Autom Softw Eng
DOI 10.1007/s10515-012-0102-y

Automated verification of model transformations based
on visual contracts

Esther Guerra - Juan de Lara - Manuel Wimmer - Gerti Kappel -
Angelika Kusel - Werner Retschitzegger - Johannes Schonbock -
Wieland Schwinger

Received: 27 July 2011 / Accepted: 16 February 2012
© Springer Science+Business Media, LLC 2012

Abstract Model-Driven Engineering promotes the use of models to conduct the dif-
ferent phases of the software development. In this way, models are transformed be-
tween different languages and notations until code is generated for the final appli-

This work has been funded by the Austrian Science Fund (FWF) under grant P21374-N13,
the Spanish Ministry of Science under grants TIN2008-02081 and TIN2011-24139, and the R&D
programme of the Madrid Region under project S2009/TIC-1650.

E. Guerra () - J. de Lara
Universidad Auténoma de Madrid, Madrid, Spain
e-mail: esther.guerra@uam.es

J. de Lara
e-mail: Juan.deLara@uam.es

M. Wimmer - G. Kappel - J. Schonbock
Vienna University of Technology, Vienna, Austria

M. Wimmer
e-mail: wimmer @big.tuwien.ac.at

G. Kappel
e-mail: gerti@big.tuwien.ac.at

J. Schénbock

e-mail: schoenboeck @big.tuwien.ac.at

A. Kusel - W. Retschitzegger - W. Schwinger
Johannes Kepler University Linz, Linz, Austria

A. Kusel
e-mail: kusel @bioinf.jku.at

W. Retschitzegger
e-mail: werner@bioinf jku.at

W. Schwinger
e-mail: wieland.schwinger @jku.ac.at

Published online: 06 March 2012 4\ Springer

mailto:esther.guerra@uam.es
mailto:Juan.deLara@uam.es
mailto:wimmer@big.tuwien.ac.at
mailto:gerti@big.tuwien.ac.at
mailto:schoenboeck@big.tuwien.ac.at
mailto:kusel@bioinf.jku.at
mailto:werner@bioinf.jku.at
mailto:wieland.schwinger@jku.ac.at

Autom Softw Eng

cation. Hence, the construction of correct Model-to-Model (M2M) transformations
becomes a crucial aspect in this approach.

Even though many languages and tools have been proposed to build and execute
M2M transformations, there is scarce support to specify correctness requirements for
such transformations in an implementation-independent way, i.e., irrespective of the
actual transformation language used.

In this paper we fill this gap by proposing a declarative language for the specifica-
tion of visual contracts, enabling the verification of transformations defined with any
transformation language. The verification is performed by compiling the contracts
into QVT to detect disconformities of transformation results with respect to the con-
tracts. As a proof of concept, we also report on a graphical modeling environment for
the specification of contracts, and on its use for the verification of transformations in
several case studies.

Keywords Model-Driven Engineering - Model transformation - Contract-based
specification - Verification - QVT-relations

1 Introduction

Model-Driven Engineering (MDE) (Schmidt 2006) proposes an active use of mod-
els to conduct the different phases of software development. Hence, models become
first-class artifacts throughout the software lifecycle, which leads to a shift from the
“everything is an object” paradigm to the “everything is a model” paradigm (Bézivin
2005). In this context, model transformations are crucial for the success of MDE,
being comparable in role and importance to compilers for high-level programming
languages, since models have to be automatically refined until the code of the fi-
nal application is obtained. Thus, in MDE there is a recurring need to transform
models between different languages and abstraction levels, e.g., to migrate between
language versions, to translate models into semantic domains for analysis, to gener-
ate platform-dependent from platform-independent models, or to refine and abstract
models (France and Rumpe 2007). These kinds of transformations are called Model-
to-Model (M2M) transformations, and one of the major challenges of MDE is their
automation while ensuring the correctness of the produced models.

M2M transformations are usually defined with dedicated languages tailored for
the task of transforming models, like QVT (Object Management Group 2011), ATL
(Jouault and Kurtev 2005) or ETL (Kolovos et al. 2008a) (cf. Czarnecki and Helsen
(2006) for a detailed overview). Most of these languages have a strong focus on the
implementation of transformations but miss to provide means for their analysis, de-
sign and verification. However, just like any other software, transformations should
be engineered using sound, robust engineering techniques (France and Rumpe 2007;
Guerra et al. 2011). This necessity is even more acute given the prominent role of
transformations in MDE, and their use in increasingly complex scenarios. Hence, the
MDE community demands for methods, notations and techniques supporting appro-
priate abstractions to be used in the different phases of the transformation develop-
ment and, in particular, for the verification of transformations.

@ Springer

Autom Softw Eng

In order to fill this gap, in Guerra et al. (2010, 2011) we introduced a vi-
sual, declarative, formal specification language to describe, in an implementation-
independent way, correctness requirements of the transformations and of their in-
put and output models. This language, called PAMOMO (Pattern-based Modeling
Language for Model Transformations), was initially designed to play a similar role
for M2M transformations to the role that Z (Spivey 1989) or Alloy (Jackson 2006)
play for general software development: specifying properties that a transformation
should fulfill, regardless of its particular implementation. Thus, PAMOMO speci-
fications express what a transformation should do, but not kow it should be done,
providing an adequate level of abstraction to express transformation requirements.
These requirements may correspond to preconditions, postconditions or invariants
that the input and output models of a transformation as well as the transformation
itself should fulfill. Even though some researchers (Gogolla and Vallecillo 2011;
Kiister and Abd-El-Razik 2006; Mottu et al. 2006) have proposed the use of OCL for
this task, in this paper we show the benefits of using of a visual, formal, bidirectional
and domain-specific notation like PAMOMO. In particular, we argue that PAMOMO
patterns lead to more succinct specifications, enable reasoning at the pattern level,
and permit more informative feedback (higher diagnosability).

In this paper, we extend the expressivity of PAMOMO with support to define sets
of variable size in invariants as well as enabling and disabling conditions in pre- and
postconditions. We also present a set of reasoning rules aimed at detecting redundan-
cies, contradictions and potential errors in specifications. More important, borrow-
ing ideas from the design by contract approach (Meyer 1992), we use PAMOMO to
specify contracts for the automated verification of transformation implementations
by the compilation of these contracts into executable transformations expressed in
the QVT-Relations language (Object Management Group 2011). These transforma-
tions are executed before the transformation under test (to check the preconditions)
and afterwards (to check invariants and postconditions), and provide the user with de-
tailed information on which contracts were violated (if any) and where. In this way,
the present work improves the feedback returned to users with respect to a previous
compilation of our patterns into OCL presented in Guerra et al. (2010), as in OCL
we were only able to report whether a pattern was satisfied or not, whereas now we
report in addition the parts of the models that make a contract fail. Finally, we also
present the new PACO-Checker tool (PAMOMO Contract-Checker) which supports
the visual specification of contracts, their compilation into QVT-Relations, its chain-
ing with the execution of the transformation under test, and the visualization of the
test results. We illustrate the usefulness of our method on a number of case studies.

The rest of the paper is organized as follows. Section 2 introduces M2M trans-
formation and presents a running example that we will use throughout the paper.
Section 3 introduces the main concepts of contract-based specification as well as our
approach to model transformation contracts. Section 4 presents our specification lan-
guage PAMOMO. Section 5 recalls the main concepts of QVT-Relations as this is the
target language for the compilation of PAMOMoO, whereas Sect. 6 details this com-
pilation. Section 7 describes how to conduct automated verification with the PACoO-
Checker tool. Section 8 illustrates further features of our approach on a number of
case studies. Finally, Sect. 9 compares with related work and Sect. 10 concludes the

paper.

@ Springer

Autom Softw Eng

Fig. 1 Model transformation:
exogenous, batch scenario

Source . . Target
Metamodel Transformation Definition Metamodel

r 3
executes
conforms to conforms to

Transformation

Source input ; output New Target
Model Engine :I'> Model
e

2 Background: model transformation in a nutshell

In this section we present the main concepts of M2M transformations, and then in-
troduce an example that will be used throughout the paper.

2.1 Model-to-Model transformations

Models play a fundamental role in MDE, and hence their transformation is crucial
for the success of MDE. Models in this context are abstractions of systems and/or
their environments (Czarnecki and Helsen 2006). In the same way as programs have
to follow certain syntactic constraints—commonly described by grammars—models
also have to follow syntactic constraints given by so-called metamodels which define
their abstract syntax (Kiihne 2006). Thus, in order to describe how models should
be transformed into other models, the transformation definition uses the respective
metamodels the models conform to (cf. Fig. 1). Such definitions are finally executed
by dedicated transformation engines.

Figure 1 shows a batch and exogenous transformation scenario (Mens and Van
Gorp 2006), where a source model conformant to a source metamodel, is transformed
into a target model conformant to a target metamodel. Many other scenarios are pos-
sible as well. First, the source model may change after the transformation is executed.
In this case, it is sometimes more efficient not to build the target model from scratch
but to update it. Then, transformations can also be bidirectional, if the same spec-
ification can be used to transform from source to target and the other way round.
Transformations can also be used in check-only mode, to ascertain whether two ex-
isting models comply with the transformation definition. Finally, a model may be
transformed in-place, for example for refactoring. In this case, the transformation is
called endogenous and it only considers one metamodel. In this paper, we target batch
and exogenous transformations, but our specification language can be used to specify
correctness requirements for other transformation scenarios as well.

2.2 Transformation scenario: from class diagrams to relational schemas

Before delving into details, we introduce a concrete transformation scenario that is
used throughout the paper. In particular, we present a small extract of the well-known
Class2Relational transformation (cf. Fig. 2) (Bézivin et al. 2005), which has
been chosen due to its popularity. The metamodel to the left of the figure is used to
represent a simple object oriented modeling language. While the parents reference

@ Springer

Autom Softw Eng

Class Metamodel Correspondences Relational Metamodel
(Reql) Package -> Schema
Package (Req2) Class (isPersistent) -> Table — [—1
romespace type String (Req3) Attributes -> Column | S:hema] ‘ Columnr |
en fancestors (Reg4) Inherited Attributes -> Column w
arents| Class l il * columns
e s [ePersistent: Bool | table |20l

context Class:
def ancestors: Set{Class)=self.parents->
union(self.parents->collect(an| an.ancestors))
Resulting Relational Mode!

Exemplary Class Model .
tables. | t1:Table columns. | SOL: Column
cl: Class al : Attribute _ E 2| name = name
e attributes | o=] schema name = ‘Person type = ‘String’
isPersistent = true name = ‘name’
name = ‘Person’ type = ‘String’ sl:Schema e
€02 : Column
ancest parents name = ‘University’ columns, P
children schema name = ‘registrNo’
€2 Class ttibutes. | 2ZAUbute tabless,| 12 : Table type = ‘nteger
isPersistent = true [——————=> name = ‘registrNo’ =
} A name = ‘Student’ 03 : Column
name = ‘Student’ type = ‘Integer e
name = ‘name’
columns” [e ~ rString’

Fig. 2 Running example

contains direct ancestors of classes, the derived ancestors reference contains the
transitive closure of parents, and therefore it includes indirect ancestors as well.
The metamodel to the right is used to represent a language for defining database
schemas. In this scenario, the goal is to transform instances of the class metamodel
into instances of the relational metamodel. For this transformation, six main
requirements arise:

Requirement 1: For each instance of the metaclass Package, a corresponding
instance of the metaclass Schema should be generated, which should be equally
named (cf. instances p1 and s1 in Fig. 2).

— Requirement 2: For each persistent instance of the metaclass Class, an instance
of the metaclass Table should be generated, which should be equally named (cf.
instances c1, c2 and t1, t2 in Fig. 2). The table should be added to the schema
created from the package the class belongs to.

— Requirement 3: For each instance of the metaclass Attribute that belongs to
a persistent class, an equally named instance of the metaclass Column should be
generated, and this should be added to the table created from the owner class (cf.
instances al, a2 and col, co?2 in Fig. 2).

— Requirement 4: Since the relational metamodel does not support inheritance be-

tween tables and since information loss should be prevented during the transforma-

tion process, for each inherited attribute a corresponding Column instance should

be generated (cf. instance co3 in Fig. 2).

Besides requirements that any pair of input/output models should satisfy, some
requirements may solely apply to the input models. Such requirements are used to
add further constraints on the input models in order to exclude those not handled by
the transformation (although they conform to the source metamodel). This is due to
the fact that metamodels allow for many different valid models, but a certain trans-
formation might only cover a subset thereof. A requirement on the input models of
our example is the following:

@ Springer

Autom Softw Eng

— Requirement 5: Class models cannot contain redefined attributes (i.e., attributes
with the same name in an inheritance hierarchy), since otherwise tables containing
equally named columns would result.

Finally, a certain transformation might need to guarantee that the produced output
models fulfill certain conditions (beyond metamodel constraints). In our example, we
demand the following:

— Requirement 6: Relational models cannot contain tables with equally named
columns, even though this is allowed by the metamodel.

3 Model transformation contracts

In order to make the previous requirements explicit, we propose their specification by
contracts. Therefore, we next discuss different usages of contracts for M2M transfor-
mations, and then introduce PAMOMO for their specification.

