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Abstract. Situation awareness and geographic information systems in
dynamic spatial systems such as road traffic management (RTM) aim
to detect and predict critical situations on the basis of relations be-
tween entities. Such relations are described by qualitative calculi, each
of them focusing on a certain aspect (e. g., topology). Since these calculi
are defined isolated from each other, dependencies between then are not
explicitly modeled. We argue, that a taxonomy—containing a plethora
of special cases of inter-calculi dependencies—can only be defined in a
consistent manner, if evolution of entities and the relations of calculi
are grounded in a unified model. In this paper, we define such a unified
model, which is used to derive a taxonomy of inter-calculi dependency
constraints contained in an ontology utilizing various spatial calculi. The
applicability of this approach is demonstrated with a case study in RTM,
and concluded with lessons learned from a prototypical implementation.

1 Introduction

Situation awareness in dynamic spatial systems. Situation awareness and
geographic information systems (GIS) are gaining increasing importance in dy-
namic spatial systems such as road traffic management (RTM). The main goal is
to support human operators in assessing current situations and, particularly, in
predicting possible future ones in order to take appropriate actions pro-actively.
The underlying data describing real-world entities (e. g., tunnel) and their spa-
tial relations (e. g., inside, near), which together define relevant situations (e. g.,
a traffic jam inside and near the boundary of a tunnel), are often highly dynamic
and vague. As a consequence reliable numerical values are hard to obtain, which
makes qualitative modeling approaches better suited than quantitative ones [17].
Dynamic behavior in qualitative spatial calculi. Recently, ontology-driven
situation awareness techniques [1],[6] and qualitative approaches to modeling the
dynamic behavior of spatial systems [3] have emerged as a basis for predicting
critical situations from relations between objects. Such relations are expressed
by employing multiple relation calculi, each of them focusing on a certain as-
pect, such as topology [8], [20], size [13], or distance [15]. These calculi are often
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temporalized by means of Conceptual Neighborhood Graphs (CNGs, [9]) and
dominance spaces [10], [11], imposing constraints on the existence of direct tran-
sitions between relations. The domain-independent nature of calculi and their
focus on a particular aspect of relationship (e. g., topology), however, results
in dependencies between calculi being not explicitly modeled (e. g., topological
transitions imply transitions in the distance between object boundaries). In a
pioneering work on qualitative distance, Clementini stresses the importance of
interdependency between calculi as follows: “the meaning of close depends not
only on the actual relative position of both objects, but also [on] their relative
sizes and other scale-dependent factors” [5].
A unified model for inter-calculi dependencies. Ontology-based approaches
to dynamic spatial systems utilizing multiple calculi tackle the integration of
these calculi by providing dedicated modeling primitives, for instance in terms
of so-called axioms of interaction [3] and relation interdependencies [2]. Since
these approaches, however, completely abstract from the underlying continuous
space, a taxonomy exhaustively describing inter-calculi dependencies is still miss-
ing. We argue, that such a taxonomy—containing a plethora of special cases of
inter-calculi dependencies—can only be defined in a consistent manner, if evolu-
tion of spatial primitives (e. g., regions) and the relations of calculi are grounded
in a unified model. In order to define such a unified model for motion and scaling
of spatial primitives and their effects in terms of transitions in topology, size,
and distance, we base on Galton’s approach to constructing a “homomorphic
image of the full space of possible region-pairs” [11].
Structure of the paper. In the next section, the focus of this work is detailed
as the basis for discussing relevant related work. In Sect. 3, a unified model for
spatial calculi is presented along with a case study in the domain of RTM. The
model is the basis for an ontology briefly sketched in Sect. 4. Finally, Sect. 5
concludes the paper with lessons learned from a prototypical implementation.

2 Related Work

In this section, we discuss related work on modeling the dynamic behavior of
spatial systems with qualitative spatial reasoning approaches, focusing on those
approaches in the domain of GIS. In this discussion, we follow the common
ontological distinction (cf. the SNAP/SPAN approach [14]) often applied in GIS
[12] , [23] between the states of a system describing relations between entities
from a snapshot point-of-view, and the evolution between these states in terms
of occurrents, such as events and actions. Causal relations between states and
occurrents [12] comprise (i) qualification constraints defining preconditions for
states (i. e., states enable or disable other states, e. g., being smaller enables
being a part), and for occurrents (i. e., states allow or prevent occurrents, e. g.,
having very close boundaries enables becoming externally connected), whereas
(ii) frame constraints define effects of occurrents1 (i. e., occurrents cause other

1 Ooccurrents initiating and terminating states (e. g., becoming very close initiates
being very close) are not considered here, since they are modeled in CNGs.



occurrents, e. g., motion causes two objects becoming disrelated). In this paper,
we focus on qualification constraints for states and occurrents, since these are
the primary source of inter-calculi dependencies.

