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Abstract. Model transformations are mostly developed from scratch.
For increasing development productivity as well as quality of model
transformations, reuse mechanisms are indispensable. Although numer-
ous mechanisms have been proposed, no systematic comparison exists
making it unclear, which reuse mechanisms may be best employed in
a certain situation. Therefore, this paper provides an in-depth compar-
ison of reuse mechanisms in rule-base model-to-model transformation
languages and categorizes them along their intended scope of applica-
tion. For this, a systematic comparison framework for reuse mechanisms
is proposed to highlight commonalities as well as differences. Finally,
current barriers to model transformation reuse are outlined.
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1 Introduction

Model transformations are crucial for the success of Model-Driven Engineering,
being comparable in role and importance to compilers for high-level program-
ming languages. Nevertheless, most of today’s transformation designers still fol-
low an ad-hoc manner to specify model transformations [10]. For increasing
development productivity as well as quality of model transformations, the ap-
plication of appropriate reuse mechanisms is indispensable. This need has been
recognized by the research community as a plethora of proposed reuse mecha-
nisms reveals [6–9, 13, 16, 18, 21–23, 25–29]. Nevertheless, there exists no survey
providing an overview of the proposed mechanisms to deeper understand their
commonalities and differences. Thus, it is unclear which reuse mechanisms may
be employed in a certain situation and which barriers exist in applying them.

Therefore, this paper provides an in-depth comparison of proposed reuse
mechanisms in rule-based model-to-model transformation languages to highlight
when to apply a certain reuse mechanism and how reuse mechanisms complement
each other. In this respect, reuse mechanisms are categorized along their intended
scope of application, ranging from reuse in the small, e.g., functions, to reuse
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in the large, e.g., orchestration of model transformations. For this, a systematic
comparison framework for reuse mechanisms is proposed comprising comparison
criteria along four different dimensions analogous to the main phases in software
reuse [15], being abstraction, selection, specialization and integration. On the
basis of this framework, the categorized reuse mechanisms are compared and for
each reuse mechanism corresponding supporting representatives are given. To
illustrate the different mechanisms, example reuse scenarios on the basis of a
running example are given.

Outline. Section 2 introduces the running example and presents the compar-
ison framework with its four dimensions. In Section 3, the comparison framework
is used to compare the reuse mechanisms along their different scopes of reuse.
Section 4 presents barriers to reuse in model transformations and finally, Sec-
tion 5 concludes the paper.

2 Comparison Framework

This section introduces scopes of reuse based on an example which is used
throughout the paper to illustrate the different reuse mechanisms. Furthermore,
a comparison framework is presented to characterize the reuse mechanisms.

2.1 Scopes of Reuse

Different scopes of reuse exist which posses different reuse potentials, e.g., within/
across transformations or between the same/different metamodels (MMs). In this
respect, we identified five different scopes ranging from reuse in the small to reuse
in the large which are depicted in Fig. 1 on basis of the Class2ER example [2]:

– Scope 1: To avoid code duplication, reuse of logic within a single transfor-
mation is needed, i.e., the scope is to reuse the same transformation logic
between the same MMs in the same transformation (cf. (1) in Fig. 1).

– Scope 2: To realize similar transformation logic, e.g., to pursue different OR-
mapping approaches – a “one table per hierarchy” approach instead of a “one
table per class” approach (cf. (2) in Fig. 1) – reuse of transformation logic
between the same MMs in different transformations is needed.

– Scope 3: The transformation logic of the Class2ER example might be needed
in an Ontology2XML transformation as well, requiring that the same trans-
formation logic could be reused in the context of different MMs and thus
different transformations (cf. (3) in Fig. 1).

– Scope 4: Since cross-cutting concerns, e.g., debugging or tracing (cf. (4)
in Fig. 1), should be reusable throughout transformations, mechanisms are
needed that allow to reuse logic irrespective of MMs and transformations.