3.1 Increasing quality through design by contract

Design by contract (Meyer 1992) was introduced as a means to increase quality in
terms of correctness and robustness of the constructed software. One of the advan-
tages of contracts is that they allow defining what a piece of software does but not
how it is done. Different levels of contracts can be distinguished comprising syntac-
tic contracts and behavioral semantic contracts (Beugnard et al. 1999). The former
enforce syntactically valid programs. In the context of model transformations, syn-
tactic contracts are specified by the source and target metamodels since they describe
the types of the manipulated data, implying that the source and target models must
conform to these types (Mottu et al. 2006). In contrast, behavioral semantic contracts
put further restrictions on the required input models, the produced output models as
well as their combinations (Mottu et al. 2006). In this way, in the first place, behav-
ioral semantic contracts can be used to precisely specify the conditions (going beyond
metamodel constraints) to be satisfied by input models such that the transformation
is applicable, i.e., preconditions. Second, they can be used to express that an output
model should or should not contain certain configurations of elements, i.e., postcon-
ditions. Finally, they can be used to specify what conditions need to be satisfied by
any pair of input/output models of a correct transformation, i.e., invariants of the
transformation.

In the context of model transformations, contracts can be useful in several scenar-
ios (Cariou et al. 2004):

— Implementation: A contract is a useful document for the transformation designer
in the development phase, to make explicit the requirements that need to be imple-
mented in a transformation.

— Documentation: Contracts serve as a useful documentation of the transformation
in the maintenance phase. Moreover, if contracts have a formal semantics, they can
be used to select transformations by matching properties of a required transforma-
tion and properties of transformations stored in a transformation library.

@ Springer

Autom Softw Eng

case is correct, i.e., if the generated model equals
the expected model for a given input model

Source . L e Target
Metamodel Transformation Definition Metamodel

A

[Oracle is needed to check if the result of a test

conforms to

conforms to

(Expected subset of
models produced by
the transformation?

Valid subset of
models considered by
the transformation?

Set of all possible input models Set of all possible output models

Fig. 3 Model transformation testing challenge

— Compatibility Checking: Contracts can be used to check the compatibility of
transformations in a chaining scenario, e.g., to check whether the postconditions of
a preceding transformation are compatible with the preconditions of a succeeding
transformation.

— Testing: A common need in model transformation testing is to automatically com-
pare expected output models to generated output models (Lin et al. 2005). Unfor-
tunately, the oracle that should predict the expected output models remains a major
challenge (Baudry et al. 2006), for which contracts (invariants) could be used to
partially determine the expected output model.

The contracts specified using PAMOMO can be beneficial in each of the above
discussed scenarios. Nevertheless, the focus in this paper is on the testing scenario,
i.e., how preconditions, invariants and postconditions can be applied to test model
transformations (cf. Fig. 3).

3.2 Model transformation contracts with PAMOMO at a glance

Contracts may be realized by being embedded in a certain language (e.g., assertions
in Java) or described by a dedicated external language (e.g., Z (Spivey 1989) or Al-
loy (Jackson 2006)). The realization by a dedicated language has two main advan-
tages though: (i) the definition of contracts is not tied to a particular target transfor-
mation language, i.e., it is implementation-independent (which is especially favorable
in MDE since no dedicated standard transformation language has been brought for-
ward so far (Czarnecki and Helsen 2006)) and (ii) designers of transformations can
make explicit desired properties of a transformation before implementation which
would allow for test-driven development of transformations.

Thus, we adopt a declarative, formal, visual language called PAMOMO (Guerra
et al. 2010; Guerra et al. 2011) to express behavioral semantic contracts for M2M
transformations in an implementation-independent way (Guerra et al. 2010). Figure 4
outlines our approach. First, the transformation designer uses PAMOMO to define a
contract specifying preconditions, postconditions, and invariants for the transforma-
tion (label 1). This contract has a formal semantics and can be analysed to discover
redundancies, contradictions, and to measure coverage of the involved metamodels.

@ Springer

Autom Softw Eng

@ contract (requirements) transformation

/ N{Noﬁ‘edeﬁnedﬂms} P{J;nhsmsdmmburesj — \‘: = _’_’.J?B_I_e_m.e.!?.t.a.t_'.q'?
i s | ey | ' ; I 5
E nemesX | o Class. g. Class E 5 E
i . ot : [a:Attribute] : i
H - ; H
: desrgner et ‘ developer |
@ compilation into QVT-Relations using arbitrary i
language ;
: qualifying transformation oracle
' criteria implementation function 5
: |:> under test |:> :
1 preconditions invariants,) automated
: postconditions o .
testing

QVT-Relations engine for arbitra QVT-Relations
engine # language Fﬁ engine

‘ 2% 3% 2% |
o
target | tester
i RIS ‘:> transformation |:> 9

1 model execution model i

Fig. 4 Automated verification of transformations using PAMOMO

Next, the developer can make use of the contract as a high-level model to imple-
ment the transformation (label 2). This implementation can be tested by compiling
the contract into the executable QVT-Relations language (label 3), and then using a
QVT engine in check-only mode in order to check the consistency of the transformed
models with respect to the contract. In this mode, a transformation is not used to
produce a target model, but to check if a set of existing models conform to the trans-
formation, and to report the locations where this is not the case by means of a built-in
tracing mechanism. Hence, the compiled contract acts as an oracle describing invari-
ants that output models should satisfy, and is used for automated testing (label 4).
The compilation is also used to test whether a model can be used as input for the
transformation.

Altogether, our approach to testing proceeds by chaining a QVT-Relations check-
only transformation, derived from the preconditions in the contract, which checks the
validity of the input model; next executing the transformation implementation; and
finally checking that the input and resulting output models conform to the contract
by using another check-only transformation.

In the following section we focus on the first step in our approach, namely the
specification of contracts with PAMOMoO.

4 Contract specification with PAMoOMO
In this section, we provide an overview of the syntax and semantics of PAMOMO (we
refer to Guerra et al. (2010) for details on its formal semantics). We first describe how

to specify contracts with PAMOMO, and then continue describing pattern reasoning
rules to discover redundancies and conflicts in contracts.

@ Springer

Autom Softw Eng

P(Package2Schema)
Class

i
! Source compartment
i contains an object

Relational | Target compartment |
| contains an object i
graph typed on the |
name=X target metamodel i

¥

i graph typed on the

p: Package : s: Schema | -+
name=X :

source metamodel

|
. Variable constrains the allowed attribute values

Fig. 5 Positive invariant formalizing requirement 1

Fig. 6 Scheme of the semantics P(.)

of positive and negative Source : Target
invariants object i object
graph | graph
osrt : otar
Vl EXP l 3

Source Target Source

model model model

4.1 Modeling contracts with PAMOMO

A PAMOMO contract consists of a set of declarative visual patterns, which can be
either positive or negative. Positive patterns describe necessary conditions to happen
(i.e., the pattern is satisfied by a pair of models if these contain certain elements)
while negative ones state forbidden situations (i.e., the pattern is satisfied if certain
elements are not found). Patterns are bidirectional and can be interpreted forwards
(e.g., to verify a source-to-target transformation) and backwards (e.g., to verify a
target-to-source transformation). By default, we assume a forward semantics. Patterns
are made of two compartments containing object graphs, plus a constraint expression
using the Object Constraint Language (OCL) (Object Management Group 2005). The
left compartment contains objects typed on the source metamodel (e.g., class),
while the objects to the right are typed on the target metamodel (e.g., relational).

As an example, Fig. 5 shows a positive pattern formalizing requirement 1 of the
example transformation. We depict positive patterns in green with its name enclosed
in P(...), while negative patterns are shown in red with its name enclosed in
N(...). Patterns where both the source and target compartments are not empty
are called invariants.

Hence, patterns are made of a graphical part, specified visually, and a textual ex-
pression enabling the specification of additional constraints. Objects in the source and
target compartments may have attributes that can be assigned either a concrete value
or a variable (like X in the example). A variable can be assigned to several attributes
to ensure equality of their values, or be used in the pattern constraint expression. This
expression may involve elements of the source and target compartments. The invari-
ant of Fig. 5 has no expression, but variable X is assigned to the name of the package
and the schema, hence requiring the equality of both names.

Figure 6 shows a scheme of the satisfaction of a positive and a negative invariant
over a pair of models, where EXP represents the pattern constraint expression. Thus,

@ Springer

Autom Softw Eng

P(Attribute2Column)
Class i Relational
p:Package | | 5: Schema P(InheritedAttributes)
name=X i | name=X Cl i i
P(Class2Table) ' : ; : ass iRelatn:ma\
1 7 i pa:ackage .

Class ! Relational c: Class i t:Table : M
p: Package : s: Schema name =Y i [name=y o Class ! tTable
name=X i | name=X isPersistent=true | | MsPersistent = true | : pow—

I i I i = i -

c: Class i t: Table a: Attribute| | |co: Column [name=C | i I
name =Y : name=Y name =Z | name=2 i w
isPersistent=true | ; type=T : type=T | c.ancestors->includes(p) |_NaMe=A

Requirement 2 Requirement 3 Requirement 4

Fig. 7 Additional invariants formalizing requirements 2, 3 and 4

the satisfaction for positive invariants amounts to check:

YOcc(Ogye) 8.t. EXP|gc(Occ(Ogpe))
J0cc(Oy4y) s.t. EXP(Occ(Oygye), Occ(Oyar))

where EXP)|,. is the part of the expression EXP that contains source objects, attributes
and variables only, and Occ(Oygc), Occ(Oyyy) represent an occurrence of the source
and target object graphs respectively. An occurrence is a binding from the objects
in the object graph of the pattern to elements in the model. A pattern invariant is
therefore satisfied either if we do not find an occurrence of the source object graph of
the pattern (called vacuous satisfaction) or if for each occurrence of the source object
graph, we find a corresponding occurrence of the target object graph (or do not find
any if the invariant is negative). A contract is satisfied if all its patterns are satisfied,
hence a conjunction is assumed between all the patterns of the contract.

Figure 7 shows the invariants addressing requirements 2, 3 and 4 in our running
example (i.e., transformation of classes, attributes and inherited attributes). The in-
variant to the left states that for each persistent class ¢ in a package p, there must be
an equally named table t in a corresponding schema s. The invariant in the middle
states that each attribute a of a persistent class must be transformed into a column co
with the same name and type. Finally, the right-most invariant states that if a class ¢
has an ancestor class p owning an attribute a, then the table t that corresponds to ¢
must contain a column with the same name as the attribute. This invariant contains
a constraint expression checking that the derived property ancestors of class ¢
includes the class p (i.e., p is a superclass of c).

4.1.1 Preconditions and postconditions

In contrast to invariants, which relate source and target models, preconditions refer
only to elements of the source metamodel (i.e., only the source compartment of the
pattern contains an object graph) and postconditions refer only to elements of the
target metamodel (i.e., only the target compartment contains an object graph). The
left side of Fig. 8 shows a precondition expressing requirement 5 in our example (i.e.,
absence of redefined attributes in class hierarchies) by a negative pattern. The right
part of the figure shows the postcondition to express requirement 6 (i.e., absence of
duplicated columns in the same table) as a negated pattern as well.

@ Springer

Autom Softw Eng

N(NoRedefinedAttrs)
Class

N{(NoDuplicatedColumns)
Class : Relational

t:Table

c:Column || e:Column

]
i Relational
p:Class }— a:Attribute | |

c:Class I-— ar:Attribute
name=X

name=X name=X

c.ancestors->includes(p)

Fig. 8 Precondition (requirement 5) and postcondition (requirement 6)

P(..) ' N(...)
S i S i
object | e H P(...): 30cc(0,,) s.t. EXP(Occ(O,,)
graph | graph '
o, ! o, ! N(...): A Occ(0,,) s.t. EXP(Occ(0,,)
EXP
Source Source
model model

Fig. 9 Scheme of the semantics of positive and negative preconditions

Figure 9 depicts a schema of the semantics of positive and negative precondi-
tions. Positive preconditions demand the existence of a structure in the source model
satisfying the expression constraint. Negative preconditions demand the absence of
a structure in the source model satisfying the constraint expression. Postconditions
have similar semantics, but are evaluated on the target model.

4.1.2 Enabling and disabling conditions

The invariants we have presented so far check that for all occurrences of an object
graph in the source model, a corresponding structure in the target exists. However,
some more flexibility is often needed, to demand the satisfaction of a pattern only
when certain conditions in the source and the target occur. For this purpose, patterns
can define enabling and disabling conditions, which restrict their satisfaction context.

In particular, enabling and disabling conditions allow expressing properties with
the form of an implication. Each pattern can define any number of disabling condi-
tions and one enabling condition. This permits formulating properties of the form if
(enabling) and (not { disabling,)) ...and (not { disabling,)) then (pattern). For
instance, Fig. 10 shows an invariant with an enabling condition to the left, so that the
invariant is required to be satisfied only for packages for which there is an equally
named schema. In such a case, the invariant states that the transient classes inside the
packages should not have a corresponding table in the schema (because the invariant
is negative). This pattern uses a non-constructive specification style, ensuring that a
transformation implementation will not accidentally translate a non-persistent class
into a table.

