences between current AOM approaches. Existing
surveys in this area focus more on comprehensibility with respect to development phases or evaluated
approaches rather than on comparability on bases of a detailed evaluation framework.

This article tries to fill this gap focusing on aspect-oriented design modeling. As a prerequisite for an
in-depth evaluation, a conceptual reference model is presented as the article’s first contribution, centrally
capturing the basic design concepts of AOM and their interrelationships in terms of a UML class diagram.
Based on this conceptual reference model, an evaluation framework has been designed, resembling the
second contribution, by deriving a detailed and well-defined catalogue of evaluation criteria, thereby oper-
ationalizing the conceptual reference model. This criteria catalogue is employed together with a running
example in order to evaluate a carefully selected set of eight design-level AOM approaches representing the
third contribution of the article. This per approach evaluation is complemented with an extensive report on
lessons learned, summarizing the approaches’ strengths and shortcomings.

Categories and Subject Descriptors: D.2.1 [Software Engineering]: Requirements/Specifications—Method-
ologies (e.g., object-oriented, structured); D.2.2 [Software Engineering]: Design Tools and Techniques—
Object-oriented design methods; K.6.1 [Management of Computing and Information Systems]: Project
and People Management—System development; System analysis and design; K.6.3 [Management of Com-
puting and Information Systems]: Software Management—Software development; Software process

General Terms: Design, Languages, Management

Additional Key Words and Phrases: Aspect-orientation, model-driven development

ACM Reference Format:
Wimmer, M., Schauerhuber, A., Kappel, G., Retschitzegger, W., Schwinger, W., and Kapsammer, E. 2011. A
survey on UML-based aspect-oriented design modeling. ACM Comput. Surv. 43, 4, Article 28 (October 2011),
59 pages.
DOI = 10.1145/1978802.1978807 http://doi.acm.org/10.1145/1978802.1978807

1. INTRODUCTION

The concept of Separation of Concerns (SoC) can be traced back to Parnas [1972]
and Dijkstra [1976]. Its key idea is the identification of different concerns in software

W. Retschitzegger is currently affiliated with Johannes Kepler University Linz.
Author’s address: M. Wimmer (corresponding author), Institute of Software Technology and Inter-
active Systems, Vienna University of Technology, Favoritenstrae 9-11/188-3, A-1040 Vienna, Austria;
email: wimmer@big.tuwien.ac.at.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2011 ACM 0360-0300/2011/10-ART28 $10.00

DOI 10.1145/1978802.1978807 http://doi.acm.org/10.1145/1978802.1978807

ACM Computing Surveys, Vol. 43, No. 4, Article 28, Publication date: October 2011.



28:2 M. Wimmer et al.

development and their separation by encapsulating them in appropriate modules or
parts of software. Aspect-Oriented Software Development (AOSD) adopts this idea and
further aims at providing new ways of modularization. That is, concerns like logging
functionality, which are “crosscutting,” meaning that they are distributed over several
parts of an application, should be separated from traditional units of decomposition in
terms of, for example, a class hierarchy. In particular, AOSD represents the convergence
of different SoC approaches, such as Adaptive Programming (AP) [Lieberherr 1996],
Composition Filters (CF) [Akşit et al. 1992], Subject-Oriented Programming (SOP)
[Harrison and Ossher 1993], Multi-Dimensional Separation of Concerns (MDSoC) [Tarr
et al. 1999], and Aspect-Oriented Programming (AOP) [Kiczales et al. 1997]. AOSD,
nevertheless, is a fairly young but rapidly advancing research field.

Aspect-Oriented Modeling. From a software development point of view, aspect-
orientation has originally emerged at the programming level with AspectJ1 as one
of the most prominent protagonists. Meanwhile, application of the aspect-oriented
paradigm is no longer restricted to the programming level but more and more stretches
over phases prior to the implementation phase of the software development life cycle
such as requirements engineering [Whittle and Araujo 2004], [Baniassad et al. 2006],
[Araujo et al. 2004] and design [Op de beeck et al. 2006]. This development is also driven
by the simultaneous rise of Model-Driven Engineering (MDE) employing models as the
primary artifact in software development [France and Rumpe 2007]. In the context of
this, Aspect-Oriented Modeling (AOM) languages attract more and more attention.

Diversity of Approaches. As a result, there has already been a considerable number of
AOM languages proposed in literature, whereof only a few in the meanwhile have come
of age. Each of those AOM approaches has different origins and pursues different goals.
AOM approaches, for example, follow different schools of thought some adhering to an
asymmetric view supporting the distinction between cross-cutting and noncrosscutting,
while others have a symmetric understanding where such a distinction is not made (for
a discussion, cf. Harrison et al. [2002]). This entails not only the problem of different
terminologies but also leads to a broad variety of aspect-oriented concepts, including
composition mechanisms used [Kojarski and Lorenz 2006], as well as notations.

Contributions. To cope with this rapid development, there is an urgent need to pro-
vide an in-depth survey of existing AOM approaches. Existing surveys in this area,
like Blair et al. [2005], Chitchyan et al. [2005], Op de beeck et al. [2006], mainly fo-
cus on comprehensibility with respect to development phases or evaluated approaches,
thereby getting a first impression about the state of the art. This article tries to comple-
ment this valuable work by emphasizing comparability on bases of a detailed evaluation
framework considering, both the language’s concepts and also their notations partic-
ularly focusing on aspect-oriented design modeling. Thus, a deeper understanding on
commonalities and differences between existing design-level AOM approaches can be
established, especially with respect to their specific strengths and shortcomings. Con-
sequently, please note that, in the following, we consider AOM with a main emphasis
on the design phase although other phases are not excluded from our considerations.
The main contributions of this article can be summarized as follows: First, a concep-
tual reference model is presented in order to centrally capture the basic concepts of
AOM and their interrelationships in terms of a UML class diagram. Second, an eval-
uation framework operationalizing the CRM is derived, consisting of a detailed and
well-defined catalogue of evaluation criteria. Third, an evaluation of eight carefully
selected design-level AOM approaches is conducted by means of this criteria catalogue
and an extensive report on lessons learned is given.

1http://www.eclipse.org/aspectj/.

ACM Computing Surveys, Vol. 43, No. 4, Article 28, Publication date: October 2011.



A Survey on UML-Based Aspect-Oriented Design Modeling 28:3

Structure of this Article. According to these contributions, the structure of the paper
is as follows. In Section 2, the value of this survey with respect to other existing surveys
is discussed in detail. Section 3 presents the conceptual reference model followed by
the evaluation framework in Section 4. Section 5 is dedicated to the actual evaluation,
which is accomplished with a running example to better illustrate especially the nota-
tional peculiarities of the AOM approaches discussed in this survey. The findings are
finally summarized and lessons learned are provided, in Section 6, before we deliver
an outlook on future work in the final Section 7 of this article.

2. RELATED SURVEYS

In an effort to shed light on different approaches to aspect-orientation, some surveys
comparing aspect-oriented approaches in different phases of the software development
life cycle have already been presented. In the following, such related surveys can
be distinguished into “closely related” surveys particularly emphasizing on AOM (cf.
Section 2.1) and more “widely related” ones focusing on AOP (cf. Section 2.2), which are
nevertheless of interest in the context of this survey. Furthermore, there exists some
work aiming at “unifying” the currently prevailing diversity of concepts in the aspect-
orientation paradigm. The influence of those on this survey in terms of the Conceptual
Reference Model (CRM) is discussed in detail in Section 3.

2.1. Aspect-Oriented Modeling Surveys

With respect to closely-related surveys on AOM approaches, the most extensive work
is provided by Chitchyan et al. [2005] with the goal to “elicit initial insights into the
roadmap for developing integrated aspect-oriented requirements engineering, architec-
ture, and design approaches.” Therefore, for each phase of the software development
process a review of prominent contemporary AOSD as well as non-AOSD approaches
is provided. For the design phase, the survey presents the evaluation results of 22
aspect-oriented design approaches along with UML as the only non-AOSD approach
on the basis of a set of six evaluation criteria.

Similar, but less extensive AOM surveys with respect to both the set of criteria and
the amount of surveyed approaches have been provided by Reina et al. [2004], Blair
et al. [2005], and Op de beeck et al. [2006]. Reina et al. have evaluated 13 approaches
with respect to a set of four criteria, only. More specifically, the goal of Reina et al.
has been to investigate each approach with respect to its dependency on particular
platforms as well as its dependency on specific concerns, that is, if the approach is
general-purpose or not.

The major goal in Op de beeck et al. is to investigate 13 existing AOM approaches
within the realm of product-line engineering of large-scale systems and to position them
within the life cycle of a software development process. In this respect, the authors
have evaluated a subset of approaches already presented by Chitchyan et al., as well
as refined a set of six criteria, which partly have been presented in Chitchyan et al. In
addition, the authors provide a discussion of the criteria’s impact on certain software
quality factors.

Blair et al. provide separate sets of criteria for the phases of aspect-oriented require-
ments engineering, specification, and design. Concerning the design phase, the authors
evaluate five approaches according to a set of eight criteria.

With respect to these existing surveys our survey differs in several ways:

Evaluation Granularity. One major difference between this survey and others
concerns the breadth and depth of evaluation. In particular, the survey investigating
most approaches, that is, the survey of Chitchyan et al., aims at providing a broad

ACM Computing Surveys, Vol. 43, No. 4, Article 28, Publication date: October 2011.



28:4 M. Wimmer et al.

overview by including all existing aspect-oriented design approaches including also not
so well elaborated proposals for such design approaches. In contrast, this survey tries
to provide an in-depth investigation of selected approaches that have already gained a
certain level of maturity in terms of publications at acknowledged conferences and/or
journals. In addition, these approaches are based on the Unified Modeling Language
(UML) [OMG 2009] being the prevailing standard in object-oriented modeling. For an
in-depth evaluation a catalogue of criteria is provided which encompasses 50 criteria.
In contrast, the other sets of criteria [Blair et al. 2005; Chitchyan et al. 2005;
Op de beeck et al. 2006; and Reina et al. 2004], do not include more than 8 criteria. In
literature, 15 mature, UML-based AOM approaches have been identified, including the
approaches already investigated in related surveys. In this survey, a representative
set of 8 UML-based AOM approaches is evaluated, which has been carefully selected
from the previously mentioned 15 approaches with respect to maintaining the ratio
between the extension mechanisms used (metamodel vs. profile) as well as the ratio
between symmetric and asymmetric approaches (cf. Section 5).

Methodology. Another important difference of this survey to the aforementioned ones
lies in the applied methodology, which bases on a carefully established catalogue of cri-
teria. Great emphasis has been put on the selection of criteria and their definition in a
top-down as well as a bottom-up manner. A CRM for AOM (cf. Section 3) is proposed,
which identifies the basic AOM concepts as well as their interrelationships and thus,
forms the basis for deriving the set of criteria in a top-down manner. Furthermore,
for all criteria used, a clear definition along with the specification of the measurement
scale is given. At the same time, this survey aims at complementing the set of criteria
in a bottom-up manner by those criteria used in related AOM surveys [Blair et al. 2005;
Chitchyan et al. 2005; Op de beeck et al. 2006; Reina et al. 2004]. More specifically,
criteria found in other surveys have been adopted where appropriate or they have been
refined where necessary, for example, with respect to their definition or in terms of
a decomposition into subcriteria. In the catalogue of criteria (cf. Section 4), it is indi-
cated which criteria have been adopted and which have been refined. Nevertheless, six
criteria proposed in related surveys have been explicitly excluded from the evaluation
framework due to methodological issues. Specifically, these criteria encompass reusabil-
ity, comprehensibility, flexibility, ease of learning/use, parallel development, as well as
change propagation [Blair et al. 2005], which corresponds to the evolvability criterion
[Chitchyan et al. 2005] and cannot reasonably be measured without empirical studies,
for example, user studies and extensive case studies. Thus, the catalogue of criteria
subsumes the criteria derived from the CRM and the criteria provided by other surveys.

Inclusion of Recent Approaches. Furthermore, this survey also considers recently pub-
lished approaches, namely Cottenier et al. [2007a], and Klein et al. [2007], not included
in the other surveys. In this way, this survey is complementary to the aforementioned
surveys by considering also very recent developments.

Running Example. Finally, in contrast to all other surveys, the evaluation is sup-
ported by a running example that is realized with each of the surveyed approaches.
This further supports the evaluation in that it first, illustrates each approach and sec-
ond, allows to better compare the modeling means of the approaches and understand
their strengths and shortcomings. If at all, other surveys rely on diverse examples
sometimes taken directly from the respective approach’s publications (cf., e.g., Op de
beeck et al. [2006]).

2.2. Aspect-Oriented Programming Surveys

Less closely related, since focusing on AOP, is the survey of Hanenberg [2005] which
presents a set of criteria used to evaluate four AOP languages. Kersten [2005] also
provides a comparison of four leading AOP languages having only AspectJ in common

ACM Computing Surveys, Vol. 43, No. 4, Article 28, Publication date: October 2011.



A Survey on UML-Based Aspect-Oriented Design Modeling 28:5

with Hanenberg. In addition, Kersten also investigates the development environments
of these AOP languages.

Although focused on AOP, the evaluation criteria defined in those surveys are also of
interest, since some of the surveyed AOM approaches are aligned to a certain aspect-
oriented programming language. Nevertheless, some of them are not applicable in the
context of this survey, since they are specifically related to programming level issues,
only. For example, Hanenberg distinguishes between “code instrumentation” and “in-
terpretation weaving techniques” in the context of AOP weavers. In this survey, some of
their criteria have been adopted and refined such that they can be applied at the mod-
eling level, too. For example, the idea of evaluating tool support for AOM approaches
has been inspired by Kersten’s criteria on IDE support (e.g., editor, debugger).

3. THE CONCEPTUAL REFERENCE MODEL FOR AOM

A major difficulty in comparing AOM approaches is the lack of a common understand-
ing for the basic ingredients of aspect-oriented modeling. This is on the one hand due
to different concepts introduced by related AOSD approaches (e.g., AP, CF, SOP, and
MDSoC) and, on the other hand, due to the very specific meaning of AOP level concepts,
particularly those coined by AspectJ [Stein et al. 2004]. An example for the first issue is
the concept of “aspect”, where similar though different concepts have been introduced
by related AOSD approaches, for example, “hyperslice” in Hyper/J, “filter” in CF, and
“adaptive method” in Demeter/DJ [von Flach Garcia Chavez and de Lucena 2003]. An
example for the second issue are AspectJ’s join points which are defined as “points in
the execution of the program” including field accesses, method, and constructor calls
[Xerox 2005]. This definition is not comprehensive enough for the modeling level, how-
ever. First, modeling languages unify specific programming language concepts into
more abstract modeling elements to be able to serve several different programming
languages. Second, modeling languages typically are richer in terms of concepts, that
is, modeling elements, that could serve as join points. This is also due to different views
available at modeling level, for example, structural views and behavioral views. Third,
more or less as a consequence of the latter two arguments, the relation between mod-
eling level and execution level is less clear then in the case of programming languages.

In light of different terminologies and a broad variety of aspect-oriented concepts,
for an evaluation of AOM approaches it is essential to first establish such a common
understanding by means of a CRM for AOM. The CRM, for which a previous version
has already been proposed in Schauerhuber et al. [2006], enables to explain the basic
ingredients of aspect-oriented modeling and their interrelationships both in terms of a
graphical representation as a UML class diagram and in terms of a glossary comprising
a textual definition for each concept introduced in the class diagram. Naturally, the
CRM, since it expresses the AOM concepts in terms of UML meta-classes, serves also as
a framework, which can be extended by means of subclassing if further AOM concepts
need to be captured. It represents an intermediate step and forms the basis for setting
up an evaluation framework, that is, inferring concrete criteria as it is done in Section 4.
It has to be emphasized, however, that the CRM is not understood as a framework
which could serve as an implementation-oriented blueprint for constructing new AOM
languages or deriving existing ones, since this would require the inclusion of much
more details going beyond the scope of this article.

In AOSD literature, one can already find some proposals for reconciling the cur-
rently prevailing diversity in the understanding of concepts from the aspect-orientation
paradigm each pursuing a specific focus [Kojarski and Lorenz 2006; Masuhara and
Kiczales 2003; van den Berg et al. 2005; von Flach Garcia Chavez and de Lucena
2003]. In this survey, they have been used as a basis for establishing the CRM for
AOM. Their particular influence on the CRM is discussed as follows.

ACM Computing Surveys, Vol. 43, No. 4, Article 28, Publication date: October 2011.



28:6 M. Wimmer et al.

—Considering the broader research area of ASoC, one can distinguish between four
composition mechanisms, namely, pointcut-advice, open class, compositor, and traver-
sal [Masuhara and Kiczales 2003]. In the CRX model of Kojarski and Lorenz [2006]
pointcut-advice, open class, and compositor mechanisms are supported, only, because
the traversal mechanism does not necessarily share properties with the other mech-
anisms that can be reasonably generalized [Kojarski and Lorenz 2006]. For the CRM,
in this survey, the idea followed by Kojarski and Lorenz [2006] of first abstracting
over the three aspect-oriented composition mechanisms, which later allows to com-
pare AOM languages at a higher level, is adopted. Beyond, the CRM shall capture in
detail the corresponding AOM language concepts for each composition mechanism
separately. In Section 4, this allows to set up a fine-grained set of criteria for each
composition mechanism and consequently allows AOM languages realizing the same
composition mechanism(s) to be compared in greater detail.

—In van den Berg et al. [2005], an attempt towards establishing a common set of
concepts for AOSD has been made. The proposed definitions are intended to be ap-
propriate for all phases in the software development life cycle. The AOSD Ontology of
van den Berg et al. discusses high-level concepts such as “concern” and “composition”,
which allow abstracting over different composition mechanisms such as proposed by
Kojarski et al. When looking at the concepts describing the specifics of the differ-
ent composition mechanisms, however, one can see that the focus is rather on the
pointcut-advice and open class mechanisms. Concepts for supporting the compositor
mechanism such as “merge” and “match method” (cf. Section 3.3) are not discussed
in the proposed glossary. Besides, a visualization of the glossary and the concepts’
interrelationships in terms of a conceptual model is missing. The CRM is based on
the AOSD Ontology in that the proposed definitions of concepts are adopted if such
definitions are available.

—The “theory of aspects” of von Flach Garcia Chavez and de Lucena [2003] describes
a “conceptual framework for AOP” in terms of Entity-Relationship diagrams and
a textual description of each entity. The framework, however, explicitly supports
aspect-oriented approaches that follow the pointcut-advice and open class mecha-
nisms, only. The framework, for example, explicitly demands the aspect-base di-
chotomy, meaning the clear distinction between “aspects” and “base.” Consequently
the “theory of aspects” does not describe concepts supporting the compositor mech-
anism. Nevertheless, the Entity-Relationship diagrams have served as an input
for designing the CRM. The definitions of concepts proposed in the AOSD Ontology
[van den Berg et al. 2005] have been preferred over those of von Flach Garcia Chavez
and de Lucena [2003], however, since the AOSD Ontology’s terminology is closer to
the original terminology of the pointcut-advice mechanism (e.g., “enhancement” in
von Flach Garcia Chavez and de Lucena [2003] corresponds to “advice” in van den
Berg et al. [2005]).

For those concepts where no definition is available in the discussed literature, a
bottom-up approach is followed, taking into consideration the surveyed approaches.

In the following, the concepts of the CRM are described along with its four ma-
jor building blocks as depicted in Figure 1. The ConcernComposition package pro-
vides a high level view on the concepts of AOM abstracting over different composition
mechanisms, while the Language package describes the means underlying the speci-
fication of concerns. The specific composition mechanisms are specialized in separate
packages, that is, the pointcut-advice and open class mechanisms are specialized in the
AsymmetricConcernComposition package, and the compositor mechanism is specialized
in the SymmetricConcernComposition package. The rationale behind the abandonment
from expressing asymmetric as a special case of symmetric composition is to represent,

ACM Computing Surveys, Vol. 43, No. 4, Article 28, Publication date: October 2011.



A Survey on UML-Based Aspect-Oriented Design Modeling 28:7

ConcernComposition

Effect
eff:EffectKind

Concern
isCrosscutting

2..* CompositionPlan

isDynamic*

Concern
Module

1

eff:EffectKind

«enumeration»
EffectKind

enhancement
replacement
deletion

1

Concern
CompositionRule

0..*

RuleInteraction

ModuleInteraction

owner 1..*
0..*

isCrosscutting
1

1..*
realized

Asymmetric
ConcernComposition

Symmetric
ConcernComposition

*Asymmetric
CompositionRule

deletion

Symmetric
CompositionRule

ModuleInteraction

AspectualSubject AspectualKind

CompositionRule

enumeration

Advice

*

1

1

consistsOf consistsOf

relPos:RelativePositionKind
RelativePosition

*

1..*
children

**

1
consistsOf

CompositionRule

Match Integration

*

Composable
2..*

*

11

*

consistsOf
consistsOf

«enumeration»
RelativePositionKind

before
around
after Simple

Advice
Simple

Pointcut

Pointcut

Composite
Pointcut

1..*
children

Composite
Advice

*

*

Quantification
Method 1 *

Method StrategyElement

Merge

Bind

«enumeration»
MatchMethodKind

match-by-name

mM:Match-
MethodKind

0..1
*

ownedJP
*

* owner

owner

JoinPoint
dynamicity

Behavioral
Advice

Structural
Advice

JoinPoint
Model

1..*

**

selectedJP

Method 1

0..1

Override

Bind

Composable
Behavioral

Composable
Structural

Operator
1*

match by name
match-by-signature
no-match

Language

realizedBy realizedBy
Structural
JoinPoint

Behavioral
JoinPoint

0..1 0..1
implementedBy

e a o a
Element

S uc u a
Element

implementedBy
**

Structural
Element

Behavioral
Element

Element
1..*

1

ownedElement

1..*

*

concernElement

1..*

owner
Language

1

1

concernElement
1

1
representedAs

Fig. 1. The conceptual reference model for aspect-oriented modeling.

as much as possible, an unbiased understanding of AOM. Giving them equal stand-
ing in the CRM pays also tribute to the particularities of each of the two schools of
thought, which in turn implies sets of specialized criteria to evaluate the asymmetric
approaches, on the one hand, and the symmetric approaches, on the other hand.