– Scope 5: Reuse in the large is achieved when existing transformations can
be applied without changing transformation logic or MMs, as is the case for
chaining a ER2Relational transformation after the Class2ER transforma-
tion in our running example (cf. (5) in Fig. 1).
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Fig. 1. Running Example - Different Scopes of Reuse

2.2 Comparison Criteria

In order to highlight commonalities as well as differences between reuse mech-
anisms across their scopes, a comparison framework (cf. Fig. 2) based on the
common phases (i) abstraction, (ii) selection, (iii) specialization, and (iv) inte-
gration of reuse mechanisms according to [15] is proposed in the following.

Abstraction. To enable reuse, abstraction is the key of any reuse mecha-
nism. According to [14], one might distinguish between abstraction by general-
ization and abstraction by simplification. Abstraction by generalization allows to
make an artifact reusable in different situations. To achieve this in the context
of model transformations, it should be possible to decouple transformation logic
from type information, i.e., the source and the target MMs. Furthermore, reuse
of transformation logic across platforms should be possible by generalizing from
a certain transformation language. Abstraction by simplification allows to em-
phasize the information necessary for reuse, i.e., the visible part (e.g., interface
of a function to reuse), but to hide the actual realization of the artifact, i.e., the
hidden part (e.g., the implementation of the function) [15].

Selection. Provided that repositories of reusable artifacts exist, mechanisms
are needed to efficiently find the artifacts. Such mechanisms range from metain-
formation, e.g., documentation or pre-/post-conditions, to automatism in the
form of wizards or more advanced techniques from information retrieval [19].

Specialization. To adapt an abstracted artifact to a specific transformation,
specialization is needed. Ideally, only knowledge of the signature of the abstracted
artifact, but not of the realization is needed (i.e., reuse in the black-box view).



In contrast, reuse in the white-box view demands additional knowledge of the
realization. For specialization, typically certain mechanisms are needed, e.g.,
passing of parameter values in functions or overriding/extending parts in the
context of inheritance. Finally, language-inherence states if a transformation
designer stays in the same formalism for specialization or not.
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Fig. 2. Comparison Framework

Integration. Whereas specializa-
tion solely configures an artifact, in-
tegration focuses on how reusable ar-
tifacts interact with the remaining
parts of the specified transformation.
Reuse mechanisms in software engi-
neering are typically categorized into
composition and generation mecha-
nisms [3, 20]. Thereby, composition
implies that integration must take
place whereas generation implies that
an executable transformation without
further need for integration is pro-
duced. Therefore, the first criterion
ability distinguishes between composition and generation, whereas the second
criterion kind differentiates potential ways of composition. In this respect, ac-
cording to [17], composition can be realized by (i) containment, i.e., the speci-
fied transformation nests the reusable artifact, (ii) connection, i.e., the specified
transformation reuses the artifact by delegation, (iii) extension, i.e., the reusable
artifact is extended and refined, and (iv) coordination, i.e., a synchronization lan-
guage is used to coordinate the reusable artifacts.

3 Comparison of Reuse Mechanisms

Based on the identified scopes and the introduced comparison framework, pro-
posed reuse mechanisms for model transformations are compared in the following
(cf. Table 1 for an overview and Table 2 for details). For each reuse mechanism,
representative transformation languages are listed, irrespective of their paradigm
(declarative, imperative or hybrid) or scenario (e.g., inplace or model-to-model,
or uni- or bidirectional transformations). To illustrate the different mechanisms,
sample transformations for different facets of the running example are provided.
To enhance understandability, ATL as a single transformation language has been
used to exemplify the reuse mechanisms since it supports most of them.

3.1 Reuse of Transformation Logic within a Single Transformation

Mechanisms to avoid code duplication and thus to enhance readability and main-
tainability within a single transformation include functions and inheritance,
since both depend on concrete MM types.