Many qualitative spatial reasoning approaches (e. g., [7], [10], [11], [21]) pro-
vide or utilize a single qualitative spatial calculus modeling a particular aspect,
and naturally, encode qualification constraints in CNGs (i. e., each relation is a
qualification constraint for its neighboring relations). A slightly broader view is
applied in GIS [8], informally discussing states, in particular the size of objects,
as qualification constraints for relations. The same constraint is used in a mod-
eling framework for dynamic spatial systems [4] as qualification constraint on
the transitions between relations. Arbitrary qualification constraints spanning
multiple qualitative spatial calculi are explicitly supported in Bhatt’s approach
to modeling the dynamic behavior of spatial systems [3] in the form of so-called
axioms of interaction. However, this modeling approach lacks a taxonomy of
states and constraints. As a consequence, both must be provided by users of this
modeling framework, instead of being integrated within its ontology.

Focusing on the integration of multiple calculi, Gerevini and Renz [13] discuss
interdependencies between the Region Connection Calculus (RCC) and their
Point Algebra for describing size relations. These interdependencies describe
qualification constraints for states (i. e., relations) of one calculus in terms of
states of the other. For example, a relation TPP (tangential proper part) of
RCC entails a size relation < (i. e., the contained entity must be smaller than
the containing one). Using the same calculi (RCC and size), Klippel et al. [18]
investigated the impact of different size relationships on the relation transitions
in RCC induced by motion events, and the cognitive adequacy of these changes.
Since the interdependencies between topological and size relations are rather
obvious, providing a formal integration model, however, has not been the focus.

Clementini et al. [5] present several algorithms for combining distance and
orientation relations from a compositional point-of-view (e. g., these algorithms
compute the composition of distance relations, given a known orientation rela-
tion). In contrast, we focus on interpreting relations of a particular calculus as
qualification constraints for relations and/or transitions in other calculi.

In summary, existing works lack a model of space and of spatial primitive
pairs, preventing consistent integration of multiple calculi with major evolution
causes (motion, scaling, orientation, shape, cf. [8]). In the next section, we discuss
such a model along three spatial calculi modeling important aspects like topology
(RCC, [20]), distance of boundaries [15], and size [13].

3 Inter-Calculi Dependencies in Spatial Calculi

In qualitative spatial reasoning, as introduced above, a multitude of different
spatial calculi has been proposed. Although each of these calculi focuses on a
particular aspect of the real world, some of their relations implicitly model other
aspects as well (i. e., these relations restrict the relations that can hold and the
transitions that can occur in another calculus). For instance, a topological non-



tangential proper part relation (NTPP) between two objects does not only define
that a particular object is contained in another one, but also implicitly defines
that the contained object must be smaller than the containing one [13]. Addi-
tionally, real-world evolution abstracted to transitions in one calculus might be
modeled in more detail in another calculus. For example, a topological transition
from being disconnected (DC) to being externally connected (EC) in RCC is mod-
eled from a distance viewpoint [15] with a sequence of relations and transitions,
comprising transitions from being very far (VF) over far (F) and close (C) to be-
ing very close (VC). We make such assumptions explicit by combining exisiting
calculi with qualification constraints modeling inter-calculi dependencies.

In order to define such qualification constraints in a consistent manner and
account for a plethora of different special cases, a mapping between relations
and the underlying spatial primitives including their numerical representation
is needed. For example, let us consider relations describing the spatial distance
between object boundaries. Since the boundary of an object implicitly defines
its size and center, the options concerning the distance between the boundaries
of two objects can only be narrowed by taking into account information about
their topological relationship, relative size, and distance of their centers: If one
object is known to be a proper part of the other one, a rather small object being
located at the center of a large object is regarded to be very far from the large
object’s boundaries, whereas the same object with a large distance to the center
would result in the boundaries being considered to be very close. The boundaries
of two nearly equally-sized objects would be considered very close as well.

