
Model Transformation By-Example:
A Survey of the First Wave?

Gerti Kappel1, Philip Langer2, Werner Retzschitzegger2,
Wieland Schwinger2, and Manuel Wimmer1

1 Vienna University of Technology, Austria
{gerti|wimmer}@big.tuwien.ac.at

2 Johannes Kepler University Linz, Austria
{langer|retschitzegger|schwinger}@jku.at

Abstract. Model-Driven Engineering (MDE) places models as first-
class artifacts throughout the software lifecycle. In this context, model
transformations are crucial for the success of MDE, being comparable in
role and importance to compilers for high-level programming languages.
Thus, several model transformation approaches have been developed in
the last decade, whereby originally most of them are based on the ab-
stract syntax of modeling languages. However, this implementation spe-
cific focus makes it difficult for modelers to develop model transforma-
tions, because they are familiar with the concrete syntax but not with
its computer internal representation.
To tackle this problem, model transformation by-example approaches
have been proposed which follow the same fundamental idea as query
by-example and programming by-example approaches. Instead of using
the computer internal representation of models, examples represented
in concrete syntax are used to define transformations. Because different
transformation scenarios occur in MDE, different by-example approaches
have been developed. This chapter gives an overview on the emerging
concepts, techniques, and approaches in this young by-example area.

Keywords: model transformation, by-example, model-driven engineer-
ing

1 Introduction

Model-Driven Engineering (MDE) places models as first-class artifacts through-
out the software lifecycle [7, 16, 38]. In this context, model transformations [39]
are crucial for the success of MDE, being comparable in role and importance to
compilers for high-level programming languages, for bridging the gap between
design and implementation. Thus, several model transformation approaches (cf.
[13] for an overview) have been developed in the last decade, whereas most of
them are based on the abstract syntax of modeling languages which is defined by

? This work has been partly funded by the Austrian Federal Ministry of Transport,
Innovation and Technology (BMVIT) and FFG under grant FIT-IT-819584.

so-called metamodels [26]. Metamodels describe by a limited set of UML class
diagram concepts the object structure for computer internally representing and
persisting models. However, this implementation specific focus makes it difficult
for modelers to develop model transformations, because modelers are mainly fa-
miliar with the concrete syntax of the modeling languages (i.e., their notation)
and not with their metamodels. This is aggravated by the fact that metamodels
may become very large: for instance, the UML 2 metamodel [34] has about 260
metamodel classes [30]. Moreover, some language concepts, which have a partic-
ular representation in the concrete syntax, are not even explicitly represented
in the metamodel. Instead, these concepts are hidden in the metamodel and
may only be derived by using specific combinations of attribute values and links
between objects [20]. Thus, they are often hard to discover as illustrated in the
example in Fig. 1.

Student1 *Professor examines

Concrete
Syntax

examiner examineename name

Professor:Class

name:Property name:Property

Student:Class
examines:Assoc

Abstract
Syntax examiner:Propertyexaminee:Property

examines:Assoc

Fig. 1: Gap between user intention and computer internal representation

To tackle this problem, model transformation by-example (MTBE) approaches
[45, 47] have been proposed which follow the same fundamental idea as query by-
example developed for querying database systems by giving examples of query
results [48] and programming by-example for demonstrating actions which are
recorded as replayable macros [29]. This means, instead of using the computer
internal representation of models, MTBE allows to define transformations using
examples represented in concrete syntax. Consequently, the modeler’s knowledge
about the notation of the modeling language is sufficient.

Because different transformation scenarios occur in MDE [31], different MTBE
approaches have been developed in the last years. In general, two kinds of ap-
proaches may be distinguished: (i) Approaches following a demonstration-based
approach, meaning that model transformations are demonstrated in the model-
ing editor by modifying example models. These modifications are recorded and
from the concrete changes, the general transformation is derived which may be
replayed on other models as well. (ii) Approaches which follow a correspondence-
based approach. Instead of demonstrating the transformation in modeling edi-
tors, the input model, the output model as well as the correspondences between
them have to be given by the user. For both kinds, a multitude of approaches
have been proposed during the last years [4, 8, 14, 17, 23, 27, 43, 45, 47].

2 MDE in a Nutshell

Before MTBE is presented, the prerequisites, i.e., the core techniques of MDE,
are explained. First, the essence of modeling language engineering is outlined to
illustrate how models are represented in the context of MDE, and subsequently,
the main principles and patterns of model transformations are introduced.

2.1 Modeling Language Engineering

Modeling language engineering in MDE comprises at least two components [24].
First, the abstract syntax of a language has to be defined by a metamodel, i.e.,
a model defining the grammar of the language. Second, to make a language
more usable, a mapping of abstract syntax elements to concrete syntax elements
(such as rectangles, edges, and labels) has to be provided. In the following, an
example-based description of defining a modeling language is given.

Abstract Syntax. Similar as EBNF-based grammars [18] for programming
languages, metamodels represent the concepts and their interrelationships of
modeling languages. The most widely used formalism to define metamodels in
MDE is the Meta Object Facility [33] (MOF), which is a standardized language
to define modeling languages based on the core concepts of UML class diagrams
(classes, attributes, and references). In the upper part of Fig. 2, an excerpt of
the kernel of the UML metamodel is represented in terms of MOF concepts.

The aim of metamodeling lies primarily in defining modeling languages in an
object-oriented manner leading also to efficient repository implementations for
storing and retrieving models. This means that in a metamodel not necessarily
all modeling concepts are represented as first-class citizens. Instead, the concepts
are frequently hidden in attributes and in references. We call this phenomenon
concept hiding (cf. [20] for an in-depth discussion).

By instantiating metamodels, models are created. An instantiation is repre-
sented by a UML object diagram comprising of objects as instances of classes,
values as instances of attributes, and links as instances of references as e.g.,
depicted in the middle part of Fig. 2. It has to be noted that in contrast to
EBNF-based grammars, metamodels do not define the concrete syntax of the
languages. Thus, only generic object graphs as depicted in the middle part of
Fig. 2 may be created. The concrete syntax has to be defined in addition to the
metamodel which is explained next.