The following description of concepts possibly contain references to the source defi-
nitions and optional discussions in case the definition of a concept has been refined.

3.1. ConcernComposition

The ConcernComposition package abstracts over the different composition mecha-
nisms. It deals first, with the modularization and thus with the separation of a system’s
concerns into appropriate units and second, with their interrelationships, and conse-
quently their composition by means of appropriate rules.

Concern. Along with van den Berg et al. [2005], a concern is defined as an interest
which pertains to the system’s development, its operation or any other matters that
are critical or otherwise important to one or more stakeholders. A concern is called a
crosscutting concern if it cannot be modularly represented within a language’s decom-
position technique, for example, classes and methods in the object-oriented paradigm
(cf. Figure1 attribute isCrosscutting). In AOSD literature, this restriction is called the
tyranny of the dominant decomposition [Tarr et al. 1999]. The elements of a crosscut-
ting concern are then said to be scattered over other concerns and tangled within other
concerns of a specific system [van den Berg et al. 2005]. In AOSD, logging is often seen
as the prime example for a crosscutting concern.

ACM Computing Surveys, Vol. 43, No. 4, Article 28, Publication date: October 2011.



28:8 M. Wimmer et al.

ConcernModule. One concern typically is realized by one or more concern modules.
The term “concern module” is reused from Kojarski and Lorenz [2006] and encompasses
a set of concern elements that together realize a concern or part of a concern, for
example, log-handler management of a logging concern (cf. role concernElement in
Figure 1). Thus, it forms a representation of concerns in a formalized language (e.g.,
a package in UML or in Java). Some approaches have introduced the concept “aspect”
[van den Berg et al. 2005] for modularizing otherwise crosscutting concerns, while
existing units of modularization formalizing non-crosscutting concerns have been called
“base” [Harrison et al. 2002]. This distinction has been used to categorize aspect-
oriented approaches into asymmetric approaches to concern composition that support
this aspect-base dichotomy and symmetric ones that do not [Harrison et al. 2002].
Today, this distinction has begun to diminish and is being replaced by the more general
understanding that the difference between concern modules is in how they are used
during composition (cf. ConcernCompositionRule) [Kojarski and Lorenz 2006]. In this
survey, this view is adopted and consequently in the CRM only the concern module
concept, which subsumes the notions of aspect and base, is considered.

CompositionPlan. The integration of concern modules is specified by a composition
plan [Kojarski and Lorenz 2006], which consists of a set of rules. The weaving plan
concept of Kojarski and Lorenz [2006] has been renamed in favor of the more general
term composition, which yields the integration of multiple modular artifacts into a
coherent whole [van den Berg et al. 2005]. The “execution” of a composition plan results
in a composed model of the overall system. During this process one distinguishes two
phases, namely detection and composition. While detection is necessary to identify
the concern elements that have to be integrated in the composed model, composition
means the actual integration of them. The advantages of approaches that support
model composition are first, at code level non aspect-oriented platforms can be used
and second, the composite results can be validated prior to implementation. However,
once composed, the concern modules cannot be recovered at later stages thus causing
traceability problems. For the purposes of this survey, a further distinction between two
ways of composing concern modules is made, namely static and dynamic (cf. attribute
isDynamic). Thereby static indicates that the composed model is produced and thus
is available to the modeler at design time analogously to compile-time weaving at
programming level. Dynamic composition integrates the concern modules virtually
during run-time, that is, while executing the models. At the modeling level, this requires
the run-time semantics of the language’s metamodel to be specified [France et al. 2004b]
(which, considering, e.g., UML, is only the case for parts of the language like state
machines). This is similar to a run-time weaving that happens at programming level.
Nonetheless, a specific approach might neither support static nor dynamic composition
at modeling level but defer weaving to later phases in the software development process,
for example, by separately generating code from concern modules, which are finally
composed by a dedicated mechanism of the underlying AOP language.

ConcernCompositionRule. The composition plan consists of a set of concern composi-
tion rules whereby one rule defines in detail how the various concern elements are to be
composed. The general concept of concern composition rule is specialized into subclasses
according to the composition mechanism used. Following Kojarski and Lorenz [2006],
the CRM foresees three composition mechanisms. Two asymmetric composition
mechanisms exist in the form of pointcut-advice for introducing aspectual behavioral
(e.g., intercepting method calls) and open class for introducing aspectual structure
(e.g., introducing additional attributes to a class) [Kojarski and Lorenz 2006]. For
both asymmetric composition mechanisms, augmentations or constraints need to be
introduced with respect to model elements, whether they are behavioral elements or
structural elements. Consequently, the AsymmetricCompositionRule serves to realize

ACM Computing Surveys, Vol. 43, No. 4, Article 28, Publication date: October 2011.



A Survey on UML-Based Aspect-Oriented Design Modeling 28:9

both composition mechanisms. The third composition mechanism, called “compositor”
is provided by the subclass SymmetricCompositionRule.

ModuleInteraction. Concern modules might be defined in a way such that they
interact with each other. Kienzle et al. [2003] present a classification of interaction
into “orthogonal” concern modules, “unidirectional preserving” concern modules based
on other concern modules without modifying them, and “unidirectional modifying”
concern modules that change other concern modules. Another classification of Sanen
et al. [2006] distinguishes between “mutual exclusive” concern modules, concern
modules “depending” on each other, concern modules positively “reinforcing” each
other, and concern modules “conflicting” with each other. Accordingly, the abstract
class ModuleInteraction can be specialized to represent the specific interaction types.
In case of a conflict, additional resolution strategies may need to be employed.

RuleInteraction. Analogously to module interaction, also concern composition rules
may interact with each other. Again a rule interaction can be refined accordingly to
support different kinds of rule interactions. For example, concern composition rules on
the one hand may reinforce each other but on the other hand may also conflict with
each other. Consequently, conflict resolution strategies need to be employed. In the
context of UML, for example, a relative or absolute ordering of rules could by realized
with dependencies.

Effect. The effect specified with the concern composition rule describes what effect
the integration of concern elements have. A concern composition rule may have an
enhancement effect, a replacement effect, or a deletion effect (cf. EffectKind in Figure 1).
This distinction resembles a differentiation proposed by Hanenberg [2005] in terms of
constructive (cf. enhancement), and destructive (cf. replacement and deletion) effects.
There exists, however, an inherent relationship between the effect and the respective
concern elements used in a particular rule. For example in case of a pointcut-advice
rule, the relative positions before, and after may lead to an enhancement, whereas in
case of around the effect may resemble an enhancement, a replacement (i.e., deleting
the join point with the advice), or a deletion (i.e., deleting the join point with an empty
advice).

3.2. AsymmetricConcernComposition

In the asymmetric concern composition, the concern composition rule is special-
ized for covering the pointcut-advice and open class composition mechanisms
[Kojarski and Lorenz 2006]. The package is organized into two sub-packages, namely
AspectualSubject and AspectualKind, due to the two distinct roles concern elements
play in asymmetric composition.

AsymmetricCompositionRule. Asymmetric composition rules are part of a particular
composition plan and provide support for the pointcut-advice and the open class compo-
sition mechanisms. An asymmetric composition rule consists of a pointcut (cf. Pointcut)
together with an optional relative position (cf. RelativePosition) describing where to
augment or constrain other concern modules as well as the advice (cf. Advice) describ-
ing how to augment or constrain other concern modules. The consists-of relationships
have been modeled using weak aggregations, since advice, pointcut, and relative posi-
tion might be reused in other asymmetric composition rules as well.

3.2.1. AspectualSubject. The aspectual subject describes the concepts required for iden-
tifying where to augment or constrain other concern modules.

JoinPoint. According to Filman et al. [2005], a join point is a well-defined place in the
structure or execution flow of a program where additional behavior can be attached.
In contrast, at modeling level, the join point represents a well-defined place in a model
represented by a concern module, which specifies where an advice (cf. Advice) can be

ACM Computing Surveys, Vol. 43, No. 4, Article 28, Publication date: October 2011.



28:10 M. Wimmer et al.

introduced. Thus, a join point represents a concern element, that is, an identifiable
element of the language used to capture a concern. It has to be noted that, in re-
cent works [Kojarski and Lorenz 2006; Masuhara and Kiczales 2003], the notion of join
point has changed. It has been described as being a concept of the result domain, mean-
ing it represents the composed element through which two or more concerns may be
integrated. Nevertheless, the original concept of join point is essential to the pointcut-
advice composition mechanism and may also be used in the open class composition
mechanism [Kojarski and Lorenz 2006]. Consequently, the CRM adheres to the origi-
nal notion of join point for describing the concepts participating in asymmetric concern
composition.

According to Hanenberg [2005], join points can be distinguished along two orthogonal
dimensions, namely abstraction and dynamicity. In this survey, this categorization is
applied to the modeling level while adhering to UML terminology [OMG 2009] through
the use of the term “feature” instead of “abstraction”. Consequently, join points can be
either structural (cf. StructuralJoinPoint) or behavioral (cf. BehavioralJoinPoint), while
at the same time, joinpoints are also representations of static or dynamic elements (cf.
attribute isDynamic) in a software system. While static join points are elements of a
language at type level (e.g., classes or associations), dynamic join points are elements
of a language at instance level (e.g., objects or links). This means that static join points
allow referring to model elements available at design time whereas dynamic join points
refer to instantiations of model elements available at runtime. Consequently, static join
points allow introducing advices already at design time whereas dynamic join points
allow introducing advices not before runtime. Admittedly, it depends on the language
at hand whether elements for instance specification are provided, thus allowing for
dynamic join points (as is the case with UML) or not.

StructuralJoinPoint. Structural join points represent structural elements of a lan-
guage where an advice can be introduced. In addition, structural join points can be
either static or dynamic (cf. isDynamic attribute). Exemplifying those two categories
by means of UML modeling elements, structural-static join points would be classes and
structural-dynamic join points would be objects.

BehavioralJoinPoint. Analogous, behavioral join points represent behavioral ele-
ments of a language where an advice can be introduced. Additionally, a distinction
is made between behavioral-static join points (e.g., activity) and behavioral-dynamic
join points (e.g., message occurrence).

JoinPointModel. The join point model defines the kinds of join points available
[van den Berg et al. 2005]. It comprises all elements of a certain language where
it is allowed to introduce an advice (cf. Advice), that is, where the representedAs associ-
ation connects the element with JoinPoint. For example, some approaches might want
to restrict their join point model to a specific set of language elements, for example,
classifiers in UML.

Pointcut. A pointcut describes a set of join points [van den Berg et al. 2005], that is,
the concern elements selected for the purpose of introducing certain augmentations
or constraints (cf. Advice). The selection of join points can be achieved by means
of quantified statements over concern modules and their concern elements (cf.
SimplePointcut and QuantificationMethod). A pointcut specification is implemented
by either a SimplePointcut or a CompositePointcut.

SimplePointcut. A simple pointcut represents a set of join points of a certain kind
(e.g., structural-static), which are selected according to a certain quantification method
(cf. QuantificationMethod). It thus, represents a means for selecting several concern
elements as join points, for example, select all modifying operations for logging
purposes. For this survey, the combination of simple pointcut and quantification
method correspond to the definition of pointcut in van den Berg et al. [2005].

ACM Computing Surveys, Vol. 43, No. 4, Article 28, Publication date: October 2011.



A Survey on UML-Based Aspect-Oriented Design Modeling 28:11

CompositePointcut. For reuse purposes, pointcuts can be composed of other pointcuts
by means of logical Operators, for example, AND, OR, NOT, to form composite pointcuts.
For example this allows to combine the selection of all modifying operations together
with all retrieval operations. Thereby, all children of a composite pointcut, that is, all
selected join points, refer to the same join point model.

QuantificationMethod. The quantification method concept describes a mechanism,
for example, a predicate for selecting from the potential join points of the join point
model those that should be available for introducing an advice (cf. Advice), for example,
select all abstract classes or all methods being implemented in a certain class. The
quantification method corresponds to what is termed a pointcut designator in AspectJ,
that is, its quantification mechanism according to Filman et al. [2005].

RelativePosition. A relative position may provide further information as to where
aspectual features (cf. Advice) are to be introduced. It represents some kind of location
specification. This additional information is necessary in some cases when selecting
join points by pointcuts only is not enough. Such aspectual features can be introduced
for example before, after, or around a certain join point. Still, in some other cases such
as for the open class composition mechanism a relative positioning is not necessary, for
example, when a new attribute is introduced into a class the order of the attributes is
insignificant (cf. multiplicity 0..1). While the relative position typically is specified with
the advice such as in AspectJ, in the CRM it is modeled separately from the advice. The
“wrapping” technique presented in Filman et al. [2005] corresponds to the definition of
relative position but in contrast is described for behavioral join points only.

3.2.2. AspectualKind. The AspectualKind package comprises the concepts necessary to
describe how to augment or constrain other concern modules.

Advice. An advice specifies how to augment or constrain other concerns at join points
matched by a pointcut [van den Berg et al. 2005]. An advice is realized by either
a structural advice (cf. StructuralAdvice), a behavioral advice (cf. BehavioralAdvice),
or both, that is, by a composite advice (cf. CompositeAdvice). Historically, structural
advice has been called “introduction”, while behavioral advice has been termed “advice”.
Recently, the advice concept is more and more used as an inclusive term for both and
consequently has been employed herein. It has to be noted that structural advices as
well as behavioral advices can be related to, both, structural join points and behavioral
join points, respectively.

StructuralAdvice. A structural advice comprises a language’s structural elements for
advising other concerns. Examples of structural advices are adding a new attribute to
a class (i.e., structural join point) but also relating a class as context to an activity (i.e.,
behavioral join point).

BehavioralAdvice. Likewise, a behavioral advice comprises a language’s behavioral
elements for advising other concerns. In the context of UML, examples of behavioral
advices are adding an operation to a class (i.e., structural join point) or including
another method call in an activity (i.e., behavioral join point).

CompositeAdvice. For reuse purposes, an advice can be composed of a coherent set of
both, structural and/or behavioral advice, to form a composite advice, that is, the com-
posite needs to be free of conflicts. For example, an attribute and an operation represent
two simple advice. If composed, the composite advice includes the attribute as well as
the operation. In this respect, the advice concept extends the general understanding of
the advice concept described in van den Berg et al. [2005].

3.3. SymmetricConcernComposition

In the symmetric concern composition, the concern composition rule is specialized ac-
cording to the compositor composition mechanism [Kojarski and Lorenz 2006].

ACM Computing Surveys, Vol. 43, No. 4, Article 28, Publication date: October 2011.



28:12 M. Wimmer et al.

SymmetricCompositionRule. A symmetric composition rule comprises first, a speci-
fication of the elements to be composed (cf. ComposableElement), second, the match
method to apply upon them describing which elements to compose (cf. MatchMethod),
and third, the integration strategy to be applied describing how to proceed on those
matched elements (cf. IntegrationStrategy). For example, in the context of UML such a
symmetric composition rule could specify that classes of two packages having identical
names shall be matched and their class bodies shall be combined, similarly to the UML
“package-merge” operator. Again, for reuse purposes, the consists-of relationships have
been modeled using weak aggregations.

ComposableElement. Composable elements of a symmetric composition rule, refer
to the elements that can be composed [Clarke 2002]. Composable elements can be
made up by any element of the underlying language. Therefore, a distinction is made
also between composable structural elements (cf. ComposableStructuralElement) and
composable behavioral elements (cf. ComposableBehavioralElement). In the course of
a symmetric composition rule, more than two of such elements can be integrated.

ComposableStructuralElement. A composable structural element comprises a lan-
guage’s structural elements (cf. StructualElement) and can be composed with other
composable elements identified in a symmetric composition rule. Examples for com-
posable structural elements with respect to UML are Components, Classes, but also
more fine-grained concepts such as Properties.

ComposableBehavioralElement. Likewise, a composable behavioral element com-
prises a language’s behavioral elements (cf. BehavioralElement) and can be composed
with other composable elements identified in a symmetric composition rule. With re-
spect to UML, examples for composable behavioral elements are Activities and Actions
as well as State Machines and States.

MatchMethod. The match method applied in the detection phase of a composition
identifies which concrete elements to match given as input the composable elements for
the composition. It supports the specification of match criteria for composable elements
and their components, for example, a class’s attributes. Examples for match methods
found in literature [Clarke 2002; Reddy et al. 2006a] comprise match-by-name; match-
by-signature; no-match.

IntegrationStrategy. The integration strategy details how to proceed during com-
position with the matched elements. The general concept of integration strategy is
specialized into the subclasses merge, bind, and override [Clarke 2002; Reddy et al.
2006a]. It has to be noted that the integration strategy closely relates to the effect
of a concern composition introduced in Section 3.1, in that a merge strategy results
in a combination of replacement and enhancement effects, whereas bind and override
strategies lead to enhancement and replacement effects, respectively.

Merge. With the merge integration strategy, two or more corresponding composable
elements are merged, for example, merging the attributes of two classes into a single
class. This set of corresponding composable elements has been identified by the applied
match method.

Override. In contrast to the merge integration strategy, for applying the override
integration strategy the overriding as well as the overridden elements have to be
specified from the set of corresponding composable elements identified by the applied
match method. An example would be overriding attributes with a certain type through
attributes of another type.

Bind. The bind integration strategy typically represents a strategy where some
composable elements are treated as template parameters that need to be bound to
concrete values, that is, other composable elements. It is applied in the context of
parameterizable concern modules which are often used to realize crosscutting concerns.
For example, binding abstract collection types to concrete ones during composition.

ACM Computing Surveys, Vol. 43, No. 4, Article 28, Publication date: October 2011.



A Survey on UML-Based Aspect-Oriented Design Modeling 28:13

3.4. Language

Finally, the concepts which are part of the Language package describe the means
underlying the specification of concerns.

Language. Concern modules are formalized using language elements of a certain
language, that is, a modeling language like UML. Depending on the composition mech-
anism used, some aspect-oriented approaches have distinguished between different
languages for formalizing crosscutting and noncrosscutting concerns [Kojarski and
Lorenz 2006].

Element. A language comprises a set of elements, like, for example, class, relation-
ship, or package, that allows the modeler to express certain concepts. Typically, a
language’s elements can be distinguished into structural (cf. StructuralElement) and
behavioral elements (cf. BehavioralElement). Depending on the composition mech-
anism, the elements of a language are used differently. With respect to asymmetric
approaches, elements serve two distinct purposes. First, they may represent join
points and thus, in the role of join points, specify where to introduce an advice.
Second, elements of a language are used for formulating the advice itself. In the case
of symmetric approaches, such a distinction is not made.

StructuralElement. Structural elements of a language are used to specify a system’s
structure. Natural examples for such elements in the case of UML are classes, packages,
and components.

BehavioralElement. Likewise to structural elements, behavioral elements of a lan-
guage are used to specify a system’s behavior. Behavior is expressed in UML through
behavioral elements like actions, states, and messages.

4. EVALUATION FRAMEWORK

Based on our CRM introduced in Section 3, this section is dedicated to a description
of the evaluation framework used for this survey. For this, the motivation behind the
selection of approaches presented in Section 5 is given and the rationale behind the
evaluation framework itself is discussed, thereby clearly outlining the methodology
used for assembling the criteria catalog and defining a common description schema,
each criteria adheres to. Based on that, the criteria of the evaluation framework are
categorized and described in the following sections.

4.1. Methodology

Selection of Approaches. There already exists a considerable amount of proposals for
AOM languages each of them having different origins and pursuing different goals
dealing with the unique characteristics of aspect-orientation. Only few of them have
come of age and have been presented at acknowledged conferences and journals, how-
ever. Since aspect-orientation is often considered an extension to object-orientation, it
seems almost natural to use and/or extend the standard for object-oriented modeling,
that is, the UML, for AOM. To the best of our knowledge, there are only a few AOM
proposals that do not base their concepts on UML [Sutton and Rouvellou 2005; Suvée
et al. 2005] compared to the amount of approaches that do. Thus, this survey focuses
on UML-based approaches to aspect-oriented modeling, only.

In literature, fifteen such well-published, UML-based, design-level AOM approaches
have been identified, namely: Clarke and Baniassad [2005], Coelho and Murphy [2006],
Cottenier et al. [2007a], Elrad et al. [2005], Fuentes et al. [2007], Grundy [2000], Ho
et al. [2002], Jacobson and Ng [2005], Katara and Katz [2007], Klein et al. [2007],
Pawlak et al. [2005], Reddy et al. [2006a], Stein et al. [2002a], von Flach Garcia Chavez
[2004], and Whittle et al. [2007]. In this survey, the results of evaluating a represen-
tative set of eight AOM approaches are presented, including in the set first of all two

ACM Computing Surveys, Vol. 43, No. 4, Article 28, Publication date: October 2011.



28:14 M. Wimmer et al.

approaches being well published that have not been investigated in existing surveys,
namely: Cottenier et al. [2007a] and Klein et al. [2007]. As indicated before, the ra-
tionale behind choosing the remaining six [Clarke and Baniassad 2005; Elrad et al.
2005; Jacobson and Ng 2005; Pawlak et al. 2005; Reddy et al. 2006a; Stein et al. 2002a]
out of the identified, is to assort a representative mix of well-published approaches.
In this respect, the goal has been to maintain the ratio between approaches based on
metamodel extensions and those relying on UML Profiles as well as the ratio between
symmetric and asymmetric approaches.