As the basis for determining the above sketched variety of special cases mak-
ing up inter-calculi dependencies, we base upon Galton’s approach [11] to de-
riving a two-dimensional image of relations from the CNG of RCC, since this
approach covers the full space of possible region-pairs. In such a two-dimensional
image, the topological relations between two spheres are encoded, using the radii
r1 and r2 of the spheres along the x-axis (x = r1/(r1+r2)) and the distance d be-
tween their centers on the y-axis (d/2(r1+r2)). The relations DC (disconnected),
EC (externally connected), PO (partly overlapping), TPP (tangential proper part)
and its inverse TPPi, NTPP (non-tangential proper part) and its inverse NTPPi,
as well as EQ (equals) are defined in terms of these two measures in (1).

DC 0.5 < y < 1 EC y = 0.5

PO ∣0.5− x∣ < y < 0.5 EQ x = 0.5 ∧ y = 0

TPP 0 < y = 0.5− x TPPi 0 < y = x− 0.5

NTPP y < 0.5− x NTPPi y < x− 0.5

(1)

The resulting image of possible relations in RCC between intervals in ℝ,
circular regions in ℝ2, and spheres in ℝ3 is depicted in Fig. 12. Besides reflecting
the CNG of RCC (neighboring relations in the CNG are neighboring regions,
lines, or points), this image encodes two interesting aspects of evolution: (i) the

2 This is different from Galton[11], since we normalize both the x- and y-axis metric
with the sum of the radii to obtain a symmetric image.
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Fig. 1. Combined image of topology, distance of boundaries, and size (cf. [11]).

implications of motion and scaling, and (ii) the dominance relationship between
relations (e. g., EQ being a point indicates that it can hold for a time instant,
whereas those relations being denoted by regions must hold for a time interval).

Considering the impact of evolution, a point in this figure denoting a partic-
ular relation of RCC moves along the x-axis when one of the spheres changes
its size with respect to the size of the other sphere (i. e., due to scaling), whereas
its movement along the y-axis is caused by motion of the centers (which in turn
is either due to motion of an entire sphere, or scaling). For example, consider
the black dot labelled Holds(�rcc(o, o

′), NTPPi, s) in the sector NTPPi, denot-
ing that o contains o′: in terms of size and distance, this dot means that o is
approximately twice the size of o′ (cf. 0.67 on the x-axis), and that their centers
are near each other. If o shrinks, the black dot moves along the x-axis to the left,
until o can no longer fully contain o′, leading to an overlap relation (represented
by the dot moving from NTPPi into PO). During this scaling, at a single time
instant the boundary of o touches the boundary of o′, represented by the dot
passing the line labeled TPPi (i. e., o′ is a tangential proper part of o). If o shrinks
even further, it will eventually be contained in o′ (i. e., the dot will move into
TPP). Now consider that the centers of o and o′ coincide (i. e., their distance is
zero): the same scaling event will then traverse EQ instead of TPPi, PO, and TPP.

We now define such a space representing relations as points for each of the
employed positional relation calculi (distance of boundaries and size). To begin



with, we discuss the integration of size, since the x-axis in Fig. 1 already expresses
size relationships in terms of the ratio of interval radii r1/(r1+r2). The mapping
to a qualitative size calculus is straightforward: a ratio below 0.5 corresponds to
smaller (<), above 0.5 to larger (>) and one of exactly 0.5 to equal size (=).

Less obvious is the integration of the distance between boundaries. As a
starting point, we informally define that two objects are very close whenever the
boundaries meet, which is the case along the lines labeled EC, TPP, and TPPi,
as well as at the point EQ. To both sides of these lines and around the point
of topological equality, we define a region where the boundaries are still very
close to each other (e. g., 10%3 off in distance and size as used in Fig. 1). Since
we must consistently encode the CNG (represented by the sequence VF-F-C-VC),
to each side of VC a region C must follow, which itself neighbors to regions F.
Finally, regions VF are positioned at the outermost and innermost sectors of
the image, neighboring only to regions F. Considering PO in conjunction with
VC, it becomes obvious why our metrics are normalized. Let o be much larger
than o′ (r1 ≫ r2) and o overlap with o′: their boundaries certainly should be
regarded to be very close to each other, since in comparison to the size of o the
distance between their boundaries is quite small (analogous assumptions hold for
r1≪ r2). This means, that our image should be symmetric with respect to size
equality (x = 0.5), which cannot be achieved using an unnormalized metric. In
(2) below, we define the distance relation VC with respect to x = r1/(r1+r2) and
y = d/2(r1 + r2). With analogous formalizations, C, F, and VF can be defined.