Functions. All known transformation languages provide means to extract
and then reuse recurring transformation logic in functions. As can be seen in



Table 1. Categorization of Reuse Mechanisms

Scope of Reuse Reuse Mechanisms Supporting Representatives

Reuse of Transformation Logic within a Single 
T f ti

Functions
I h it

All languages
ATL ETL TGG QVT O T fk tTransformation Inheritance ATL, ETL, TGGs, QVT‐O, Tefkat

Reuse of Transformation Logic in Similar Scenarios 
(same MMs, different logic)

Superimposition
Transformation Product Lines

ATL, QVT, RubyTL
[11], [22]

Reuse of Transformation Logic in Different Scenarios  Genericity SDM, VIATRA2, Tefkat, [5]
(different MMs, same logic) DSL External: [8], [28], Internal: [6], Epsilon, RubyTL

Reuse of Transformation Logic Independent of the
Scenario

AOP
HOT
Reflection

Xtend
All languages providing an explicit metamodel
SDM, MISTRAL

Reuse of Transformation Logic in the Large Orchestration [12], [20], [25], ATLFlow, QVT 

Fig. 3(a) which realizes the running example in a “one table per class approach”,
the concatenation of the name with translated is realized by an ATL helper
which is invoked several times in the transformation specification. Nevertheless,
the gained abstraction of this reuse mechanism is low, since functions typically
depend on concrete MM types, e.g., NamedElement in the example. Abstraction
by simplification is gained since the implementation is hidden after being de-
veloped once. For selection, no repository exists since functions are specific to
a single transformation. Specialization is done black-box based, i.e., functions
are specialized in a language-inherent manner by parameter values. Concerning
integration, functions are a connection-based composition mechanism.

Inheritance. Since inheritance is employed in MMs to reuse feature def-
initions from previously defined classes, also inheritance between transforma-
tion rules can be applied in order to avoid code duplication. As can be seen
in Fig. 3(b), rule inheritance in our running example is used in order to avoid
the re-specification of the name assignment. Therefore, all rules inherit from the
common base rule NamedElem2ModelElem. Nevertheless, inheritance does nei-
ther achieve abstraction from the actual MM types nor from the underlying
transformation language, since the superrules are bound to concrete MM types.
Furthermore, no abstraction by simplification takes place, since the whole im-
plementation of the superrules is exposed to transformation designers. For selec-
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tion, no repository exists since inheritance is currently specific to a single trans-
formation. Superrules might be specialized by overriding them in a white-box,
language-inherent manner. With respect to integration, inheritance represents
an extension-based composition mechanism.

Synopsis. Functions as well as inheritance are both mechanisms to avoid
code duplication within a single transformation. Nevertheless, they complement
each other, since functions reuse arbitrary transformation logic whereas inher-
itance reuses assignments provided that the MM incorporates inheritance and
thus allows for rule inheritance. Although inheritance is an important reuse
mechanism in OOP, not all transformation languages support inheritance, or if
they do, they offer different semantics as we already investigated in [31]. For
example there are differences in how overridden assignments are incorporated in
the overriding assignment or the way type substitutability is supported.

3.2 Reuse of Transformation Logic in Similar Scenarios

Provided that a similar transformation scenario has to be realized on the basis of
an existing transformation, i.e., a transformation between the same source and
target MMs, but with different transformation logic, mechanisms are needed that
allow to either alter the existing transformation, e.g., superimposition, or to con-
figure an existing transformation such that it meets the changed requirements,
e.g., transformation product lines.