Operationalizing Conceptual Reference Model into Criteria Catalog. In the following,
a catalogue of criteria for a structured evaluation of AOM approaches is proposed.
The rationale behind designing this catalogue of criteria was to provide a fine-grained
catalogue of criteria that constitutes the prerequisite for an in-depth evaluation of
existing approaches and thus allows to compare different AOM approaches in greater
detail than in previous surveys such as Blair et al. [2005], Chitchyan et al. [2005], Op de
beeck et al. [2006], and Reina et al. [2004]. The criteria of the evaluation framework
have been derived in a top-down manner from the CRM (cf. Section 3) as well as in
a bottom-up manner considering related AOM surveys. The CRM presented in the
previous section sketches the concepts that have been identified on basis of existing
literature, to be important for the AOM domain. Corresponding criteria in the catalogue
operationalize the CRM with respect to allowing a comparison of approaches. As far as
possible, this operationalization has been achieved in a top-down way by aligning CRM
concepts to criteria as employed in related AOM surveys [Blair et al. 2005; Chitchyan
et al. 2005; Op de beeck et al. 2006; Reina et al. 2004]. Criteria definitions found in
other surveys have been adopted and if necessary refined, for example, by providing
certain measurement scales or by decomposing a criterion and consequently building
several subcriteria for a single CRM concept. Additionally, some criteria have been
introduced which relate to multiple CRM concepts (e.g., “Abstraction”). In the course
of a criterion’s description, it is explicitly mentioned if and how a criterion has been
adopted or refined from related surveys.

Excluding Nonmeasurable Criteria. From the catalogue of criteria a few criteria pro-
posed in related surveys have been explicitly excluded, since they cannot be measured
without user studies or extensive case studies. These include the following criteria of
the survey of Blair et al. [2005], comprising reusability, comprehensibility, extensibil-
ity, ease of learning/use, parallel development, as well as change propagation, which
corresponds to the evolvability criterion of Chitchyan et al. [2005].

Establishing a Schema for Criteria Definition. Furthermore, the goal was to avoid
blurred criteria by working out, as far as possible, unambiguous definitions and the
criteria’s values that are also measurable. Thus, each criterion is described by a set of
properties:

(1) a name along with an abbreviation allowing to reference the criteria during evalu-
ation of the approaches in Section 5,

(2) a reference to the source in case a criterion has been adopted or refined from another
survey as well as an explanation of how such a refinement has been accomplished,

(3) a definition specifying the criterion as unambiguously as possible along with an
optional discussion on difficulties in defining the criterion,

(4) an appropriate means of measurement, such as a list of possible values or a mea-
surement scale, including not applicable as a default value for each criterion.

Categorizing the Selected Criteria. The criteria of the catalogue have been grouped
into six categories (see Figure 2) with four out of them being specifically inferred from
corresponding parts in the CRM (cf. Section 3) and the general categories Maturity and
Tool Support providing mainly descriptive criteria.

ACM Computing Surveys, Vol. 43, No. 4, Article 28, Publication date: October 2011.



A Survey on UML-Based Aspect-Oriented Design Modeling 28:15

Concern Composition
• Concern Module 
• Element Symmetry
• Rule Symmetry
• Composition 

Symmetry
C i i Pl

Concern Composition
• Concern Composition

Rule Mechanism
• Concern Composition 

Rule Semantics
• Module Interaction 

R l I i

Asymmetric 
Concern Composition

Aspectual Subject

• Composition Plan
• Composed Model

• Rule Interaction
• Conflict Resolution 
• Effect

• Struct. Join Point
• Behav. Join Point
• Join Point Model
• Pointcut
• Simple Pointcut

Aspectual Subject
• Composite Pointcut 
• Quantification
Method

• Relative Position
• Abstraction

Symmetric
Concern Composition

• Struct. Composable Element
• Behav. Composable Element
• Match Method

• Merge
• Override
• Bind

Aspect 
Oriented 

• Structural Advice
• Behavioral Advice
• Composite Advice
• Abstraction

Aspectual Kind
atc et od d

• AbstractionModeling

• Modeling Examples
• Application in Real-World

Maturity
• Modeling Support
• Composition Support

Tool Support
pp

• Topicality
• Citations
• Available 

Information

Composition Support
• Code Generation

• Design Process
• Traceability
• Scalability
• Refinement Mapping
• Alignment to Phase

• Aspect Generality 
• Modeling Language 
• Extension Mechanism 
• Influences
• Diagrams

Language

• Alignment to Phase• Diagrams

Fig. 2. Categorization of criteria.

The Language category provides criteria for evaluating some basic characteristics
of AOM languages (e.g., the modeling language, the extension mechanism used, and
traceability). Beyond, it also provides a criterion for checking the availability of a
design process. In the ConcernComposition category, the representation of the concern
module concept and the composition mechanisms used is considered amongst others.
With respect to symmetric concern composition in the SymmetricConcernComposition
category, the kind of composable elements and provided integration strategies are inves-
tigated. In contrast, the AsymmetricConcernComposition category subsumes criteria
for the join point and its subconcepts (cf. AspectualSubject subcategory) as well as cri-
teria evaluating the modeling support of advice (cf. AspectualKind subcategory). The
Maturity of an approach is discussed along the criteria of provided modeling examples,
real-world applications, and available information. And finally, in the Tool Support
category the availability of tools for modeling and composing concern modules as well
as for code generation is evaluated. Since a thorough evaluation of Tool Support for
AOM would go beyond the scope of this survey, tool support is evaluated on the basis
of the available literature, only. Following, each categories’ criteria are presented.

4.2. Language Criteria

This category contains general criteria describing the modeling language and design
process. A separate criteria for evaluating the element concept described in the CRM (cf.
Section 3) is not considered, since it is implicitly evaluated with several other criteria
that investigate the corresponding CRM’s aspect-oriented concepts with respect to their
modeling representation.

Aspect Generality (L.AG). Besides being a general-purpose modeling language with
respect to the application domain, an AOM approach also may be general-purpose with
respect to aspects. The following two forms of aspect generality can be distinguished:
A general-purpose AOM language supports modeling of all kinds of aspects, whereas
an aspect-specific modeling language considers one specific aspect, only. Theoretically,

ACM Computing Surveys, Vol. 43, No. 4, Article 28, Publication date: October 2011.



28:16 M. Wimmer et al.

there could be modeling languages that support two, three or more specific aspects.
Still, these are not considered to be aspect-specific, since in that case, the definition
for general-purpose modeling languages gets blurred. The aspect generality criterion
has been adopted from the “purpose” criterion in Reina et al. [2004]. In this survey,
the focus is on general-purpose AOM languages, thus, the aspect generality criterion
is used for selection purposes, only.

Modeling Language (L.L) With respect to the modeling language used, this criterion
considers UML-based AOM approaches only, distinguishing between the UML version
employed, that is, 1.x, and version 2.0 [OMG 2009] is made.

Extension Mechanism (L.E). Although UML is very expressive, its modeling mech-
anisms do not provide for aspect-oriented concepts. Thus, AOM proposals tend to use
one out of two UML extension mechanisms to cater for the necessary modeling mech-
anisms, which is evaluated by this criterion. First, by what is called heavy-weight
extension, the UML metamodel itself is extended through inheritance and redefinition
of metamodel elements. Second, UML profiles, grouping user-defined extensions to
metamodel elements in terms of stereotypes [Rumbaugh et al. 2005], represent UML’s
built-in lightweight extension mechanism, which permits only extensions that do not
change the metamodel. This way a new dialect of UML can be defined in order to better
support specific platforms or domains [OMG 2009]. The lightweight extension mech-
anism fosters tool inter-operability [Rumbaugh et al. 2005], since they are designed
in a way that tools can store and manipulate the extensions without understand-
ing their full semantics. This criterion has been inspired by Chitchyan et al. [2005],
where this kind of information has been provided but an explicit criterion has not been
defined.

Influences (L.I). Originally, the intention was to use “platform dependency” as a cri-
terion for this catalogue. Still, in literature, no clear definitions of platform or platform
(in)dependence, for example, in the context of OMG’s Model Driven Architecture (MDA)
[OMG 2003], have been available. For example, there may be many abstraction lev-
els between MDA’s Platform Independent Models (PIM) and Platform Specific Models
(PSM). Consequently, what defines platform and platform-independence is a matter of
objectives and has to be determined in the context of one’s own work. In this survey, a
common definition of platform for the evaluated approaches is not attempted. Instead,
the “inspired by” criterion of Reina et al. [2004] is resumed, according to which many
of the AOM approaches have been inspired by concepts expressed in a specific aspect-
oriented programming language. In contrast to Reina et al. [2004], this criterion is
not restricted to AOP platforms but lists research areas (e.g., SOP, MDSoC, and CF)
and platforms in general that have “influenced” a particular approach. In addition,
platforms are also listed if models can be mapped onto them, provided that proof is
given through a mapping definition or at least appropriate examples.

Diagrams (L.D). The emphasis in modeling concern modules can be its structure
and/or its behavior. In this respect, the kinds of supported structural and/or behavioral
diagrams to specify aspect-orientation are evaluated by this criterion. Hence, this
property lists all UML diagram types and possibly proprietary diagram types that
have been used to support on the one hand structural and on the other hand behavioral
modeling of concern modules. This criterion also has been inspired by Chitchyan et al.
[2005], where this kind of information has been provided but an explicit criterion has
not been defined.

Design Process (L.DP). A design process describes a well-defined, step-wise approach
to modeling. This criterion has been adopted from Op de beeck et al. [2006] and evalu-
ates if the surveyed AOM approach provides explicit support for a design process or if
some implicit design process support is available, for example, in terms of guidelines,
only.

ACM Computing Surveys, Vol. 43, No. 4, Article 28, Publication date: October 2011.



A Survey on UML-Based Aspect-Oriented Design Modeling 28:17

Traceability (L.T). The traceability criterion is defined as a property of a relationship
between two models where one model is a refinement of another, and has been adopted
from the work of Chitchyan et al. [2005]. More specifically, the criterion distinguishes
between external and internal traceability. The external traceability measure focuses
on aspect-oriented models in relation to the full software development life cycle, that is,
requirements (R), design (D), and implementation (I). Possible values are combinations
such as R → D → I, which means traceability from a requirements specification over
design to the implementation level. The internal traceability measure deals with trace-
ability between models belonging to one phase in the software development life cycle.
In this survey, AOM approaches are investigated if mechanisms or at least guidelines
are provided to refine abstract design models into more detailed design models. This
subcriterion evaluates to supported or not supported, respectively.

Scalability (L.S). Scalability, which is defined as the ability to cope with small as
well as large modeling projects, is investigated with respect to first, which high-level
modeling elements of an approach support scalability, for example, UML packages,
and/or high-level diagram types, and second, if scalability has been proven or not
proven in real-world projects or by modeling examples that go beyond the composition
of two concern modules. This definition of scalability has been refined from Chitchyan
et al. [2005] with respect to its measurement scales.

Refinement Mapping (L.R) The refinement mapping criterion is adopted from Op de
beeck et al. [2006]. It describes how the refinement of an initial abstract design model
into a more detailed one is achieved. One can distinguish the extending step-wise
refinement from the creating step-wise refinement. The difference between these two
possibilities is that for the latter a new instance of the model is created with every step
in the refinement process.

Alignment to Phase (L.A). Design is just a phase embedded in the overall software de-
velopment life cycle. An AOM approach therefore may be more aligned to certain phases
in software development than to others. Ideally, an approach is balanced between the
abstraction available from the requirements phase and the abstraction needed for the
implementation phase. An AOM approach can thus be aligned to requirements and/or
implementation phases but also to none of the phases. This criterion has been adopted
from Op de beeck et al. [2006].

4.3. ConcernComposition Criteria

This category considers criteria derived from the corresponding package in the CRM,
amongst others, the representation of the concern module concept as well as symmetry
composition characteristics of an approach.

Concern Module (CC.CM). This criterion investigates the concern modules’s rep-
resentation in the modeling language in terms of a UML metaclass or a stereotype
definition and, if provided, the notational element used. The specification of concern
modules comprises certain symmetry characteristics of elements, rules, and composition
as evaluated with the following criteria.

Element Symmetry (CC.ES). Two possible ways of concern decomposition are distin-
guished by this criterion namely, symmetric and asymmetric concern decomposition.
In the asymmetric paradigm one distinguishes between concern modules of different
structure, that is, between “aspects” and “base”. As an example, some AOM approaches,
introduce a new stereotype �aspect� derived from UML meta-class Class to distin-
guish “aspects” from normal “base” classes. In the symmetric paradigm no such dis-
tinction is made. In fact, the symmetric paradigm treats all concerns, both crosscutting
and non-crosscutting, as “first-class, co-equal building-blocks of identical structure”
[Harrison et al. 2002].

ACM Computing Surveys, Vol. 43, No. 4, Article 28, Publication date: October 2011.



28:18 M. Wimmer et al.

Rule Symmetry (CC.RS). This criterion evaluates if the rules for composing concern
modules are specified in a symmetric or in an asymmetric way [Harrison et al. 2002].
In particular, the symmetry is determined by the placement of the concern composition
rules. Rule asymmetry defines the concern composition rules within one of the concern
modules that are to be composed (e.g., in AspectJ the rules are captured within the
aspect in terms of pointcut-advice combinations), whereas rule symmetry defines them
in neither of the concern modules. Please note, that rule symmetry corresponds to
relationship symmetry in Harrison et al. [2002].

Composition Symmetry (CC.CS). This criterion has been adopted from the work of
Op de beeck et al. [2006] and investigates which concern modules are allowed to be
composed with each other. While in the asymmetric case composition happens between
“aspects” and “bases” only, that is, “aspects” are woven into “bases”, in the symmetric
case all concern modules can be composed with each other. For those approaches sup-
porting element asymmetry and thus distinguishing between “aspects” and “bases”,
symmetric composition is only supported if the following combinations are allowed:
aspect-base, aspect-aspect, base-base. Approaches supporting element symmetry ac-
cordingly also support composition symmetry.

Composition Plan (CC.C). This criterion evaluates if there is a composition plan
available, specifying the integration of concern modules at the modeling level or not,
meaning that composition is deferred to later phases of the development process. In
case a composition plan is supported, a distinction between composing concern modules
statically or dynamically, that is, by executing the models, is made.

Composed Model (CC.CP). In case that a composition plan allows for static com-
position of concern modules, this criterion evaluates the resulting composed model in
terms of its modeling representation. In particular, this criterion distinguishes between
composed models represented with standard UML and composed models represented
based on the extensions made to the UML. The composed model criterion has been
adopted from the “composability” criterion of Chitchyan et al. [2005].

Concern Composition Rule Mechanism (CC.M). The concepts described in the CRM
support the pointcut-advice (PA), open class (OC), and compositor (CMP) composition
mechanisms. This criterion therefore allows to evaluate which of the three composition
mechanism is realized by the concern composition rules as supported by the AOM
approaches. It is also possible to support more than one composition mechanism.

Concern Composition Rule Semantics (CC.S). This criterion has partly been inspired
by the survey of Chitchyan et al. [2005], though not explicitly defined therein. This
criterion evaluates if the composition semantics have been defined or not defined for
both the detection of the elements to be composed as well as for their actual composition
into a composed element.

Module Interaction (CC.MI). An AOM approach may offer ways to specify interactions
between concern modules. This criterion evaluates if module interaction can be modeled
and indicates the modeling representations thereof, for example, UML meta-class or
stereotype.

Rule Interaction (CC.RI). Similar to “Module Interaction”, an AOM approach may
offer ways to define interactions between concern composition rules. This criterion
evaluates like the criterion “Module Interaction”.

Conflict Resolution (CC.CR). Since module as well as rule interaction may yield
conflicts, in accordance with Blair et al. [2005], conflict resolution may be based on a
mechanism to avoid conflicts in advance or to detect conflicts and then resolve them
manually. While conflict avoidance might be a possible solution to cope with conflicting
aspects, one still might need ways to detect and resolve conflicts that could not be
captured by conflict avoidance in advance. In case no conflict resolution has been
specified, this criterion evaluates to not supported.

ACM Computing Surveys, Vol. 43, No. 4, Article 28, Publication date: October 2011.



A Survey on UML-Based Aspect-Oriented Design Modeling 28:19

Effect (CC.E). This criterion evaluates if the approaches provide means for modeling
the effect of the integration of concern elements via concern composition rules. If sup-
ported the respective concepts are listed. In case no effect can be made explicit, this
criterion evaluates to not supported.

4.4. AsymmetricConcernComposition Criteria

This category subsumes criteria for evaluating approaches following an asymmetric
way to concern composition which are categorized into two subcategories: Aspectual-
Subject and AspectualKind. It has to be noted that the criterion Abstraction naturally
applies for both subcategories, thereby extending the meaning as given in Chitchyan
et al. [2005]).

AspectualSubject Criteria. The AspectualSubject subcategory provides criteria for
evaluating concepts used to describe where to augment or constrain other concern
modules, for example, the join point and its subconcepts.

Structural Join Point (AS.SJP). This criterion evaluates if structural join points are
supported. More specifically, the focus is on what kind—with respect to dynamicity—of
structural join point are considered in the approaches.

Behavioral Join Point (AS.BJP). Likewise, the behavioral join point criterion eval-
uates if behavioral join points are supported by the surveyed AOM approaches.
Behavioral-dynamic join points typically depend on certain conditions evaluated at
run-time.

Join Point Model (AS.JPM). This criterion distinguishes between three possible ways
of specifying a join point model. First, the join point model can be made explicit by iden-
tifying a language’s model elements as join points. This can be achieved, for example,
by enhancing the language’s metamodel in a way that certain model elements inherit
from a join point metaclass or by at least identifying and declaring the join points
of a language in “natural language” such as in Stein et al. [2002c] or Xerox [2005].
Second, the join point model can be defined implicitly by the AOM language’s join
point selection mechanism, thus, comprising all join points that the join point selection
mechanism is able to select. Third, the join point model can be defined meta-explicitly
(cf. Heidenreich et al. [2008]), meaning that it is not just defined individually for a
certain composition approach but rather in a generic way, for example, as a set of rules,
which can be applied to many different composition approaches.

Pointcut (AS.P). This criterion evaluates if the pointcut mechanism has been realized
based on a standard (e.g., UML or OCL) or on a proprietary language.

Simple Pointcut (AS.SP). This criterion evaluates how simple pointcuts are repre-
sented by concepts of the modeling language or extensions thereof and particularly
distinguishes between graphical and textual representations of simple pointcuts.

Composite Pointcut (AS.CP). The composite pointcut criterion evaluates how compos-
ite pointcuts are represented in the modelling approach, if at all. Again, a distinction
is made between graphical and textual representations of composite pointcuts.

Quantification Method (AS.QM). This criterion evaluates which quantification meth-
ods are employed to select join points in a certain approach. The selection of join points
can be specified declaratively or simply by enumeration.

Relative Position (AS.RP). This criterion investigates the general support of specify-
ing a relative position with respect to join points and, if provided, lists the different
possibilities of relative position specification.

Abstraction (AS.A). A high level of abstraction with respect to the aspectual subjects
means that the join points might not have been identified yet, that is, the model
only specifies the fact that a certain concern module aspects others, but not exactly
where. On the contrary, modeling languages providing a low level of abstraction allow

ACM Computing Surveys, Vol. 43, No. 4, Article 28, Publication date: October 2011.



28:20 M. Wimmer et al.

specifying the exact points where advice takes effect. Thus, this criterion evaluates to
high or low.

AspectualKind Criteria. The AspectualKind subcategory subsumes criteria for eval-
uating concepts used to describe how to augment or constrain other concern modules,
for example, the advice, as well as the abstraction level at which modeling of the advice
is possible.

Structural Advice (AK.SA). This criterion evaluates if AOM approaches provide ways
of specifying structural augmentations and/or constraints. Furthermore, the concepts
or extensions of the modeling language as well as the notational elements used for
representation are investigated.

Behavioral Advice (AK.BA). Similar to structural advice, this criterion evaluates if
AOM approaches provide ways of specifying behavioral advice and in particular what
concepts or extensions of the modeling language and what notational elements have
been used for representation.

Composite Advice (AK.CA). In addition to evaluating structural and behavioral advice
support, the focus is on how the approaches provide ways of composing multiple pieces
of advice to form a more complex advice in terms of concepts or extensions of the
modeling language and appropriate notational elements.

Abstraction (AK.A). Since models at a high level of abstraction might be incomplete
with respect to providing a specification for code generation, a high level of abstraction
with respect to the aspectual kind means that it might not yet be clear how the specific
concern module(s) should be advised, that is, the model only specifies that a certain
concern module exists, but not the actual advice it provides. In contrast, low-level
models of aspectual kind refer to models that provide detailed information on how the
concern module’s internals (i.e., the actual advice and auxiliary functionality) look like.
Thus, this criterion again evaluates to high or low.

4.5. SymmetricConcernComposition Criteria

This category subsumes criteria for evaluating approaches following a symmetric way
to concern composition, that is, the necessary concepts identified in the CRM as well
as the level of abstraction at which modeling is supported.

Structural Composable Element (S.SCE). This criterion evaluates if and what struc-
tural composable elements are supported by an AOM approach. It lists the UML meta-
classes representing structural concepts that in a symmetric concern composition ap-
proach can be composed.

Behavioral Composable Element (S.BCE). Likewise, the behavioral composable
element criterion evaluates if and what behavioral composable elements are supported
by an AOM approach. This criterion therefore lists the UML metaclasses representing
behavioral concepts that in a symmetric concern composition approach can be
composed.

Match Method (S.MM). This criterion evaluates which method(s) to identify the
matching elements out of the set of composable elements are foreseen by an approach.
It distinguishes between three possible methods, namely match-by-name, match-by-
signature, and no-match.

Merge (S.M). This criterion investigates if AOM approaches supporting the symmet-
ric concern composition provide ways of defining the specific integration strategy merge.
In particular, it investigates what concepts or extensions of the modeling language as
well as what notational elements have been used for representation.

Override (S.O). Similarly, this criterion checks if an AOM approach allows for model-
ing symmetric concern composition rules with an override integration strategy. Again,
it also investigates what concepts or extensions of the modeling language as well as
what notational elements have been used for representation.

ACM Computing Surveys, Vol. 43, No. 4, Article 28, Publication date: October 2011.



A Survey on UML-Based Aspect-Oriented Design Modeling 28:21

Bind (S.B). Like the previous two, the bind criterion evaluates possible extensions
of the modeling language to support such a binding and provides information on the
notational elements used.