Figure 11 shows to the left the scheme of an invariant with one enabling and one
disabling condition, while the right part sketches its evaluation on a pair of models.
In this case we look for all occurrences of the source object graph of the invariant

@ Springer

Autom Softw Eng

Fig. 1‘0 Invar.ia'nt with an Enabling Condition Invariant
enabling condition .
N(NoTableForTransientClasses)
T
(Pack dsch) Class iRelational
P(PackageAndSchema, i
Class Y Relational hmggl : ‘ siSchema ‘
1]
p:Package : s:Schema | :
name=Y | i | name=Y c:Class i | tTable
: name=X : name=X
isPersistent=false | ¢
. ing+inv-
P{enab:fmg) enabling 'mv source
Source i Target SOU.I'CE i Target so that... then...
object; object | p(iny) °bJe;t : object | | N(disabling) P(inv)
graph; graph i grap : Ll Source i Target Source iTarget
EN;. | EN, 50'—"":9,? Target ENg ! EN, object | object object iobject
CEXPE object | object ; graph ! graph srsph i graph
N(disabling) graph ! graph src DS, : DS,,, src | Oiar
Sourceg Target o.. : O EXPEN+EXP] . EXPDS EXP -
i object y =z
i E);(P \"4 \|r /
i Source Target |
EXPDS model model

Fig. 11 Scheme of the semantics of enabling and disabling conditions

plus the enabling condition, which in addition: (i) fulfill the expression EXPEN of
the enabling condition, (ii) fulfill the part of the invariant expression containing only
source elements (EXP|s.), and (iii) for which no occurrence of the disabling condi-
tion (which might contain an expression EXPP) is found. Then, for each one of these
occurrences, there should be an occurrence of the target object graph of the invariant
satisfying the invariant expression. Note how enabling conditions permit including
target elements in the pattern condition (i.e., in the for all).

The evaluation of invariants with enabling and disabling conditions is therefore as
follows:

YOcc(ENgye + Ogpe, ENygy) st
[(EXPEN + EXP|ge)(Occ(ENgre + Ogpey ENgr)) A

ﬂOCC(DSsrc’ DSiar) s.t. EXPDS(OCC(DSsrCs DSwar)) A ---]
d0cc(Oyyy) s.t. EXP(Occ(Ogye), Occ(Oyar))

Figure 12 illustrates how enabling conditions modify the semantics of a pattern,
through an example of two syntactically similar invariants for classes, one declaring
an enabling condition and the other not. The invariant in the lower left demands the
existence of a schema and table for each persistent class in a package. The models
shown above fulfill this, as the class model contains two occurrences of the source
graph of the invariant (i.e., two classes), and for each one we find one schema in the

@ Springer

Autom Softw Eng

Class Model Relational Model
classes,| c1: Class sl : Schema schema tables | t1 : Table
namespace isPersistent = true e - =Py ¢
- package name = ‘Person’ name = ‘University’ name = Person
:
na:naersn:ace — w s2: Schema schema tableg| t2:Table
class isPersistent = true
name = ‘Student” name = ‘University’ name = ‘Student’]
e I
- L S
\ L Tea
P(Class2Table) . Y P(ExistsSchema, P(Class2Table.2)
Class ! Relational Class i Relational Class i Relational
. e d 4
p: Package : s: Schema p: Package | i | s: Schema :) | p: Package | i |s: Schema]
name=X i | name=X name=Xx__| i [name=x I i I
I : [i c: Class !| tiTable
c: Class t| LTable name =Y E [name=y
name =Y i | name=Y isPersistent=true | ;
isPersistent=true :
Fig. 12 Semantics of invariants with and without enabling condition
Fig. 13 ASemar.ltlcs of . P(enab) P(.) ’
precondition with enabling Genmn b Solical. P(persistent) P(attributed)
.. . ’ i i H Class i
condition (left). Example (right) obiect | T | Class i :
graph ; graph | c: Class i ;
v, 7 o, | [isPersistent=true| |
i i isPersistent=true| i - :
ol =l i a: Attribute | !
i =i

vl EXPEN 31 EXP

Source model

relational model defining a table with same name as the class. In contrast, the models
do not satisfy the invariant to the right. This is so as this invariant demands that for
each occurrence of a persistent class, its package and equally named schema (this
latter required by the enabling condition), a table with same name as the class exists.
This is not true in this case as, for instance, if we take the occurrence given by objects
p, ¢l and s2, there is no table named “Person” in s2.

Pre- and postconditions may have enabling and disabling conditions as well. As
an example, Fig. 13 shows to the left the scheme of the semantic interpretation of
a precondition with an enabling condition. In this case, for each occurrence of the
enabling condition, we need to find an occurrence of the precondition. For the sake
of illustration, the right part of the figure shows an example precondition demanding
each persistent class to have at least one attribute.

4.1.3 Sets

It is sometimes useful to formulate properties related to the number of times a certain
structure can occur in a model. For this purpose, patterns can define variable sets of
source and target elements (improving the expressive power compared to Guerra et al.
(2010)). A set is depicted as a polygon with a name (see for example set pclasses
in Fig. 14) and it represents the set of all occurrences of the structure enclosed in

@ Springer

Autom Softw Eng

P(NumberOfPersistentClasses) P(...) . P(.)
Class i Relational Sogrce i Targz_et Source _ i Target ——
! object ! object i object iobject i object: object 1
p:Package 1 | siSchema graph | graph s grzjaph :cg,rzjagh i grij,ph: graph |
= i = i (0) 1 !
:lame—Y) i nfme-\: Papian ; R ! Oy ! 0.. i 0., | Oy]
-~ | R ~ | object | i, object 1 1 ! ' set2 |
",' A /[t graph !: graph] L.setl_, == :
0 1 3
i c:Class E : t:Table E : O i :: O, : #fl Y EXP 3 #e
- - — i !
i isPersistent=true Ei _-litll.eé--.: :__s_e_tl._: i:._s‘_?t_z__: Source Target
i i del del
L___EEl_aEE‘E-’L-____'; EXP mede mede
pclasses.size() = tables.size()

Fig. 14 Invariant with sets (left). Semantics of invariants with sets (center and right)

the polygon. Furthermore, sets may be nested and contain arbitrary structures. As an
example, the left side of Fig. 14 shows an invariant making use of sets in the source
and target. The invariant states that the number of persistent classes in a package (size
of set pclasses) should be the same as the number of tables in the corresponding
schema (size of set tables).

The center and right sides of Fig. 14 show the evaluation scheme of invariants
with sets. The figure in the middle represents an invariant with two sets (setl in
the source and set2 in the target) and a constraint expression EXP that includes
both sets. A pair of models satisfies such an invariant if for each occurrence of the
source object graph, there is an occurrence of the target object graph that satisfies the
constraint expression. Such an expression may make use of the sets setl and set2
of all occurrences of the object graphs Oge1 and Ogep:

YOcc(Ogye) s.t. EXP|ge(Ogpe, Set of all Occ(Oger1))
30cc(Oyyy) s.t.
EXP(Occ(Ogye), Occ(Oyyr), Set of all Oce(Oger1), Set of all Occ(Ogern))

4.2 Reasoning with patterns

The formal semantics of PAMOMO allows for reasoning on: (i) metamodel coverage,
(1) redundancies, (iii) contradictions and (iv) pattern satisfaction on contracts, as we
detail next.

First, we can measure metamodel coverage, that is, we can identify the elements
in the source and target metamodels that are used in a PAMOMO contract, as well
as how they are used (i.e., in enabling or disabling conditions only, or in posi-
tive/negative patterns). This allows for a quick identification of underspecifications
if, for instance, some element in the target metamodel is not used in any positive
pattern. In the presented example in Figs. 5—14 all elements in both metamodels are
used.

Second, we can investigate redundancies in contracts (cf. Table 1). A redundant
pattern can be safely removed yielding a simpler, more compact contract with the
same semantics as the original one but which can be more efficiently verified. For
instance, if a positive pre- or postcondition is included in a “bigger” positive pre-

@ Springer

Autom Softw Eng

Table 1 Redundancies in PAMOMO contracts. P; and N; are a positive and a negative pattern without
enabling or disabling conditions. Subindex src and tar refer to the source and target of a pattern

Scope Rule

Pre/postconditions P| C Py = Py is redundant
N1 € Ny = N, is redundant

Invariants P1 sre = P2 grc and Py 14 C P> 14 = Py is redundant
P1 1ar = P2 tar and Py gc € P g = P is redundant
N1.sre = N2 src and Ny 1qp € N3 14 = N7 is redundant
N1.tar = N2, 1qr and Ny g0 C Np g = Np is redundant

Disabling conditions of a pattern disabling| C disabling) = disabling, is redundant

Table 2 Contradictions in PAMOMO contracts. Pre, Pos and I refer to a precondition, postcondition and
invariant without enabling or disabling conditions. Prefix P and N mean positive or negative. Subindex
src and tar refer to the source and target of a pattern

Scope Contradiction

Pre/postconditions N Pre C PPre = contract is unsatisfiable
NPos C PPos = contract is unsatisfiable

NPos C Pl = contract is potentially unsatisfiable

Invariants NlIge = Plge and N Iy € P I1qr = contract is potentially unsatisfiable

or postcondition, the smaller one is redundant and can be removed. The reason is
that whenever the bigger one is found, the smaller one will be found as well (and
both need to be found). Similarly, if a negative pre- or postcondition is included in
a “bigger” one, the bigger is redundant. Table 1 shows these two redundancy cases
(first row), as well as other cases that we can identify for invariants (second row) and
for the disabling conditions of a pattern (third row). For example, if a pattern has a
disabling condition included in another one, then the “bigger” condition is redundant.
Please note that the redundancy rules for invariants assume the forward interpretation
of patterns; in the backward case the rules are the symmetric ones.

Third, we can statically investigate contradictions preventing the satisfaction of
a contract by any pair of models (cf. Table 2). For example, there is a contradiction
if a negative pre- or postcondition is included in a positive pre- or postcondition.
The reason is that the satisfaction of the positive precondition requires finding an
occurrence in the source model, but this means that we will find an occurrence of
the negative precondition as well. This conflict corresponds to the first two rows in
Table 2. The third row in the table shows another contradiction that may arise if a
negative postcondition is included in the target of a positive invariant. In this case,
the invariant and the postcondition cannot be simultaneously satisfied whenever we
find an occurrence of the source part of the invariant in the source model, and only
if the source model does not contain the source part of the invariant the contract may
be satisfied (by vacuous satisfaction of the invariant). The same situation arises if two

@ Springer

Autom Softw Eng

Table 3 Potential errors in PAMOMO contracts concerning satisfiability. Pre, Pos and I refer to a pre-
condition, postcondition and invariant. Prefix P and N mean positive or negative (the absence of prefix
means “in both cases”). Subindex src and tar refer to the source and target of a pattern

Scope Warning

Pre/postconditions NPre C Ige = if NPre holds, I vacuously holds
NPre C Iopapling = if NPre holds, I vacuously holds
NPos C NIy = if NPos holds, N1 holds
NPos C Iepapling = if N Pos holds, I vacuously holds

Enabling/disabling conditions of a pattern disabling C enabling = pattern vacuously holds
Fig. 15 Potential error: N(NoDuplicatedClasses) ,
disabled invariant due to Class ze i Relational
negative precondition i
i
cl:Class c2:Class ;
isPersistent = true isPersistent = true :
name=C name=C i
i
inclusion

P(JointClasses) v

Class ! i Relational
cl:Class c2:Class 3 tTabl
isPersistent = true isPersistent = true : an'e
name=C name=C i name=C
I I]
al:Attribute a2:Attribute 1
—_— —_— i | col:Column || co2:Column
name=A1l name=A2 P
T/ i | name=A1 name=A2
<>, i

invariants have the same source, one is positive and the other negative, and the target
of the negative one is included in the target of the positive one (last row in the table).

Finally, we can reason on the satisfaction of patterns in order to detect potential er-
rors in a contract and report a warning. For instance, consider a negative precondition
that is included in the source part of an invariant or in one of its enabling conditions.
In this case there is no contradiction, but if the negative precondition holds, then the
invariant will also hold vacuously because it will never be enabled. If the precondi-
tion does not hold, then the invariant can be satisfied or not (depending on whether
its main pattern is found in the models) but nevertheless the whole contract will not
hold. Thus, this situation usually indicates an error in the specification. Table 3 gath-
ers different warnings for PAMOMO contracts concerning satisfiability.

As an example of this kind of reasoning, Fig. 15 shows on top a negative precondi-
tion discarding the transformation of models where some package contains duplicated
classes. The invariant below, specified by a different designer, deals with the transfor-
mation of equally named classes inside a package, which should be transformed into
a single table containing columns for the attributes of the classes. Thus, the second
invariant is useless because it can only be satisfied (in a non-vacuous way) if the input
model has duplicated classes, but this is forbidden by the negative precondition. This

@ Springer

Autom Softw Eng

situation, which corresponds to the first row in Table 3 (i.e., NPre C I), gives rise
to a warning.

5 Implementing model transformations with QVT-relations

After the designer has specified the transformation requirements in terms of contracts
(cf. step 1 in Fig. 4), the developer may start implementing the model transformation
(cf. step 2 in Fig. 4). Although any arbitrary transformation language might be chosen
for this task, we employ QVT-Relations in our running example. This is since we will
also use QVT-Relations to automatically verify the specified contracts (cf. Sect. 6),
and thus, the reader is not confronted with many different languages.

QVT-Relations (QVT-R in short) is a declarative model transformation language
standardized by the Object Management Group (OMG) (Object Management Group
2011). It allows for several execution scenarios, like model transformation (i.e., gen-
erating a new target model from an existing source model), model synchronization
(i.e., synchronizing two existing models) and consistency checking (i.e., checking the
synchronization of two existing models without enforcing it).

With QVT-R, a transformation is specified as a set of relations that must hold
between a set of models, called candidate models. Each relation defines local con-
straints to be satisfied by the candidate models, and has two or more domains. Do-
mains are described by object graph patterns, and have a flag to indicate whether
they are checkonly or enforce. The models of a domain marked as enforce
may be modified to satisfy the relation. In contrast, the models of a domain marked
as checkonly are just inspected to check if the relation holds for the candidate
models, resulting in reported errors only. Thus, in order to realize a transformation
scenario, the target domain must be marked as enforce to allow the creation of a
new target model, and the transformation must be executed in the direction of this do-
main. In our example transformation, we aim at generating a new target model from
an existing source model, and hence the domain class is marked as checkonly
whereas the domain rel is marked as enforce.