Superimposition. Superimposition allows to build the union of transforma-
tion rules from different transformations. Thereby rules can be redefined, i.e., a
rule is replaced by a new one if their signatures are identical, and added, whereby
it is impossible to reuse the original rule. Superimposition has been proposed
for ATL and QVT Relations [28] and is applicable in our running example to
provide a new transformation that implements a “one table per hierarchy” ap-
proach on basis of the existing “one table per class” transformation. Thereby,
the superimposed transformation redefines the rule Class2Entity and adds an
additional helper Closure to calculate the transitive closure (cf. Fig. 4(a)). The
so-called phasing mechanism and refinement rules in RubyTL [5] extend the
idea of superimposition in the way that superimposed rules may refine the re-
sults of the original rules. Nevertheless, superimposition abstracts neither from
the MMs (since old and redefined rules are bound to concrete MM types) nor
from the transformation language. Superimposition also does not abstract by
simplification, since the whole original transformation is visible to the trans-
formation designer. Concerning selection, existing transformations in the “ATL
Model Transformation Zoo”3 could be reused by superimposition. Nevertheless,
the selection process is supported by documentation only. Specialization is done
in a language-inherent, black-box manner since redefining existing transforma-
tion rules has to be done in the same language and requires to know the exact
signatures of the to be redefined transformation rules only. Regarding integration,
superimposition represents again an extension-based composition mechanism.

3 http://www.eclipse.org/m2m/atl/atlTransformations
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Transformation Product Lines. To deal with variabilities in model trans-
formations, approaches [12, 23] arose that allow transformation designers to ex-
plicitly specify potential variabilities in model transformations, which we call
Transformation Product Lines (TPLs) (inspired by Software Product Lines).
These approaches typically use some variability model, e.g., feature models, to
guide the generation of a specific transformation. Fig. 4(b) shows a simplistic
feature model for our running example, allowing to choose the classes to be
translated as well as the applied OR-mapping approach. In this respect, the
reusable artifact is not only the already existing transformation but additionally
the feature model, which models interdependencies and constraints of a model
transformation. Since TPLs realize a set of related transformations, they are
bound to concrete MM types and thus, abstract neither from MMs nor from
the transformation language. Currently, no repository is available for selecting
a certain TPL. Specialization is done by configuring the feature model, thus,
no internals of the transformation are needed, being a black-box, non-language-
inherent mechanism. Concerning integration, TPLs represent a generation-based
reuse mechanism on basis of the configured feature model.

Synopsis. Superimposition as well as TPLs allow both to realize related
transformation scenarios. Nevertheless, superimposition follows an ad-hoc de-
velopment approach, i.e., a transformation may be incrementally modified on
demand whereas TPLs represent a planned development approach, i.e., all po-
tential variabilities of a transformation have to be modeled in advance. Although
changes in TPLs themselves are challenging since the feature model, the transfor-
mation code as well as the code generator have to be adapted accordingly, TPLs
have the advantage, that even domain experts without profound knowledge of a
transformation language might develop transformations by just selecting values
from the feature model. In contrast to TPLs, superimposition requires profound
knowledge of the transformation language but allows flexible changes of trans-
formations.

3.3 Reuse of Transformation Logic in Different Scenarios

Assuming that the same transformation logic should be reused in a different
scenario, i.e., different source/target MMs, mechanisms are needed that allow to



decouple transformation logic from concrete MM types. In this respect, generic
transformations and domain-specific languages (DSLs) have been proposed as
detailed in the following.

Genericity. Genericity allows to parameterize transformation logic with
types to abstract from concrete MMs. Thereby, approaches have been proposed
for fine-grained genericity [18, 27], i.e., on the level of rules or functions, and
coarse-grained genericity [6], i.e., on the level of transformations. Fig. 5 shows
an example for coarse-grained genericity whereby the whole Class2ER trans-
formation should be reused for an Ontology2XML transformation. This is pos-
sible, since the new MMs (Ontology and XML) are structurally similar to the
old MMs (Class and Relational). In this case, the transformation designer
only has to specify a binding model, denoting which types of the old MMs cor-
respond to which types of the new MMs. This binding model is then used to
modify the original transformation by means of a higher-order transformation
(HOT) (cf. below). Thus, the transformation designer only has to care about the
source/target MMs representing the visible part, whereas the implementation is
hidden. Nevertheless, although the idea of generic functions and transformations
is promising, no library has been established so far putting the question whether
there is support for selection aside. Since specialization is done by setting type
parameters in case of fine-grained genericity or specifying the binding model in
case of coarse-grained genericity, it is considered as a black-box. Finally, the
specialization process occurs language-inherent in case of generic functions and
non-language-inherent in case of generic transformations. Whereas in case of
fine-grained genericity connection is applied as a composition mechanism for
integration, coarse-grained genericity resembles a generation-based mechanism.