Concrete Syntax. The concrete syntax of modeling languages [2] comprises in
most cases graphical elements such as ellipse, label, and rectangle, which may
be further combined to more complex forms. The actual notation of modeling
concepts is defined by a mapping of abstract syntax elements to concrete syntax
elements. The mappings may be expressed in triples of the following form:

Triple :=< as E, cs E, const(as E)? > (1)

The first part as E stands for an element of the abstract syntax, the second
cs E for an element of the concrete syntax, and the last const(as E) stands

NamedElement
St i

0 1

name:String

Class
isAbstract:Boolean

Association Property
type:String

type

attribute classrole
assoc

*

0..1
0..1

*

isAbstract:Booleantype:String
lower:Integer
upper:Integer

p1:Property p2:Property

0..1

(a)

(b) p1:Property

p4:Propertyp3:Property

examines:Assoc
name:”name”
lower: 1
upper: 1
type: String

p p y

name:”name”
lower: 1
upper: 1
type: String

name:”examines”

c1:Class

p4:Propertyp3:Property

name:”Professor”
isAbstract: false

c2:Class

name:”Student”
isAbstract: false

name:”examiner”
lower: 1
upper: 1
type: Undefined

name:”examinee”
lower: 1
upper: -1
type: Undefined

ProfessorProfessor StudentStudent11
name:Stringname:Stringname:Stringname:String

**
examiner examinee

examines(c)

Fig. 2: (Meta)modeling: (a) UML Metamodel Kernel, (b) Example Model in AS,
and (c) Example Model in CS

for an optional constraint, mostly defined in the Object Constraint Language
(OCL) [36], that defines under which conditions, i.e., links and attribute values
of an as E element, this element is represented by a cs E element. In case no
constraint is defined, there is a one-to-one mapping between an abstract syntax
element and a concrete syntax element, i.e., the concept defined in the metamodel
is directly represented by one concrete notational element. However, the other
case is the more interesting one in the context of MTBE. The presence of a
constraint defines a new concept for the notation layer, which is not explicitly
represented by one of the metamodel classes. Consequently, when defining model
transformations based on the abstract syntax, the constraints for these concepts
must be defined by the user. This is a tedious and error-prone task that requires
excellent knowledge about the metamodel.

When considering our running example, for instance, the Class concept is
mapped to Rectangle and Class.name is mapped to Label. By using such
mappings, the UML object diagram shown in the middle part of Fig. 2 may be
rendered as shown in the lower part of Fig. 2 by graphical modeling editors.

2.2 Transformation Engineering

In general, a model transformation takes a model as input and generates a model
as output1. Mens et al. [31] distinguish between two kinds of model transfor-
mations: (i) exogenous transformations a.k.a. model-to-model transformations

1 Also several input models and output models may be possible, but in the scope of
this paper, such settings are not considered.

or out-place transformations, in which the source and target metamodels are
distinct, e.g., transforming UML class diagrams to relational models, and (ii)
endogenous transformations a.k.a. in-place transformations, in which the source
and target metamodels are the same, e.g., a refactoring of a UML class diagram.
In the following, we elaborate on these two kinds in more detail.

Exogenous Transformations. Exogenous transformations are used both to
exploit the constructive nature of models in terms of vertical transformations,
thereby changing the level of abstraction and building the bases for code gener-
ation, and for horizontal transformation of models that are at the same level of
abstraction [31]. Horizontal transformations are of specific interest to realize dif-
ferent integration scenarios, e.g., translating a UML class model into an Entity
Relationship (ER) model. In vertical and horizontal exogenous transformations,
the complete output model has to be built from scratch.

Endogenous Transformations. In contrast to exogenous transformations,
endogenous transformation only rewrite the input model to produce the output
model. For this, the first step is the identification of model elements to rewrite,
and in the second step these elements are updated, added, and deleted. Endoge-
nous transformations are applied for different tasks such as model refactoring,
optimization, evolution, and simulation, to name just a few.

Model Transformation Languages. Various model transformation approaches
have been proposed in the past decade, mostly based on either a mixture of
declarative and imperative concepts, such as ATL [19], ETL [25], and RubyTL
[12], or on graph transformations, such as AGG [44] and Fujaba [32], or on re-
lations, such as MTF2 and TGG [1]. Moreover, the Object Management Group
(OMG) has published the model transformation standard QVT [35] which is cur-
rently only partly adopted by industry. Summarizing, all approaches describe
model transformations by rules using metamodel elements, whereas the rules
are executed on the model layer for transforming a source model into a target
model. Rules comprise in-patterns and out-patterns. The in-pattern defines when
a rule is actually applicable as well as retrieves the necessary model elements
for computing the result of a rule by querying the input model. The out-pattern
describes what the effect of a rule is, such as which elements are created, up-
dated, and deleted. All mentioned approaches are based on the abstract syntax
of modeling languages only, and the notation of the modeling language is totally
neglected.

Defining model transformations by using the abstract syntax of modeling
languages comes on the one hand with the benefit of the generic applicability.
On the other hand, the creation of such transformations is often complicated and
their readability is much lower compared to working with the concrete syntax
[3, 28, 41, 45, 46]. Therefore, MTBE approaches have been proposed to use the
concrete syntax of modeling languages for defining model transformations. In
the following two sections, we present the essence of MTBE for endogenous
transformations as well as for exogenous transformations.

2 http://www.alphaworks.ibm.com/tech/mtf

3 MTBE for Endogenous Transformations

For endogenous transformations, two dedicated by-example approaches [8, 43]
have been proposed in the last years that can be seen as a special kind of MTBE
called Model Transformation By Demonstration (MTBD). MTBD exploits the
edit operations demonstrated on an example model in order to obtain transfor-
mation specifications that are also applicable to other models. Interestingly, no
correspondence-based approach has been proposed for endogenous transforma-
tions, so far. In the following, we present the common process of both MTBD
approaches for specifying an endogenous transformation by demonstration and
show how this process is applied to a concrete model refactoring example. Fi-
nally, we conclude this section by elaborating on the peculiarities of both MTBD
approaches.

3.1 Process

In general, the MTBD process consists of two phases: (1) demonstrating the edit
operations and (2) the configuration and generation of the general transforma-
tion. This process is illustrated in Fig. 3, which is explained in the following
step-by-step.