VC 0.45 < y ≤ 0.55 ∨ 0.45− x ≤ y ≤ 0.55− x ∨ x− 0.55 ≤ y ≤ x− 0.45 (2)

Case study in the domain of road traffic management. We demonstrate
the applicability of the integrated model by means of a hypothetic case study in
the domain of road traffic management, which is made up of a situation evolution
along various traffic entities, cf. Table 1. The entities are represented by traffic
signs, and their spatial extent along the highway (direction from right to left) is
indicated by surrounding boxes. The situation evolution comprises a traffic jam
tj that starts growing due to capacity overload at a highway on-ramp onr in
the middle of road works rwk. Shortly after, an accident acc occurs at the end of
the traffic jam, which soon is contained within the further growing traffic jam.
In order to reach the accident acc, an ambulance amb later passes through the
traffic jam tj. In Table 1, the overall evolution of this situation is depicted as
arrows representing evolution of relations in terms of their transitions in icons of
the two-dimensional model introduced above. In order to represent traffic objects
in our model, their occupied regions on a highway are modeled as intervals in
ℝ. Next to each icon, Table 1 provides an informal description of the relation
evolution between the entities. Summing up the case study, we have illustrated
our approach by applying it to a scenario involving various different aspects
of evolution: (i) scaling in comparison to stationary objects with and without

3 This measure has simply been chosen due to ease of presentation. It has neither been
determined nor tested using cognitive studies.



Table 1. Case study of situation evolution in terms of relation transitions.

Informal evolution description Icon

acctjrwk amb

onr

1. Traffic jam grows. In the beginning, the area of road works (1: tj ↔ rwk)
is much larger than the traffic jam. Since the traffic jam grows, it thereafter
extends beyond the area of road works, so causing transitions in topology, dis-
tance, and size. At the same time it remains externally connected to the on-ramp
(2: tj ↔ onr).

1

2 3

4
5

6

2. Accident occurs. Next, an accident occurs at the end of the traffic jam,
further reducing traffic flow. Since the traffic jam (3: tj ↔ acc) is still growing,
it soon completely contains the accident. In contrast, the accident and the area
of road works are both stationary, resulting in no evolution between them (4:
rwk ↔ acc).
3. Ambulance drives towards accident. Finally, an ambulance drives to-
wards the nearly-equally sized accident (5: amb ↔ acc), indicated by the arrow
pointing downwards along the horizontal center and ending at EC). On its way
to the accident, the ambulance enters the much larger traffic jam (6: amb ↔ tj).
Thus, their boundaries are considered to become very far from each other even
though the ambulance is within the traffic jam.

leading to relation transitions, (ii) non-evolution between two stationary, non-
scaling entities, and (iii) motion of a non-scaling entity with respect to a scaling,
and to a stationary, non-scaling one. The inter-calculi dependencies of Fig. 1 are
extracted as qualification constraints into an ontology in the next section.

4 An Ontology of Inter-Calculi Dependencies

Since we focus on the dynamic behavior of spatial systems, we express the
inter-calculi dependencies summarized above in Fig. 1 in an ontology on the
basis of the Situation Calculus [22] providing explicit support for modeling
change between states in the form of occurrents. Change in the Situation Cal-
clus is manifested in the properties of entities and the relations between them
(e. g., a traffic jam’s position can change, or its distance relation to an acci-
dent). In the terminology of the Situation Calculus, entities are continuants
O = {o1, o2, . . . , on}, whereas their properties and relations to other entities in a
particular situation are referred to as fluents � = {�1(o1), �2(o2), . . . , �n(on)}.
We use in accordance with [3] relational fluents �r relating two continuants to
each other using denotation sets � = {
1, 
2, . . . , 
n} and a ternary predicate
Holds denoting that a fluent holds a particular value in a particular situation:
for instance, Holds(pℎircc8(o, o′), EQ, s) describes that the objects o and o′ are
topologically equal in situation s. Changed fluents are the result of occurrents
� = {�1(o1, �2(o2, . . . , �n(on} [3]. Qualification constraints for occurrents can
be defined using axioms of the form Poss(�(o), s) ≡ Holds(�(o1), 
, s), denoting
that � is possible in situation s, when a fluent � of entities o1 holds a particular
value 
 in s. For example, being of small size might be a precondition for growing,
as stated by (∀o ∈ O)(∀s ∈ S)Poss(grow(o), s) ≡ Holds(size(o), small, s).