Domain-specific Languages. Another way to reuse logic in different sce-
narios are DSLs, which provide means to simplify specification of recurring prob-
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)
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Fig. 6. External DSL Example [29]

lems in transformations. Two different kinds of DSLs can be distinguished: (i)
external DSLs, i.e., the DSL can be used independently from the underlying
transformation language, and (ii) internal DSLs, i.e., DSL constructs are embed-
ded in a transformation language. External DSLs have been proposed by [9] and
[29] which focus on the resolution of structural heterogeneities, e.g., the splitting
of the class Property into the classes Attribute and Type represents a vertical
partitioning heterogeneity. Fig. 6 shows the solution of the running example using
the DSL presented in [29]. In order to execute a DSL-based specification, it has to
be translated into a certain executable transformation language. Internal DSLs
follow the same principles but differ in the fact that DSL constructs are tightly
integrated in a certain transformation language. A representative for internal
DSLs is the High Level Navigation Language (HNL) [7] which hides complex
OCL navigation expressions using ATL as host language. Internal DSLs are also
supported by RubyTL [8] and Epsilon4, whereby specialized DSLs, e.g., Epsilon
Flock for model migration, build upon the host language Epsilon Object Lan-
guage. Although both kinds of DSLs abstract from concrete MMs, only external
DSLs also abstract from the underlying transformation language. Concerning
simplification, the provided DSL syntax, i.e., visible part, abstracts from the op-
erational semantics, i.e., hidden part. Selection of a certain reusable artifact, i.e.,
a DSL construct, is typically semi-automatically supported by editors, e.g., by
means of code completion based on the DSL’s grammar. DSLs are specialized in
a black-box, language-inherent manner, since specialization is done by binding
a certain grammar element to MM types, e.g., so-called ports need to be bound

4 http://www.eclipse.org/gmt/epsilon



to a certain MM element in [29] (cf. Fig. 6). Since DSL constructs are compiled
to ordinary transformation code, generation based integration takes place.

Synopsis. Genericity as well as DSLs allow both to decouple transformation
logic from concrete MM types. Genericity is a promising approach to reuse trans-
formation logic for structurally similar MMs, either on the fine-grained level of
rules or the coarse-grained level of transformations. Although especially in case of
coarse-grained genericity, large parts of transformation logic are reusable, it has
the drawback that it requires structural similarity resulting in a low probability
for application. In contrast, DSL constructs abstract from structural similarity
to a certain extent, e.g., in [29] structural flexibility is supported by providing
fixed parts as well as configurable parts. Thus, although the DSL constructs do
not allow to reuse whole transformations, DSLs have a higher probability for
application.

3.4 Reuse of Transformation Logic Independent from the Scenario

Parts of transformation logic might be independent of any concrete scenario
and might thus occur in series of transformations, e.g., cross-cutting concerns
like tracing or debugging (cf. Fig. 7). To reuse such cross-cutting concerns, sev-
eral mechanisms have been proposed, including higher-order transformations
(HOTs), aspect-orientation (AO), and reflection.

Higher-order Transformations, Aspect Orientation and Reflection.
As detailed in [25], HOTs can be applied in several ways to achieve reuse in
model transformations, being (i) transformation composition, (ii) transforma-
tion synthesis, and (iii) transformation modification. Transformation composi-
tion, meaning that a HOT takes at least one transformation and potentially
other configuration models as input and produces a transformation as output,
can be used, e.g., to achieve genericity as described above. Transformation syn-
thesis, meaning that a transformation is generated from other artifacts, is often
applied in the context of DSLs to generate transformations from DSL constructs
as mentioned above. Therefore, in this subsection, HOTs in the sense of trans-
formation modification are covered. The HOT takes a transformation as input
to, e.g., introduce cross-cutting concerns like debugging or tracing into an exist-
ing transformation. Similar goals might be achieved by AO, e.g., supported in
Xtend5 and reflection provided that the target of the reflection is the transfor-
mation itself as, e.g., in MISTRAL [16].