Abstraction (S.A). Analogous to the abstraction criteria for the asymmetric con-
cern composition, this criterion has been refined from the definition given in
[Chitchyan et al. 2005]. In this context, however, the level of abstraction is defined
with respect to the composable elements used in a symmetric composition rule. A high
level of abstraction is supported if the symmetric composition rule is used to compose
two or more higher-level or composite modeling elements, such as UML packages, of
which their internals have not been specified. A low level of abstraction is provided,
if these composite modeling elements can be detailed, for example, a class diagram
for a UML package, and if symmetric composition rules can also be specified for more
fine-grained modeling elements such as UML attributes.

4.6. Maturity Criteria

The criteria in this section intend to evaluate the approaches’ maturity in general. It
has to be noted that in Blair et al. [2005] the criterion maturity was used to evaluate
whether an approach has been used in real world examples, only, whereas in this
survey maturity is evaluated with a set of subcriteria described in the following.

Modeling Examples (M.E). Besides evaluating the breadth of modeling examples, it
is also interesting to investigate the modeling examples’ depth in terms of how many
different concern modules are integrated within the examples. Thus, the criterion
is supported by two values, namely, the number of provided modeling examples by
each approach as well as the maximum number of concern modules integrated in one
example.

Application in Real-World Projects (M.A). The successful deployment of the AOM
approach in the design of a real-world application proves its applicability and conse-
quently indicates a high level of maturity of the modeling concepts. Possible values are
yes, and no.

Topicality (M.T). The topicality criterion presents for each approach when the most
recent piece of work in terms of the year of publication has been published to indicate
the approach’s topicality and thus, gives an indication whether the approach might
still evolve or not. This criterion has been refined from the “year” criterion of Reina
et al. [2004].

Citations (M.C). In order to give at least a rough indication of the impact of an
approach to the research community, characterizing also its maturity, Google Scholar
has been used to identify the most often cited paper of an approach along with its
number of citations.2

Available Information (M.I). Another measure of the approaches’ maturity is the
available amount of manuals, papers and books. Although, admittedly, the amount of
publications does not necessarily correlate with an approach’s quality. The values for
this criterion provide the number of different resources of information.

4.7. Tool Support Criteria

Tool Support improves the adoption of an approach and increases developer productiv-
ity as well as ensures syntactical correctness of the model. While the criterion distin-
guishes between support for modeling, composition and code generation, the latter are
both dependent on modeling support.

Modeling Support (T.M). Modeling support is defined as providing the means to
use the modeling language’s notation and furthermore of validating the created

2By 10th Jan. 2010.

ACM Computing Surveys, Vol. 43, No. 4, Article 28, Publication date: October 2011.



28:22 M. Wimmer et al.

aspect-oriented models for syntactical and semantical correctness. If the modeling
language is realized in terms of a UML profile, modeling support should be portable
to any UML modeling tool. This criterion evaluates to supported, possibly providing
further information on modeling support, or not supported.

Composition Support (T.C). This criterion specifies if composition of concern modules
is also supported or not supported by a tool an thus allows to view and/or simulate the
composed model.

Code Generation (T.G). In line with the concepts of MDE, code generation facilities
should be provided, thus requiring a mapping between the notation and the sup-
ported implementation language. This criterion evaluates if code generation, in prin-
ciple, is possible. Beyond, this criterion also evaluates if there is a more sophisticated
mechanism to code generation such as the OMG’s MDA [OMG 2003] (i.e., existence
of platform-independent models, platform definition models and their transformation
into platform-specific models by using a mapping mechanism). Thus, possible values
for this criterion are supported or not supported. Additional information is provided in
case of a more sophisticated code generation mechanism.

4.8. Modeling Example: The Observer Pattern

Motivation. As an appropriate running example of a crosscutting concern to be ap-
plied to a system, in this evaluation, the well-known observer pattern [Gamma et al.
2004] is adopted, a prominent example not only in AOSD literature (cf. Clarke and
Walker [2005], Piveta and Zancanella [2003], and Stein et al. [2002a]) but also in soft-
ware engineering literature. In the running example, the observer pattern is applied
as a crosscutting concern to a library management system, of which an overview along
with the underlying model is given in the following. It has to be emphasized that on
the basis of this rather simple example it is not (and cannot be) the intention to il-
lustrate each and every concept of the approaches but rather to foster their overall
understandability and comparability.

An Example Library Management System. In Figure 3, the Library package models
the structure for managing books of a library in a library management system based
on Clarke and Walker [2005]. Of course, it only depicts a small excerpt of such a
system, primarily containing those parts of the system that are crosscut by the observer
concern.

A BookManager manages a list of Books (cf. addBook(Book) and removeBook(Book))
allowing users to search (cf. searchBook(Book)) the list and access provided informa-
tion for each book (e.g., authors). A library may offer several copies of each Book,
that is, the physical entities (cf. BookCopy), which need to be managed accordingly.
BookCopies might get lost or be stolen. Still, a Book does not have to be removed
from the BookManager’s list until new BookCopies are obtained. The BookManager
associates BookCopies with their Books as they are bought (cf. buyBook(BookCopy)
and addCopy(BookCopy)) and likewise, disassociates them as they are discarded
(cf. discardBook(BookCopy) and removeCopy(BookCopy)). Books, in particular their
copies, have a Location on a certain shelf in a certain room of the library. The status
of each BookCopy, that is, its availability, should be kept up-to-date. Thus, each
time a BookCopy is borrowed or returned by a Customer (cf. borrow(Customer) and
return(Customer)), the BookManager has to be notified. This notification functionality
is not provided by the library management system, but is applied using the observer
pattern as depicted in Figure 3.

The Observer Pattern. The observer pattern [Gamma et al. 2004] as depicted in the
Observer package in Figure 3 defines a one-to-many dependency between objects in a
way that whenever a Subject (i.e., a BookCopy) changes its state, all its dependent Ob-
servers (i.e., instances of BookManager) are notified (cf. notify()) by using their provided

ACM Computing Surveys, Vol. 43, No. 4, Article 28, Publication date: October 2011.



A Survey on UML-Based Aspect-Oriented Design Modeling 28:23

LibraryManagementLibraryManagement
Observer

Subject
add(Observer)
remove(Observer)
notify()
getState()

Observer

start(Subject)
stop(Subject)
update(Subject)

observers

**

Location
roomNumber
shelfNumber

*BookCopy
id
available

Library
1

getState()

Customer

name
address

0..1 *

addBook(BookCopy)
removeBook(BookCopy)

getId()
setId()
getAvailability()
borrow(Customer)
return(Customer)
getState()

BookManager

1
*

addBook(Book)
removeBook(Book)
searchBook(Book)
b B k(B kC )

getName()
setName()
getAddress()
setAddress()

Book

Author

1..*1..*

1..*

1

title
ISBN
getTitle()
getISBN()
addCopy(BookCopy)

buyBook(BookCopy)
discardBook(BookCopy)
update(Subject)

name
getName()

()

*

removeCopy(BookCopy) setName()

Fig. 3. The library management system with observer aspect.

update interface (cf. update(Subject)). While Observers can register and unregister with
their Subjects of interest using the methods start(Subject) and stop(Subject), a Subject
keeps a list of Observers (cf. add(Observer) and remove(Observer)), which are interested
in changes of the Subject’s state.

In Figure 3, thus, the Subject and Observer roles are adopted by BookCopy and
BookManager, respectively. Applying the observer pattern, however, affects the library
management system’s modularity. In particular, the abstract methods getState() and
update(Subject) have to be implemented by BookCopy and BookManager, respectively.
Additional code modifications are necessary to call start(Subject)/stop(Subject) when-
ever a BookCopy is bought/discarded and to call notify() whenever a BookCopy is
borrowed or returned. Therefore, the observer functionality can be regarded as cross-
cutting concern and, thus, be realized with the concepts of various AOM approaches.

Limitations of the Running Example. The observer pattern is a well-known example
for a crosscutting concern and actually has been used in three of the surveyed ap-
proaches (cf. Clarke [2002], France et al. [2004a], and Stein et al. [2002a]). One might
argue that the use of an example which has already been used by some of the ana-
lyzed approaches might lead to a bias in the evaluation. Since the running example is
used to only visualize the respective approach to the reader and to have a side by side
comparison of the approaches, any biased influence on the survey itself is negligible.
Still, some approaches do not allow for fully operationalizing the running example,
which is due to their particular focus. For instance, the approach of Klein et al. [2006]
does not allow to model crosscutting structure, since the approach’s focus is rather on a
weaving algorithm for (non-)crosscutting behavior. Nevertheless, the application of one
running example for all approaches generated some insight into the differences of each
individual approach. Of course all AOM approaches should be tested in a real world
setting or at least in a non-trivial example, which encompasses more than two concerns
as well as all concepts described in the conceptual reference model, for example, the

ACM Computing Surveys, Vol. 43, No. 4, Article 28, Publication date: October 2011.



28:24 M. Wimmer et al.

AO Challenge [Kienzle and Gélineau 2006]. Such an example would allow for testing
the approaches’ means for capturing interactions and resolving conflicts, which in this
survey, can only be described textually. Still, the obvious advantages of a small and
easy to understand running example would be lost.

5. SURVEY OF AOM APPROACHES

This survey is based on a literature study, including modeling examples, provided by
the individual AOM approaches. For each surveyed approach, additional information
and discussion is provided in the following. The evaluation of each approach follows
the order of categories of the criteria catalogue presented in Section 4. Moreover, a
running example (cf. Section 4.8) that is modeled by means of the concepts of each AOM
approach is provided. This further enhances the evaluation in that it first, provides an
insight into each approach and second, allows to easier compare the modeling means
of the approaches.

In the following, the modeling means of each surveyed AOM approach is presented by
means of this running example. Basically, the approaches realizing the pointcut-advice
and open class composition mechanisms are presented first and then those realizing the
compositor composition mechanism are elaborated on. In particular, the first two ap-
proaches of Stein et al. (cf. Section 5.1), Pawlak et al. (cf. Section 5.2), are similar, since
they have been specifically designed as modeling languages for two aspect-oriented pro-
gramming platforms, that is, AspectJ and the JAC Framework,3 respectively. The com-
monalities of the third approach of Jacobson and Ng (cf. Section 5.3) and the approach of
Pawlak et al. are that they do not envisage composition of concerns at modeling level but
defer composition to the implementation phase. The next two approaches are both very
recent proposals to AOM focusing on composing behavioral diagrams. In this respect,
the approach of Klein et al. (cf. Section 5.4) presents an algorithm for first, detecting the
model elements to be composed and second, composing them. The approach of Cottenier
et al. (cf. Section 5.5) also supports composition of models and, in contrast to all others,
already comes with tool support for modeling, composition and code generation. The
last group of three approaches supports the compositor composition mechanism. While
the approach of Aldawud et al. (cf. Section 5.6) focuses on the composition of state ma-
chines, the approaches of Clarke et al. (cf. Section 5.7) and France et al. (cf. Section 5.8)
originally have considered the composition of class diagrams. Lately, the approach of
France et al. also realizes the pointcut-advice composition mechanism through the
composition of sequence diagrams. The results of the comparison are discussed and
illustrated in Section 6 Lessons Learned at a glance (cf. Table I to VII).

5.1. The Aspect-Oriented Design Model of Stein et al.

Language. The Aspect-Oriented Design Model (AODM) of Stein et al. [2002a, 2002b,
2002c, 2006] has been developed as a design notation for AspectJ (L.I) and thus is
aligned to implementation (L.A) as well as allows for external traceability from design
to implementation (L.T). Internal traceability is not applicable (L.T), since a refine-
ment of models models is not foreseen in AODM (L.R). For this approach, both AspectJ
and UML have been studied in order to find corresponding parts for AspectJ’s concepts
in UML and extend it to support AspectJ’s concepts if necessary as well as identify
where UML’s concepts used in AODM are more expressive than actually necessary, for
example, the destruction of an instance is not part of AspectJ’s join point model [Stein
et al. 2002a]. AODM is basically specified using the UML 1.x light-weight extension
mechanism (L.L), (L.E), though extensions of the metamodel have also been necessary.
For example, the UML extend relationship from which the �crosscut� stereotype

3http://jac.objectweb.org/.

ACM Computing Surveys, Vol. 43, No. 4, Article 28, Publication date: October 2011.



A Survey on UML-Based Aspect-Oriented Design Modeling 28:25

has been derived originally can be specified between use cases, only [Stein et al.
2002b]. Structural and behavioral modeling is achieved by employing class diagrams,
UML 1.x collaborations, and sequence diagrams. In addition, sequence diagrams are
used for visualizing join points, for example, messages, while use case diagrams and
collaborations demonstrate AspectJ’s composition semantics (L.D). In the AODM thus,
UML is used such that scalability in terms of high-level modeling elements is not
supported and no other proof in terms of nontrivial modeling examples is available
(L.S). The approach furthermore does not outline a design process or provide guidelines
(L.DP).

ConcernComposition. AODM represents a notation designed for AspectJ and conse-
quently supports the pointcut-advice and open class composition mechanisms (CC.M)
as well as follows the asymmetric school of thought (CC.ES), (CC.CS), (CC.RS). A dis-
tinct concern module for crosscutting concerns has been introduced in AODM and is
represented by a stereotype �aspect� (cf. SubjectObserverProtcolImpl in Figure 44),
which is derived from the UML meta-class Class (CC.CM). In addition, several
meta-attributes capture the peculiarities of AspectJ’s aspects, for example, the instan-
tiation clause. The composition actually is deferred until the implementation phase
(CC.C). Nevertheless the composition semantics of AspectJ have been redefined for
the modeling level to a limited extent, for example, in terms of UML use case di-
agrams and collaborations (CC.S), (CC.CP) [Stein et al. 2002a]. The only way for
modeling interactions (CC.MI) (CC.RI) is to manually specify the order for composing
�aspects� in terms of a stereotyped dependency relationship between �aspects�,
that is, �dominates� for conflict resolution (CC.CR) [Stein et al. 2002b]. A means for
explicitly specifying the effects of the concern composition rules or rather of the advice
in models, however, is not addressed in AODM (CC.E).

AsymmetricConcernComposition

AspectualSubject. Though AODM has been specifically designed as a modeling
language for AspectJ, Stein et al. [2002c] extend their notion of a join point model
(AS.JPM): UML Classifiers are identified as structural-static hooks (AS.SJP). Besides,
UML 1.x Links represent behavioral-static join points. Behavioral-static join points
are depicted by highlighted messages in sequence diagrams (see Stein et al. [2002a])
(AS.BJP). For those join points where no such messages exist (e.g., field reference, field
assignment, initialization, execution) pseudo operations and special stereotypes have
been provided. Using a �crosscut� dependency relationship, the subjects of structural
advice are specified at a high level of abstraction (AS.A). The pointcuts in AODM are
similar to AspectJ’s pointcuts (AS.P). Selections of behavioral-static join points and
behavioral-dynamic join points (AS.BJP) are represented by �pointcut� stereotyped
UML Operations that are implemented by special �ContainsWeavingInstructions�
stereotyped UML Methods. A meta-attribute “base” introduced for this �Contains-
WeavingInstructions� stereotype then holds the pointcut in the form of AspectJ code
(AS.P), (AS.QM). This allows first, the specification of composite pointcuts (AS.SP),
(AS.CP), and second, the specification of the aspectual subjects at a low level of
abstraction (AS.A). In addition, a second stereotype �ContainsWeavingInstructions�
at this time derived from the UML meta-class TemplateParameter5 is used to specify
the pointcuts for structural advice (e.g., �introduction� Subject in Figure 4). The
new meta-attribute “base” introduced for the �ContainsWeavingInstructions�
stereotype specifies the pointcut in the form of AspectJ’s type patterns. AspectJ’s—and

4Please note that, in AspectJ the Observer functionality is realized using interfaces instead of abstract
classes.
5Stein et al. apparently have used the same name for two different stereotypes.

ACM Computing Surveys, Vol. 43, No. 4, Article 28, Publication date: October 2011.



28:26 M. Wimmer et al.

Fig. 4. The observer aspect modeled using the aspect-oriented design model.

consequently AODM’s—means for specifying a pointcut is following a specific concep-
tual model. Recently, the authors have been working on a more expressive pointcut
mechanism supporting different conceptual models [Stein et al. 2006], which is
independent from the AODM approach, however. Concerning the declaration of a
relative position, AODM supports the relative positions before, after, and around for
behavioral-dynamic join points, only, and depicts them in an AspectJ-like manner as
a keyword in the signature of behavioral advice (AS.RP).

AspectualKind. In a class diagram, behavioral advice are depicted in the operation
compartment of a class consisting of the operation’s signature as well as a base tag
containing the pointcut’s signature. Behavioral advice in AODM are represented by
stereotyped UML Operations, that is, �advice�. These are implemented by special
�ContainsWeavingInstructions� Methods, which contain the actual behavior in the

ACM Computing Surveys, Vol. 43, No. 4, Article 28, Publication date: October 2011.



A Survey on UML-Based Aspect-Oriented Design Modeling 28:27

Fig. 5. Structural advice in the aspect-oriented design model notation.

method’s “body” meta-attribute and reference a pointcut in the introduced “base”
meta-attribute (AK.BA). Additionally, behavioral advice are specified in terms of
sequence diagrams. Thus, behavioral advice are modeled at a high as well as a low
level of abstraction (AK.A) likewise structural advice are modeled at a high and
low level of abstraction: Structural advice are realized as parameterized collabo-
ration templates with the stereotype �introduction�. The parameters are of type
�ContainsWeavingInstructions�, which specify the subjects of advice in the form
of AspectJ’s type patterns (AK.SA). The details of the collaboration templates are
shown in Figure 5. Composite advice, since not a concept available in AspectJ, are not
addressed by AODM (AK.CA).

Maturity. AODM has been described in some publications (M.I) and Stein et al.
[2002a] can be found among the most often cited approaches (M.C). While the approach
has not been tested in a real-world application (M.A), some modeling examples have
been provided, for example, timing and billing aspects for a system in the area of
telecommunication [Xerox 2005] and the realization of the observer pattern (M.E).
However, the authors have moved on and specifically focus on research towards
graphical ways to select join points in UML. For this they have introduced join point
designation diagrams (JPDD) [Stein et al. 2006; Stricker et al. 2009], which basically
are UML diagrams (i.e., class and object diagrams, as well as, state charts, sequence,
and activity diagrams) enriched with for example, name and signature patterns, and
wildcards. They represent an independent pointcut mechanism that can be applied
to any UML-based AOM language, allows to select all kinds of join points (i.e.,
structural-static, structural-dynamic, behavioral-static, and behavioral-dynamic) as
well as supports composite pointcuts (M.T).

Tool Support. The approach claims rapid modeling support by a wide variety of
CASE tools [Stein et al. 2002b], which is due to using UML’s lightweight extension
mechanism. This is, however, questionable, since the authors also extended UML’s
metamodel (T.M). Both composition support and code generation support are currently
not considered (T.C), (T.G).

ACM Computing Surveys, Vol. 43, No. 4, Article 28, Publication date: October 2011.



28:28 M. Wimmer et al.

Fig. 6. The observer aspect depicted using the JAC design notation.

5.2. The JAC Design Notation of Pawlak et al.

Language. The JAC Design Notation proposed by Pawlak et al. [2002, 2005] is mainly
designed for the JAC Framework, that is, an open source framework that includes a
complete IDE with modeling support and serves as a middleware layer for aspectual
components (L.I). Thus similar to the AODM approach of Stein et al., the JAC Design
Notation represents an approach aligned to implementation as well as supporting
external traceability from design to implementation (L.A), (L.T). Internal traceability
is not applicable, since models typically are not refined in the approach (L.R), (L.T). The
approach is based on light-weight UML extensions. Since it has been developed out of a
pragmatic need to express crosscutting concerns in the JAC Framework, the authors do
not claim full compliance with UML but aim at keeping it intuitive and simple (L.E).
The authors provide no information on the UML version used. The extended UML
metamodel in Pawlak et al. [2005], however, indicates the usage of a UML version prior
to version 2.0 (L.L). The approach relies on class diagrams, only (L.D). Consequently,
scalability is not supported by the JAC Design Notation (L.S). Beyond, the approach
provides neither a description of a design process nor guidelines (L.DP).

ConcernComposition. The JAC Design Notation realizes the pointcut-advice compo-
sition mechanism (CC.M). The stereotype �aspect� which is derived from the UML
metaclass Class is used to represent crosscutting concern modules—(CC.CM) (cf. Ob-
server in Figure 6). Consequently, the approach follows the asymmetric approach with
respect to elements (CC.ES). Since �aspects� are composed with normal classes only,
the JAC Design Notation also supports composition asymmetry (CC.CS). With respect
to concern composition rules (CC.RS), the design notation represents a symmetric ap-
proach using a UML Association stereotyped with �pointcut� (cf. AspectualSubject).
Composition is not available at modeling level but deferred until implementation
(CC.C) and therefore no composed model is available either (CC.CP). Consequently, the
composition semantics are those of the JAC framework (CC.S). Both modeling of inter-
actions (CC.MI) (CC.RI) as well as conflict resolution (CC.CR) are not addressed at all
by the approach. There are five stereotypes derived from the UML meta-class Operation
(cf. AspectualKind) which specify advice. The specification of effects is partly considered
by one of them, i.e., the stereotype �replace� which provides for either a replacement
or a deletion. All other stereotypes are considered to have an enhancement effect (CC.E).

AsymmetricConcernComposition

AspectualSubject. A join point model is explicitly defined in natural language,
only [Pawlak et al. 2005] (AS.JPM) and join points are limited to method calls thus

ACM Computing Surveys, Vol. 43, No. 4, Article 28, Publication date: October 2011.