Phase 1: Modeling. In the first step, the user creates a model in the con-
crete syntax of the modeling language in her familiar modeling environment.
This model comprises all model elements which are required to apply the trans-
formation. The output of this step is called the initial model. In the second step,
the user performs the complete transformation on this initial model by applying
all necessary atomic operations, again in the concrete syntax. The output of this
step is the revised model and a change model containing all changes that have
been applied to the initial model during the demonstration. This change model
together with the initial model and the revised model is the input for the second
phase of the transformation specification process.

Phase 2: Configuration & Generation. In the second phase, an initial
version of the transformation’s pre- and postconditions is inferred by analyzing
the initial model and the revised model, respectively. These automatically gen-
erated conditions from the example might not entirely express the intended pre-
and postconditions of the transformation. Therefore, they only act as a basis for
accelerating the transformation specification process and can be refined by the
user in the next step and additional conditions may be added. After the revision
of the conditions is finished, the transformation is generated from the change
model and the revised pre- and postconditions.

3.2 Example

For exemplifying the presented MTBD process, a transformation for a simplified
UML Class Diagram refactoring, namely “Extract Class” [15], is used. The aim
of the refactoring is to create a new class and move the relevant attributes from
an existing class into the new class.

g Initial
model

Create
model

Perform
changes

M
od

el
in
g

RevisedImplyConditions

M
at
io
n

Change
model

p y
conditions

Edit

[implied]
&
 G
en

er
a model

Edit
conditions

ur
at
io
n
&

Legend:

Generate
transformation

TransformationConditions
[revised]

Co
nf
ig
u Manual

Automatic

Source
model

Create
source model

de
lin
g

Create model
correspondences

Model
correspondences

M
od Create

target model
Target
model

correspondences correspondences

Imply metamodel
correspondences

at
io
n
&

at
io
n

Metamodel
correspondences

[implied]

Edit
correspondences

Legend:

Transformation

Co
nf
ig
ur
a

G
en

er
a

Metamodel
correspondences

[i d]

Generate
Transformation

Manual

A i

Legend:

C [revised] Transformation Automatic

Fig. 3: MTBE Process for Endogenous Transformations

The transformation is demonstrated in Fig. 4(a). The user models the ini-
tial situation by introducing one class containing one attribute. Then, the user
demonstrates the transformation by introducing another class and an association
with two roles and, finally, the user moves the attribute to the newly introduced
class. From this demonstration, the change model shown in Fig. 4(c) is obtained.
For readability purposes, the changes are structured according to the container
hierarchy of the model elements.

In addition to the change model, pre- and postconditions are derived from
the initial and revised models, respectively. Subsequently, the user may fine-tune
the inferred conditions by activating, deactivating, or modifying conditions as is
depicted in Fig. 4(b). On the precondition side of our example, the name of a
class and whether it is abstract or not does not matter. Furthermore, the trans-
formation should be agnostic of the name and type of the attribute. Thus, these
derived preconditions are deactivated. On the postcondition side, the user may
introduce also some annotations for specifying how certain values in the result-
ing model should be obtained. In this context, a value may either be computed
from values in the initial model, or by querying the user for an input value. In
our example, the name of the newly introduced class is not derivable from the
initial model and therefore has to be specified as user input before executing the
transformation. The same is true for the association name. However, the role
names should be derived from the existing model context. This is specified by
additional expressions. In particular, the property name should be equal to the
name of the adjacent class but the first letter has to be converted to lower case
to fulfill common modeling conventions.

Besides fine-tuning the conditions, current MTBD approaches allow for anno-
tating repetitions of certain edit operations. By this, the transformation may be
configured to equally transform multiple model elements that fulfill the trans-
formation’s preconditions. In this example, such a mechanism is quite useful,
because the transformation may then be capable of moving an arbitrary number
of attributes from the original class to the newly introduced class.

An excerpt of the generated transformation is depicted in Listing 1.1. For
simplicity, we just assume that the input parameters of the extractClass op-

assoc1Class NewClass1

Cl
Class(a)

attToMove:String attToMove:Stringclass newClass

c1 : Class
attributes = {p1}
name = “Class”

..
c2 : Class

attributes = {p1}
name = UserInput

(b)

isAbstract = false
p1 : Property [Iteration]

name = “attToMove”
type = “String”
…

name UserInput
a3 : Association

properties = {p3,p4}
name = UserInput

p3 : Property
name = c2.name.firstToLowerCase()
…

p4 : Property
name = c1.name.firstToLowerCase()
…

No Operation Depending Operations L1 Depending Operations L2(c) No. Operation Depending Operations L1 Depending Operations L2

1 Add Class Set name

2 Add Association

Add Property Set name, Set upper,…

Add Property Set name, Set upper,…

(c)

Set name

3 Move Property p1

Fig. 4: Example for Endogenous Transformations: (a) Demonstration, (b) Re-
vised Conditions, and (c) Change Model

eration are specified by the user, e.g., by selecting the elements in the modeling
editor. Another scenario would be that the preconditions are employed to match
all occurrences of the initial situation for a given model.

Listing 1.1: Generated Refactoring Code

1 method ex t r a c tC la s s (S t r ing className , S t r ing attName ,
2 Class c , Co l l e c t i on<Property> props){
3

4 //Check precondi t ion
5 assert c . a t t r i b u t e s −> i n c l ud e sA l l (props) ;
6

7 //Create add i t i ona l c l a s s
8 Class newClass = new Class () ;
9 newClass . setName (className) ;

10

11 // Sh i f t At t r i bu t e s into new Class
12 I t e r a t o r i t e r = props . i t e r a t o r () ;
13 while (i t e r . hasNext ()){
14 Property p = i t e r . hasNext () ;
15 c . a t t r i b u t e s () . remove (p) ;
16 newClass . a t t r i b u t e s () . add (p) ;
17 }
18 . . . //Create add i t i ona l elements and l i n k them proper ly
19 }

The first statement is to verify that the preconditions are fulfilled by the given
input elements. In this example, only one precondition has to be checked, namely
if the selected attributes are all included in the feature attributes of the selected
class. After checking the precondition, a new class is created and each attribute
contained in the collection props is moved to the new class. Assuming that the
user configured the transformation to support extracting multiple attributes at
once, all changes applied to the attribute in the demonstration are repeated in

a loop. Afterwards, the additional elements, particularly the association and the
roles, have to be created and properly linked. Due to space limitations, this is
not shown in the listing.