Figure 16 shows a first version of the QVT-R implementation for the running ex-
ample. This transformation comprises two candidate models class and rel (cf.
line 2) representing a model conforming to the Class metamodel and a model con-
forming to the Relational metamodel, respectively. The transformation contains
five relations, namely PackageToSchema, ClassToTable, Attribute-
ToColumn, PrimitiveAttributeToColumn and SuperAttributeTo-
Column. Relations may be top-level or not, which is indicated with the keyword
top. The execution of a transformation requires that all its top-level relations hold,
whereas the non-top level ones only need to hold when they are invoked directly or
indirectly from top-level relations. A relation holds if for each binding of the objects
in the source graph pattern (in the source model), there exists a valid binding of the
target pattern objects (in the target model).

In the example, assuming that the execution starts with the top relation
ClassToTable (cf. line 16), then it is required that for each persistent class c
contained in a package p, a table t contained in a schema s exists. Furthermore, the

@ Springer

Autom Softw Eng

1 transformation ClassToRel 34 // map each attribute to a column
2 (class : Class ; rel : Relational){ 35 relation AttributeToColumn {
3 36 checkonly domain class c: Class {};
4 // map each package to a schema 37 enforce domain rel t: Table {};
5 top relation PackageToSchema { 38 where {
6 pn: String ; 39 PrimitiveAttributeToColumn (c, t);
7 checkonly domain class p: Package { 40 SuperAttributeToColumn (c, t);
8 name =pn 41 }
9 }i 42}
10 enforce domain rel s: Schema ({ 43
11 name =pn 44 // map each attribute to a column
12 }; 45 relation PrimitiveAttributeToColumn {
13 } 46 an , tn: String ;
14 47 checkonly domain class c: Class {
15 // map each persistent class to a table 48 attributes =a: Attribute {
16 top relation ClassToTable { 49 name =an,
17 c¢n: String ; 50 type =tn
18 checkonly domain class c: Class { 51 }
19 namespace =p: Package {}, 52 }:
20 isPersistent =true , 53 enforce domain rel t: Table {
21 name =cn 54 columns =cl: Column {
22 }; 55 name =an ,
23 enforce domain rel t: Table { 56 type =tn
24 schema =s: Schema {1}, 57 }
25 name =cn 58 }:
26 }; 59 }
27 when { 60
28 PackageToSchema (p, s); 61 // map inherited attributes
29 1} 62 relation SuperAttributeToColumn {
30 where { 63 checkonly domain class c: Class {
31 AttributeToColumn (c, t); 64 parents=sc: Class {}
32} 65 }i
33 } 66 enforce domain rel t: Table {};
67 where {
68 SuperAttributeToColumn (sc , t);
69 }
70}
71}

Fig. 16 Class2Relational transformation implemented in QVT-R

class c and the table t must be equally named, which is enforced by using a common
variable cn.

In addition, relations may declare when and where clauses containing OCL ex-
pressions as well as relation invocation expressions. When clauses express pre-
conditions under which the relation needs to hold. They usually refer to other
relations, to which they pass a number of parameters that appear as variables
in the current relation. For instance, the relation ClassToTable is only re-
quired to hold if the relation PackageToSchema holds, as this latter relation
appears in the when clause of ClassToTable (cf. line 28). Where clauses are
used to specify relation postconditions (i.e., if the current relation holds then the
where clause should hold) and may also include references to other relations.
For instance, ClassToTable requires the relation AttributeToColumn to
hold in its where clause (cf. line 31). This second relation delegates the trans-
formation of attributes to the relations PrimitiveAttributeToColumn and
SuperAttributeToColumn in its where clause (cf. lines 39 and 40). The re-
lation PrimitiveAttributeToColumn transforms the attributes of a class ¢
into equally named and typed columns of the corresponding table. Finally, the re-

@ Springer

Autom Softw Eng

lation SuperAttributeToColumn deals with inherited attributes by recursively
calling itself (cf. line 68).

As the attentive reader might have already spotted, by the recursive call in the
where clause of the SuperAttributeToColumn relation, all super classes of a
given class are visited, but without producing additional columns for inherited at-
tributes. In Sect. 7, we show how this error is detected by using the previously pre-
sented contract and how it can be fixed. For this purpose, the next section shows how
to use the consistency checking mechanisms of QVT-R to verify PAMOMO contracts.

6 Operationalizing contracts: from PAMOMO to QVT-relations

In order to use PAMOMO contracts as oracles, they have to be made operational. For
this purpose, we translate the contracts into checkonly QVT-R transformations and
check if they hold for certain models, according to the semantics shown in Sect. 4.
In case a certain relation does not hold, the QVT engine provides information on
which contract failed due to which bindings (i.e., bound objects, values and links).
Our approach generates three QVT transformations: one containing the generated
code for the preconditions, another one for the invariants, and the last one for the
postconditions. In the following we detail each one of them by providing a schematic
template of the generated code and a concrete example.

6.1 Compilation of preconditions and postconditions

Compilation scheme of preconditions Preconditions have empty the target compart-
ment. However, in QVT-R, all transformations must have at least two domains. There-
fore, in the case of pre- and postconditions, we generate transformations with two
domains conforming to the same metamodel, which are actually bound to the same
model. Figure 17 shows the compilation scheme for positive and negative precondi-
tions. In both cases, we produce one top relation with two domains (named Sourcel
and Source? in the figure) bound to the same metamodel.

P(Pre) top relation (Pre) {
|
Source
object i domain Sourcel (Root of Object Graph O__)
graph : checkonly domain Source2 (Object Graph O,)
0 i
= E;; kN where { (obj-identity-inegquality) (EXP); |}
)
N(Pre top relation (Pre} {
Source i

domain Sourcel (Object Graph O,

object i ; .
graph :|:> checkonly domain Source2 (Root of Object Graph O,
1

sre when | {obj-identity-inequality); (EXP); |
P

EXP where { false;)}

Fig. 17 Compilation scheme for preconditions

@ Springer

Autom Softw Eng

transformation checkPre (Sourcel:uml; Source2:uml) |
top relation NoRedefinedAttrs{
X : String;
domain Sourcel pa : Package(
N(NoRedefinedAttrs) classes = p : Class|

1m] attribute = a : Attribute{ name=X }

Class - i
piClass |—' a:Attribute | ba
E—— i classes = ¢ : Class{
pa:Package PaCka — : attribute = ar : Attribute{ name=X }
c:Class ar:Attribute i " !

name=X checkonly domain Source2 pa2 : Package{)}:
when{

c<>p;

ar<>a;

c.general->includes (p);

c.general->includes(p)

}
where{ false; }

Fig. 18 Compiling a negative precondition into QVT-R

If we execute the resulting transformation in check-only mode in the direction
Sourcel—Source2, for each occurrence of the source of each top relation, the
engine has to find an occurrence of the target of the relation to consider that the re-
lation holds. Therefore, for positive preconditions, we add in Sourcel one element
that we will always need to find (the root node of the precondition’s object graph),
and in Source? the full object graph. Furthermore, we include in the where clause
inequalities ensuring that two objects with compatible type cannot be bound to the
same object in the model, as well as the OCL constraint expression EXP of the pre-
condition.

Regarding negative preconditions, they demand the absence of an object graph.
Therefore, in this case, the object graph is added in the Sourcel domain, and the
OCL constraint is included in the when clause. Moreover, as a negative precondition
has to fail whenever the object graph is found, we add false to the where clause of the
relation. Thus, finding the object graph in the source domain makes the relation fail
due to the where clause.

Example Figure 18 shows a negative precondition taken from Fig. 8 and the gener-
ated QVT-R code. The source object graph of the negative precondition is compiled
as the object graph for the Sourcel domain, whereas the Source2 domain in-
cludes only the root node of this graph. In addition, three constraints are added to
the when clause. The first two check that different objects in the relation are bound
to different objects in the model. This is checked by inequalities in the identifiers of
objects with same type. The third constraint, taken directly from the precondition,
checks if the class p is a superclass of class c. Finally, the where clause includes the
false statement, to make the relation fail in case a match for the source graph is found
in the model.

Compilation scheme of postconditions Figure 19 shows the scheme of the com-
pilation of positive and negative postconditions. Positive postconditions demand an
occurrence of the target object graph, while negative postconditions are satisfied if
there is no occurrence of the target object graph. Thus, the code generated from post-

@ Springer

Autom Softw Eng

P(Post) top relation (Post) {

| Target

i object domain Targetl (Root of Object Graph O,

: graph checkonly domain Target2 (Object Graph O,.)
i 0

where ((obj-identity-inequality); (EXP); }

L
3
1

top relation {(Post) {

domain Targetl (Object Graph O,)
checkonly demain Target2 {(Root of Object Graph O,)

when { {obj-identity-inequality); (EXP); }
where [false; }

Fig. 19 Compilation scheme for postconditions

transformation checkPost (Targetl:rdbms; Target2:rdbms) {
N(NoDup.'icatedCoJ'umns} top relation NoDuplicatedColumns |
X : String;

T
Class i Relational X
H domain Targetl t : Table {
columns = c:Column { name=X },

columns = e:Column { name=X }

c:Column || e:Column 1
v | checkonly domain Target2 t2 : Table {);
when | ¢ <> e; |
where { false;)

name=X name=X

Fig. 20 Compiling a negative postcondition into QVT-R

conditions is similar to the one generated from preconditions but acting on the target
metamodel.

Example Figure 20 depicts the negative postcondition shown in Fig. 8 and its com-
pilation into QVT-R. It can be seen that the resulting code is analogous to the code
produced for the negative precondition example in Fig. 18.

6.2 Compilation of invariants

Compilation scheme Figure 21 shows the scheme of the compilation of positive
and negative invariants. The scheme for positive invariants is similar to the one for
preconditions and postconditions, but now the two domains are typed on different
metamodels and contain different object graphs. Moreover, the when clause includes
the terms of the OCL invariant expression containing only elements of the source
graph, whereas the remaining terms of the expression are added to the where clause.

As a difference from the previous compilations, negative invariants are split into
two relations: the first one is top and looks for occurrences of the source, and the
second one is non-top and looks for occurrences of the target when it is invoked from
the where clause of the top relation. In this way, the top relation checks that for each
occurrence of the source graph, there is no occurrence of the target graph (this latter
checked by invoking the non-top relation in the where section, negated). Note that

@ Springer

Autom Softw Eng

top relation {inv) {

P{mV) ' domain Scurce (Object Graph O,)

SDU.”:E ! Target checkonly domain Target (Object Graph O,)

object ! object

graph :graph when [(obj-identity-inequality-src); (EXP|_):)
src | otar where [{(obj-identity-inequality-tar); (EXP); }
o ml }

top relation {(imv) |

y domain Source (Object Graph O,)

N(inv) checkonly domain Target (root of Target metamodel)

! Target

object gobject

graph ; graph
i

i

EXP

when [(obj-identity-inequality-src); (EXP|,))
where [not {inwv)2(...); }

src

relation (inv)2 [
domain Source (root of Object Graph O,)
checkonly domain Target (Object Graph O,,.)

where [(obj-identity-inegquality-tar); (EXP); }
}

Fig. 21 Compilation scheme for invariants

transformation checkInv(Source:uml; Target:rel){
top relation InheritedAttributes (

noRCEE S tramg)

domain Source pa : Package (

P(InheritedAttributes) i
a Relati | classes = p:Class {
L elationa attributes = a:Attribute { name = A }

1,

classes = c:Class |

'
i
i
P
P
c: Class i| t:Table I:> isPersistent = true,
——
i i = i name = C
isPersistent = true lw name=C
i
i

name=C l !
1
co:Column checkonly domain Target s : Schema [
==
" Al name=A tables = t:Table {
J name = C,

columns = co:Column { name = A }
]
Yi
when { p<>c; c.ancestors->includes(p);}

Fig. 22 Compiling a positive invariant into QVT-R

generating a single relation with a false statement in the where section, as we did
for negative pre- and postconditions (cf. Figs. 17 and 19), is not enough in this case.
The reason is that such a relation fails if it does not find the complete target graph,
however the relation should fail only if it does find both the source and target graphs.

Example Figure 22 shows the compilation of the positive invariant modeling re-
quirement 4 in Fig. 7. The generated relation has one domain for the source object
graph and another domain for the target object graph. Its when clause includes an
inequality to avoid binding the two classes p and c to the same object in the model,
as well as the OCL constraint in the invariant as it only includes source objects. An
example for the compilation of negative invariants is illustrated in the following sub-
section.

@ Springer

Autom Softw Eng

top relation {inv) (
domain Source (Object Graph O,)

P(enab)‘ P(inv) i checkonly domain Target (Object Graph 0.}
Source i Target Source i Target
object :object object : object when [(obj-identity-inequality-src);
graph i graph graph i graph e

ENsrc : ENtar Osrc : ot,ar (CE= Ty

where [(obj-identity-inequality-tar);

EN y
EXP' EXP (BXP); }

top relation {(enab) {
domain Source (Object Graph EN,)
checkonly domain Target (Object Graph EN,,)

when [(obj-identity-inequality-szc);
(BXP™| i)

where [(obj-identity-inequality-tar);
(BXP™); }

Fig. 23 Compilation scheme for enabling conditions

6.3 Compilation of enabling and disabling conditions

Compilation scheme Enabling conditions are translated into top relations, which are
checked in the when clause of the relation derived from the pattern they constrain. In
this way, if the relation derived from the enabling condition does not hold, then the
relation derived from the pattern vacuously holds. This compilation scheme is shown
in Fig. 23. For disabling conditions the scheme is the same, but they are invoked in
the when clause preceded by “not”. If a pattern contains several disabling conditions,
their invocations are concatenated with a logical “and”.