A Survey on UML-Based Aspect-Oriented Design Modeling 28:29

supporting behavioral-static join points, only (AS.BJP). Nevertheless, structural-
dynamic join points are also supported via the �role� stereotype (cf. AspectualKind)
(AS.SJP). The additional concept of “pointcut relation” corresponds to the asymmetric
composition rule concept defined in the CRM (cf. Section 3). It is an association
stereotyped with �pointcut�. The association has a name and an optional tag to
allow for adding extra semantics (cf. stateChanged in Figure 6). The rule connects
the actual pointcut definition with the advice, that is, the association ends contain
information about the pointcut definition and the advice, respectively. Pointcuts are
defined using a proprietary, textual language based on regular expressions and/or
keywords (AS.P), (AS.QM), for example, !BookCopy.MODIFIERS in Figure 6 selects as
join points all method invocations (denoted with ‘!’) of methods from class BookCopy
that modify the object state (AS.BJP). Thus, the notation provides a low level of
abstraction, while a high level of abstraction is not addressed (AS.A). The provided
pointcut mechanism also allows composing simple pointcuts using operators, for
example, AND, OR, etc. (AS.SP), (AS.CP). Furthermore, the approach introduces
the “group” concept supporting the design of distributed applications. �group� is
depicted as a stereotyped class but is derived from UML meta-class ModelElement and
subsumes arbitrary and probably distributed classes that might need the same set of
advice. It is, thus, part of the pointcut mechanism. For example in the observer aspect,
subjects, that is, arbitrary “base” classes that have to be observed, might be distributed
and can be abstracted within a �group� named Subject. In the library management
system such subjects might represent other resources than books such as journals,
CDs, etc. The relative position is specified for behavioral advice, only, by three out of
the five stereotypes for advice, that is, �before�, �after�, and �around� (S.RP).

AspectualKind. Both behavioral and structural advice are represented as methods of
�aspect� classes. The kind of advice is indicated by the stereotype of the advice oper-
ation. The stereotypes �before�, �after�, �around�, and �replace� indicate be-
havioral advice, for example, �after� update() in Figure 6 (AK.BA), whereas �role�,
that is, the fifth stereotype for advice, represents a structural one (AK.SA). In the JAC
Design Notation, structural advice which are implemented by �role� methods are not
really added to the structure of the base class but can be invoked on the objects that
are extended by the aspect, for example, �role� addObserver(BookManager) can be
invoked on BookCopy (cf. Figure 6). Moreover, these methods can access the extended
class attributes and the attributes of the �aspect�. Role methods therefore are simi-
lar to the “introduction” concept of AspectJ. Composite advice, in principle are possible
within the JAC Framework through method composition. The JAC Design Notation,
however, provides no means for explicitly modeling such composite advice (AK.CA).
With respect to abstraction, the notation of Pawlak et al. represents predominantly
a low level modeling approach, also with respect to advice, that is, it shows aspect
internals (AK.A).

Maturity. The JAC Design Notation has already been well described (M.T), (M.I) and
Pawlak et al. [2002] belongs to the group of moderately cited approaches considered
in this survey (M.C). It has been applied to several well-known aspects like caching,
authentication, tracing, and session in the context of a simple client-server application
but not in combination with each other. These examples generally do not greatly differ
from each other and follow the same simple principals but show the applicability of the
notation to any aspect in general (M.E). It has been tested in real industrial projects
like an online courses intranet site, an incident reporting web site, and a business
management intranet tool (M.A).

Tool Support. The JAC Framework includes a complete IDE with modeling support.
The provided modeling tools allow for designing base and aspect classes as well as
their relations using the proposed UML notation (T.M). The IDE also supports code

ACM Computing Surveys, Vol. 43, No. 4, Article 28, Publication date: October 2011.



28:30 M. Wimmer et al.

generation (i.e., Java) for the JAC framework (T.G). Weaving is supported at runtime
(T.C) but not at design time.

5.3. Aspect-Oriented Software Development with Use Cases, Jacobson and Ng

Language. The approach of Jacobson and Ng [2005] represents a use case driven
software development method that has been realized by extending the UML 2.0 meta-
model (L.L), (L.E). Aspect-Oriented Software Development with Use Cases (AOSD/UC)
comes with a systematic process that focuses on the separation of concerns throughout
the software development life cycle, that is, from requirements engineering with
use cases down to the implementation phase (L.DP). Since the approach covers the
whole software development life cycle, it is aligned to both the requirements and the
implementation phase (L.A). Furthermore, the approach fosters external traceability
between all phases through explicit �trace� dependencies between models (L.T).
During the whole software development life cycle the approach makes use of different
UML diagrams including use case diagrams, class diagrams and communication
diagrams for analyzing the requirements. For the design phase, component diagrams
can be refined into class diagrams (L.T), (L.R), while sequence diagrams are used to
model behavioral features (L.D). The language extensions reflect the influence by the
Hyper/J and AspectJ languages (L.I). Scalability of the approach is supported with
high-level modeling elements (i.e., �use case slice�) and has been demonstrated with
a nontrivial example (L.S).

ConcernComposition. Concerns are modeled with the �use case slice� stereotype,
which is derived from the UML meta-class Package (CC.CM). At this level, the ap-
proach of Jacobson and Ng. supports element symmetry (CC.ES). Taking a closer look,
however, the �use case slice�—inspired by the Hyper/J language—encapsulates mod-
eling artifacts of one phase in the software development life cycle, that is, concerns are
kept separately until the implementation phase. In this evaluation, the focus is on
slices produced during design, where the artifacts include classes, sequence diagrams
and �aspect� classifiers as depicted in Figure 7. Consequently, at this level of ab-
straction the approach follows element asymmetry (CC.ES). Although, at first sight,
it seems that AOSD/UC supports the compositor composition mechanism on the basis
of UML package merge, the internals of �use case slice� are such that they actually
support the pointcut-advice and open class mechanisms (CC.M). In fact, composition
is deferred until implementation (CC.C) thus, a composed model is not available at
modeling level (CC.CP). Furthermore, the composition semantics seem to be those of
AspectJ (CC.S), (CC.RS), (CC.CS). Since concerns are modeled as �use case slice�,
which represent use cases in the design phase, they inherit the relationships of use
cases, that is, inheritance, �extend� and �include� (CC.MI) (CC.RI). With respect
to conflicting interactions, the approach follows a strategy that avoids conflicts through
refactoring actions performed on models (CC.CR). The effects of composition are not
modeled in AOSD/UC (CC.E).

AsymmetricConcernComposition

AspectualSubject. The join point model of the approach is similar to that of
AspectJ and is implicitly defined by the pointcut mechanism used (AS.JPM). UML
Classifiers are used as structural-static join points (AS.SJP), while behavioral-static
and behavioral-dynamic join points are identified with the AspectJ pointcut language
(AS.BJP), (AS.P). Consequently, the approach supports simple as well as complex
pointcuts (AS.SP), (AS.CP). Pointcuts are specified in a separate “pointcuts” compart-
ment of an �aspect� classifier. If specified as abstract, pointcuts need to be defined
in a concrete aspect such as depicted in Figure 7 with �aspect� ConcreteAspect.
The pointcut then is specified with AspectJ code allowing for usage of name patterns,

ACM Computing Surveys, Vol. 43, No. 4, Article 28, Publication date: October 2011.



A Survey on UML-Based Aspect-Oriented Design Modeling 28:31

Fig. 7. The observer aspect modeled using the notation of Jacobson and Ng.

type patterns and wildcards (AS.QM), for example, pointcut stateChange represents
a complex pointcut quantifying behavioral-static join points and the pointcut Subject
represents a simple pointcut quantifying a structural-static join point. The aspectual
subject is thus modeled at a detailed level but also can be modeled at a higher level
of abstraction, that is, with component interfaces in component diagrams (AS.A).
As an alternative, placeholders such as <Subject> and <stateChange> can be used
for parameterizing the use case slice, similarly to the template-based approaches
of Clarke et al. (cf. Section 5.7) and France et al. (cf. Section 5.8). As it is done in
AspectJ, the relative position (i.e., before, after, or around) is specified with the advice.
In Figure 7, the <Subject> classifier is extended with an operation which is to be
executed after the pointcut <stateChange> matches a join point (AS.RP).

AspectualKind. Advice are modeled at a low level of abstraction, only (AK.A) and are
detailed as “class extensions” in a separate compartment of the �aspect� stereotype
(cf. Figure 7 �aspect� Observer). As an example, for structural advice, the <Subject>
classifier is extended with an attribute observers and an operation declaring the aspec-
tual advice (cf. Figure 7). The fact, that the <Subject> classifier needs to implement the
�interface� Subject is represented with a UML realization dependency (AK.SA). The
behavioral advice is further detailed within sequence diagrams. So called “frames” are
used to insert aspectual behavior and are labeled with the signature of corresponding
operations, such as {after (<stateChange>) notify} in Figure 7 (AK.BA). There is no
way for modeling composite aspectual features (AK.CA).

ACM Computing Surveys, Vol. 43, No. 4, Article 28, Publication date: October 2011.



28:32 M. Wimmer et al.

Maturity. The approach of Jacobson and Ng has been recently elaborated in de-
tail in three publications, although some of the ideas can be traced back to ear-
lier works of the authors (M.I), (M.T) of which Jacobson and Ng [2005] is among
the most cited papers of the surveyed approaches (M.C). A hotel management sys-
tem has been used as a comprehensive example encompassing several different con-
cerns. The example is used to illustrate each phase in the software development
life cycle (M.E). Still, no information of applications in real-world projects could be
identified (M.A).

Tool Support. The AOSD/UC approach does not come with tool support. Since com-
position is deferred to the implementation phase, composition support within a tool is
not the authors’ focus (T.C). Nevertheless, modeling the extensions made to the UML
metamodel currently are not supported within a tool (T.M), neither is it possible to
generate code for a specific AO platform (T.G).

5.4. Behavioral Aspect Weaving with the Approach of Klein et al.

Language. The approach of Klein et al. [2006, 2007] is originally based on Message
Sequence Charts (MSC) a scenario language standardized by the ITU [ITU 2004].
UML 2.0 sequence diagrams (SD) have been largely inspired by MSCs. Thus, the
approach can be applied to sequence diagrams as is shown in [Klein et al. 2007] and
in the KerTheme proposal [Jackson et al. 2006] (L.L). Indeed, no extensions to the
UML SDs (or MSCs) have been made, rather a simplified metamodel for SD has
been designed in [Klein et al. 2007], where compliance with the original UML SD is
achieved through model transformation in the accompanying tool support (L.E). Klein
et al. have designed a “weaving algorithm” for composing behaviors, i.e., scenarios
modeled with SD (L.D). The composition is specified at modeling level regardless of any
implementation platform (L.I). The approach does neither outline a design process nor
guidelines (L.DP), since the goal is rather on complementing existing AOM approaches
with a weaving mechanism for aspect behavior. The approach is thus not aligned to
other phases in the software development life cycle either (L.A), nor are sequence
diagrams further refined in the process of modeling (L.R). Consequently, the approach
does neither provide means for supporting traceability (L.T) nor scalability (L.S).

ConcernComposition. The approach of Klein et al. supports the pointcut-advice com-
position mechanism (CC.M). Modeling all behavior is achieved by means of sequence
diagrams (CC.ES). Nevertheless, an aspect consists of two scenarios having distinct
roles when used in a composition (CC.CM): one defines a part of behavior, that is, the
pointcut, that should be completed, replaced, or entirely removed by another, that is,
the advice (cf. Figure 8). This is done every time the behavior defined by the pointcut
appears in the semantics of the base scenario. In this respect the approach follows
rule asymmetry (CC.RS). Concerning composition symmetry, however, the approach
is symmetric, since behavior that once has served as advice or pointcut could serve
as base behavior some other time or vice versa (CC.CS). The composition semantics
are clearly defined by the two-phase weaving algorithm. In the first phase, join points
are detected in the base behavior according to the pattern specified in the pointcut.
Recently, the join point detection algorithm has been extended to support not only join
points defined as a strict sequence of messages [Klein et al. 2006] but three further
types of join points that, for example, are surrounded by other messages or that have
a message in between the wanted behavior specified in the pointcut. In this respect,
these new types of join points enable weaving of multiple aspects instead of requiring
the definition of each aspect in function of other aspects [Klein et al. 2007]. In the
second phase, the base behavior then is composed with the behavior specified in the
advice again considering the new join point types by introducing a new composition
operator called left amalgamated sum [Klein et al. 2007] while using the sequential

ACM Computing Surveys, Vol. 43, No. 4, Article 28, Publication date: October 2011.



A Survey on UML-Based Aspect-Oriented Design Modeling 28:33

borrow(customer)

sd BaseBehavior

b2:BookCopyb1:BookCopy:Customer

return(customer)

sd Advice

update(bookCopy)

notify()

sd Pointcut

:BookCopy:Customer

:BookManager:BookCopy

Aspect Observer

:Customer
borrow(customer)

p ( py)

getState()borrow(customer)

Fig. 8. The observer aspect depicted using the approach of Klein et al.

Fig. 9. The composed model (Klein et al.).

composition operator [Klein et al. 2006] for the original notion of join point as a strict
sequence of messages (CC.S). The weaving algorithm has been specified formally and
implemented in KerMeta [Muller et al. 2005], a metamodeling language that extends
the Essential Meta-Object Facility (EMOF 2.0) with an action language. Since KerMeta
allows specifying operations with its action language, dynamic composition of models
is subject to future work (CC.C). The composition results again in a SD (CC.CP) as
depicted in Figure 9. As already mentioned before, an aspect can be defined such, that
it has an enhancement, replacement, or deletion effect, though this cannot be made
explicit through appropriate modeling elements (CC.E). A means for specifying inter-
actions (CC.MI) (CC.RI) and/or handling conflicts currently is not addressed but stated
to be subject to future work (CC.CR).

AsymmetricConcernComposition

AspectualSubject. Join points in the approach of Klein et al. are a sequence of mes-
sages in a SD (AS.JPM) that match the SD defined by the pointcut as is depicted

ACM Computing Surveys, Vol. 43, No. 4, Article 28, Publication date: October 2011.



28:34 M. Wimmer et al.

in Figure 8 (AS.P), (AS.QM). Consequently, the approach’s join point model supports
behavioral-static join points, only (AS.BJP), (AS.SJP). The pointcuts are modeled at
a detailed level, only (AS.A) and in principle can be composed using the sequential
composition operator of basic MSCs [Klein et al. 2006], although no explicit concept
for composite pointcut is available (AS.SP), (AS.CP). The relative position is defined
implicitly within the advice. (AS.RP). It has to be noted that the pointcut used in the
running example cannot fully illustrate the expressiveness of the weaving algorithm’s
join point detection mechanism. The algorithm allows to detect much more complex
patterns [Klein et al. 2006]. For instance, it is easy to express a pointcut as a sequence
of messages.

AspectualKind. Like pointcuts, aspectual behavior is modeled as MSCs thus only
supporting behavioral advice (AK.BA), (AK.SA). In principle, they also can be com-
posed using the sequential composition operator of basic MSCs, although no explicit
concept for composite advice is available (AK.CA). Aspectual features in the approach
are modeled at a detailed level, only (AK.A). The advice illustrated in Figure 8, shows
the observer behavior being inserted after the BookCopy b1 is borrowed by the Cus-
tomer. As already pointed out above, the behavior specified by the pointcut, that is, the
borrow(customer) message, has to be modeled within the advice if it is to appear in the
composed behavior (cf. Figure 9).

Maturity. The approach of Klein et al. has been described in several applications
(M.I), where similar examples have been used, that is, a login process. The focus has
been on demonstrating the weaving algorithm’s join point detection mechanism on the
basis of complex behaviors, that is, pointcuts, to be detected in the base behavior (M.E).
In order to allow for testing aspect-oriented models, the approach recently has been
combined with the Theme/UML approach of Clarke et al. [Jackson et al. 2006] (M.T).
So far, the approach has not been employed in a real-world application (M.A) and since
a relatively young approach [Klein et al. 2006] is among the moderately often cited
approaches in this survey (M.C).

Tool Support. Modeling of scenarios is possible with tools either supporting MSC or
UML 2.0 sequence diagrams (T.M). Klein et al. [2007] propose to use Omondo UML6 or
the UML 2.0 sequence diagram editor available in the TopCaseD eclipse plugin.7 The
authors have implemented the weaving algorithm within KerMeta [Muller et al. 2005]
(T.C). Still, code generation currently seems not to be the authors’ focus. Since weaving
is supported at modeling level and the simple metamodel for sequence diagram is made
compatible with UML 2.0 standard sequence diagrams through model transformations,
existing code generation facilities could be reused (T.G).

5.5. The Motorola Weavr Approach of Cottenier et al.

Language. The Motorola Weavr approach [Cottenier et al. 2007a, 2007b, 2007c] and
tool has been developed in an industrial setting, i.e., the telecom infrastructure soft-
ware industry. The modeling language of choice in this domain is the Specification and
Description Language (SDL) ITU recommendation [ITU 2002] of which features such
as composite structure diagrams and transition-oriented state machines have been
adopted in UML 2.0. The Motorola Weavr approach consequently is based on UML 2.0
and a lightweight profile that completes the UML specification towards the SDL and
AOM concepts (L.L), (L.E). In Figure 10(e) the state machine for BookCopy is depicted
in UML notation while in 10(f) the same information is modeled using the transition-
oriented state machine version. Besides class diagrams the approach makes heavily
use of composite structure diagrams as a refinement of class diagrams (L.R), (L.T).

6www.omondo.com.
7www.topcased.org.

ACM Computing Surveys, Vol. 43, No. 4, Article 28, Publication date: October 2011.



A Survey on UML-Based Aspect-Oriented Design Modeling 28:35

Fig. 10. The observer aspect depicted using the approach of Cottenier et al.

The behavioral features of concerns are modeled using transition-oriented state ma-
chines (cf. Figure 10(c), (f)) and the SDL action language as well as sequence diagrams
which are used as test cases. A special “deployment diagram” is used to direct the
composition of concern modules (L.D), (L.S). Although targeted at telecommunications
domain, the approach is platform-independent. Indeed, platform-specific details are
encapsulated within several code generators and code optimizers that prohibit round-
trip engineering (L.T). Consequently, the approach rather aims at composing concerns
at the modeling level than drawing mappings onto platform-specific models (L.I). Nev-
ertheless, the approach is aligned to the implementation phase (L.A). Furthermore,
since Motorola uses the approach in production, one can infer that the approach sup-
ports scalability, which has already been proven with appropriate modeling examples
(L.S). A design process for the approach has not yet been described, however. Likewise,
no guidelines are given (L.DP).

ConcernComposition. The Motorola Weavr approach supports the pointcut-advice
composition mechanism (CC.M). Aspects are represented by the stereotype �Aspect�,
which is derived from the UML metaclass Class (CC.CM), (CC.ES). The approach
puts forward rule asymmetry (CC.RS), since pointcuts and the binding to advices
are modeled as parts of the aspect (cf. Figure 10(d)). Furthermore, the approach also
supports composition asymmetry, that is, aspects can be woven into the base but not
the other way round (CC.CS). The deployment of aspects to multiple base models as
well as aspects can be modeled using the �crosscuts� stereotype derived from the
UML metaclass Dependency. In order to resolve possible conflicts, the approach allows
to define precedence relationships between aspects using a stereotype �follows�,
also derived from the UML metaclass Dependency. It has to be further noted, that
precedence can also be defined at the level of concern composition rules again using the
stereotype �follows� (CC.CR). Beyond, the approach defines two further dependency
stereotypes for specifying interactions at concern module level, namely �hidden by�

ACM Computing Surveys, Vol. 43, No. 4, Article 28, Publication date: October 2011.



28:36 M. Wimmer et al.

and �dependent on� [Zhang et al. 2007] (CC.MI) (CC.RI). These relationships are
usually depicted in a separate diagram called “deployment diagram” (cf. Figure 10(a)).
The approach, however, does not offer a way to specify effects (CC.E). The Motorola
Weavr tool supports the static weaving of aspects into base models. The composition
semantics consequently is clearly defined. More specifically, the approach distinguishes
between a phase of detection (i.e., “connector instantiation”) and of composition (i.e.,
“connector instance binding”) (CC.S). The approach/tool, however, does not show the
results of composition which are internally available in standard UML in a composed
model (CC.CP). Instead, the modeler can simulate the composed model and view the
specific base or aspect parts during execution (CC.C).

AsymmetricConcernComposition

AspectualSubject. The join point model consists of action join points including call
expression actions, output actions, create expression actions, and timer (re)set actions
as well as transition join points including start transitions, initialization transitions,
termination transitions, and triggered transitions (AS.JPM). Consequently, the ap-
proach’s join point model supports behavioral-static join points (AS.BJP). Object in-
stances represent structural-dynamic join points (AS.SJP). Pointcuts are defined using
a stereotype which is derived from the UML meta-class Operation (AS.P), for example,
the pointcut �operation,Pointcut� stateChange in Figure 10(d). The implementation
of a pointcut is modeled as a transition-oriented state machine, which can be specified
using wildcards (AS.QM) (cf. Figure 10(b)). Consequently, the approach’s pointcuts are
modeled at a high level of abstraction where only the pointcuts’ parameters are known
and at a detailed level using state machines (AS.A). Beyond, pointcuts can be composed
to form more complex pointcuts by means of AND and OR logical composition operators
[Cottenier et al. 2007a] (AS.SP), (AS.CP). The relative position kind cannot be mod-
eled explicitly but the approach supports the around relative position kind: Join points
are always replaced by the advice behavior but can be called using an AspectJ-like
proceed() action such as is depicted in Figure 10(c). Depending on how the advice is
specified, the relative position kinds before and after are possible as well (AS.RP).

AspectualKind. Like pointcuts, behavioral advice are modeled using a stereotype
derived from the UML meta-class Operation, for example, the �Connector� notify()
in Figure 10(d). A connector corresponds to AspectJ’s advice and like pointcuts in the
Motorola Weavr approach is implemented as a transition-oriented state machine (cf.
Figure 10(c))(AK.BA). Thus, advice in the approach are modeled both at a high and
a low level of abstraction (AK.A). The connectors are bound to the pointcuts to which
they shall be applied using a �bind� stereotype that is derived from the UML meta-
class Dependency (cf. Figure 10(d)). It has to be further noted that precedence can also
be defined for connectors again using the stereotype �follows�. Structural advice are
modeled via interfaces, only (AK.SA). In the running example, the �Aspect� Observer
introduces two interfaces Subject and Observer, which are bound to pointcuts of the
aspect using the �bind� dependency (cf. Figure 10(d)). The semantics of this rela-
tionship is that the interfaces are bound to the object instances that contain joinpoints
for the specified pointcuts [Cottenier et al. 2007a], which is similar to the approach of
Pawlak et al. (cf. Section 5.2). Consequently, the Subject interface is bound to the stat-
eChange pointcut, while the Observer interface is bound to the other pointcuts. To the
best of our knowledge, there exists no means for modeling composite advice (AK.CA).