3.3 Existing Approaches

To the best of our knowledge, two MTBE approaches dedicated to endogenous
transformations exist in literature. In the following we compare both approaches
by highlighting their differences.

Brosch et al. [8, 9] were the first to propose a “by-demonstration” approach
to specify endogenous transformations. With this approach, endogenous trans-
formations for any Ecore-based modeling language can be specified. Moreover, to
be also independent from the used modeling editor, a state-based model compar-
ison is employed to derive the atomic changes that have been performed on the
initial model during the demonstration. The inherent imprecision of state-based
model comparison is overcome by annotating unique identifiers to each model
element before the user starts to demonstrate the transformation. By this, also
element moves and intensively modified elements are supported. For expressing
the pre- and postconditions, OCL constraints are employed. In the postcondi-
tions, users may also specify how attribute values in the target model shall be
derived from values in the initial model. Repetitions of certain changes are real-
ized by the notion of so-called iterations. Iterations are attached to precondition
elements (representing model elements in the initial model) and indicate that
each model element that fulfills these preconditions shall be transformed equally
to the respective initial model element in the demonstration.

In the approach by Sun et al. [43], the changes applied during the demon-
stration are recorded and not derived by a subsequent comparison. After the
demonstration, an inference engine generates a general transformation pattern
which comprises the transformation’s preconditions and its sequence of opera-
tions. This pattern may also be refined by the user in terms of adding precondi-
tions and attribute value computations. In contrast to Brosch et al., Groovy3—a
script language for the JVM—is employed to express these conditions and com-
putations. In a more recent publication [42], Sun et al. extended this step so that
users may also identify and annotate generic operations, which corresponds to
the concept of iterations in [8]. However, these annotations are directly attached
to the change model instead of to the preconditions as in [8].

4 MTBE for Exogenous Transformations

Various MTBE approaches [4, 14, 17, 23, 27, 45, 47], dedicated to exogenous trans-
formations, have been proposed. Except [27] which is a demonstration-based
approach, all others are based on correspondences. Thus, in the following, we
discuss the general process of specifying exogenous transformations by-example

3 http://groovy.codehaus.org

g Initial
model

Create
model

Perform
changes

M
od

el
in
g

RevisedImplyConditions

M
at
io
n

Change
model

p y
conditions

Edit

[implied]

&
 G
en

er
a model

Edit
conditions

ur
at
io
n
&

Legend:

Generate
transformation

TransformationConditions
[revised]

Co
nf
ig
u Manual

Automatic

Source
model

Create
source model

de
lin
g

Create model
correspondences

Model
correspondences

M
od Create

target model
Target
model

correspondences correspondences

Imply metamodel
correspondences

at
io
n
&

at
io
n

Metamodel
correspondences

[implied]

Edit
correspondences

Legend:

Transformation

Co
nf
ig
ur
a

G
en

er
a

Metamodel
correspondences

[i d]

Generate
Transformation

Manual

A i

Legend:

C [revised] Transformation Automatic

Fig. 5: MTBE Process for Exogenous Transformations

based on correspondences, and subsequently, we present an instantiation of this
process for transforming UML Class Diagrams to ER Diagrams [11]. Finally,
we conclude this section by elaborating on the peculiarities of current MTBE
approaches.

4.1 Process

The main idea of MTBE for exogenous transformations is the semi-automatic
generation of transformations from so-called correspondences between source
and target model pairs. The underlying process for deriving exogenous model
transformations from model pairs is depicted in Fig. 5. This process, which is
largely the same for all existing approaches, consists of five steps grouped in two
phases.

Phase 1: Modeling. In the first step, the user specifies semantically equiv-
alent model pairs. Each pair consists of a source model and a corresponding
target model. The user may decide whether she specifies a single model pair
covering all important concepts of the modeling languages, or several model
pairs whereby each pair focuses on one particular aspect. In the second step, the
user has to align the source model and the target model by defining correspon-
dences between source model elements and corresponding target model elements.
For defining these correspondences, a correspondence language has to be avail-
able. One important requirement is that the correspondences may be established
using the concrete syntax of the modeling languages. Hence, the modeling envi-
ronment must be capable of visualizing the source and target models as well as
the correspondences in one diagram or at least in one dedicated view.

Phase 2: Configuration & Generation. After finishing the mapping task,
a dedicated reasoning algorithm is employed to automatically derive metamodel
correspondences from the model correspondences. How the reasoning is actually
performed is explained in more detail based on an example in Subsection 4.2.
The automatically derived metamodel correspondences might not always reflect
the intended mappings. Thus, the user may revise some metamodel correspon-
dences or add further constraints and computations. Note that this step is not
foreseen in all MTBE approaches, because it may be argued that this is contra-

11ProfessorProfessor StudentStudent11
name:Stringname:Stringname:Stringname:String **

i

examines ProfessorProfessor StudentStudentexaminesexamines11 **
examiner examineename:Stringname:String

examiner examinee
namename namename

(a)(a)

(b)

p1:Property
a1:Association

p2:Property a1:Attribute
r1:Relationship

a2:Attribute
name: examinesa1:Associationname: name

lower: 1
upper: 1

name: name
lower: 1
upper: 1

name: examines
ro2:Rolero1:Role

name: name name: name
name: examines

p4:Propertyp3:Property
type: String type: String

name: examiner name: examinee

c1:Class

name: Professor
i Ab t t f l

c2:Class

name: Student
i Ab t t f l

name: examiner
lower: 1
upper: 1

name: examinee
lower: 1
upper: -1

e1:EntityType

name: Professor

e2:EntityType

name: Studentc1:Cardinality c2:Cardinality
isAbstract: false isAbstract: false

pp
type: Undefined

pp
type: Undefined lower: 1

upper: 1
lower: 1
upper: -1

ClassAssociation
type

EntityType Role Cardinality
type card(c)

classassoc 0..1 0..1

ClassAssociation
0..1

EntityType Role Cardinality

*

1
2

1

atts
roles

attributerole
* *Property RelationshipAttribute

Rule 1: Class ‐> Entity (name <‐ name, atts <‐ attribute)
Rule 2: Property ‐> Attribute [class <> OclUndefined] (name <‐ name)Rule 2: Property ‐> Attribute [class <> OclUndefined] (name <‐ name)
Rule 3: Property ‐> Role, Cardinality [association <> OclUndefined] (r.name <‐ p.name, r.cardinality <‐ c, c.upper <‐ p.upper, c.lower <‐
p.lower, r.type <‐ p.type)
Rule 4: Association ‐> Relationship (name <‐ name, roles <‐ ownedEnd)