Example Figure 24 shows the code generated for the negative invariant of Fig. 10,
which has an enabling condition. In particular, the relations NoTableForTrans-
ientClass and NoTableForTransientClass2 are generated from the neg-
ative invariant, and PackageAndSchema from the enabling condition. Hence,
top relation NoTableForTransientClass only needs to hold for a particu-
lar Package and Schema when they satisfy the relation PackageAndSchema,
which is checked in the when clause.

In this example, the relation NoTableForTransientClass invokes
NoTableForTransientClass?2 passing the string variable X as a parameter,
which has to be defined as a primitive domain in the invoked relation. Moreover, due
to a limitation of the QVT-R engine that we use (ModelMorf), which only supports
relations with two domains, we have to tweak the compilation of enabling conditions
containing more than one object in the source or target. This is so as any invocation to
a relation must receive exactly two objects as parameters, plus any number of prim-
itive values. Thus, if the enabling condition contains several objects in the source
or the target, all should be passed in the invocation, which is not allowed. We have
solved this problem by passing the object identifiers (which have primitive type, and
can therefore be passed as primitive domains) instead of the objects themselves.

@ Springer

Autom Softw Eng

N(NoTableForTransientClass)

() [class {Relational

P(PackageAndSchema i
Class | Relational p: Package| i s: Schema

!
s:Schema :> i

name=Y c:Class : t:Table

name=X i | name=X
[isPersistent=false | *

transformation

top relation
Y: String;
domain Source p : Package { name = Y };
checkenly domain Targst s : Schema { name = Y };

checkonly domain T
when { PackageAndSch
where | not NoTableFor

X):)

tables t:Table [name X1

I

primitive domain X2:5tring;
vhere { X = X2; }

1

} //end of transformation

Fig. 24 Compiling an enabling condition for a negative invariant into QVT-R

6.4 Compilation of sets

Compilation scheme QVT-R allows matching for collections of objects (sets, bags
or sequences) using so-called collection templates. The ModelMorf QVT engine
provides two kinds of collection templates: (i) enumerations for the extensional def-
inition of sets, and (ii) comprehensions for its intensional definition. Enumerations
match for a certain number of members in a collection. For instance, classes
= pclasses : Set(Class) {cl, c2 ++ _ } matches for two classes
in the reference classes. The underscore is a wildcard that matches for the
rest of the collection. Comprehensions allow matching members in a collec-
tion using a condition. For instance, classes = pclasses : Set(Class)
{} {pclasses->forall (c | c.isPersistent)} matches all persis-
tent classes in the reference classes.

As Fig. 25 shows, sets in PAMOMO patterns are compiled into collection tem-
plates. We generate enumerations if the elements in the set are not constrained by
any condition, and comprehensions otherwise. As before, the OCL expressions us-
ing only source variables and source set variables are included in the when clause,
whereas the rest are included in the where clause.

Example Figure 26 lists the code generated from the invariant with sets shown in
Fig. 14. The set pclasses is translated into a comprehension because it contains
a condition matching for persistent classes only (isPersistent = true). In
contrast, the set tabs is compiled into a simple enumeration. The OCL expression is
added to the where section of the relation because it relates set variables of the source

@ Springer

Autom Softw Eng

PL)
Source | Target
object : object top relation {inv) {
graph | graph domain Source (0, + set-templates(setl))
__st__ ;__9'@1'__ checkonly domain Target (0., + set-templates (set2))
| object :-: object :|:> when [(obj-identity-inequality-src);
1 graph 1 !1 graph 1 (BXP| o.0)i)
i o 1 o, 1 where [(obj-identity-inequality-tar);
1 setl Vi set2 1 (ExI’)-)
| . ! :
L_S_E_tl-_ugl._sgtz__l }
EXP

Fig. 25 Compilation scheme for sets

transformation checkInv(Source:uml; Target:rel) {
top relation NumberOfPersistentClasses {

¥ : String;
P(NumberOfPersistentClasses) domain Source pa : Package {
Class i Relational name = Y,
-Pack ! -sch classes = pclasses :@: Set(Class) (}
b:fackage i Socnema {classes->forAll(c | c.isPersistent=true)}
name=Y i [name=Y }i
o S 4 R |:> checkonly domain Target s : Schema [
i Sn N name = Y,
c:Class tables = tabs : Set(Table) {}
isPersistent=true i
where [pclasses.size() = tabs.size(); }
—eo-pelasses TINON }

pclasses.size() = tabs.size()

Fig. 26 Compiling a positive invariant with sets into QVT-R

and target. This expression fails if the number of persistent classes is not equal to the
number of tables.

If a set contains an arbitrary graph having more than one element, then we generate
one additional relation looking for occurrences of this graph structure. This relation
is used to filter which elements should be added to the collection (i.e., only those
making the relation hold).

6.5 Summary of the compilation

Table 4 summarizes the compilation of PAMOMO contracts into QVT-R code. We
can observe that PAMOMO allows for a more compact specification of contracts than
the direct use of QVT-R. Its graphical nature, the availability of different kinds of
patterns (positive and negative invariants, pre- and postconditions) and its features
(enabling/disabling conditions, sets) make it less complex than the equivalent QVT-
R code. In particular, patterns are especially useful to express negative information
and large, complex graphical structures in a concise way. In these cases, the QVT-R
code equivalent to the visual PAMOMO pattern is more intricate (e.g., see Fig. 24),
as a negative invariant needs to be split in two QVT relations, and one additional
relation needs to be generated for each enabling or disabling condition. The higher
conciseness of PAMOMO for this task is natural, as its aim is specifying transforma-
tion properties, while QVT-R is a language to implement M2M transformations.

@ Springer

Autom Softw Eng

Table 4 Summary of PAMOMO-to-QVT compilation

PAMOMO concept QVT-R representation

P(Pre/Post) 1 relation with pseudo domain

N(Pre/Post) 1 relation with pseudo domain + false in where clause

P(Inv) 1 relation

N(nv) 2 relations + negated call to relation2 from where of relationl

Enabling/Disabling 1 relation + (negated) call from when of relation produced for constrained pattern

Set collection template

T N
mpement Generation of Concrete Syntax (2
— 5 | | PaMoMo ATL Qvt XPand avt
MM Transformation MM Transformation Grammar
GMF-based
: Editor "Z\instance of !instance of /i\i"m’"m of
| PaMoMo H :
i..mMM I ATL R QvT | XPand N Qvt
oroduces o | Engine Model Engine Code
1 e] e
Specification of Requirements T i
——————
. QVT Engine
efers t configure | Target models 4
HE : — ModelMorf
Test Suite
(Prerequisite)
Verification Editor
PaCo-Checker 3 Configuration

Fig. 27 Overview of the architecture of PACO-Checker

7 The PACO0-Checker tool

After the transformation logic has been implemented, it needs to be verified to check
whether it satisfies the requirements specified by the contract. For this purpose, we
have developed an EMF-based tool (EMF 2012) called PACO-Checker that auto-
mates this process and enables the visual specification of contracts. Figure 27 shows
its architecture, which consists of three main components: a visual editor to build the
patterns (label 1), a chain of transformations from the patterns to QVT-R abstract syn-
tax and from this to QVT-R concrete textual syntax (label 2), and a verification editor
to configure the patterns to be checked on a particular transformation using certain
source and target models (label 3). The rest of this section provides an overview on
the needed steps for the verification process and gives additional details of the tool
components.

Prerequisites. We assume the existence of the source and target metamodels, as
these are necessary to specify the contracts and implement the transformation. In
addition, for the verification process, we need a suitable set of input models con-
forming to the source metamodel. Such input models can be manually created,

@ Springer

Autom Softw Eng

 Java - PatternsTest/slided/ghk/requirement4. analysis_diagram - Eclipse Platform

Fle Edt Diagram Navigate Search Project Run Window Hep
3 C R . S 7 =
Positive Invariant TE . . PaMoMo
" 3 elements
o] it4.analysis, &3 ®
SR AEnT - Source object o
4 P(InheritedAtirbutes =
g sl gEph Gaa
= Pattern
o] + Positive
| paPackage H s:Schemd Pattern
4 Megative
. classes Pattern
5 " tables 4 MNegative
. das.s.es Precondition
B p:Class = c;bss = B t:Table "Edge
= isPersistent= =
= =C
et name: Attrbute
/" attributes /" coumns @ class
B Atirbute
H a:Attrbute H co:Column Source MM B Class
= name=A = name=A :
elements £ ModelEiement
H Package
®er
= B Column
+ [T=true] i
+ o oncharasorcl ks (p)] Target MM B ModeElement
+0 elements S sowma
E Table

Fig. 28 Specification of invariant for requirement 4 (cf. Fig. 7) with PACO-Checker

which however is a tedious and error-prone task. In our experience, this man-
ual creation often leads to small input models that only cover parts of the meta-
model. Alternatively, there are available mechanisms that automatically synthesize
a large number of different input models (Brottier et al. 2006; Fleurey et al. 2004;
Sen et al. 2009) ensuring a certain level of metamodel coverage. We assume the
existence of such set of input models as well, since their generation is out of scope
of this paper.

Step 1: Formal specification of requirements with PAMOMO. In a first step, the
transformation requirements have to be formally specified using PAMOMoO. For this
purpose, PACO-Checker implements the PAMoMo metamodel using EMF (cf. (1) in
Fig. 27) and provides a graphical concrete syntax supported by a GMF-based (Gron-
back 2009) editor that enables the visual specification of contracts (cf. Fig. 28). The
source and target metamodels of the transformation have to be imported into the
tool palette of the editor before starting modeling patterns. Then, the transformation
designer can use the editor to specify preconditions, postconditions and invariants.
Our current implementation only supports one type of pattern per contract, i.e., ei-
ther preconditions, postconditions or invariants, whereby one contract results in one
file. Therefore, if preconditions, postconditions and invariants should be used to
verify a transformation, three different contract files are needed. Figure 28 shows a
screenshot of the editor begin used to define the invariant that models the require-
ment 4 of the running example. Instances of the classes from the source and target
metamodels can be added to the appropriate compartments of the invariant, together
with the attributes of such classes. The patterns can also include OCL expressions to
specify conditions on the attributes, e.g., to check if the class is persistent (boolean

@ Springer

Autom Softw Eng

1 Verification Editor &4 ~[m]

Specify your Verification Job Specification of

Metamodels and Models

Source Metamodel and Model
Select the source metamodel and an according source elect the target metamodel and an according target
model model
Metamodel: | C:/eckpse_helios/runtime-New, Target MM: | C:feckpse_helos/runtime-he
Model: C:fecipse_helios/runtime-MNew Target Model: | C:/eclipse_helios/runtime-Ne | | Select...
Preconditions Validate Preconditions
Specifiy the preconditions that need to be fulfiled in Validate the preconditions that need to be fulfiled in
order to execute a transformation order to execute a transformation
sstfsre fverification/requirementS.analysis Validate...
=
< >
Invariants Validate Invariants
Specifiy the invariants of the transformation Validate the invariants that need to be fuifiled

sstfsrefverification/requirement L.analysis
astfsrcfrerificationfrequirement2.analysis
ast/fsrcfverificationfrequirement3.analysis
astfsrc/verification/requirementd.analysis

< >
Postconditions Validate Postconditions
Specifiy the properties that need to hold after the Validate the postcondiions of a transformation
transformation
valdate..,

astfsre/verificationfrequirements.analysis

C}Adﬁ S s .

D Specification of

o

¢ > Postconditions

Overview Transformation Verification

Fig. 29 Definition of a verification job with PACO-Checker

attribute isPersistent) or more general conditions, e.g., if class p is a super-
class of class c.

Step 2: Specification of a verification job. Once the designer has specified the con-
tracts, a verification job has to be configured (cf. (3) in Fig. 27). Such a job defini-
tion allows executing all specified preconditions, postconditions and invariants to
achieve a comprehensive verification result. Figure 29 shows a screenshot of the
verification job for the running example. First, the source and target metamodels
have to defined, which must be equal to those used for specifying the patterns. Fur-
thermore, a source (test) input model is needed as well as the target model generated
by the transformation under test. Then, the preconditions, postconditions and invari-
ants which shall be checked for the transformation have to be selected. Thus, it is
possible to reuse patterns to verify different transformations with overlapping re-
quirements, e.g., if we have designed several transformations from the same source
(target) metamodel, some of the preconditions (postconditions) may be reused.