Maturity. The approach of Cottenier et al. represents one of the most recent
approaches to AOM, naturally Cottenier et al. [2007b] is not as often cited as the
other approaches in the survey (M.C). Nevertheless, the approach has already been
illustrated in several publications (M.I), (M.T). Besides a set of simple modeling
examples, aspects covering exception handling, recovery, atomicity, and a two-phase

ACM Computing Surveys, Vol. 43, No. 4, Article 28, Publication date: October 2011.



A Survey on UML-Based Aspect-Oriented Design Modeling 28:37

Fig. 11. The observer aspect modeled using the AOSD profile.

commit protocol have been applied to a server-based communication system [Cottenier
et al. 2007a] (M.E). The Motorola Weavr approach and tool is already being used in
production (M.A) and is made available to academia under a free of charge license.

Tool Support. The Motorola Weavr is designed as an add-in for the Telelogic TAU
MDA tool8 (T.M) and allows composing aspect models with base models as well as
verification of the composed model via simulation (T.C). Starting from the composed
model, existing code generation facilities such as the Motorola Mousetrap code gen-
erator [Baker et al. 2005] can be used (T.G). The Motorola Weavr tool is already be-
ing deployed in production at Motorola, in the network infrastructure business unit
[Cottenier et al. 2007a].

5.6. The AOSD Profile of Aldawud et al.

Language. The AOSD Profile (L.E) of Aldawud et al. [2003] and Elrad et al. [2005]
is based on UML version 1.x (L.L) and is aimed at being independent of any particular
AOP language (L.I). While class diagrams are used to express the structural dependen-
cies, state machines model the behavioral dependencies of concerns (L.D). The models
are continuously refined from class diagrams to state machines (L.R). In order to do
so, a set of guidelines for using the concepts provided by the AOSD Profile is offered
(L.DP), which allows for external traceability from the requirements phase but not
specifically for internal traceability (L.T), (L.A). The specific usage of state machines
and their event propagation mechanism indicates that the approach does not support
scalability and we are not aware of a modeling example proving the opposite (L.S).

ConcernComposition. In the AOSD Profile, crosscutting concerns have a separate
representation in the form of the stereotype �aspect� (CC.CM), (CC.ES), which is
derived from the UML meta-class Class (cf. Figure 11). Although, it is allowed to relate
aspects to other aspects, each aspect has to be woven into at least one base class and,
hence, this actually constitutes an asymmetric view of composing concerns (CC.CS).
An integrated model view where aspects would already be woven into the base classes
is not provided (CC.CP). Composition is rather deferred to implementation [Mahoney
et al. 2004] (CC.C). At a more detailed level, one can see that the approach supports
the compositor composition mechanism (CC.M): in the AOSD Profile approach concur-
rent state machines are used to model both non-crosscutting and crosscutting behav-
ior in orthogonal regions, meaning element symmetry at the level of state machines

8http://www.telelogic.com/products/tau/g2/.

ACM Computing Surveys, Vol. 43, No. 4, Article 28, Publication date: October 2011.



28:38 M. Wimmer et al.

Fig. 12. The observer’s crosscutting behavior (Aldawud et al.).

(cf. Figure 12). More specifically, the composition semantics (CC.S) are “specified” by
the event mechanism used to indicate the flow of crosscutting behavior in state charts
(CC.RS). The state machines thus implicitly express the composition semantics. The
�crosscut� dependencies9 between aspects and base classes as well as aspects and as-
pects dictate the ordering of events propagated in the orthogonal regions of statecharts
(CC.MI) (CC.RI) (cf. Figure 11). Since the state charts allow for specifying the temporal
sequence in the control flow of crosscutting behavior, that is, an ordering of aspects,
further conflict resolution is implicitly available (CC.CR). The effect of adaptations,
however, cannot be modeled (CC.E).

SymmetricConcernComposition. Composable elements in the approach of Aldawud
et al. are elements of UML state machine diagrams, in particular events (S.BCE),
whereas structural composable elements are not supported (S.SCE). Events trigger
transitions from one state to another. The approach of Aldawud et al. makes use of
broadcasting events to cause transitions in orthogonal regions of the same or other state
machines, that is, to activate other concerns. For example, the observingBookManager
state machine in Figure 12 describes the behavior of the BookManager class. If a new
BookCopy is bought (cf. buyBook()) the transition from state IDLE to state observing is
triggered. This transition, however, triggers the transition from IDLE to the startOb-
servingSubject state in the observing region. For the observedBookCopy state machine
of the BookCopy class, this means a transition from state notObserved to state observed,
given that the BookCopy has been in the state notObserved. The event mechanism of
state machines allow to “compose” the behavior of different concerns represented in
orthogonal regions of state machines following a merge integration strategy (S.M). The
corresponding elements, or rather events, are explicitly defined by using naming pat-
terns. The approach thus supports a name-based match method, only (S.MM). With
respect to the level of abstraction, the details captured by the state machines suggest a
low level and indeed the State pattern [Gamma et al. 2004] has been used to translate
the behavior captured within state machines to code [Mahoney et al. 2004] (S.A).

9Please note, that the reading direction of the �crosscut� dependencies is different to the other approaches,
for example, BookCopy is crosscut by the aspect Subject.

ACM Computing Surveys, Vol. 43, No. 4, Article 28, Publication date: October 2011.



A Survey on UML-Based Aspect-Oriented Design Modeling 28:39

Maturity. The approach is described in several publications [Aldawud et al. 2003;
Mahoney et al. 2004; Elrad et al. 2005] (M.I), (M.T), Aldawud et al. [2003] is averagely
cited with respect to the most cited publications of the surveyed approaches (M.C).
However, it is illustrated using a single example, the bounded buffer system, only.
Still, it covers various aspects, namely, synchronization, scheduling, and error handling
(M.E). A real-world application of the approach, however, is not available (M.A).

Tool Support. Due to using the UML profile extension mechanism, modeling support
within the approach is available through existing UML modeling tools (T.M). Never-
theless, neither composition (T.C) nor code generation support have yet been addressed
(T.G).

5.7. The Theme/UML Approach of Clarke et al.

Language. The Theme approach of Clarke et al. [Baniassad and Clarke 2004; Clarke
and Baniassad 2005] provides means for AOSD in the requirements phase with
Theme/Doc, which assists in identifying crosscutting concerns in requirements doc-
uments, and in the design phase with Theme/UML. In this survey, the focus is on
Theme/UML, which is used in producing separate design models for each “theme” from
the requirements phase (L.T), (L.A), that is, the encapsulation of a concern represent-
ing some kind of functionality in a system [Clarke and Baniassad 2005]. Theme/UML
is based on a heavy-weight extension of the UML metamodel version 1.3 (L.L), (L.E).
It is designed as a platform-independent AOM approach, which originated from SOP
[Clarke et al. 1999], and evolved from the composition patterns approach of Clarke
[2001, 2002] as well as provides mappings to AspectJ, AspectWerkz, and Hyper/J (L.I),
(L.T), (L.A). Basically, Theme/UML poses no restrictions on what UML diagrams might
be used for modeling. Nevertheless, particularly package and class diagrams are used
for structure modeling and sequence diagrams are used for behavior modeling (L.D).
Theme/UML allows every concern to be refined separately and then to be composed into
a new model (L.R). Scalability of the approach is supported by using UML packages for
modeling concerns and has been demonstrated with nontrivial examples [Clarke and
Baniassad 2005] (L.S). Then, the authors outline a design process for their modeling
approach (L.DP).

ConcernComposition. Theme/UML realizes the compositor composition mechanism
(CC.M). Concerns are encapsulated in UML packages denoted with a stereotype
�theme� (cf. Observer and Library in Figure 13). Concern modules generally are mod-
eled using standard UML notation. Crosscutting concerns, however, are realized using
UML’s modified template mechanism, which allows instantiating template parameters
more than once, thus supporting multiple bindings (CC.CM), (CC.ES), (CC.CS). The
composition semantics are clearly stated in Clarke [2001] for both how to detect the cor-
responding elements to be composed as well as for the actual composition itself (CC.S).
A set of themes is composed statically into a composed �theme� (CC.C) as is shown
in Figure 14, that is, the ObserverLibrary theme is composed of the Observer and Li-
brary themes from Figure 13 (CC.CP). Besides relating two or more themes through
Theme/UML’s “composition relationships”, that is, specialization from UML metaclass
Relationship (CC.RS), there is no other way to model interactions between concern
modules (CC.MI) (CC.RI). The composition relationships can also be used at a more
fine-grained level, for example, for specifying composition at the level of classes and
attributes. Special attachments or “tags” to the Theme/UML composition relationships
represent the conflict resolution mechanism. First, the “prec” tags define an ordering
for theme precedence, with 1 indicating the highest precedence. Second, in case of a
conflict, the “resolve” tag allows specifying default values for elements of a certain type
(e.g., visibility of attributes is private). And third, for a specific conflict the “resolve” tag
allows defining explicit composition output values. Theme/UML wants developers to

ACM Computing Surveys, Vol. 43, No. 4, Article 28, Publication date: October 2011.



28:40 M. Wimmer et al.

Fig. 13. The observer aspect depicted using Theme/UML.

first compose all noncrosscutting themes and then weave crosscutting themes one after
the other into the composed model, thus forcing the developer to consider the ordering
of crosscutting themes (CC.CR). The approach, however, does not provide modeling
means for specifying the effects of composition (CC.E).

SymmetricConcernComposition. Composable elements in Theme/UML are identified
with the introduction of the new metaclass ComposableElements [Clarke 2002]. More
specifically, the UML metaclasses Attribute, Interaction, Collaboration (S.BCE), Oper-
ation, Association, Classifier, and Package (S.SCE) all inherit from the new metaclass
and thus are allowed to be composed. For identifying the corresponding elements of
two or more themes, the approach allows to tag the composition relationships with the
“match” tag. Theme/UML, currently supports two ways of matching composable ele-
ments, namely match-by-name and no-match. The latter states that the composeable
elements participating in the composition relationship do not match (S.MM). Composi-
tion is catered for through three different integration strategies (specialization of UML
metaclass Relationship), “merge” (S.M) and “override” (S.O), and “bind” (S.B), which
is a specialization of merge and allows composing crosscutting themes with noncross-
cutting ones. This binding can be done for several themes. In Figure 13, the cross-
cutting �theme� Observer is composed with the Library �theme� using the bind
integration strategy. The template parameters of the crosscutting theme (i.e., classes,
operations, and attributes ) placed on the theme package template within a dotted box
need to be bound to concrete modeling elements of a non-crosscutting theme. The se-
quence diagram templates in a crosscutting theme (cf. ObserverPattern StateChange
in Figure 13) allow modeling crosscutting behavior and when it shall be triggered,
for example, within the control flow of other operations. In contrast, the class dia-
gram templates of a crosscutting theme allow modeling crosscutting structure. The

ACM Computing Surveys, Vol. 43, No. 4, Article 28, Publication date: October 2011.



A Survey on UML-Based Aspect-Oriented Design Modeling 28:41

Fig. 14. The composed model (Clarke et al.).

concrete binding is specified by the “bind” tag placed on the composition relationship
between the crosscutting theme and other themes. It binds the template parame-
ters to actual classes, operations, and attributes possibly using wildcards. This way,
the Subject class is bound to BookCopy, and the stateChange() operation is bound to
borrow() and return() (S.B). Since, Theme/UML’s composition relationships can relate
composite elements such as package as well as fine-grained ones such as attributes, the
approach supports both modeling at a high level of abstraction as well as at a low level
(S.A).

Maturity. The Theme/UML approach represents one of the most mature, and still
evolving approaches to AOM (M.I) and, in line with that Clarke and Baniassad [2005]
is one of the most cited papers (M.C) of the evaluated approaches. Lately, first results
on the approach’s extension with the join point designation diagrams of Stein et al.
[2006] has been presented [Jackson and Clarke 2006] as well as an extension with
the weaving algorithm of Klein et al. [2006] has been published [Jackson et al. 2006]
(M.T). Theme/UML comes with a plethora of literature and modeling examples such
as the synchronization and observer aspects in a digital library example [Clarke and
Walker 2005] as well as for addressing distributed real-time embedded concerns [Driver

ACM Computing Surveys, Vol. 43, No. 4, Article 28, Publication date: October 2011.



28:42 M. Wimmer et al.

et al. 2008], the logging aspect in an expression evaluation system example and a
course management system example. The crystal game application presented in Clarke
and Baniassad [2005] consists of more than 15 concern modules amongst them two
crosscutting ones. The composition of some of them is demonstrated. Furthermore, two
similarly sized case studies are presented, that is, phone features and usage licensing
(M.E). It is not clear, however, if the approach has been applied in a real world project
(M.A).

Tool Support. Besides first proposals in Jackson et al. [2006] with respect to composi-
tion, no information on a tool for Theme/UML supporting either modeling, composition
or code generation has been provided (T.M), (T.C), (T.G).

5.8. Aspect-Oriented Architecture Models of France et al.

Language. The Aspect-Oriented Architecture Models (AAM) approach of France et al.
[2004b, 2006a] is based on UML 2.0 (L.L). The language is designed as a platform-
independent approach with no particular platform in mind (L.I). Concerns are modeled
using template diagrams, that is, package diagram templates, class diagram tem-
plates and communication diagram templates [France et al. 2004b] as well as recently
sequence diagram templates [Reddy et al. 2006b], [Solberg et al. 2005] (L.D). With re-
spect to using UML templates, the approach is similar to Theme/UML (cf. Section 5.7).
For readability purposes, however, the authors prefer to provide a notation different
to standard UML templates and in contrast denote template model elements using ‘|’.
This notation is based on the Role-Based Metamodeling Language [France et al. 2004a;
Kim et al. 2004], which is a UML-based pattern language designed as an extension
to the UML (L.E). The use of packages for capturing concerns caters for scalability,
although this has not yet been demonstrated within an example encompassing several
concerns (L.S). The approach is not specifically aligned to the requirements or imple-
mentation phases (L.A) and does not support external traceability (L.T). Nevertheless,
similar to Theme/UML, the different models are continuously refined and at some point
composed (L.T), (L.R). A design process is briefly outlined in terms of guidelines (L.DP).

ConcernComposition. The approach of France et al. originally is based on the compos-
itor composition mechanism similar to the Theme/UML approach. Recently, specific
attention has been paid, however, to the composition of sequence diagrams [Reddy et al.
2006b; Solberg et al. 2005], which realizes the pointcut-advice composition mechanism
(CC.M). France et al. support element symmetry in that all concerns are modeled as
UML packages (CC.CM), (CC.ES). The authors distinguish, however, between “primary
models” and “aspect models”, which model crosscutting concerns. Aspect models are
based on template diagrams, which are described by parameterized packages. These
packages include class diagram templates as in Figure 15(a), communication diagram
templates as in Figure 15(b)–(d), and recently sequence diagram templates (cf. Fig-
ure 18(a)). A textual “binding” to a certain application instantiates a “context-specific”
aspect model from the UML template. In the context of the library management
system, the following binding instantiates the aspect model for the observer pattern
from Figure 15 and results in the context-specific aspect shown in Figure 16.

(|Subject,BookCopy); (|Observer, BookManager);
(|stateChange(),borrowCopy()); (|doStart(s:|Subject),buyBook());
(|stateChange(),returnCopy()); (|doStop(s:|Subject),discardBook());
(|observers, bookManagers);

The context-specific aspect models are finally used for composition with the base
model, suggesting rule and composition symmetry (CC.RS), (CC.CS). However, the
composition of sequence diagrams is somewhat different. The locations of where to
introduce a behavioral advice defined within an aspect sequence diagram template

ACM Computing Surveys, Vol. 43, No. 4, Article 28, Publication date: October 2011.



A Survey on UML-Based Aspect-Oriented Design Modeling 28:43

Fig. 15. The observer aspect model (France et al.).

Fig. 16. The context-specific aspect model (France et al.).

(cf. Figure 18(a)) are specified using “tags” in the primary model (cf. Figure 18(b)).
The aspect sequence diagram template can be composed with the primary model, only
(CC.CS), and the rule information is placed within the primary model (CC.RS), meaning
asymmetric composition and asymmetric placement of rules. Recently, the approaches
composition semantics (CC.S) in terms of a composition metamodel have been opera-
tionalized in KerMeta [Muller et al. 2005]. Thereby, the semantics of detection have also
been operationalized (i.e., the getMatchingElements() operation), which allows for de-
tecting (syntactical) conflicts (CC.CR). The composition is done statically yielding stan-
dard UML diagrams, that is, class diagrams, communication diagrams and sequence
diagrams (CC.CP). The composed model is shown in Figure 17 and Figure 18(c), respec-
tively (CC.CP) in terms of standard UML. Since KerMeta allows specifying operations

ACM Computing Surveys, Vol. 43, No. 4, Article 28, Publication date: October 2011.



28:44 M. Wimmer et al.

Fig. 17. The composed model (France et al.).

Fig. 18. Weaving aspectual behavior with sequence diagrams (France et al.).

ACM Computing Surveys, Vol. 43, No. 4, Article 28, Publication date: October 2011.



A Survey on UML-Based Aspect-Oriented Design Modeling 28:45

with its action language, dynamic composition of models is subject to future work
(CC.C). The approach also proposes so called “composition directives” which are in-
tended to refine the concern composition rules used to compose models. The use of
so called “model composition directives”, allows specifying the order in which aspect
models are composed with the primary model. These “precedes” and “follows” model
composition directives are depicted as stereotyped UML dependencies between aspect
models and represent a conflict resolution mechanism. Other forms of interactions be-
tween modules, however, cannot be modeled (CC.MI) (CC.RI). So called “element com-
position directives” amongst others allow to add, remove, and replace model elements.
The element composition directives, consequently, also serve as a conflict resolution
mechanism (CC.CR). The approach does not describe ways to specify effects (CC.E).

SymmetricConcernComposition. The composition of class diagrams is specified with
the composition metamodel defined in Reddy et al. [2006a]. Composable elements in
the composition metamodel are realized with the metaclass Mergeable. Currently, the
composition metamodel has been operationalized for class diagrams only. In this re-
spect, mergeable elements are Operation, Association, Classifier, and Model (S.SCE),
(S.BCE). Originally, the approach used only a name-based matching method in order
to identify the corresponding elements in different models. In Reddy et al. [2006a],
this mechanism has been extended. The authors introduce a signature-based method,
which means that elements are matched according to their syntactic properties, that
is, an attribute or an association end defined in the element’s meta-class. This match
method is realized with the getMatchingElements() operation of the composition meta-
model (S.MM). The approach basically, supports a merge integration strategy, only
(S.M). Support for the bind integration strategy is realized through the instantiation of
aspect models to context-specific aspect models. The template parameters of the aspect
models denoted using “|” need to be bound to concrete modeling elements of the primary
model. For example, the class |Subject (cf. Figure 15(a)) is bound to BookCopy and the
operation |stateChange() is bound to borrow() and return() (cf. Figure 15(b)–(d)). This
is done with the textual binding as specified before and the resulting context-specific
aspect model is shown in Figure 16. While the class diagram templates model cross-
cutting structure, the communication diagram templates model crosscutting behavior.
The context-specific aspect models then can be composed with the primary model us-
ing the original merge integration strategy (S.B). Lately, the possibility of overriding
model elements has been introduced with the introduction of composition directives.
The “override” element composition directive defines an override relationship between
two potentially conflicting model elements [Reddy et al. 2006a] (S.O). Consequently,
with respect to symmetric concern composition the approach supports both modeling
at a high level of abstraction (e.g., with a high-level model view and model composi-
tion directives) as well as at a low level (e.g., with detailed class and communication
diagrams as well as element composition directives) (S.A).

AsymmetricConcernComposition. The composition of sequence diagrams realizes the
pointcut-advice composition mechanism.

AspectualSubject. The join point model is implicitly defined (AS.JPM) as the set of pri-
mary sequence model elements, for example, lifelines and messages to which the aspect
sequence model elements need to be composed, thus supporting solely behavioral-static
join points. (AS.SJP), (AS.BJP) [Reddy et al. 2006b]. The locations of where to apply the
advice in the primary sequence diagram are “tagged” with special stereotypes (AS.P).
Thereby, two stereotypes can be distinguished: A �simpleAspect� is a stereotyped
UML message originating from and targeting the same lifeline, which is used when
the aspectual behavior just needs to be inserted. A �compositeAspect� is a stereotype
for UML’s Combined fragment, that captures a message or a sequence of messages
in the primary model as join point (AS.SP), (AS.QM). In the running example, the

ACM Computing Surveys, Vol. 43, No. 4, Article 28, Publication date: October 2011.



28:46 M. Wimmer et al.

�compositeAspect� Observer is used to tag the primary sequence diagram Borrow
(cf. Figure 18(b)). The �compositeAspect� also includes the binding of the BookCopy
and BookManager classes to the corresponding template lifelines of the aspect sequence
diagram template. This pointcut mechanism in terms of tagging a model does not al-
low for composed pointcuts (AS.CP). Concerning the aspectual subjects, thus, models
provide information at a detailed level (AS.A). The relative position is modeled within
the aspect sequence diagram template using stereotyped combined fragments. Besides
the typical before, after, and around relative position kinds, the approach provides two
special stereotypes, namely, �begin� and �end�. The begin/end combined fragment
captures the aspectual behavior that should preced/follow the messages encompassed
in the �compositeAspect� of the primary model. In contrast, the �after� combined
fragment shown in Figure 18(a) defines the aspectual behavior that will appear after
each message encompassed in the �compositeAspect� of the primary model.