Fig. 6: Example for Exogenous Transformations: (a) Correspondences in concrete
syntax, (b) Correspondences in abstract syntax, and (c) Metamodels

dicting with the general by-example idea of abstracting from the metamodels.
Nevertheless, it seems to be more user-friendly to allow the modification of the
metamodel correspondences in contrast to modifying the generated model trans-
formation code at the end of the generation process. Finally, a code generator
takes the metamodel correspondences as input and generates executable model
transformation code.

4.2 Example

For exemplifying the presented MTBE process, we now apply it to specify the
transformation of the core concepts of UML class diagrams into ER diagrams.
As modeling domain, a simple university information system is used. The user
starts with creating the source model comprising the UML classes Professor and
Student as well as a one-to-many association between them as depicted in the
upper left area of Fig. 6. Subsequently, the corresponding ER diagram, depicted
in the upper right area of Fig. 6, is created. In this figure, both models are
represented in the concrete syntax as well as in the abstract syntax in terms of
UML object diagrams. After both models are established, the correspondence
model is created which consists of simple one-to-one mappings. These mappings
are depicted as dashed lines in Fig. 6(a) and (b) between the source and target
model elements.

In the next step, a reasoning algorithm now analyzes the model elements
in the source and target models, i.e., objects, attribute values, and links, as

well as the correspondences between them in order to derive metamodel corre-
spondences. In the following, we discuss inferring metamodel correspondences
between classes, attributes, and references.

Class correspondences. For detecting class correspondences, the reason-
ing algorithm first checks whether a certain object type in the source model
is always mapped to the same object type in the target model. In this case,
a full equivalence mapping between the respective classes is generated. In our
example, a full equivalence mapping between objects of type Class and objects
of type EntityType is inferred. However, Properties in the source model are
mapped to different object types, namely Attributes and Roles, depending on
their attribute values and links. For such cases, an additional mapping kind is
used, namely conditional equivalence mapping. The conditions of such a map-
ping are derived by analyzing the links and values of the involved objects to
find a discriminator for splitting the source objects into distinct sets having an
unambiguous mapping to target objects. One appropriate heuristic for finding
such a discriminator is to examine the container links of these objects. By this,
the algorithm may deduce the constraints property.class != null to find an
unambiguous mapping to Attributes and the condition property.assoc !=

null for Roles. Finally, also unmapped objects such as the Cardinality ob-
jects have to be considered. In our example, these objects have to be generated
along with their container objects of type Role. Thus, the mapping for Roles has
to be extended to a one-to-two conditional equivalence mapping. By this, a Role

object and a properly linked Cardinality object is created for each Property

in the source model.

Attribute correspondences. Generally, attributes in metamodels may be
distinguished in ontological attributes and linguistic attributes [20]. Ontological
attributes represent semantics of the real-world domain. Values have to be ex-
plicitly given by the user. Examples for ontological attributes are Class.name

or Attribute.name. In order to find correspondences between ontological at-
tributes, heuristics have to be used which compare the attribute values, for
instance, based on edit distance metrics. In our example, we may conclude that
Class.name should be mapped to EntityType.name because the values of the
name attributes are equivalent for each Class/EntityType object pair. In con-
trast, linguistic attributes are used for the reification of modeling concepts such
as Class.isAbstract. Usually these attributes have predefined, restricted value
ranges in the language definition. When dealing with linguistic attributes in the
context of MTBE, similar heuristics based on string matching as for ontologi-
cal attributes may be used. However, the probability for accidentally matching
wrong pairs and for ambiguities is much higher. Consider for instance the map-
ping between the property p3 and the role ro1 without taking into account other
mappings. Then, we cannot decide if the attribute Property.lower is mapped
to Role.cardinality.lower or to Role.cardinality.upper by solely looking
at the example. Here, the problem is that we do not have unique values which
help us finding the metamodel correspondences. This may be improved by us-
ing matching techniques on the metamodel level for finding similarities between

attribute names. An alternative solution used in this example is to define an
additional mapping between the property p4 and the role ro2 where we have
unique values for the lower and upper attributes.

Reference correspondences. For deriving reference correspondences, the
afore calculated class correspondences are of paramount importance since they
serve as anchors for reasoning about corresponding links. For example, consider
the reference atts in the ER metamodel between EntityType and Attribute.
For finding the corresponding reference in the UML metamodel, we have to rea-
son about the previously derived class correspondences. First, the Attribute

class in the ER metamodel is mapped to the Property class of the UML meta-
model. Furthermore, when looking at the example models, each Attribute is
contained by an EntityType and each Property is contained by a Class. Luck-
ily, the EntityType class is accordingly mapped to the Class class on the meta-
model level, so that we can conclude that whenever transforming a Property into
an ER Attribute, a link between the created Attribute and the EntityType

previously generated for the Class containing the aforementioned Property is
generated. Thus, there should be a correspondence between the reference atts

in the ER metamodel and the reference attribute in the UML metamodel.
After the metamodel correspondences have been derived automatically, MTBE

approaches usually allow the user to verify and adapt the generated correspon-
dences. For our running example however, this is not required. The next task is
to automatically translate the correspondences into executable transformation
code. Listing 1.2 depicts the transformation required for our running example in
imperative OCL [10]. For each metamodel correspondence, a transformation rule
is generated which queries the source model and generates the corresponding tar-
get model elements. Inside each rule, the attribute and reference correspondences
are translated to assignments. Please note that current transformation engines
are able to schedule rules automatically and to build an implicit trace model
between the source and target model. Based on this trace model, assignments
such as e.atts = c.attribute (cf. line 2 in Listing 1.2) are automatically re-
solved. In particular, not the UML attributes (c.attribute) are assigned to the
EntityType, but the ER attributes generated from these UML attributes are re-
solved by applying the trace model. These features of transformation languages
and their encompassing engines drastically ease the transformation code gener-
ation from correspondences.