Considering these three mechanisms, the reusable artifact might either be
the transformation, the introduced cross-cutting concerns or even both, depend-
ing on what is newly developed. All mechanisms abstract from concrete MM
types, but none of them abstracts by simplification, since no parts are explic-
itly hidden. With respect to selection, several ATL-based HOTs are available in
the Model Transformation Zoo. There are, however, no repositories for AO or
reflection. Specialization happens typically as a black-box, provided that only
transformation-independent modifications take place, e.g., for each assignment,

5 http://www.eclipse.org/workinggroups/oaw



rule addDebugMessage{
from oldAssignment : ATL!Binding
to assignmentWithDebug : ATL!Binding (

propertyName <- oldAssignment.propertyName,
l d b

Reusable Artifact

value <- debugger
),
debugger : ATL!OperationCallExp (

source <- oldAssignment.value,
operationName <- 'debug',

rule CDModel2ERModel {
from cdmodel : CD!ClassDiagram
to ermodel : ER!ERDiagram (

name <- cdmodel.name + '…',
URI <- cdmodel.nsURI,

arguments <- Sequence {arg}
),
arg : ATL!StringExp (

stringSymbol <-
(oldAssignment.outPatternElement.outPattern."rule".name,

entities <- cdmodel.classes
)

}
...

(oldAssignment.outPatternElement.outPattern. rule .name
+ '.' + oldAssignment.outPatternElement.varName + '.' 
+ oldAssignment.propertyName)

)
} Higher‐Order TransformationClass2ER

URI := cdmodel.nsURI.debug(CDModel2ERModel.ermodel.URI),
entities := cdmodel.classes.debug(CDModel2ERModel.ermodel.entities)

Fig. 7. Higher-order Transformations

add a debug message. The specialization mechanism is either the HOT itself,
the so-called join point model in AO or the meta-rules in case of reflection [16],
describing where to introduce cross-cutting code. If the to be specialized trans-
formation and the HOT are written in the same transformation language, the
HOT is considered to be language-inherent. If AO and thus the specification of
the join point model is supported by the transformation language, specialization
occurs language-inherent. The same is true for reflection. Concerning integration,
all mechanisms are composition-based reuse mechanisms in terms of extension.

Synopsis. Although the three mechanisms pursue similar goals, i.e., intro-
ducing cross-cutting concerns into transformation languages without changing
the underlying transformation, the main difference lies in the kind of special-
ization. Since HOTs are defined on the abstract syntax of a transformation
language, a transformation designer must have profound knowledge thereof (cf.
Fig. 7). In contrast, AO allow specialization on basis of the concrete syntax and
reflection on basis of the provided reflective API.

3.5 Reuse of Transformation Logic in the Large

To achieve reuse in the large, whole transformations might be reused without
adaptations. Thus, mechanisms are needed to orchestrate model transformations,
e.g., describing sequential or conditional executions of model transformations.

Orchestration. Orchestration languages have been proposed to replace low-
level descriptions, e.g., in terms of Ant6 tasks. Basically, they can be divided
into approaches allowing to orchestrate model transformations written in differ-
ent languages [13, 21, 26] or in a specific language only (Wires* [22], ATLFlow7,
QVT-O8). Fig. 8 shows a simple example in Wires* sequentially executing two
ATL model transformations, first the Class2ER transformation and then a ER2-

Relational) transformation. In this respect, no abstraction from the MMs is

6 http://ant.apache.org/
7 http://opensource.urszeidler.de/ATLflow/
8 http://www.omg.org/spec/QVT/1.1/



t1 : 
Class2ER

II OOm1:
Class

m2:
ER

m3:
Relational

t2: 
ER2Relational

II OO

helper context NamedElement : addExtension() 
: String = self.name + '_translated';

rule CDModel2ERModel {
from cdmodel : CD!ClassDiagram
to ermodel : ER!ERDiagram (
name <- cdmodel.addExtension(),
…