AspectualKind. On the basis of sequence diagram templates, the approach of France
et al. provides for behavioral advice, only (AK.BA), (AK.SA). The approach does not
foresee possibilities of combining two or more behavioral advice to form a more complex
one (AK.CA). The running example shows that behavioral advice are modeled at a
detailed level within the approach (AK.A).

Maturity. The approach of France et al. is among the more mature AOM approaches
and has been elaborated on in numerous publications (M.I) providing examples such as
a simple banking system including the authorization aspect, the replicated repository
aspect, the redundant controller aspect, and the transaction aspect for controlling
money transfers, as well as the buffer aspect which decouples output producers from
the writing device in a system (M.E). Recently, the approach has been further developed
with respect to its composition mechanism and tool support thereof (M.T). Yet, it has
not been applied in a real-world project (M.A). With respect to the number of citations
[France et al. 2004b] resides above the averagely cited approaches considered (M.C).

Tool Support. The implementation of an integrated toolset has been proposed in
Reddy et al. [2006a]. This toolset shall provide modeling support (T.M), that is, for
modeling aspect model diagram templates built on top of the Eclipse Modeling Frame-
work10 and for instantiating context-specific aspect models from these templates built
on top of Rational Rose. In France et al. [2007], the implementation of the Kompose
tool11 for composing structural base and context-specific aspect models which is built
on top of KerMeta is discussed (T.C). A tool supporting composition of behavioral mod-
els, that is, sequence diagrams is currently under development [Reddy et al. 2006b],
while a tool for code generation currently is not planned (T.G).

6. LESSONS LEARNED

The results of the evaluation focusing on aspect-oriented design modeling have revealed
interesting peculiarities of current AOM approaches. In the following, the findings are
summarized and the results are illustrated at a glance with tables according to the
six categories of criteria from the criteria catalogue within Sections 6.1 to 6.6. Finally,
Section 6.7 presents the general findings and conclusions concerning the AOM research
field and specifically points out what needs to be done in terms of further development
of AOM approaches.

6.1. Language

The summary of the evaluation with respect to the Language category can be found in
Table I.

10http://www.eclipse.org/emf/.
11http://www.cs.colostate.edu/puml/kompose2.html.

ACM Computing Surveys, Vol. 43, No. 4, Article 28, Publication date: October 2011.



A Survey on UML-Based Aspect-Oriented Design Modeling 28:47

Table I. Language

Popularity of UML Profiles and UML 2.0. For the design phase, one can observe that
UML is the choice for designing an AOM language with two exceptions [Sutton and
Rouvellou 2005; Suvée et al. 2005], only. With respect to the UML version used, there
is quite a balance between UML 1.x and UML 2.0. Typically, recent approaches already
are based on the new UML 2.0 specification. Furthermore, it is advisable that existing
UML 1.x approaches are updated to also support UML 2.0. For extending UML with
aspect-oriented concepts, UML’s inherent extension mechanism, that is, profiles, is
popular. In terms of tool support this is beneficial, since UML profiles are supported by
almost any UML tool. Nevertheless, it has to be noted, that the profile-based approaches
of Stein et al. and Aldawud et al. do not provide a reference implementation of their
profiles within a UML tool. Consequently, designers first are required to manually
redefine the profile specification in their UML tool of choice. With respect to those
approaches that are based on metamodel extensions, that is, Clarke et al., Jacobson
et al., and France et al., almost no modeling support is available. Only France et al. are
currently developing an integrated toolset providing modeling support upon the EMF.

Behavioral Diagrams Are Catching Up. Except for the approach of Klein et al. all
approaches make extensive use of structural diagrams, that is, class diagrams and
package diagrams as well as component diagrams and composite structure diagrams.
The use of behavioral diagrams in order to describe crosscutting behavior is more and
more emphasized by also composing behavioral diagrams such as in the approaches of
Klein et al., Cottenier et al., and France et al.

Missing Guidance in the Design Process. Since AOM is still a quite young research
field, the support of design processes has often been disregarded and thus is rather
underdeveloped. Only two surveyed approaches, that is, Clarke et al. and Jacobson

ACM Computing Surveys, Vol. 43, No. 4, Article 28, Publication date: October 2011.



28:48 M. Wimmer et al.

Table II. ConcernComposition

et al., provide a detailed design process description. Additionally, two approaches pro-
vide some guidance in designing aspect-oriented models in terms of guidelines, namely
France et al. and Aldawud et al. It is not surprising, that the two approaches offering
a design process have been chosen by the AOSD Europe Network of Excellence to form
the basis for defining a generic aspect-oriented design process [Clarke and Jackson
2006].

Moderate Scalability. Half of the approaches provides for scalability by supporting
modeling concepts that allow hiding details from the modeler and thus, modeling at a
high level of abstraction. The modeling examples used, however, are seldom of a size
that justifies scalability. Only, the approaches of Jacobson et al., Cottenier et al., and
Clarke et al. have provided proof that their approaches can cope with the composition
of three or more concerns. Due to this limited interest in proving the applicability of
the AOM approaches in large-scale applications, it will be required in the future to
evaluate how scalable those approaches are in real large-scale applications by means
of quantitative studies.

Missing Full External Traceability. The majority of approaches does not support ex-
ternal traceability at all or with respect to either prior or later development phases,
only. The approaches of Jacobson et al. and Clarke et al. are the only ones that do sup-
port external traceability from the requirements engineering phase until implementa-
tion. Since is is a crucial issue in any kind of software development, AOM approaches
need to take care to support for traceability.

6.2. ConcernComposition

For the ConcernComposition category, the lessons learned are drawn from Table II.
Popularity of Asymmetric ConcernComposition. The majority of AOM approaches

follows the pointcut-advice mechanism or a combination of the pointcut-advice and open

ACM Computing Surveys, Vol. 43, No. 4, Article 28, Publication date: October 2011.



A Survey on UML-Based Aspect-Oriented Design Modeling 28:49

class mechanisms. The approach of France et al. seems to be the first that combines the
compositor mechanism and the pointcut-advice mechanism. It is however interesting
to note that up to now little interest has been shown in evaluating when asymmetric
and symmetric approaches have prevailing advantages and shall be employed.

Influence of Concern Composition Rule Mechanism on Element, Composition, and
Rule Symmetry. Generally, one can observe that asymmetric composition mechanisms
usually imply element asymmetry, composition asymmetry as well as rule asymme-
try, although this is not an inherent characteristic of asymmetric approaches. On the
opposite, a symmetric composition continuously achieves symmetric values. The ap-
proach of Klein et al. is one exception to the rule supporting element and composition
symmetry, since the modeling concepts used for modeling the base behavior, the cross-
cutting behavior as well as the pointcuts is done using sequence diagrams, which
in different contexts can play different roles. Other examples are the approaches of
Jacobson et al. and Aldawud et al. which at a higher level do support element symmetry
(�use case slice�) and element asymmetry (�aspect�), respectively. At a lower level,
however, one can observe the reverse: Jacobson et al. model and compose �aspect�
classes with normal classes while Aldawud et al. uses state machine regions to model
(non-)crosscutting concerns. The approach of France et al. that combines the compos-
itor mechanism and the pointcut-advice mechanism results in rule symmetry for the
compositor mechanism and rule asymmetry for the pointcut-advice mechanism.

Composition Often Deferred to Implementation. Composition at modeling level is
only supported by half of the surveyed approaches. The composition always yields a
composed model conforming to standard UML except for the approach of Clarke et al.,
where the outcome is represented by a composite �theme�. The concern composition
rule semantics of Cottenier et al. and France et al. have already been implemented
within (prototype) tools, while Klein et al. have defined a weaving algorithm. In contrast
to Clarke et al., this operationalization enables dynamic composition at modeling level.
Well-defined semantics already at the modeling level is a necessary prerequisite for
achieving more than models-as-blue-print. If, as intended in MDE, models shall replace
code appropriate semantics along with composed models to assist the designer will be
required.

Moderate Support for Modeling Interactions. Modeling of interactions both at the
level of modules and the level of rules is still considered rather moderately. Typically,
the means for specifying interactions are at the same modeling concepts for resolving
conflicts, for example, an ordering for composing concern modules or concern com-
position rules. The approach of Cottenier et al. represents an exception by proposing
�hidden by� and �dependent on� dependencies between aspects. Since it is natural
to expect that large-scale systems might put forward interaction of modules, for an un-
ambiguous specification of the system it will be necessary to make module interaction
explicit.

Conflict Resolution Based on an Ordering for Composition, Only. A conflict resolu-
tion is provided by half of the approaches focusing on resolving conflicts. The conflict
resolution mechanisms in most cases comprise means for specifying an ordering of how
concern modules are composed, some provide further means, for example, to resolve
naming conflicts. Only one approach’s concern composition rule semantics (France
et al.) allows to detect (syntactical) conflicts. The approach of Jacobson et al. is the
only one that explicitly avoids conflicts by continuously refactoring models. Conse-
quently, the provision of more sophisticated conflict resolution mechanisms including
the detection of conflicts should be focussed in future.

Effect Not Considered. Modeling the effect of composition is not considered at all.
Only the JAC design notation of Pawlak et al. provides a stereotype �replace� for
advice which indicates an effect of either a replacement or a deletion. The possibility of

ACM Computing Surveys, Vol. 43, No. 4, Article 28, Publication date: October 2011.



28:50 M. Wimmer et al.

Table III. AspectualSubject

modeling the effect, however, would enhance the explicitness of models and thus allow
for providing better conflict identification.

6.3. AsymmetricConcernComposition

This part of the lessons learned specifically summarizes the results for the approaches
adhering to the pointcut-advice and/or open class composition mechanism, that is, Stein
et al., Pawlak et al., Jacobson et al., Klein et al., Cottenier et al., and France et al.

6.3.1. AspectualSubject. The results of evaluating the approaches in accordance with
the criteria encompassed by the AspectualSubject subcategory are shown in Table III.

Missing Formal Definition of Join Point Models. Half of the surveyed approaches
made the Join Point Model not explicit but defined it “implicitly” via their pointcut
mechanism. The remaining did provide a Join Point Model but mostly in terms of a
natural language description, only, except the approach of Klein et al. [2007] where
a formal Join Point Model has been employed to precisely define advanced weaving
mechanisms. As the work of Klein et al. [2007] shows, formal definitions of join point
models provide various benefits and shall be considered in future development of other
AOM approaches.

Limited Support for Structural Join Points. Supporting the full spectrum of join
points in AOM approaches would be beneficial with respect to possible enhancements,
replacements, and deletions made in the form of advice. The approaches realizing
the open class composition mechanism support structural-static join points. The ap-
proaches of Pawlak et al. and Cottenier et al. allow for structural advice which are
introduced at run-time, however, thus requiring structural-dynamic join points (e.g.,
class instances). The approaches of Klein et al. and France et al. do not provide struc-
tural join points at all. Nevertheless, it has to be noted, that the approach of France et al.
compensates the lack of at least structural-static join points due to also supporting the
compositor composition mechanism. All approaches consider either behavioral-static
or behavioral-dynamic join points or both.

Standards-Based Pointcut Mechanism Preferred. All but one of the approaches pro-
vide a standards-based pointcut mechanism. Pawlak et al. proposes the only propri-
etary pointcut language based on regular expressions and/or keywords as well as on
UML associations. The approaches of Jacobson et al. and Stein et al. reuse AspectJ’s
pointcut language. The rest relies on UML behavioral diagrams to specify pointcuts,

ACM Computing Surveys, Vol. 43, No. 4, Article 28, Publication date: October 2011.



A Survey on UML-Based Aspect-Oriented Design Modeling 28:51

Table IV. AspectualKind

for example, sequence diagrams (Klein et al.) and combined fragments in sequence
diagrams (France et al.), as well as state machines (Cottenier et al.).

Good Support of Composite Pointcuts. The reuse of simple pointcuts is fostered by
the use of composite pointcuts, for which good support is provided in almost all the
approaches. The pointcut mechanism of Stein et al., Pawlak et al., and Jacobson et al.
provide textual mechanisms that allow for composing simple pointcuts using logical
operators. Cottenier et al. allow composing pointcuts with special logical composition
operators. While France et al. provide no support for modeling composite pointcuts, the
approach of Klein et al. in principle could support composition of sequence diagrams
on the basis of the sequential composition operator.

No Imperative Pointcuts. The approaches exclusively allow to select join points declar-
atively and/or by enumeration but not in the form of imperative pointcuts, which could
serve as a more verbose pointcut definition.

Good Support of Relative Position Kinds. Except for the approaches of Klein et al. and
Cottenier et al., the other approaches provide full support for explicitly modeling all
relative position kinds. Interestingly, France et al. support two uncommon positions,
namely “begin” and “end”. Furthermore, it might be interesting to discuss how the
relative positions shall be interpreted in the light of model elements, since finally
the composition in any case will do concrete insertions and deletions of metamodel
instances.

Modeling Aspectual Subjects at Different Levels of Abstraction. All approaches allow
to apply advices to the base at a low level of abstraction, but half of the approaches
also allows modeling the subjects of adaptation at a higher level of abstraction. For the
applicability of AOM, a high level of abstraction is beneficial, whereas for code gener-
ation purposes as well as an automated execution of the model a detailed specification
at a low level of abstraction is necessary.

6.3.2. AspectualKind. In Table IV, the results for the AspectualKind subcategory are
provided.

Composite Advice Not Considered. While most approaches provide modeling means
for both behavioral and structural advice, composing advice to form more complex
ones and to foster reuse is not considered by any of the approaches. Nevertheless, the
approach of Klein et al. in principle could support composition of sequence diagrams,
that is, behavioral advice, on the basis of the sequential composition operator.

Modeling Aspectual Kinds at a Low Level of Abstraction. Again, as for abstraction
with respect to the aspectual subjects all approaches allow modeling advice at a low
level of abstraction. The approach of Cottenier et al. is the only one supporting modeling
also at a high level of abstraction. It would be beneficial, however, if approaches would
provide for high as well as low level of abstraction.

ACM Computing Surveys, Vol. 43, No. 4, Article 28, Publication date: October 2011.



28:52 M. Wimmer et al.

Table V. SymmetricConcernComposition

6.4. SymmetricConcernComposition

This part of the lessons learned specifically summarizes the results for those ap-
proaches supporting the compositor composition mechanism, that is, Aldawud et al.,
Theme et al., and France et al (cf. Table V).

Equal Support of Structural and Behavioral Composable Elements. While the ap-
proach of Aldawud et al. is based on state machines, the approach of France et al.
allows composing class diagrams. Thus, the supported composable elements are for the
first case behavioral and in the second case structural. Ideally, composition is possible
for both kinds, such as in the composition metamodel of Clarke et al. Nevertheless, for
the approach of France et al., it has to be noted that the lacking support for behavioral
composable elements can be seen as compensated due to supporting the pointcut-advice
composition mechanism for composing sequence diagrams.

Predominance of Matching with Names. Finding corresponding elements on the basis
of a name-based match method represents an easy-to-implement method and in many
cases quite an effective way, which is consequently supported by all three approaches.
Clarke et al. additionally allow to explicitly model which elements shall not match by
supporting a no-match method. Recently, France et al. have proposed a more expressive
match method based on the elements signatures. The advantage of such a matching
method lies in the possibility of finding corresponding elements with more fine-grained
matching criteria other than the element name, for example, the values of meta-class
properties such as the “isAbstract” meta-attribute of classes, as well as in the possibility
of detecting and resolving conflicts.

Merge Integration as a Default Strategy. With respect to supporting different inte-
gration strategies, merge is supported by all surveyed approaches. The override and
bind strategies are also supported by all approaches but Aldawud et al. In terms of
expressivity, ideally all integration strategies are supported by an approach.

Modeling at Different Abstraction Levels. The approaches generally provide good sup-
port for modeling at a high and a low level of abstraction. In particular, the approaches
of Clarke et al. and France et al. offer high level views on the concern modules to be
composed in terms of UML packages, while Aldawud et al. model at a detailed level
by means of state machines. A high level of abstraction is beneficial in terms of an
approach’s scalability, whereas for code generation purposes as well as an automated
execution of the model a low level view such as the one of Aldawud et al. is required.
In this respect, state machines probably represent the most elaborate mechanism for

ACM Computing Surveys, Vol. 43, No. 4, Article 28, Publication date: October 2011.



A Survey on UML-Based Aspect-Oriented Design Modeling 28:53

Table VI. Maturity

describing an objects life cycle, and are supported by code generation tools such as
Raphsody and StateMate.12

6.5. Maturity

In Table VI, the measures for the Maturity category are depicted for all surveyed
approaches.

Missing Complex Examples. The majority of the approaches have demonstrated their
concepts on the basis of rather trivial examples in which not more than two concerns
are composed. In this respect, Jacobson et al., Cottenier et al., and Clarke et al. set a
good example by demonstrating their approaches with nontrivial modeling problems. It
would therefore be beneficial if all AOM approaches would document their capabilities
on bases of more complex examples.

Lack of Application in Real-World Projects. The applicability of AOM languages
has rarely been tested in real-world projects. An exception is the approach of Pawlak
et al., which has already been applied to real industrial projects like an online courses
intranet site, an incident reporting web site, and a business management intranet tool.
Another exception is the approach of Cottenier et al., since their Motorola Weavr tool
is already being deployed in production at Motorola.

6.6. Tool Support

Finally, the results concerning the approaches’ Tool Support are summarized in
Table VII.

Missing Tool Support for Composition and Code Generation. While modeling support
in many approaches is implicitly available due to the use of UML’s profile mechanism,
support for code generation and composition is rare. The approach of Cottenier et al.
is the only one that allows for modeling, composition, and code generation. On the
one hand, for those approaches that defer composition to the implementation phase,
code generation facilities that produce code for the target AOP platform would be
beneficial. For example, the approach of Pawlak et al. allows for code generation for
the JAC Framework. On the other hand, composition tool support is essential for those
approaches, that have specified the composition semantics for model composition. The
acceptance of an AOM approach will be minimal, if it requires the designers to first
model each concern separately and then to manually compose them. In this respect,

12http://www.ilogix.com/.

ACM Computing Surveys, Vol. 43, No. 4, Article 28, Publication date: October 2011.



28:54 M. Wimmer et al.

Table VII. Tool Support

the approaches of France et al., Cottenier et al., and Klein et al. provide appropriate
tool support.

6.7. General Findings

This section sums up the most important conclusions that can be drawn from our
in-depth evaluation of AOM approaches.

No Explicit Winner. From the results obtained in the evaluation, it is not possible
to nominate a winner. The selection of an AOM approach thus has to be made in the
context of a specific project. For instance, if the requirement is enabling documentation
and communication between partners of an AspectJ-based project, a design notation for
AspectJ programs is needed and the approach of Stein et al. would be a good solution.
On the other hand, one might wish for separating concerns in different class diagrams
at design time and then, before implementation, compose the different views. In this
respect, both approaches of Clarke et al. as well as France et al. would be possible
options. Depending on when the current prototype implementation of their integrated
toolset is made available, the approach of France et al. might even be preferred for its
tool support. Staying with tool support, the approaches of Pawlak et al. and Cottenier
et al. might be of interest. In contrast to the approach of Stein et al., the JAC Design
Notation of Pawlak et al. has been specifically designed for the JAC Framework but
comes with modeling support as well as a code generation facility. What might argue in
favor of the AODM of Stein et al. is AspectJ’s maturity. The unique selling point of the
Motorola Weavr of Cottenier et al. is its comprehensive tool support and in particular
its composition mechanism for state machines, for which an academic license can be
obtained. Nevertheless, the approach does not allow composing structural diagrams.

Full Spectrum of UML not Exploited. Interestingly enough, apart of the approaches
of Pawlak et al. and Klein et al. the surveyed approaches support structural as well
as behavioral diagrams. Thus, in principle, the approaches allow the modeler to
consider both structure and behavior through their approach. Nevertheless, currently
no approach addresses the full spectrum of UML in terms of UML’s structural and
behavioral diagrams as well as their composition. It is comforting that the presumably
most often employed UML diagrams have been addressed by AOM approaches. As
can be seen in Table I, the most important structural diagram, that is, class diagram,
is supported by all approaches addressing structural modeling some of them also
allowing their composition. Likewise for modeling behavior the sequence diagram
is covered by all approaches addressing behavior, some of them also supporting
their composition. It would therefore be interesting to investigate how to compose
diagram types for which composition has not yet been specified, for example, composite

ACM Computing Surveys, Vol. 43, No. 4, Article 28, Publication date: October 2011.



A Survey on UML-Based Aspect-Oriented Design Modeling 28:55

structure diagrams. As a consequence, it would also be interesting how the approaches
can be combined in order to gain from best practices in AOM. In this respect, a first
promising attempt has recently been conducted by Clarke et al. and Klein et al.
by proposing KerTheme [Jackson et al. 2006], a combination of their approaches.
Furthermore, the Theme/UML approach of Clarke et al. has also been extended with
join point designation [Jackson and Clarke 2006] diagrams of Stein et al.

Missing Guidance on When to use Asymmetric vs. Symmetric Approaches. It might
be a natural pre-assumption that approaches either follow the asymmetric school of
thought or the symmetric school of thought. France et al. is interesting in this respect
since it provides for both. The recent extension made to Theme/UML in the KerTheme
proposal also follow this direction of combining different composition mechanisms. In
terms of expressivity, the advantages of using different composition mechanisms are
obvious. Nevertheless, the question when to best apply an asymmetric or a symmetric
approach has not yet been answered sufficiently.

Missing Tool Support. Certainly, one of the most vital factors for the adoption of
AOM in practice but also in academia is the provision of appropriate tools. Basic
modeling support is provided for some approaches, that is, for those approaches which
rely on UML profiles and consequently can rely on existing UML modeling tools. AOM,
however, is also about the composition of various concerns that have been carefully
separated beforehand. This is a complex task to be understood by the modeler hence,
support for model composition is vital. Still, this is not commonly provided by the AOM
approaches and is also hampered by the fact that not all AOM approaches provide
for a well-defined composition semantics. An interesting exception concerning tool
support for composition is presented in Whittle et al. [2007]. The authors propose
to model aspects as graph transformations [Ehrig et al. 1999] which firstly allows
for an expressive composition language and secondly provides, by combining existing
graph transformation tools with modeling environments, for the actual composition by
executing the graph transformations as well as for detecting dependencies between
aspects with the use of critical pair analysis. Finally, code generation, which is an
important requirement for MDE, is least supported by tools. Only the approaches of
Pawlak et al. and Cottenier et al. provide such facilities.