Listing 1.2: Generated Transformation Code

1 rule 1 : Class . a l l I n s t a n c e s () −> f o r each (c |
2 create Entity e (e . name = c . name , e . a t t s = c . a t t r i bu t e) ;
3 rule 2 : Property . a l l I n s t a n c e s ()
4 −> s e l e c t (p | p . c l a s s <> OclUndefined) −> f o r each (p |
5 create Attr ibute a (a . name = p . name)) ;
6 rule 3 : Property . a l l I n s t a n c e s () −> s e l e c t (p |
7 p . as soc <> OclUndefined) −> f o r each (p |
8 create Role r (r . name = p . name , r . c a r d i n a l i t y = c) ,
9 create Card ina l i t y c (c . upper = p . upper , c . lower = p . lower ,

10 r . type = p . type)) ;
11 rule 4 : As soc i a t i on . a l l I n s t a n c e s () −> f o r each (a |
12 create Re la t i onsh ip r (r . name = a . name , r . r o l e s = a . r o l e)) ;

4.3 Existing Approaches

We now compare existing approaches by highlighting their commonalities and
differences. Mostly all approaches define the input for deriving exogenous trans-
formations as a triple comprising an input model, a semantically equivalent out-
put model as well as correspondences between these two models. These models
have to be built by the user, preferably using the concrete syntax as is, e.g.,
supported by [47], but most approaches do not provide dedicated support for
defining the correspondences in graphical modeling editors.

Langer et al. [27] presented, in contrast to the correspondence-based ap-
proaches, a demonstration-based approach which allows to demonstrate transfor-
mation rules incrementally by giving for each rule an input model fragment and
a corresponding output model fragment so that the correspondences between
the fragments can be automatically inferred and do not have to be manually
specified in advance.

Subsequently, reasoning techniques such as specific rules again implemented
as model transformations [17, 27, 45, 47], inductive logic [4], and relational con-
cept analysis [14] are used to derive model transformation code. Current ap-
proaches support the generation of graph transformation rules [4, 45] or ATL
code [17, 27, 47].

All approaches aim for semi-automated transformation generation meaning
that the generated transformations are intended to be further refined by the user.
This is especially required for transformations involving global model queries and
attribute calculations such as aggregation functions, which have to be manually
added. Furthermore, it is recommended to iteratively develop the transforma-
tions, i.e., after generating the transformations from initial examples, the exam-
ples must be adjusted or the transformation rules must be adapted in case the
actual generated output model is not fully equivalent to the expected output
model. However, in many cases it is not obvious whether to adapt the aligned
examples or the generated transformations. Furthermore, adjusting the examples
might be a tedious process requiring a large number of transformation examples
to assure the quality of the inferred rules. In this context, self-tuning transfor-
mations have been introduced [22, 23]. Self-tuning transformations employ the
examples as training instances in an iterative process for further improving the
quality of the transformation. The goal is to minimize the differences between
the actual output model produced by the transformation and the expected out-
put model given by the user by using the differences to adapt the transformation
over several iterations. Of course, adapting the transformation is a computation
intensive problem leading to very large search spaces. While in [22] domain-
specific search space pruning tailored to EMF-based models is used, a generic
meta-heuristic based approach is used in [23] to avoid an exhaustive search.

5 Lessons Learned and Future Challenges

In this section, some lessons learned from applying and developing MTBE ap-
proaches during the last 5 years are summarized.

Correspondences Demonstrations

Endogenous
Transformations

Exogenous
Transformations [4,14,17,23,45,47]

[8,42]

[27]

MTBE Technique

Tr
an
sf
or
m
at
io
n

Sc
en

ar
io

Fig. 7: Classification of MTBE approaches by whether they support exoge-
nous or endogenous transformations and whether they are correspondence or
demonstration-based

Different Transformation Scenarios/Different MTBE Techniques. When
categorizing MTBE approaches w.r.t. transformation scenarios and MTBE tech-
niques (cf. Fig 7), the following discriminators are derivable. Approaches using
correspondences are exclusively but intensively applied for deriving exogenous
transformations. Surprisingly, not a single work considers to apply correspon-
dences for endogenous transformations. In contrast, demonstration-based ap-
proaches originally have been proposed for endogenous transformations and only
one work discusses the application of demonstrations to derive exogenous trans-
formations.

Challenge: What are the commonalities and differences of correspondence-
based and demonstration-based approaches?

MTBE as Enabler for Test-driven Transformation Development. A
significant advantage of MTBE is the existence of examples. Besides serving as
input for the derivation of a model transformation during the MTBE process,
the example models may also be used to test the generated transformation. By
applying the inferred transformation again to the source model, the obtained
target model may be compared to the target model specified during the MTBE
process. If any differences are found in the comparison, either the transformation
or the target model is obviously wrong. In this sense, MTBE inherently imple-
ments the idea of test-driven development [5]. An interesting direction for future
work in this area is to automatically suggest corrections to the transformation
based on the detected differences between the target example model and the
actual transformation result.

Challenge: Which logic and machine learning techniques can be employed
for optimizing the quality of derived transformations in reasonable time
with a small amount of examples?

MTBE outperforms Metamodel Matching. With the rise of the Semantic
Web and the emerging abundance of ontologies, several automated matching
approaches and tools have been proposed (cf. [37, 40] for an overview). The typ-
ical output of such tools are correspondences mostly computed based on schema
information, e.g., name and structure similarity. In experiments, we have reused
ontology matching tools for matching metamodels by beforehand transforming

metamodels into corresponding ontologies. However, the quality of the produced
correspondences is on average significantly lower compared to MTBE approaches
[21]. The reasons for this are twofold. First, structural heterogeneities between
metamodels and the mismatch between the terminology used for different mod-
eling languages makes it hard to reason about correspondences solely on the
metamodel level. Second, there is no automated evaluation of the quality of cor-
respondences based on the model level, because the matching approaches are
not bound to a specific integration scenario [6], such as transformation, merge,
or search. Finally, we also learned that the preparation phase required for using
MTBE approaches, i.e., building the example models, is less work than the com-
prehensive reworking phase, i.e, validating and correcting the correspondences,
required for metamodel matching approaches.