Step 3: Execution of the verification job. Once specified, the verification job can
be executed if no inconsistency between the patterns of the contract is reported by
the reasoning component. In order to execute the job, an ATL transformation trans-

@ Springer

Autom Softw Eng

PAMoMo
Contract

implements

classes | ¢1: Class attributes. | ZLiALrDULE ModelMorf
namespace isPersistent = true [F— 9| name = ‘name’
1 : Package name = ‘Person’ type = ‘String’
Pl rackage
Perrer————— ncest}‘rs parents .
name = ‘University childrey ™ Verification Results £2
namespace c2 : Class attributes | 22 : Attribute
classes’| | =true name = ‘registrNo* Execution of Invariant ‘Reql:' invariant succeeded
name = 'Student’ type = ‘Integer’
Test Input Model Execution of Invariant 'Req2:' invariant succ
. Execution of Invariant 'Req3:" invariant succeeded
tables | 11 : Table columns | S2L: Column
af_) name = ‘name’ . . .
schema name = ‘Person type = ‘String’ n of Invariant ‘Reg4 " invariant faled
51 :Schema
name = ‘University’ — sity :Package"
schema | 2 : Table columns. | £02.: Column
tables *| name = m reime = ‘reghitiNo
type ='Integer’
. ass"
Resulting Output Medel tribute”
tion “Check. Inheritedattributes” does not hold
Verification Log

Fig. 30 Verification results of requirements 1-4 for our running example

forms the PAMOMO contract into a QVT model implementing the semantics of the
contract (cf. (2) in Fig. 27). Since there is no execution engine available to execute
QVT-R on the basis of its abstract syntax, we produce the QVT concrete textual
syntax by means of a model-to-text transformation using XPand (Xpand 2012). The
resulting QVT-R code is finally executed by the ModelMorf QVT-R engine (TATA
Research Development and Design 2012), which produces a verification log provid-
ing hints of any error in the transformation logic.

Step 4: Inspection of verification results. The execution of the verification job pro-
duces a verification log. Figure 30 shows to the right the log generated for the run-
ning example, considering the input and output models to the left (the output model
is produced by the transformation implementation). This log reports that these mod-
els satisfy requirements 1-3, but not requirement 4, which addresses the translation
of inherited attributes. If we inspect the models, we realize that the transformation
in Fig. 16 produces a schema s1 which stems from the package p1, checked by
the first invariant. The second invariant checks if persistent classes are translated
into equally named tables, which is also true since two appropriate tables have been
created. Furthermore, every direct attribute, i.e., name in case of class c1 and reg-
istrNo in case of c2, has been correctly transformed into columns of the corre-
sponding tables (as demanded by invariant 3). Nevertheless, invariant 4 fails because
attribute al in the superclass c1 is not transformed into a column of the table gen-
erated from c2 (i.e., table t2 has no column name). Therefore, our transformation
implementation in Fig. 16 does not handle appropriately the inherited attributes.

The transformation in Fig. 16 was implemented with the rationale that each rela-
tion addressed exactly one requirement. In this way, relation SuperAttribute-
ToColumn handles requirement 4. However, when investigating the QVT code, it
can be seen that we specified the wrong relation call in the where clause of relation

@ Springer

Autom Softw Eng

Fig. 31 Corrected 61 // map inherited attributes

62 relation SuperAttributeToColumn {
63 checkonly domain class c: Class |
64 parents=sc: Class {}

65 }i

66 enforce domain rel t: Table {};
67 where |

68 AttributeToColumn (sc , t);

69 }

70 }

71 }

transformation code

SuperAttributeToColumn. In particular, by calling this relation, only the su-
per classes are visited, but no column is created. We can solve this error by changing
the where clause of relation SuperAttributeToColumn to call Attribute-
ToColumn (cf. line 68 in Fig. 31) which takes care of, on the one hand, delegating
the creation of additional columns, and on the other hand, traversing the super classes
from bottom to top. Running again the updated transformation to produce the output
model and subsequently verifying the contract shows that all invariants are satisfied.

8 Case studies

In this section we illustrate the usefulness of contracts through several case studies in
three application domains. The first one deals with the verification of the transforma-
tion from PAMOMO into QVT-R presented in this paper. The second one is concerned
with the verification of a complex transformation from a process-interaction simula-
tion language (Fishman 2001) in the area of performance evaluation into coloured
Petri nets (Jensen 1997). Finally, the third one presents an application of contracts for
third-party transformations, in particular we tackle the generation of visual editors
from GMF models. These case studies show the versatility and language indepen-
dence of our approach by the automated verification of an ATL transformation, a
QVT-R transformation, and the safe execution of a third party transformation (from
which we do not have the source code). In each case, we stress the use of different
features of PAMOMoO.

8.1 Using PAMOMO to verify its own translation into QVT-relations

In this section we show some patterns of the contract that helped us in verifying the
transformation from PAMOMoO into QVT-R. The metamodels of both languages are
depicted in Fig. 32. With this example we want to stress that PAMOMO is indepen-
dent from the language used to realize the transformations, since whereas our running
example verified a QVT-R transformation, here the translation was implemented with
ATL.

The contract for our transformation contains invariants and postconditions, but it
does not contain preconditions because we handle the translation of all features in
PAMOMoO. As an example, Fig. 33 shows an invariant addressing the translation of
pre and postconditions. These are patterns with either the source or target graphs
empty (i.e., the size of the set of objects either in the source graph or the target graph
is 0, as checked by the constraint expression). These patterns should be transformed

@ Springer

Autom Softw Eng

PaMoMo metamodel

Specification
name : String

sourceMMAlias - String
targetMMAlias - Siring

]

patterns
e

Pattern

name : String

GCLeondition - String
FAN

PositivePattern

enabling

targetGraph
1

Graph

ConstraintGraph] RelationTransformation

1 referrednel |,

NegativePattern

0.1[Relation
MMAlias : String name : Siring
isTopLevel : Bool |,
objects\/e refersTo
Object when where pattern
name . Sting 1 0.1 (B —
type : String Paltern DomainPattern
Features P i ”u“'“” bindsTQ), referredvar
B predicate 3 bindsTo on
G Varlable | 9
Feature .
| name - String | [Predicate | a—— template
. [I 1
IM‘ RelationCallExp |[VariableExp
PropertyTempiateltem

Fig. 32 PAMOMO (left) and QVT-R (right) metamodels

Fig. 33 A positive invariant for

PAMOMO-to-QVT-R

Fig. 34 A negative invariant for

PAMOMO-to-QVT-R

P(ConditionsToRelationsWithPseudodomain)

PaMoMo

:Pattern

name=Z

\Lconstraint

:ConstraintGraph ‘

source

sourceOhjs.size() =0

N(NoEnablingCondition)

PaMoMo QVT-R...

p:PositivePattern

enabling
Condition

:ConstraintGraph
. ___——

N(NoDisablingCondition)

i/

PaMoMo QVT-R...

p:PositivePattern

disabling
Condition

:ConstraintGraph

domain
:RelationDomai

QVT-Relations

:Relation
name=Z

n

domain
:RelationDomain

typed
Model

:TypedModel

OR targetObjs.size() =0

N(PositivePatternTolRelation)

QVT-Relations
p:PositivePattern :Relation
name=Z
when
:Pattern

predicate

:Predicate

condition
Expression

:RelationCallExp

into relations with two domains (since this is required by the QVT-R metamodel) but
referring to the same TypedModel instance, as shown by the target graph object.
Figure 34 shows another invariant stating that positive patterns of any type with-
out enabling or disabling conditions (checked by the two disabling conditions) are
transformed into a unique relation. Thus, the generated relation cannot invoke other

@ Springer

Autom Softw Eng

N(NoChainOfWhen)
PaM...; QVT-Relations
{ :Relation | &1 :Relation I
whel -q:f \Lwhen
&
P(Domains) P(AreCheckonly) ‘ :Pattern | Stv | :Pattern |
H i " o .
PaM...i QVT-Relations PaM...: QVT-Relations predlcateJ, & J,predlcate
! i . i o . f
i|r:RelationDomain :> { | r:RelationDomain [ml |M!
i H condition condition
: | isCheckable=true Expressiun\L \I,Expression
' isEnforceable=false :RelationCallExp :RelationCaIIExgj
i 8

Fig. 35 Two postconditions for PAMOMO-to-QVT-R

relations in its when clause (shown invariant) or where clause (checked by another
similar invariant).

Finally, Fig. 35 shows two postconditions checking that all generated relation do-
mains are checkonly (left), and that there are no chains of when relation invoca-
tions (right). Both are constraints of the models generated by our transformation.

8.2 From a process-interaction language into timed coloured Petri nets

If we are interested in modeling systems with the aim of simulating their perfor-
mance, we can use a language in the process-interaction simulation style (Fishman
2001). In these kinds of languages, systems are modeled by processes made of inter-
connected blocks through which transactions flow.

Figure 36 shows a process-interaction model. The two blocks to the left are gen-
erators of transactions. In particular, the upper left block produces a transaction of
type 1 at each [10, 20] time steps, with a transaction length having a uniform prob-
ability between [120, 150]. Similarly, the lower left block produces a transaction of
type 2 at each [12, 24] time steps, with a length having a uniform probability be-
tween [140, 180]. Both kinds of transactions arrive at the advance block (labeled
“A”), which models a process with a delay given by a uniform probability in the in-
terval [2, 5]. After this delay, transactions reach a server block with a parallelism of
3, meaning that the server can attend 3 transactions at the same time. Moreover, the
server has a delay between [4, 5]. Then, a rype switch block (labeled “type”) selects
the transactions depending on their type. Transactions of type 1 are routed into a
server with parallelism 2, while transactions of type 2 are routed into a server with
parallelism 3. Finally, transactions finish in a terminate block, which counts 1 each
time a transaction arrives. Altogether, this model represents a client/server system
that accepts two kinds of requests, processed in different servers.

Figure 37 shows the metamodel for this process-interaction language. Thus, a
Simulation model is made of Blocks and Resources. Block is an abstract
class subclassified for each different kind of block.

In order to simulate and analyse process-interaction models, we have built a trans-
formation of these models into Coloured Petri Nets (CPNs) (Jensen 1997), which
allows using tools like CPNTools (Jensen et al. 2007) for this task. CPNs are a kind
of automaton made of two kinds of nodes: places and transitions. Transitions can be
connected to places, and vice versa, using directed arcs. Places may contain tokens,

@ Springer

Autom Softw Eng

o

¥ 0,20]T\ <
len=[120,150] a
[2,5]

Fig. 36 A process-interaction model

Simulation
B .
Resource Y -title:String +blocks \I/' +in|*
-type:Stri +resources out
type:String Block
. . W+ consume -label:String
>
i+ produce <t
Advance Server Terminate Switch Path
+paths
-num:int -num:int -delay_min:double | | -par:int -count:int -exp:String
-type:String -delay_max:double | | -delay_min:int 1.*
-IAT_min:double -delay_max:int
-IAT_max:double
-length_min:String I TypeSwitch | I SizeSwitch |
-length_max:String

Fig. 37 Metamodel of the process-interaction language

and these may store data conformant to a given data type. Transitions are the active
elements of the system. Whenever all its incoming places have at least one token,
the transition is enabled and may fire, removing one token from each input place and
adding one token to each output place. Arcs are decorated with inscriptions that select
tokens from the input places according to the data they hold, and set appropriate data
in the generated tokens. We also make use of the fact that CPNTools supports time
by attaching timestamps to tokens, which can be incremented by the transitions.

We have used PAMOMO to express different requirements for this transformation.
Figure 38 shows some of the specified invariants. The one to the left expresses how
parallel servers should be translated into CPNs. In particular, if the parallelism of
the server is P, then we need to replicate P times the CPN structure inside the set
servers to the right. This is indicated by the expression servers.size () =P.
The input and output blocks of the parallel server can be of any type, hence the
invariant uses objects of type Block (represented by dotted rectangles) for them, to
mean “any subclass of Block”. Moreover, the labels LS and LT of these two blocks
are used to locate the CPN places generated from them.

The upper right of Fig. 38 shows an invariant formalizing the translation of
switches (both TypeSwitch and SizeSwitch). They should be transformed into
places with as many output arcs as paths leaving from the switch. Finally, the bottom
right of the figure shows an invariant describing the relation between the number of
resources produced by a resource manager (with label RM) and the number of arcs

@ Springer

Autom Softw Eng

P(ParallelServer) P(SwitchOutPaths)
Process- | CPNs o :
Interaction i @ Transaction :‘_‘.Iabgl-t_-’.’_) ! _
i @ i ansaction
! servers || i !
5 i i
d [} I
i ' '
3 H - 1!
i {len=tl, type=t} i i label=B E : B path
— 1
{__switch __! out

: Transaction

{len=tl, type=t} ResourceManagerProduces)
i L end > : ’—‘

; [Rm

i | @+DELS() e i arcs

LT) Transaction

Declarations: i
AVAILX=int with MIN..MAX; type=R 0

servers.size()=P fun DELS()=AVAILX.ran(); n=arcs.size()

Fig. 38 Invariants for: translation of parallel servers (left), translation of switches (upper right), translation
of number of resources produced by resource managers (bottom right)

that the corresponding transition should map to the place created for the resource. In
particular, a correct transformation should produce as many arcs as the attribute num
of the resource manager.

Altogether, in this complex case study we intensively used invariants with sets.
This is due to the fact that both metamodels exhibited large heterogeneities. In par-
ticular, it was often the case that an attribute in the process-interaction language (like
the parallelism in servers, or the resources produced by resource managers) had to
be translated into a number of replicated structures in the CPN metamodel. Here we
benefit from the fact that patterns are declarative, so that complex structures can be
easily described graphically, as opposed to textually encoding them using e.g. OCL
navigation expressions.

8.3 Verification of graphical definitions in the GMF

The Graphical Modeling Framework (GMF) (Gronback 2009) enables the “rapid”
development of environments for visual languages. The approach taken is to spec-
ify different aspects of the editor using a set of interrelated models. The so-called
gmfgraph model has a crucial role as it contains the specification of the graphical
syntax of the language. However, only a tree-based editor is available for the speci-
fication of the figures of the concrete syntax, which is cumbersome and error prone.
The gmfgraph model is then used (together with the other models) in a transfor-
mation to generate the so-called gmfgen model which is the basis for the final Java
code generation of the editor.