)
}

rule Class2Entity {
from class : CD!Class
to entity : ER!Entity (
name <- class.addExtension(),
…

)
}

rule Property2Attribute {...}

abstract rule NamedElem2ModelElem {
from namedElement : CD!NamedElement
to modelElement : ER!ModelElement (
name <- namedElement.name + '_translated'

)
}

rule CDModel2ERModel
extends NamedElem2ModelElem {

from cdmodel : CD!ClassDiagram
to ermodel : ER!ERDiagram (…)

}

rule Class2Entity
extends NamedElem2ModelElem {...}

rule Property2Attribute
extends NamedElem2ModelElem {...}

ex
te
ns
io
n

Reusable Artifact

(b) Inheritance(a) Functions

M M MT T

in:Class out:ER in:ER out:Relational

Fig. 8. Orchestration Example

achieved since the to be reused transformations still operate on concrete MMs.
No abstraction from the underlying transformation language is achieved, ex-
cept the orchestration allows for transformations written in different languages.
Concerning simplification, the hidden parts comprise the implementation, since
for orchestration only the source and target MMs of the transformations are of
interest. ATL transformations might be selected again from the Model Trans-
formation Zoo. Since transformations must be reused without adaptation, no
specialization might occur. Integration happens by means of the orchestration
language, thus it is classified as coordination.

Synopsis. Orchestration is a promising approach for reusing large portions of
transformation logic. Nevertheless, the frequency of occurrence is constrained by
the specificity of the reused transformations since each one is bound to concrete
source and target MMs. Thus, it might be beneficial to combine orchestration
with generic model transformations as proposed by [6].

Table 2. Comparison of Reuse Mechanisms

Scope 4: 
Scenario‐

independent

Scope 5:
 In the Large

Functions Inheritance Superimposition
Transformation 
Product Lines

Genericity DSL
HOT, AO, 
Reflection

Orchestration

Function Base Rules
Base 

Transformation
Feature Model, 
Transformation

Generic Rules, 
Transformations

DSL constructs, 
Generator

Base 
Transformation, 
Concern or Both

Transformation

From MM

From TL
yes (external), 
no (internal)

Hidden Parts Implementation none none Transformation Implementation
Operational 
Semantics

none implementation

Visible Parts Signature all all Features
Signature with 
Type Parameters

DSL syntax all
Signature 

(Source/Target 
MMs)

‐ ‐
ATL Model 

Transformation 
Zoo

DSL constructs
ATL Model 

Transformation Zoo 
(HOTs)

ATL Model 
Transformation 

Zoo

‐ ‐ Documentation ‐ ‐
Documentation, 

Grammar
Documentation Documentation

‐ ‐ manual ‐ ‐
semi‐automatic 

(code completion)
manual manual

black‐box white‐box black‐box black‐box black‐box black‐box black‐box ‐

parameter 
binding

overriding rule redefining rules
configuration on 

basis of the 
feature model

type parameter 
binding

parameter binding

Transformation 
(HOT), Join Point 
Model (AO), 
Metarules 
(Reflection)

‐

yes (fine‐grained 
genericty), no 
(coarse‐grained 

genericity)

‐

Composition Composition Composition Generation Composition Generation Composition Composition
Connection Extension Extension ‐ Connection ‐ Extension CoordinationKind

Required Knowledge

Mechanism

Language‐inherent

Integration
Ability

Scope 3: 
Different Scenario

Selection

Specialization

Generalization

Repository

Automatism

Metainfo

Scope 1:
 Single Transformation

Simplification

Reusable Artifact

Abstraction

Scope 2: 
Similar Scenario

4 Barriers to Model Transformation Reuse

Although numerous reuse mechanism have been proposed, barriers to model
transformation reuse exists which hinder the adaptation of the mechanisms in



practice. In the following, the main barriers derived from our comparison are
presented, identifying further research potentials.