Challenge: More empirical studies on MTBE approaches for identifying
the strengths and weaknesses of existing approaches are required.

Multifaceted Usage of Examples. Another benefit of specifying endogenous
model transformations by demonstration is to reuse the developed transforma-
tion specifications for detecting applications of the transformation. Since such
a specification developed using an MTBD approach comprises the transforma-
tion’s preconditions, postconditions, and its change pattern, a dedicated detec-
tion mechanism may triage arbitrary model differences for the transformation’s
change pattern and, given the pattern could be found, validate its pre- and post-
conditions to reveal an application of the transformation. This is especially useful
if these transformations implement model refactorings because this knowledge
gains valuable information on the evolution of a model and is of paramount
importance for various application domains such as model co-evolution, model
versioning, and model repository mining.

Challenge: How may the developed examples and derived transformations
be employed for supporting different model management tasks in MDE?

6 Resume

More than 30 papers have been published in the first 5 years and more and more
research groups start working in this area. MDE and by-example approaches
both aim to ease the development of software systems. However, both stand on
orthogonal dimensions. MDE aims to abstract from the implementation level
of software systems such as particular technology platforms and programming
languages by using platform independent modeling techniques. In contrast, by-
example approaches aim to ease the development of systems by using examples
instead of directly developing generalized programs. We believe that combining
both paradigms seems to be promising and would have a major impact on end-
user programming or better say end-user modeling.

References

1. Amelunxen, C., Königs, A., Rötschke, T., Schürr, A.: MOFLON: A Standard-
Compliant Metamodeling Framework with Graph Transformations. In: 2nd Eu-
ropean Conf. on Model Driven Architecture - Foundations and Applications,
(ECMDA-FA’06). LNCS, vol. 4066, pp. 361–375. Springer (2006)

2. Atkinson, C., Kühne, T.: Model-Driven Development: A Metamodeling Founda-
tion. IEEE Software 20(5), 36–41 (2003)

3. Baar, T., Whittle, J.: On the Usage of Concrete Syntax in Model Transformation
Rules. In: Ershov Memorial Conf. LNCS, vol. 4378, pp. 84–97. Springer (2007)

4. Balogh, Z., Varró, D.: Model transformation by example using inductive logic pro-
gramming. Software and System Modeling 8(3), 347–364 (2009)

5. Beck, K.: Test Driven Development: By Example. Addison-Wesley (2002)

6. Bernstein, P.A., Melnik, S.: Model management 2.0: manipulating richer mappings.
In: Int. Conf. on Management of Data (SIGMOD’07). pp. 1–12. ACM (2007)

7. Bézivin, J.: On the unification power of models. Software and System Modeling
4(2), 171–188 (2005)

8. Brosch, P., Langer, P., Seidl, M., Wieland, K., Wimmer, M., Kappel, G., Rets-
chitzegger, W., Schwinger, W.: An Example Is Worth a Thousand Words: Com-
posite Operation Modeling By-Example. In: 12th Int. Conf. on Model Driven En-
gineering Languages and Systems (MoDELS’09). LNCS, vol. 5795, pp. 271–285.
Springer (2009)

9. Brosch, P., Langer, P., Seidl, M., Wimmer, M.: Towards End-User Adaptable
Model Versioning: The By-Example Operation Recorder. In: Proc. of CVSM’09
@ ICSE’09. IEEE (2009)

10. Cabot, J.: From Declarative to Imperative UML/OCL Operation Specifications.
In: 26th Int. Conf. on Conceptual Modeling (ER’07). LNCS, vol. 4801, pp. 198–213.
Springer (2007)

11. Chen, P.P.S.: The Entity-Relationship Model—Toward a Unified View of Data.
ACM Transactions on Database Systems 1, 9–36 (1976)

12. Cuadrado, J.S., Molina, J.G., Tortosa, M.M.: RubyTL: A Practical, Extensible
Transformation Language. In: 2nd European Conf. on Model Driven Architecture
- Foundations and Applications (ECMDA-FA’06). LNCS, vol. 4066, pp. 158–172.
Springer (2006)

13. Czarnecki, K., Helsen, S.: Feature-based survey of model transformation ap-
proaches. IBM Systems Journal 45(3), 621–646 (2006)

14. Dolques, X., Huchard, M., Nebut, C.: From transformation traces to transformation
rules: Assisting Model Driven Engineering approach with Formal Concept Analysis.
In: 17th Int. Conf. on Conceptual Structures (ICCS’09). vol. 483, pp. 15–29. CEUR-
WS (2009)

15. Fowler, M.: Refactoring: Improving the Design of Existing Code. Addison-Wesley,
Boston, MA, USA (1999)

16. France, R., Rumpe, B.: Model-driven Development of Complex Software: A Re-
search Roadmap. In: 29th Int. Conf. on Software Engineering (ICSE’07) - Future
of Software Engineering. pp. 37–54 (2007)

17. Garćıa-Magariño, I., Gómez-Sanz, J.J., Fuentes-Fernández, R.: Model Transfor-
mation By-Example: An Algorithm for Generating Many-to-Many Transformation
Rules in Several Model Transformation Languages. In: 2nd Int. Conf. on Theory
and Practice of Model Transformations (ICMT’09). pp. 52–66. Springer (2009)

18. ISO/IEC: 14977:1996(E) Information technology – Syntactic metalanguage – Ex-
tended BNF, International standard (1996)

19. Jouault, F., Allilaire, F., Bézivin, J., Kurtev, I.: ATL: A model transformation
tool. Sci. Comput. Program. 72(1-2), 31–39 (2008)