A well-known problem is that if some model does not conform to a set of rules, the
code generation produces erroneous code which may override a previous successful
compilation. Although the framework validates some simple preconditions before the

@ Springer

Autom Softw Eng

P(FoundLayoutData) P(EnsureCorrectLayoutData)
GMFGraph | GMFGen GMFGraph | GMFGen

i
i
fL.RealFigure H f1:RealFigure
H
children 1 j
f2:RealFigure ; {2:RealFigure

layoutData :

I1:layoutData

o
LayoutDeota X Layoutable

AN

layoutData
11:layoutData

i (g1.clisTypeOf(GridLayout) and

H 11.0clisTypeOf{GridLayoutDatal) or

P (g1.0clisTypeCf{BorderLayout) and

i 13.0¢lisTypeOf{BorderLayoutData)) or

Extract of GMFGraph metamodel

Fig. 39 Precondition checking layout constraints in GMF

translation, like if all fields have meaningful values, no behavioral semantic contract
is checked. Therefore, designers of GMF editors could greatly benefit from a means to
check whether their models conform to the set of GMF norms that ensure a successful
compilation. Here we use contracts for this purpose and discuss some preconditions.

Layout constraints The specifications of figures need to provide a certain Lay-
out, e.g., a GridLayout providing a row/column oriented layout. Typically, fig-
ures consist not only of a single figure but also contain children-figures, like labels
to visualize feature values. The actual visualization of the children figures can be
constrained by means of LayoutData. However, the type of Layout for a figure,
e.g., GridLayout, should correspond to the type of LayoutData for its children,
e.g., GridLayoutData. To check this, we can use the precondition in Fig. 39. The
enabling condition selects figures with a certain Layout that contain a child figure
with some LayoutData. Then, the OCL condition in the precondition checks the
compatibility of the Layout and the LayoutData.

Child access constraints In order to be able to access the children figures of a fig-
ure in the gmfmap model, every FigureDescriptor (which describes a figure)
needs to specify a ChildAccess for each one of its children. To be able to reuse
a figure, e.g., if it is used several times in the concrete syntax, it is possible to use
Nodes assigning a graphical representation to a certain metamodel element. Hence,
if a Node refers not only to a FigureDescriptor but also to some ChildAc-
cess, then the figure referred by the ChildAccess must be a child of the Fig-
ureDescriptor. In addition, the type of the Node has to correspond to the type of
the child figure (e.g., in case of a DiagramLabel, the type of the child figure must
be Label). These two conditions can be checked by using the precondition shown
in Fig. 40. The second condition is encoded by the OCL expression in the pattern.

Hence, this example shows the use of PAMOMO to make explicit certain (non-
documented) assumptions of transformations. Once these assumptions are encoded
in the form of preconditions, they can be checked using PACO-Checker in order to
avoid errors caused by the GMF compilation.

@ Springer

Autom Softw Eng

Extract of GMF P(FoundFigureDescriptor) P(EnsureCorrectAccessors)
metamodel GMFGraph i GMFGen GMFGraph : GMFGen

fLiFigureDescriptor | |

f1:FigureDescriptor

dl:Diagramlabel

accessor |

cl:ChildAccess

figure

accessor
0.1

ChildAccess

0.
FigureDescriptor

f2.0clisTypeOf(Label) |

Fig. 40 Precondition checking child access constraints in GMF

9 Related work

The need for systematic verification of model transformations has been recognized by
the research community and documented by several publications outlining the chal-
lenges to be tackled (Baudry et al. 2006; Baudry et al. 2010). As a response, several
verification approaches have been proposed, which may be classified into the follow-
ing three areas: (i) verification of general properties such as confluence, applicability
and termination of a set of transformation rules (Cabot et al. 2010; Kiister 2006;
Varr6 et al. 2006), (ii) automated generation of test input models (Brottier et al. 2006;
Fleurey et al. 2009; Sen et al. 2009), and (iii) verification of specific properties of
transformations by means of oracle functions (Mottu et al. 2008), which are used to
analyse the validity of output models for a given set of test input models. The ap-
proaches dealing with the specification of oracles are the closest to the contributions
of the present paper and are discussed in detail next.

In general, the literature distinguishes two kinds of oracle functions (Baudry et al.
2010; Mottu et al. 2008). First, complete oracle functions may be defined by provid-
ing a full-fledged expected output model for each test input model, and subsequently,
employing model comparison frameworks to verify the equality of the actual output
model with respect to the expected model. Second, partial oracle functions expressed
as contracts have been proposed for checking the validity of input models, output
models, and their relationships. In addition, a third approach has recently been pro-
posed (Kessentini et al. 2011), to specify oracle functions solely based on the trace
links between the input models and output models. In the following, we elaborate
on these three kinds, namely verification by model comparison, verification by trace
analysis, and verification by contract.

Verification by model comparison Complete oracle functions may be defined by
having the expected output model at hand acting as a reference model for analysing
the actual output model of a transformation as proposed in Kolovos et al. (2000),
Lin et al. (2004, 2005). Model comparison frameworks are employed for comput-
ing a difference model between the expected and the actual output models. If there
are differences then there is an error. However, reasoning about the cause for the
mismatch solely based on the difference model (comprising differences such as ad-
ditions, deletions, movements and updates of model elements) is challenging. Even
more aggravating, several elements in the difference model may be caused by the

@ Springer

Autom Softw Eng

same error, however, the transformation engineer has the burden to cluster the dif-
ferences by himself. For large test input models expecting large output models, this
approach seems unfeasible in practice, and partial oracle functions are more appro-
priate.

Verification by trace analysis A complementary approach to model transformation
testing has been proposed in Kessentini et al. (2011) by using a generic oracle func-
tion. The idea of this approach is that the traces between the source and target models
of a transformation should be similar to existing example traces. In particular, the ora-
cle function checks how large a derivation of the generated traces of a model transfor-
mation from existing traces in the example base is. While this approach assumes that
traces between source and target models exist, our approach aims at scenarios where
no traces and even no corresponding target models for source models are available.

In Aranega et al. (2011), the authors use traces to trace back from a faulty output
element the transformation rules causing the error. This idea can be incorporated into
our framework, by the manual annotation of the transformation implementation rules
with the invariants they are concerned with, as we did in Guerra et al. (2010).

Verification by contract Contracts (Meyer 1992) are a well-established technique
in software engineering to verify object-oriented programs (Leavens et al. 2005). In-
spired by this work, contracts have also been applied for the verification of model
transformations in previous research. In the following, we elaborate on several ap-
proaches proposed for verifying model transformations using contracts, divided into
(i) OCL based, (ii) graph pattern based and (iii) model-fragment based approaches.

OCL based approaches The first approach using contracts for model transforma-
tions was proposed by Cariou et al. (2009, 2004). The authors suggest implementing
transformations with OCL. In this way, the source metamodel classes are provided
with operations, which may comprise preconditions, postconditions and invariants.
Although OCL natively supports design-by-contract, OCL is not intended to spec-
ify transformations and relationships between models. Thus, the authors propose an
extension for OCL that allows defining mappings between input and output model
elements.

A similar approach for defining contracts with OCL has been proposed in (Mottu
et al. 2006). Besides other aspects, Kiister and Abd-El-Razik (2006) also agree on the
use of OCL for the definition of transformation specific constraints for the produced
output models. In Kolovos et al. (2008b), the authors propose the Epsilon Unit Test-
ing Language to test model management operations. The language permits defining
test operations where post-conditions for the model transformation under test may
be specified. In a similar vein, Giner and Pelechano (2009) propose a Test-Driven
approach to the construction of model transformations. Thus, requirements for the
transformation are captured in the form of test cases made of an input model together
with output fragments and OCL assertions. Finally, in Gogolla and Vallecillo (2011),
a mechanism is presented to define properties for source models, target models, and
source-target relationships as contracts expressed in OCL.

Graph pattern based approaches In Balogh et al. (2010), the authors propose
to use the patterns supported by the VIATRA2 tool to specify contracts for model

@ Springer

Autom Softw Eng

transformations. However, their patterns operate on one model only, being therefore
usable to specify pre- and postconditions, but not transformation invariants.

Model-fragment based approaches A special form of verification by contract
was presented in Mottu et al. (2008). Based on Ramos et al. (2007), the authors pro-
pose to use model fragments for defining properties which are expected for an out-
put model produced from a specific input model. For verifying these properties, the
model fragments are matched on the produced output model. This approach is differ-
ent from the previous ones, which propose using generic contracts solely defined on
the metamodel level and not specific to a concrete test input model. The advantage
of using model fragments is to support a user-friendly specification of test cases by
reusing the graphical modeling editors, but this benefit comes with the price that the
constraints are described at the model level. Thus, they have to be defined for each
particular test input model.

As in our proposal, all mentioned approaches (except the model-fragment based
ones) define contracts based on the metamodel of the input and output models. How-
ever, the ones based on OCL usually lead to complex constraints, difficult to write in
practice, and yielding verbose specifications (Cariou et al. 2004), especially for the
specification of relations between input and output models.

Finally, contracts have been used as oracle functions for testing object-oriented
systems (Briand et al. 2003; Traon et al. 2006). In particular, these works aim at
evaluating the diagnosability and the robustness or vigilance of systems provided
with contracts. Vigilance refers to the degree in which contracts can detect faults
in the running system. Diagnosability is related to the ease with which the faulty
statements are found given a program failure. A relevant question is the level of detail
required in contracts to find a significant number of failures and obtain high vigilance.
Interestingly, both works agree that even contracts with low level of detail are good
enough to find over 80% of software failures, being a good substitute for hand-crafted
test oracle functions.

9.1 Contributions of PAMOMO and discussion

Even though the community is spending considerable research effort on the verifi-
cation and testing of transformations, and some approaches based on contracts have
emerged, there is still the need for a high-level language able to express transfor-
mation properties. Therefore, in order to facilitate the specification of contracts, we
proposed in this paper a visual language to define transformation contracts which
induces several advantages.

First, our language is visual and enables a succinct expression of graph patterns,
which otherwise would need to be encoded using navigation expressions in OCL, or
complex expressions in the case of our notation for sets. This is illustrated in Fig. 41,
which shows a positive invariant and the equivalent OCL expression for it (based
on Guerra et al. (2010)). In particular, the OCL expression needs to include nested
forAll clauses iterating over all instances of the source classes, and additional nested
exists clauses checking the existence of appropriate objects in the target. Second, the
semantics of our patterns is bidirectional, hence the same invariant may be used to
verify a forward and a backward transformation. In contrast, using OCL one would

@ Springer

Autom Softw Eng

P(inheritedAttributes) ,
Class i Relational
a: Package :
: |
c: Class ! |_tTable
isPersistent = true | i [hame=C
name=C : I |
a: Attribute : co:Column
==Ll
c.ancestors->includes(p) | Name=A

Fig. 41 Positive invariant, and equivalent OCL code for its forward interpretation

need to encode differently the same invariant, iterating first the source elements with
forAll clauses and then the target elements with exists clauses, or vice-versa. Although
QVT-R (and other bidirectional languages) does not suffer from this drawback, we
have seen that PAMOMO is more suitable (more succinct) than QVT-R to express
contracts, most of all concerning the expression of negative information (a negative
pattern produces two QVT relations), or enabling/disabling conditions (which gener-
ates additional QVT relations invoked from another relation).

Third, PAMOMO’s formal semantics enables also reasoning about metamodel
coverage, redundancies, contradictions and pattern satisfaction. Fourth, the specifi-
cation of the contracts is completely decoupled from the transformation implementa-
tion. This means that the contracts are independent from the specified transformation
rules and from the trace model of a specific transformation execution. Finally, the
translation of the contracts to QVT-R allows for dedicated feedback in terms of the
model elements not satisfying a particular contract. By using a pure OCL-based ap-
proach, only true or false is given back as answer to the user, but no further informa-
tion is accessible in standard OCL environments (see Fig. 41). Hence, our approach
provides better support for diagnosability than an approach based solely on OCL. In
contrast to model-fragmentation, our approach allows the definition of the contracts
with a visual language but we refrain from defining the contracts for a particular test
input model.

Regarding the scalability of our approach, it depends on the size of the tested in-
put and output models as well as on the size of the patterns, as we rely on a pattern
matching mechanism. Thus, the smaller the models and patterns, the higher the per-
formance. The size or complexity of the tested transformation implementation is not
an issue though.

Some works report some limitations regarding the kind of failures that contracts
can detect (Traon et al. 2006). For example, in object oriented systems, method pre-
and postconditions have difficulties in reasoning about the global state of an object or
set of objects, as they are specified locally. For example, a prune method of a stack
cannot define a trivial local contract checking if the removed element was previously
inserted by a put method (Traon et al. 2006). In contrast, transformation contracts
are not specified at the rule level—as they are language-independent—and hence
can be used to specify global transformation properties. In Traon et al. (2006), it is

@ Springer

Autom Softw Eng

argued that detecting certain failures requires overly complex contracts, more than
the method implementation itself. In our case, contracts can be made more precise
by: (a) enriching a pattern with enabling or disabling conditions, (b) adding more
objects to the source or target compartments of a pattern, or (c¢) adding new patterns
to the contract. It is up to future work to investigate the degree in which more complex
contracts increase the effectiveness for failure detection (as in Briand et al. (2003),
Traon et al. (2006)).

Finally, the kind of failures PAMOMO can detect is related to its expressiveness.
There are some limitations concerning the specification of contextual conditions for
a given property, as currently patterns support conjunction of disabling conditions
but not disjunction or arbitrary boolean formulae over disabling conditions, or nested
(i.e., recursive) conditions. The expressiveness of the graphical part of our patterns
is limited (less than first-order logic). For example, we cannot model the absence
of cycles of a given relation graphically. Nonetheless, in practice, we have found
the expressiveness of PAMOMO to be enough to build useful contracts declaring
interesting properties for our transformations, as we have shown in Sect. 8.