Utilizing the Situation Calculus, we define qualification constraints for rela-
tion transitions (occurrents) on the basis of relational fluents, cf. Def. 1.



Definition 1 (Inter-calculi qualification constraint). In accordance with
[3] let transitions between relations be occurrents tran(
, o, o′), meaning that o
and o′ transition to the relation 
. An inter-calculi qualification constraint can
then be formulated in the Situation Calculus as an action precondition axiom [22]
of the syntactic form given in (3), meaning that a transition to 
1 is possible, if
a relation 
2 of another spatial calculus currently holds between o and o′.

(∀o, o′ ∈ O)(∀s ∈ S)Poss(tran(
1, o, o
′), s) ≡ Holds(�spatial(o, o′), 
2, s) (3)

In Ex. 1, we provide a sample inter-calculi transition qualification constraint
that formalizes the preconditions of the transition between DC and EC in terms of
the states of relational fluents defining qualitative size and distance relationships.

Example 1. A transition from DC to EC in RCC is possible, if (trivially) DC from
RCC holds, from a distance point-of-view VC holds, and from a size point-of-
view any relation holds (summarized by the light-gray region VC that borders EC
and spans all size relations in Fig. 1).

(∀o, o′ ∈ O)(∀s ∈ S)Poss(tran(EC, o, o′), s) ≡ Holds(�rcc8(o, o′), DC, s)

∧Holds(�dist(o, o′), V C, s) ∧Holds(�size, 
1, s)where 
1 ∈ {<,=, >}
(4)

As a proof-of-concept, we implemented the conceptual neighborhood struc-
ture of RCC, spatial distance of boundaries, and size, as well as the above-
defined constraints in SWI-Prolog and used the FSA planner [16] implementing
GOLOG (Reiter’s Situation Calculus programming language [22]) to synthesize
sequential plans comprising the necessary relation transitions in order to reach
a future goal situation from a current one. The lessons learned from this proto-
typical implementation and directions for further work are summarized below.

5 Critical Discussion and Further Work

Synthesized plans reflect commonsense understanding of evolution.
The synthesized plans, without inter-calculi qualification constraints, reflect some
implementation-dependent choice of the planner between independent transi-
tions being possible at the same time (e. g., in our test runs, the order of tran-
sitions in the plan corresponded with the order of relations in the initial situa-
tion definition). Considering the additional inter-calculi qualification constraints,
these transitions are no longer independent and, hence, the synthesized plans are
consistent with commonsense understanding of the evolution of entities.
Generalization in terms of calculi and spatial primitives. Existing topo-
logical and positional calculi (e. g., Egenhofer’s approach [7]) can be integrated
into the model by defining for each relation of the calculus a mapping to the
x- and y-coordinate measures of our model. For example, the relation inside

modeled as 4-intersection
( ¬∅ ∅
¬∅ ∅

)
describes a relation between two objects o and

o′, where the intersection of the interiors of o and o′ is not empty, the inter-
section of the boundary of o and the interior of o′ is not empty, whereas the



intersection of the interior of o and the boundary of o′, as well as the intersec-
tion of their boundaries are empty. In terms of our model, for such a relation
the distance between the centroids of o and o′ must be smaller than the dif-
ference between their radii (d < r2 − r1), hence the following must hold true:
d/2(r1 + r2) < 0.5 − r1/(r1 + r2) (i. e., inside is NTPP of RCC). In order
to integrate additional spatial aspects not being representable with the spatial
primitives employed above (e. g., orientation of entities towards each other), a
generalization (e. g., in terms of higher-dimensional images) of the presented
abstraction in terms of radii and center distance of spatial primitives is still nec-
essary (e. g., considering orientation vectors). Likewise, in order to support the
multitude of different spatial primitives found especially in GIS (e. g., regions,
lines, points, as well as fuzzy approaches with broad boundaries) going beyond
the intervals, regions, and spheres utilized above, metrics for comparing spatial
primitives of different sorts must be defined (e. g., a line passing a region [7]).

Encoding of the ontology with Semantic Web standards. Since current
Semantic Web standards, in particular OWL 2, formalize ontologies using a
decidable fragment of first-order logic, an interesting further direction is to define
a mapping of the ontology excerpt expressed in terms of the Situation Calculus
into the concepts of OWL 2. For this, it can be based on prior work in terms of
description logic rules [19] integrating rules and OWL. As a result, an integration
with Semantic-Web-based GIS would be an interesting option.
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