20. Kappel, G., Kapsammer, E., Kargl, H., Kramler, G., Reiter, T., Retschitzegger,
W., Schwinger, W., Wimmer, M.: Lifting Metamodels to Ontologies: A Step to the
Semantic Integration of Modeling Languages. In: 9th Int. Conf. on Model Driven
Engineering Languages and Systems (MoDELS’06). LNCS, vol. 4199, pp. 528–542.
Springer (2006)

21. Kappel, G., Kargl, H., Kramler, G., Schauerhuber, A., Seidl, M., Strommer, M.,
Wimmer, M.: Matching Metamodels with Semantic Systems - An Experience Re-
port. In: Workshop Proceedings of Datenbanksysteme in Business, Technologie und
Web (BTW’07) (2007)

22. Kargl, H., Wimmer, M., Seidl, M., Kappel, G.: SmartMatcher: Improving Auto-
matically Generated Transformations. Datenbank-Spektrum 29, 42–52 (2009)

23. Kessentini, M., Sahraoui, H.A., Boukadoum, M.: Model Transformation as an Op-
timization Problem. In: 11th Int. Conf. on Model Driven Engineering Languages
and Systems (MoDELS’08). LNCS, vol. 5301, pp. 159–173. Springer (2008)

24. Kleppe, A.: Software Language Engineering: Creating Domain-Specific Languages
Using Metamodels. Addison-Wesley (2008)

25. Kolovos, D.S., Paige, R.F., Polack, F.: The Epsilon Transformation Language. In:
1st Int. Conf. on Theory and Practice of Model Transformations (ICMT’08). LNCS,
vol. 5063, pp. 46–60. Springer (2008)

26. Kühne, T.: Matters of (Meta-)Modeling. Software and System Modeling 5(4), 369–
385 (2006)

27. Langer, P., Wimmer, M., Kappel, G.: Model-to-Model Transformations By Demon-
stration. In: 3rd Int. Conf. on Theory and Practice of Model Transformations
(ICMT’10). LNCS, vol. 6142, pp. 153–167. Springer (2010)

28. de Lara, J., Vangheluwe, H.: AToM3: A Tool for Multi-formalism and Meta-
modelling. In: 5th Int. Conf. on Fundamental Approaches to Software Engineering,
FASE’02. LNCS, vol. 2306, pp. 174–188. Springer (2002)

29. Lieberman, H.: Your wish is my command: programming by example. Morgan
Kaufmann Publishers Inc. (2001)

30. Ma, H., Shao, W., Zhang, L., Jiang, Y.: Applying OO Metrics to Assess UML
Meta-models. In: 7th Int. Conf. on the Unified Modelling Language (UML’04).
LNCS, vol. 3273, pp. 12–26. Springer (2004)

31. Mens, T., Gorp, P.V.: A Taxonomy of Model Transformation. Electr. Notes Theor.
Comput. Sci. 152, 125–142 (2006)

32. Nickel, U., Niere, J., Zündorf, A.: The FUJABA environment. In: Int. Conf. on
Software Engineering (ICSE’00). pp. 742–745 (2000)

33. Object Management Group (OMG): Meta Object Facility, Version 2.0, http://
www.omg.org/spec/MOF/2.0/PDF/ (2006)

34. Object Management Group (OMG): Unified Modeling Language Super-
structure Specification, Version 2.1.2, http://www.omg.org/spec/UML/2.1.2/

Superstructure/PDF (2007)
35. OMG, O.: Meta Object Facility (MOF) 2.0 Query/View/Transformation Specifi-

cation. Final Adopted Specification. (Nov 2005)
36. OMG, O.: OCL Specification Version 2.0. http://www.omg.org/docs/ptc/05-06-

06.pdf (June 2005)
37. Rahm, E., Bernstein, P.A.: A survey of approaches to automatic schema matching.

VLDB Journal 10(4), 334–350 (2001)

38. Schmidt, D.C.: Model-Driven Engineering. IEEE Computer 39(2), 25–31 (2006)
39. Sendall, S., Kozaczynski, W.: Model Transformation: The Heart and Soul of Model-

Driven Software Development. IEEE Software 20, 42–45 (2003)
40. Shvaiko, P., Euzenat, J.: A Survey of Schema-Based Matching Approaches. Journal

on Data Semantics IV 3730, 146–171 (2005)
41. Strommer, M., Wimmer, M.: A Framework for Model Transformation By-Example:

Concepts and Tool Support. In: 46th Int. Conf. on Objects, Components, Models
and Patterns (TOOLS’08). LNBIP, vol. 11, pp. 372–391. Springer (2008)

42. Sun, Y., Gray, J., White, J.: MT-Scribe: an end-user approach to automate software
model evolution. In: 33rd Int. Conf. on Software Engineering (ICSE’11). pp. 980–
982. ACM (2011)

43. Sun, Y., White, J., Gray, J.: Model Transformation by Demonstration. In: 12th
Int. Conf. on Model Driven Engineering Languages and Systems (MoDELS’09).
LNCS, vol. 5795, pp. 712–726. Springer (2009)

44. Taentzer, G.: AGG: A Graph Transformation Environment for Modeling and Val-
idation of Software. In: 2nd Int. Workshop on Applications of Graph Transfor-
mations with Industrial Relevance (AGTIVE’03). LNCS, vol. 3062, pp. 446–453.
Springer (2003)

45. Varró, D.: Model Transformation by Example. In: 9th Int. Conf. on Model Driven
Engineering Languages and Systems (MoDELS’06). LNCS, vol. 4199, pp. 410–424.
Springer (2006)

46. Whittle, J., Moreira, A., Araújo, J., Jayaraman, P.K., Elkhodary, A.M., Rabbi, R.:
An Expressive Aspect Composition Language for UML State Diagrams. In: 10th
Int. Conf. on Model Driven Engineering Languages and Systems (MoDELS’07).
LNCS, vol. 4735, pp. 514–528. Springer (2007)

47. Wimmer, M., Strommer, M., Kargl, H., Kramler, G.: Towards Model Transfor-
mation Generation By-Example. In: 40th Hawaiian Int. Conf. on Systems Science
(HICSS’07). IEEE Computer Society (2007)

48. Zloof, M.M.: Query-by-Example: the Invocation and Definition of Tables and
Forms. In: Int. Conf. on Very Large Data Bases (VLDB’75). pp. 1–24. ACM (1975)