Insufficient Abstraction from Metamodels. Although, some mecha-
nisms, e.g., genericity, allow to decouple transformation logic from concrete
MM types, the transformation logic is still dependent on the structure of the
MMs. Thus, reuse of transformation logic between different MMs is hampered.
To improve this situation, domain-specific standardized MMs would be bene-
ficial, where standardized transformations might be defined on. Specific MMs
might then extend the standardized MMs. Thus, the standardized transforma-
tions might also be reused to realize specific transformations, resembling the
idea of frameworks in software engineering. This way, reuse of larger portions of
transformation logic would be enabled.

Insufficient Abstraction from Platform. Except external DSLs, all reuse
mechanisms target at a single transformation language, but there is little work
on how to reuse transformation logic in general. A first step in this direction is
presented in [30] where a classification of structural heterogeneities in model-to-
model transformations is given, which may serve as a pattern library for model
transformations. Furthermore, reusable transformation patterns have been pre-
sented in [1] for graph transformation languages and idioms for QVT in [11].
Thinking this one step further, reuse should be enabled during the whole de-
velopment cycle including requirements analysis, design, implementation, and
testing as also stated in [10].

Missing Repositories for Selection. As can be derived from our com-
parison, hardly any repository of reusable artifacts has been established so far,
except the Model Transformation Zoo comprising a collection of ATL-based
model transformations. This is in contrast to software engineering, where differ-
ent kinds of repositories of reusable artifacts exists, ranging from fine-grained
class-libraries (being delivered with any programming language) over compo-
nents to coarse-grained frameworks.

Lack of Meta-information in Selection. As Table 2 reveals, there is little
meta-information available for selecting a reusable artifact without having to
know its internals. Therefore, it would be important to provide transformations
with according meta-information, comprising source/target MMs, test models,
pre- and postconditions, and documentation. Preconditions may be used, e.g., to
check if input models conform to the implemented transformation logic [4]. More
abstract models for model transformations, e.g., requirements, would provide an
additional source of meta-information.

Challenging Specialization Mechanisms. Although most reuse mech-
anisms allow for specialization, they are sometimes challenging to be applied
in practice. This includes especially HOTs as also stated in [24] where the user
must be familiar with the abstract syntax of the transformation language. In case
of inheritance, specialization has potential for improvement, since none of the
approaches allows to define reuse policies, e.g., to disallow rule inheritance (cf.
final keyword in Java) or to define some access rights (cf. keywords private,



protected or public). However, one important step in this direction has been
the introduction of the “module” concept in transformation languages [5].

Insufficient Support for Integration in the Large. Although orchestra-
tion languages have been proposed to chain transformations to build larger ones,
a main issue is the compatibility of source/target MMs between the orchestrated
transformations. Thus, mechanisms are needed that ensure type compatibility in
transformation chains similar to type checks in ordinary programs. This would
incorporate compilation errors, if compatibility between MMs in the context of
a specific transformation is violated.

5 Conclusion

In this paper, we provided an overview on proposed reuse mechanisms in model
transformations. The comparison has been conducted on the basis of a framework
covering the main phases in reuse, comprising abstraction, selection, specializa-
tion and integration. Although the comparison showed that a variety of mech-
anisms for reuse have been proposed, several barriers hindering their successful
application have been identified. Furthermore, currently there is a strong focus on
reuse in the implementation phase but reuse across all development phases would
be urgently needed, e.g., general guidelines on how to design transformations.
Thus, in our opinion further research is needed to make model transformation
more a fact than a fiction.

References

1. A. Agrawal, A. Vizhanyo, Z. Kalmar, F. Shi, A. Narayanan, and G. Karsai.
Reusable Idioms and Patterns in Graph Transformation Languages. Electronic
Notes in Theoretical Computer Science, 127(1):181–192, 2005.
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