Adoption of Approaches Requires Scalability. For the adoption of AOM, it would
be beneficial if its applicability would be better evaluated with respect to large scale
applications and real-world scenarios. This is currently only sufficiently addressed
by very few approaches, namely, Clarke et al., Jacobson et al., and Cottenier et al.
Nevertheless, scalability is a feature important to practitioners and has a great impact
on the chances of AOM approaches to be adopted.

7. CONCLUSION AND OUTLOOK

This article presents the evaluation of eight AOM approaches, focusing on aspect-
oriented design modeling. Since the research field of AOM is quite young and a common
understanding of concepts has not yet been established, we identified prior to our
survey the important concepts of AOM in the form of a conceptual reference model for
aspect-oriented design modeling. This conceptual reference model is an intermediate
but essential step towards defining an evaluation framework, that is, it forms the basis
for inferring a set of concrete criteria. The actual evaluation according to our evaluation
framework is furthermore supported by a running example, which has proven to be very
helpful on the one hand, to explore the applicability of each individual approach and
on the other hand, to allow for a direct comparison of the approaches. The evaluation
results reveal that currently there is no decidedly superior AOM approach but that each
individual approach has it specific strengths and shortcomings. For applying AOM in a
project this means selecting an AOM approach by matching the projects requirements

ACM Computing Surveys, Vol. 43, No. 4, Article 28, Publication date: October 2011.



28:56 M. Wimmer et al.

with the approach’s features. In this respect, the evaluation results and lessons learned
represent the basis for a well-founded decision.

A research question we would like to investigate concerns the kind of examples that
are needed to fully evaluate AOM approaches like done, for example, in Kienzle and
Gélineau [2006]. While our running example’s obvious advantages are its conciseness
and understandability, it does not allow to investigate each and every concept of the
AOM approaches, for example, modeling interactions between concern modules. In this
respect, we propose a catalogue of AOM examples, an initiative that is not new but has
successfully been applied in some disciplines.13 A set of common, well-defined problems
would provide a way of comparing approaches and results. Such a catalogue of standard
example problems could serve as a kind of benchmark for the AOM domain possibly
posing some form of compliance levels for new proposals to AOM but also provide for
teaching materials.

As a consequence of such a catalogue of AOM examples, in a further extension of this
survey, each approach could be applied to more complex problems or within extensive
case studies. Ideally, the approaches could be applied simultaneously in a real world
project. On the one hand, this would provide more insight into already supported
criteria of our evaluation framework such as scalability. On the other hand, such an
empirical study is necessary for otherwise non-measurable criteria such as reusability,
evolvability, flexibility, and ease of learning.

REFERENCES

AKŞIT, M., BERGMANS, L., AND VURAL, S. 1992. An object-oriented language-database integration model: The
composition-filters approach. In Proceedings of the 6th European Conference on Object-Oriented Pro-
gramming (ECOOP’92).

ALDAWUD, O., ELRAD, T., AND BADER, A. 2003. UML profile for aspect-oriented software development. In Pro-
ceedings of the 3rd International Workshop on Aspect Oriented Modeling.

ARAUJO, J., WHITTLE, J., AND KIM, D.-K. 2004. Modeling and composing scenario-based requirements with
aspects. In Proceedings of the 12th International Requirements Engineering Conference (RE’04). IEEE
Computer Society, 58–67.

BAKER, P., LOH, S., AND WEIL, F. 2005. Model-driven engineering in a large industrial context - Motorola case
study. In Proceedings of the 8th International Conference on Model Driven Engineering Languages and
Systems (MoDELS’05).

BANIASSAD, E., CLEMENTS, P. C., ARAUJO, J., MOREIRA, A., RASHID, A., AND TEKINERDOGAN, B. 2006. Discovering
early aspects. IEEE Softw. 23, 1, 61–70.

BANIASSAD, E. L. A. AND CLARKE, S. 2004. Theme: An approach for aspect-oriented analysis and design. In
Proceedings of the 26th International Conference on Software Engineering. IEEE Computer Society,
158–167.

BLAIR, G. S., BLAIR, L., RASHID, A., MOREIRA, A., ARAÚJO, J., AND CHITCHYAN, R. 2005. Engineering aspect-oriented
systems. In Aspect-Oriented Software Development, R. Filman, T. Elrad, S. Clarke, and M. Akşit, Eds.
Addison-Wesley, 379–406.

CHITCHYAN, R., RASHID, A., SAWYER, P., GARCIA, A., ALARCON, M. P., BAKKER, J., TEKINERDOĞAN, B., CLARKE, S.,
AND JACKSON, A. 2005. Survey of aspect-oriented analysis and design approaches. Tech. rep. D11 AOSD-
Europe-ULANC-9, AOSD-Europe.

CLARKE, S. 2001. Composition of object-oriented software design models. Ph.D. dissertation, Dublin City
University.

CLARKE, S. 2002. Extending standard UML with model composition semantics. Sci. Comput. Prog. 44, 1,
71–100.

CLARKE, S. AND BANIASSAD, E. 2005. Aspect-Oriented Analysis and Design The Theme Approach. Addison-
Wesley.

CLARKE, S., HARRISON, W., OSSHER, H., AND TARR, P. 1999. Subject-oriented design: Towards improved alignment
of requirements, design and code. In Proceedings of the 14th Conference on Object-Oriented Programming,
Systems, Languages and Applications (OOPSLA’99). 325–339.

13http://www.cs.cmu.edu/∼ModProb/index.html.

ACM Computing Surveys, Vol. 43, No. 4, Article 28, Publication date: October 2011.



A Survey on UML-Based Aspect-Oriented Design Modeling 28:57

CLARKE, S. AND JACKSON, A. 2006. Refined AOD process. Tech. rep. D57 AOSD-Europe-TCD-D57, AOSD-
Europe. Aug.

CLARKE, S. AND WALKER, R. J. 2005. Generic aspect-oriented design with Theme/UML. In Aspect-
Oriented Software Development, R. Filman, T. Elrad, S. Clarke, and M. Akşit, Eds. Addison-Wesley,
425–458.

COELHO, W. AND MURPHY, G. C. 2006. Presenting Crosscutting Structure with Active Models. In Proceedings
of the 5th International Conference on Aspect-Oriented Software Development (AOSD’06).

COTTENIER, T., VAN DEN BERG, A., AND ELRAD, T. 2007a. Joinpoint inference from behavioral specification to
implementation. In Proceedings of the 21st European Conference on Object-Oriented Programming.

COTTENIER, T., VAN DEN BERG, A., AND ELRAD, T. 2007b. The Motorola WEAVR: Model weaving in a large
industrial context. In Proceedings of the 6th International Conference on Aspect-Oriented Software De-
velopment (AOSD’07).

COTTENIER, T., VAN DEN BERG, A., AND ELRAD, T. 2007c. Motorola WEAVR: Aspect and model-driven engineering.
J. Object Tech. 6, 7.

DIJKSTRA, E. W. 1976. A Discipline of Programming. Prentice-Hall, Englewood Cliffs, NJ.
DRIVER, C., CAHILL, V., AND CLARKE, S. 2008. Separation of distributed real-time embedded concerns with

Theme/UML. In Proceedings of the 5th International Workshop on Model-Based Methodologies for Per-
vasive and Embedded Software. IEEE Computer Society, 27–33.

EHRIG, H., ENGELS, G., KREOWSKI, H.-J., AND ROZENBERG, G., EDS. 1999. Handbook of Graph Grammars and Com-
puting by Graph Transformation Vol. 2: Applications, Languages, and Tools. World Scientific Publishing
Co.

ELRAD, T., ALDAWUD, O., AND BADER, A. 2005. Expressing aspects using UML behavioral and structural di-
agrams. In Aspect-Oriented Software Development, R. Filman, T. Elrad, S. Clarke, and M. Akşit, Eds.
Addison-Wesley, 459–478.

FILMAN, R. E., ELRAD, T., CLARKE, S., AND AKŞIT, M., EDS. 2005. Aspect-Oriented Software Development. Addison-
Wesley.

FRANCE, R., KIM, D.-K., GHOSH, S., AND SONG, E. 2004a. A UML-based pattern specification technique. IEEE
Trans. Softw. Eng. 30, 3, 193–206.

FRANCE, R., FLEUREY, F., REDDY, R., BAUDRY, B., AND GHOSH, S. 2007. Providing support for model composition
in metamodels. In Proceedings of the 11th International EDOC Conference (EDOC’07).

FRANCE, R., RAY, I., GEORG, G., AND GHOSH, S. 2004b. An aspect-oriented approach to early design modelling.
IEE Proc. Softw. 151, 4, 173–185.

FRANCE, R. B. AND RUMPE, B. 2007. Model-driven development of complex software: A research roadmap. In
Proceedings of the 29th International Conference on Software Engineering (ISCE’07). IEEE Computer
Society, 37–54.

FUENTES, L., PINTO, M., AND TROYA, J. M. 2007. Supporting the development of CAM/DAOP applications: An
integrated development process. Software - Practi. Exp. 37, 1, 21–64.

GAMMA, E., HELM, R., HOHNSON, R., AND VLISSIDES, J. 2004. Design Patterns—Elements of Reusable Object-
Oriented Software. Addison-Wesely.

GRUNDY, J. 2000. Multi-perspective specification, design and implementation of software components using
aspects. Int. J. Softw. Engi. Knowl. Eng. 20, 6.

HANENBERG, S. 2005. Design dimensions of aspect-oriented systems. Ph.D. dissertation, University Duisburg-
Essen.

HARRISON, W. H. AND OSSHER, H. L. 1993. Subject-oriented programming—A critique of pure objects. In Pro-
ceedings of the 8th Conference on Object-Oriented Programming Systems, Languages, and Applications
(OOPSLA’93).

HARRISON, W. H., OSSHER, H. L., AND TARR, P. L. 2002. Asymmetrically vs. symmetrically organized
paradigms for software composition. Tech. rep., IBM Research Division, Thomas J. Watson Research
Center.

HEIDENREICH, F., JOHANNES, J., ZSCHALER, S., AND ASSMANN, U. 2008. A close look at composition languages. In
Proceedings of the 2nd Workshop on Assessment of Contemporary Modularization Techniques (ACoM’08).

HO, W.-M., JÉZÉQUEL, J.-M., PENNANEAC’H, F., AND PLOUZEAU, N. 2002. A toolkit for weaving aspect oriented UML
designs. In Proceedings of the 1st Intermational Conference on Aspect-Oriented Software Development
(AOSD’02).

ITU. 2002. ITU-T Recommendation Z.100: Specification and description language (SDL), Geneva,
Switzerland. http://www.itu.int/rec/T-REC-Z/en.

ITU. 2004. ITU-T Recommendation Z.120: Message sequence chart (MSC), Geneva, Switzerland.
http://www.itu.int/rec/T-REC-Z/en.

ACM Computing Surveys, Vol. 43, No. 4, Article 28, Publication date: October 2011.



28:58 M. Wimmer et al.

JACKSON, A. AND CLARKE, S. 2006. Towards the integration of Theme/UML and JPDDs. In Proceedings of the
8th International Workshop on Aspect-Oriented Modeling at AOSD’06.

JACKSON, A., KLEIN, J., BAUDRY, B., AND CLARKE, S. 2006. KerTheme: Testing aspect oriented models. In Proceed-
ings of the Workshop on Integration of Model Driven Development and Model Driven Testing (ECMDA’06).

JACOBSON, I. AND NG, P.-W. 2005. Aspect-Oriented Software Development with Use Cases. Addison-Wesley.
KATARA, M. AND KATZ, S. 2007. A concern architecture view for aspect-oriented software design. Softw. Syst.

Model. 6, 3, 247–265.
KERSTEN, M. 2005. AOP tools comparison (Part 1 & 2). http://www-128.ibm.com/developerworks/java/library/

j-aopwork1/.
KICZALES, G., LAMPING, J., MENDHEKAR, A., MAEDA, C., LOPES, C., LOINGTIER, J.-M., AND IRWIN, J. 1997. Aspect-

oriented programming. In Proceedings of the 11th Europeen Conference on Object-Oriented Program-
ming.

KIENZLE, J. AND GÉLINEAU, S. 2006. AO Challenge—Implementing the ACID properties for transactional
objects. In Proceedings of the 5th International Conference on Aspect-Oriented Software Development
(AOSD’06).

KIENZLE, J., YU, Y., AND XIONG, J. 2003. On composition and reuse of aspects. In Proceedings of the Foundations
of Aspect-Oriented Languages.

KIM, D.-K., FRANCE, R. B., AND GHOSH, S. 2004. A UML-based language for specifying domain-specific patterns.
J. Visual Lang. Comput. 15, 3-4, 265–289.

KLEIN, J., FLEUREY, F., AND JÉZÉQUEL, J.-M. 2007. Weaving multiple aspects in sequence diagrams. Trans. Asp.
Orient. Softw. Develop..

KLEIN, J., HÉLOUËT, L., AND JÉZÉQUEL, J.-M. 2006. Semantic-based weaving of scenarios. In Proceedings of the
5th International Conference on Aspect-Oriented Software Development (AOSD’06).

KOJARSKI, S. AND LORENZ, D. H. 2006. Modeling aspect mechanisms: A top-down approach. In Proceedings of
the 28th International Conference on Software Engineering (ICSE’06).

LIEBERHERR, K. J. 1996. Adaptive Object-Oriented Software: The Demeter Method with Propagation Patterns.
PWS Publishing Company, Boston, MA.

MAHONEY, M., BADER, A., ALDAWUD, O., AND ELRAD, T. 2004. Using aspects to abstract and modularize state-
charts. In Proceedings of the 5th Aspect-Oriented Modeling Workshop (UML’04).

MASUHARA, H. AND KICZALES, G. 2003. Modeling crosscutting in aspect-oriented mechanisms. In Proceedings
of the 17th European Conference on Object-Oriented Programming (ECOOP’03).

MULLER, P.-A., FLEUREY, F., AND JÉZÉQUEL, J.-M. 2005. Weaving executability into object-oriented meta-
languages. In Proceedings of the 8th International Conference on Model Driven Engineering Languages
and Systems (MoDELS’05).

OMG. 2003. MDA Guide Version 1.0.1. http://www.omg.org/docs/omg/03-06-01.pdf.
OMG. 2009. UML Specification: Superstructure version 2.2. http://www.omg.org/spec/UML/2.2/

Superstructure/PDF.
OP DE BEECK, S., TRUYEN, E., BOUCKÉ, N., SANEN, F., BYNENS, M., AND JOOSEN, W. 2006. A study of aspect-oriented

design approaches. Tech. rep. CW435, Department of Computer Science, Katholieke Universiteit Leuven.
PARNAS, D. L. 1972. On the criteria to be used in decomposing systems into modules. Comm. ACM 15, 12,

1053–1058.
PAWLAK, R., DUCHIEN, L., FLORIN, G., LEGOND-AUBRY, F., SEINTURIER, L., AND MARTELLI, L. 2002. A UML Notation

for Aspect-Oriented Software Design. In Proceedings of the 1st Workshop on Aspect-Oriented Modeling
with UML (AOSD’02).

PAWLAK, R., SEINTURIER, L., DUCHIEN, L., MARTELLI, L., LEGOND-AUBRY, F., AND FLORIN, G. 2005. Aspect-
oriented software development with Java aspect components. In Aspect-Oriented Software Development,
R. Filman, T. Elrad, S. Clarke, and M. Akşit, Eds. Addison-Wesley, 343–369.

PIVETA, E. K. AND ZANCANELLA, L. C. 2003. Observer pattern using aspect-oriented programming. In Proceed-
ings of the 3rd Latin American Conference on Pattern Languages of Programming.

REDDY, R., GHOSH, S., FRANCE, R. B., STRAW, G., BIEMAN, J. M., SONG, E., AND GEORG, G. 2006a. Directives for com-
posing aspect-oriented design class models. In Transactions on Aspect-Oriented Software Development
I, Lecture Notes in Computer Science, vol. 3880. Springer-Verlag, 75–105.

REDDY, R., SOLBERG, A., FRANCE, R., AND GHOSH, S. 2006b. Composing sequence models using tags. In Proceed-
ings of the 9th International Workshop on Aspect-Oriented Modeling at MoDELS’06.

REINA, A. M., TORRES, J., AND TORO, M. 2004. Separating Concerns by Means of UML-profiles and Metamodels
in PIMs. In Proceedings of the 5th Aspect-Oriented Modeling Workshop (UML’04).

ACM Computing Surveys, Vol. 43, No. 4, Article 28, Publication date: October 2011.



A Survey on UML-Based Aspect-Oriented Design Modeling 28:59

RUMBAUGH, J., JACOBSON, I., AND BOOCH, G., Eds. 2005. The Unified Modeling Language Reference Guide.
Addison-Wesley.

SÁNCHEZ, P., FUENTES, L., STEIN, D., HANENBERG, S., AND UNLAND, R. 2008. Aspect-oriented model weaving beyond
model composition and model transformation. In Proceedings of the 11th International Conference on
Model Driven Engineering Languages and Systems (MoDELS’08). Lecture Notes in Computer Science.
Springer, 766–781.

SANEN, F., TRUYEN, E., WIN, B. D., JOOSEN, W., LOUGHRAN, N., COULSON, G., RASHID, A., NEDOS, A., JACKSON, A.,
AND CLARKE, S. 2006. Study on interaction issues. Tech. rep. D44 AOSD-Europe-KUL-7, AOSD-Europe.

SCHAUERHUBER, A., SCHWINGER, W., KAPSAMMER, E., RETSCHITZEGGER, W., AND WIMMER, M. 2006. Towards a
common reference architecture for aspect-oriented modeling. In Proceedings of the 8th International
Workshop on Aspect-Oriented Modeling at AOSD’06.

SOLBERG, A., SIMMONDS, D., REDDY, R., GHOSH, S., AND FRANCE, R. B. 2005. Using aspect oriented techniques
to support separation of concerns in model driven development. In Proceedings of the 29th Annual
International Computer Software and Applications Conference (COMPSAC’05).

STEIN, D., HANENBERG, S., AND UNLAND, R. 2002a. An UML-based aspect-oriented design notation. In Proceed-
ings of the 1st Int. Conference on Aspect-Oriented Software Development (AOSD’02).

STEIN, D., HANENBERG, S., AND UNLAND, R. 2002b. Designing aspect-oriented crosscutting in UML. In Proceed-
ings of the 1st Workshop on Aspect-Oriented Modeling with UML (AOSD’02).

STEIN, D., HANENBERG, S., AND UNLAND, R. 2002c. On representing join points in the UML. In Proceedings of
the 2nd Int. Workshop on Aspect-Oriented Modeling with UML (UML’02).

STEIN, D., HANENBERG, S., AND UNLAND, R. 2006. Expressing different conceptual models of join point selections
in aspect-oriented design. In Proceedings of the 5th International Conference on Aspect-Oriented Software
Development (AOSD’06).

STEIN, D., KIENZLE, J., AND KANDÉ, M. 2004. Report of the 5th International Workshop on Aspect-Oriented
Modeling. In UML Modeling Languages and Applications: 2004 Satellite Activities. Springer-Verlag,
13–22.

STRICKER, V., HANENBERG, S., AND STEIN, D. 2009. Designing design constraints in the UML using join point
designation diagrams. In Proceedings of the 47th International Conference on Objects, Components,
Models and Patterns (TOOLS’09).

SUTTON, JR., S. M. AND ROUVELLOU, I. 2005. Concern modeling for aspect-oriented software development. In
Aspect-Oriented Software Development, R. Filman, T. Elrad, S. Clarke, and M. Akşit, Eds. Addison-
Wesley, 479–505.

SUVÉE, D., VANDERPERREN, W., WAGELAAR, D., AND JONCKERS, V. 2005. There are no aspects. Electron. Notes
Theoret. Comput. Sci. 114.

TARR, P. L., OSSHER, H. L., HARRISON, W. H., AND SUTTON, JR., S. M. 1999. N degrees of separation: Multi-
dimensional separation of concerns. In Proceedings of the 21st International Conference on Software
Engineering (ICSE’99).

VAN DEN BERG, K., CONEJERO, J. M., AND CHITCHYAN, R. 2005. AOSD Ontology 1.0 - Public Ontology of Aspect-
Orientation. Tech. rep. D9 AOSD-Europe-UT-01, AOSD-Europe.

VON FLACH GARCIA CHAVEZ, C. 2004. A model-driven approach for aspect-oriented design. Ph.D. dissertation,
Pontifı́cia Universidade Católica do Rio de Janeiro.

VON FLACH GARCIA CHAVEZ, C. AND DE LUCENA, C. J. P. 2003. A theory of aspects for aspect-oriented software
development. In Proceedings of the 7th Brazilian Symposium on Software Engineering (SBES’03).

WHITTLE, J. AND ARAUJO, J. 2004. Scenario modelling with aspects. IEE Proc. Softw. Special Issue
on Early Aspects: Aspect-Oriented Requirements Engineering and Architecture Design 151, 4,
157–171.

WHITTLE, J., MOREIRA, A., ARAÚJO, J., JAYARAMAN, P. K., ELKHODARY, A. M., AND RABBI, R. 2007. An expressive as-
pect composition language for UML state diagrams. In Proceedings of the 10th International Conference
on Model Driven Engineering Languages and Systems (MoDELS’07). 514–528.

XEROX. 2005. The AspectJ (TM) Programming Guide. http://eclipse.org/aspectj/doc/released/progguide/
index.html.

ZHANG, J., COTTENIER, T., VAN DEN BERG, A., AND GRAY, J. 2007. Aspect composition in the Motorola aspect-
oriented modeling weaver. J. Obj. Technology 6, 7.

Received June 2008; revised March 2009 and August 2009; accepted December 2009

ACM Computing Surveys, Vol. 43, No. 4, Article 28, Publication date: October 2011.