10 Conclusion and future work

Transformations should be developed using sound engineering principles. For this
purpose, and based on the well-known design by contract paradigm, we have pre-
sented a visual, declarative language called PAMOMO to specify behavioral semantic
contracts for M2M transformations in an implementation-independent way.

PAMOMO allows in a first step the specification of preconditions, i.e., conditions
that need to be satisfied by input models to qualify for a transformation. Second,
invariants are used to specify conditions that any pair of input/output models result-
ing from a correct transformation has to fulfill. Finally, postconditions are used to
express required or forbidden configurations of elements in the output models. In or-
der to make these declarative contracts operational, we reported on their compilation
into check-only QVT-R transformations to check for conformance with respect to the
specified contracts. Finally, a prototypical implementation was presented enabling
the visual specification of contracts, their automatic compilation into QVT-R, and
its chaining with the execution of the transformation under test. Several case studies
were reported, showing the versatility of our approach.

In the future, we intend to work towards better facilities for error location (diag-
nosability) in the transformation implementation. In addition to annotating the im-
plementation rules with the addressed invariants, a more complex but also more user
friendly approach might be to employ heuristics exploiting trace information pro-
vided by the execution engines. This trace information might be matched with the er-
ror bindings provided by QVT-R to conclude on the rules causing the error. We also
plan to study to which degree more detailed contracts (e.g., patterns with enabling
or disabling conditions) improve failure detection in transformation testing. We are
also investigating the use of the formal semantics of the contracts to analyse the com-
patibilities of individual transformations in a transformation chain. We also plan to
extend the expressive power of PAMOMO, to use it for expressing contracts for in-
place transformations, and to develop additional reasoning rules that help designers

@ Springer

Autom Softw Eng

in building better contracts, e.g., by detecting mismatches between a contract and
the metamodel constraints of the involved languages. It could be also interesting to
integrate PAMOMO with our transformation engineering language transML (Guerra
etal. 2011) in order to apply the presented contract-based approach to industrial case
studies. Moreover, our compilation into QVT-R opens the door to use PAMOMO not
only as a specification language for contracts, but also as an executable, high level
language to specify the actual transformation behavior. Finally, regarding tool sup-
port, we are working towards the use of the concrete syntax of models in PAMOMO
specifications.

References

Aranega, V., Mottu, J.-M., Etien, A., Dekeyser, J.-L.: Using trace to situate errors in model transformations.
In: Software and Data Technologies. Communications in Computer and Information Science, vol. 50,
pp. 137-149. Springer, Berlin (2011)

Balogh, A., Bergmann, G., Csertdn, G., Gonczy, L., Horvéth, A., Majzik, 1., Pataricza, A., Polgér, B.,
Réth, 1., Varr6, D., Varr6, G.: Workflow-driven tool integration using model transformations. In:
Graph Transformations and Model-Driven Engineering. LNCS, vol. 5765, pp. 224-248. Springer,
Berlin (2010)

Baudry, B., Dinh-Trong, T., Mottu, J., Simmonds, D., France, R., Ghosh, S., Fleurey, F., Le Traon, Y.:
Model transformation testing challenges. In: ECMDA Workshop on Integration of Model Driven
Development and Model Driven Testing, vol. 92 (2006)

Baudry, B., Ghosh, S., Fleurey, F., France, R., Le Traon, Y., Mottu, J.-M.: Barriers to systematic model
transformation testing. Commun. ACM 53, 139-143 (2010)

Beugnard, A., Jézéquel, J.-M., Plouzeau, N., Watkins, D.: Making components contract aware. Computer
32, 38-45 (1999)

Bézivin, J.: On the unification power of models. Softw. Syst. Model. 4(2), 31 (2005)

Bézivin, J., Rumpe, B., Schiirr, A., Tratt, L.: Model transformations in practice. In: Workshop of MoD-
ELS’05 (2005)

Briand, L.C., Labiche, Y., Sun, H.: Investigating the use of analysis contracts to improve the testability of
object-oriented code. Softw. Pract. Exp. 33(7), 637-672 (2003)

Brottier, E., Fleurey, F., Steel, J., Baudry, B., Traon, Y.L.: Metamodel-based test generation for model
transformations: an algorithm and a tool. In: ISSRE’06, pp. 85-94. IEEE Comput. Soc., Los Alamitos
(2006)

Cabot, J., Clariso, R., Guerra, E., de Lara, J.: Verification and validation of declarative model-to-model
transformations through invariants. J. Syst. Softw. 83(2), 283-302 (2010)

Cariou, E., Marvie, R., Seinturier, L., Duchien, L.: OCL for the specification of model transformation
contracts. In: Workshop on OCL and Model Driven Engineering UML’04, vol. 12, pp. 69-83 (2004)

Cariou, E., Belloir, N., Barbier, F., Djemam, N.: OCL contracts for the verification of model transforma-
tions. In: ECEASST, vol. 24 (2009)

Czarnecki, K., Helsen, S.: Feature-based survey of model transformation approaches. IBM Syst. J. 45(3),
621-645 (2006)

EMEF: Eclipse Modeling Framework. www.eclipse.org/emf. Last accessed: January 2012

Fishman, G.S.: Discrete-Event Simulation: Modeling, Programming, and Analysis. Springer, Berlin
(2001)

Fleurey, F., Steel, J., Baudry, B.: Validation in model-driven engineering: testing model transformations.
In: MoDeVa’04, pp. 29-40. IEEE Comput. Soc., Los Alamitos (2004)

Fleurey, F., Baudry, B., Muller, P.-A., Traon, Y.: Qualifying input test data for model transformations.
Softw. Syst. Model. 8, 185-203 (2009)

France, R., Rumpe, B.: Model-driven development of complex software: A research roadmap. In:
FOSE’07, pp. 37-54. IEEE Comput. Soc., Los Alamitos (2007)

Giner, P., Pelechano, V.: Test-driven development of model transformations. In: MODELS’09. LNCS, vol.
5795, pp. 748-752. Springer, Berlin (2009)

Gogolla, M., Vallecillo, A.: Tractable model transformation testing. In: ECMFA’11. LNCS, vol. 6698, pp.
221-235. Springer, Berlin (2011)

@ Springer

http://www.eclipse.org/emf

Autom Softw Eng

Gronback, R.C.: Eclipse Modeling Project: A Domain-Specific Language (DSL) Toolkit. Addison-Wesley
Professional, Reading (2009). See also http://www.eclipse.org/modeling/gmp/

Guerra, E., de Lara, J., Kolovos, D.S., Paige, R.F.: A visual specification language for model-to-model
transformations. In: VL/HCC, pp. 119-126. IEEE Comput. Soc., Los Alamitos (2010)

Guerra, E., de Lara, J., Kolovos, D.S., Paige, R.F., dos Santos, O.M.: Engineering model transformations
with transML. Softw. Syst. Mod. (2011, in press). doi:10.1007/s10270-011-0211-2

Jackson, D.: Software Abstractions. Logic, Language, and Analysis. MIT Press, Cambridge (2006)

Jensen, K.: Coloured Petri Nets Basic Concepts, Analysis Methods and Practical Use. Monographs in
Theoretical Computer Science. Springer, Berlin (1997)

Jensen, K., Kristensen, L.M., Wells, L.: Coloured Petri nets and CPN tools for modelling and validation of
concurrent systems. Int. J. Softw. Tools Technol. Transf. 9(3—4), 213-254 (2007)

Jouault, F., Kurtev, L.: Transforming models with ATL. In: Model Transformations in Practice Workshop
(2005)

Kessentini, M., Sahraoui, H.A., Boukadoum, M.: Example-based model-transformation testing. Autom.
Softw. Eng. 18(2), 199-224 (2011)

Kolovos, D., Paige, R., Polack, F.: The Epsilon transformation language. In: ICMT’08. LNCS, vol. 5063,
pp. 46—60. Springer, Berlin (2008a)

Kolovos, D., Paige, R., Rose, L., Polack, F.: Unit testing model management operations. In: ICSTW’08,
pp. 97-104. IEEE Comput. Soc., Los Alamitos (2008b)

Kolovos, D.S., Paige, R.E,, Polack, F.A.: Model comparison: a foundation for model composition and
model transformation testing. In: GaMMa’06, pp. 13-20. ACM Press, New York (2006)

Kiihne, T.: Matters of (meta-)modeling. Softw. Syst. Model. 5(4), 369-385 (2006)

Kiister, J.M.: Definition and validation of model transformations. Softw. Syst. Model. 5(3), 233-259
(2006)

Kiister, J.M., Abd-El-Razik, M.: Validation of model transformations—first experiences using a white
box approach. In: Models in Software Engineering. LNCS, vol. 4364, pp. 193-204. Springer, Berlin
(2006)

Leavens, G.T., Cheon, Y., Clifton, C., Ruby, C., Cok, D.R.: How the design of JML accommodates both
runtime assertion checking and formal verification. Sci. Comput. Program. 55(1-3), 185-208 (2005)

Lin, Y., Zhang, J., Gray, J.: Model comparison: A key challenge for transformation testing and version
control in model driven software development. In: OOPSLA Workshop on Best Practices for Model-
Driven Software Development (2004)

Lin, Y., Zhang, J., Gray, J.: A testing framework for model transformations. In: Model-Driven Software
Development, pp. 219-236 (2005)

Mens, T., Van Gorp, P.: A taxonomy of model transformation. Electron. Notes Theor. Comput. Sci. 152,
125-142 (2006)

Meyer, B.: Applying “design by contract”. Computer 25, 40-51 (1992)

Mottu, J.-M., Baudry, B., Le Traon, Y.: Reusable MDA components: A testing-for-trust approach. In:
MoDELS’06. LNCS, vol. 4199, pp. 589-603. Springer, Berlin (2006)

Mottu, J.-M., Baudry, B., Traon, Y.L.: Model transformation testing: oracle issue. In: ICSTW’08, pp.
105-112. IEEE Comput. Soc., Los Alamitos (2008)

Object Management Group: OCL Specification Version 2.0. http://www.omg.org/docs/ptc/05-06-06.pdf,
2005

Object Management Group: QVT Specification Version 1.1. http://www.omg.org/spec/QVT/1.1/, 2011

Ramos, R., Barais, O., Jézéquel, J.-M.: Matching model-snippets. In: MoDELS’07. LNCS, vol. 4735, pp.
121-135. Springer, Berlin (2007)

Schmidt, D.C.: Model-driven engineering. Computer 39(2), 25-31 (2006)

Sen, S., Baudry, B., Mottu, J.-M.: Automatic model generation strategies for model transformation testing.
In: ICMT’09. LNCS, vol. 5563, pp. 148-164. Springer, Berlin (2009)

Spivey, J.M.: An introduction to Z and formal specifications. Softw. Eng. J. 4(1), 40-50 (1989)

TATA Research Development and Design: ModelMorf. http://www.tcs-trddc.com/trddc_website/
ModelMorf/ModelMorf.htm. Last accessed: January 2012

Traon, Y.L., Baudry, B., Jézéquel, J.-M.: Design by contract to improve software vigilance. IEEE Trans.
Softw. Eng. 32(8), 571-586 (2006)

Varrd, D., Varr6-Gyapay, S., Ehrig, H., Prange, U., Taentzer, G.: Termination analysis of model transfor-
mations by Petri nets. In: ICGT’06. LNCS, vol. 4178, pp. 260-274. Springer, Berlin (2006)

Xpand: Xpand Templates. http://wiki.eclipse.org/Xpand. Last accessed: January 2012

@ Springer

http://www.eclipse.org/modeling/gmp/
http://dx.doi.org/10.1007/s10270-011-0211-2
http://www.omg.org/docs/ptc/05-06-06.pdf
http://www.omg.org/spec/QVT/1.1/
http://www.tcs-trddc.com/trddc_website/ModelMorf/ModelMorf.htm
http://www.tcs-trddc.com/trddc_website/ModelMorf/ModelMorf.htm
http://wiki.eclipse.org/Xpand

	Automated verification of model transformations based on visual contracts
	Abstract
	Introduction
	Background: model transformation in a nutshell
	Model-to-Model transformations
	Transformation scenario: from class diagrams to relational schemas

	Model transformation contracts
	Increasing quality through design by contract
	Model transformation contracts with PaMoMo at a glance

	Contract specification with PaMoMo
	Modeling contracts with PaMoMo
	Preconditions and postconditions
	Enabling and disabling conditions
	Sets

	Reasoning with patterns

	Implementing model transformations with QVT-relations
	Operationalizing contracts: from PaMoMo to QVT-relations
	Compilation of preconditions and postconditions
	Compilation scheme of preconditions
	Example
	Compilation scheme of postconditions
	Example

	Compilation of invariants
	Compilation scheme
	Example

	Compilation of enabling and disabling conditions
	Compilation scheme
	Example

	Compilation of sets
	Compilation scheme
	Example

	Summary of the compilation

	The PaCo-Checker tool
	Case studies
	Using PaMoMo to verify its own translation into QVT-relations
	From a process-interaction language into timed coloured Petri nets
	Verification of graphical definitions in the GMF
	Layout constraints
	Child access constraints

	Related work
	Verification by model comparison
	Verification by trace analysis
	Verification by contract
	OCL based approaches
	Graph pattern based approaches
	Model-fragment based approaches

	Contributions of PaMoMo and discussion

	Conclusion and future work
	References

