
User Profile Integration Made Easy—Model-Driven
Extraction and Transformation of Social Network Schemas

Elisabeth Kapsammer,
Angelika Kusel,
Stefan Mitsch,

Birgit Pröll,
Werner Retschitzegger,

Wieland Schwinger
Johannes Kepler University
Information Systems Group

Altenbergerstrasse 69
4040 Linz, Austria

{firstname.lastname}@jku.at

Johannes Schönböck,
Manuel Wimmer,

Martin Wischenbart
Vienna University of

Technology
Business Informatics Group

Favoritenstrasse 9-11
1040 Vienna, Austria

{lastname}@big.tuwien.ac.at

Stephan Lechner
Netural GmbH
Europaplatz 4

4020 Linz, Austria
s.lechner@netural.com

ABSTRACT
User profile integration from multiple social networks is in-
dispensable for gaining a comprehensive view on users. Al-
though current social networks provide access to user profile
data via dedicated apis, they fail to provide accurate schema
information, which aggravates the integration of user pro-
files, and not least the adaptation of applications in the face
of schema evolution. To alleviate these problems, this pa-
per presents, firstly, a semi-automatic approach to extract
schema information from instance data. Secondly, transfor-
mations of the derived schemas to different technical spaces
are utilized, thereby allowing, amongst other benefits, the
application of established integration tools and methods.
Finally, as a case study, schemas are derived for Facebook,
Google+, and LinkedIn. The resulting schemas are analyzed
(i) for completeness and correctness according to the docu-
mentation, and (ii) for semantic overlaps and heterogeneities
amongst each other, building the basis for future user profile
integration.

Categories and Subject Descriptors
D.2.12 [Software Engineering]: Interoperability—schema
extraction, model transformation

Keywords
Schema extraction, model transformation, social network
data integration, model driven approach, social networks,
json Schema

1. INTRODUCTION
In recent years, online social networks have gained great

popularity amongst internet users. These networks serve dif-
ferent purposes and communities, for instance, socializing on
Facebook or Google+, or establishing professional networks

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). Distribution of these papers is limited to classroom use,
and personal use by others.
WWW 2012 Companion, April 16–20, 2012, Lyon, France.
ACM 978-1-4503-1230-1/12/04.

in LinkedIn1. Their popularity led to a huge amount of
collected data, and, hence, attracts the interest for exploita-
tion by commercial and non-commercial applications (e. g.,
recommender applications, such as TripAdvisor2). Since of-
ten users are members of several social networks, integrated
profiles from multiple networks are desired to achieve a com-
prehensive view on users, which would, for instance, increase
the quality of personalized recommendations [1]. For this,
various user modeling approaches have been proposed (e. g.,
standardization-based ones, such as gumo [9], or mediation-
based ones [3]), as revealed by a recent survey [21].

However, up to now the systematic integration of the
gathered data is hampered, because the underlying data
stores of social networks are built with a focus on exten-
sion and flexibility, and thus, they often use so-called nosql
databases. Such databases may store data in large tables
without a traditional schema (e. g., HBase in Hadoop3, used
by Facebook and LinkedIn), or in schema-less multidimen-
sional maps (e. g., Cassandra4, used by Twitter). The result-
ing absence of explicit schema descriptions not only prevents
the application of integration tools (e. g., coma++ [17] for
schema matching, or MapForce5 for schema mapping), but
also hardens various data processing tasks, such as search,
manipulation, optimization, translation, or evolution. As a
consequence of the fast development pace of today’s online
social network platforms, and due to api documentations
often being outdated and only exemplary, however, manual
creation of explicit and up-to-date schemas is not an ade-
quate option, not least since they may be extensive in size.

This paper tackles these challenges by means of a semi-
automatic approach to derive social network schemas from
social network data. Since json (JavaScript Object Nota-
tion6) is the leading format for data interchange supported
by many apis of social networks, we derive schema infor-
mation expressed in the json Schema6 language. For this,

1www.facebook.com, plus.google.com, www.linkedin.com
2www.tripadvisor.com
3hbase.apache.org, hadoop.apache.org
4cassandra.apache.org
5www.altova.com/mapforce
6www.json.org, json-schema.org

WWW 2012 – MultiAPro'12 Workshop April 16–20, 2012, Lyon, France

939

Graph API JavaScript
or REST API

Google+
API

Lx1
.json

Ls1: FB
Schema

conforms to

Ls2: LinkedIn
Schema

Ls3: Google+
Schema

Sc
he

m
a

Ex
tr

ac
tio

n

Lss‘: Schema Language X
e.g., XML Schema

Ls1‘: FB
Schema

Ls2‘: LinkedIn
Schema

Ls3‘: Google+
Schema

L Li k dI L G l

conforms to

e.g.
.xml

conforms to

Transformation

e.g.
.xml

e.g.
.xml

1
E

2
Tr3

e.g.
.xml

Integrated
Instance

Data
Lx2

.json
Lx3

.json

Da
ta

Ex

tr
ac

tio
n

Lss: JSON
Schema

Ls‘‘: Integrated
Schema

IntegrationIn4

L Li k dILi k dIL L G lL I tI tL

Existing Integration Tools

Figure 1: Overview of the extraction, transformation, and integration process

dedicated schema extraction strategies are provided. Since
state-of-the-art integration tools build on different technical
spaces (e. g., MapForce and coma++ handle xml Schema),
we propose to apply well-known techniques from the domain
of model-driven engineering [5, 22] to transform schemas
as well as instances. Finally, as a case study, schemas are
extracted and transformed from three of the most popular
social networks according to the Alexa7 ranking, namely,
Facebook, Google+, and LinkedIn. Subsequently, the re-
sulting schemas are analyzed, to study (i) completeness and
correctness of schemas with respect to the available online
documentation of social networks, and (ii) schematic over-
laps as well as syntactic and semantic heterogeneities [14]
that need to be considered for integration.

Outline. Section 2 gives an architectural overview of our
approach, before Section 3 discusses related work. In Sec-
tion 4 various schema extraction strategies to be applied for
social networks are discussed. Furthermore, a transforma-
tion to ecore8, which builds the basis for presenting the ex-
tracted schemas in terms of class diagrams and their analysis
is given in Section 5. Finally, Section 6 critically discusses
the approach and provides directions of future work.

2. ARCHITECTURAL OVERVIEW
To integrate user profiles from different social networks,

the proposed process (cf. Fig. 1) consists of four major
phases: (i) data extraction, (ii) schema extraction, (iii) trans-
formation, and (iv) integration, as discussed in detail below.

2.1 Data Extraction
In the data extraction phase (cf. 1 in Fig. 1), instance

data is extracted from social networks through their corre-
sponding apis. These extracted data fragments are each ex-
pressed in a generic markup language Lx, i. e., json in the
case of most social networks. A short json example from

7www.alexa.com/topsites
8ecore is the Eclipse realization of mof -
www.eclipse.org/modeling/emf

a Facebook user is shown on the left hand side of Fig. 2.
The object of type user (as indicated by property type)
provides information about the user’s name (string value),
birthday (string, possibly following a particular pattern),
gender (string, possibly with restrictions concerning allowed
values), and work experience (array of objects). Note that,
in order to enable fine-grained access to user profile infor-
mation guarded with authorization techniques, apis require
multiple requests to retrieve complementing data fragments
(e. g., an additional request using the employer id would be
needed to retrieve detailed employer information, which was
not provided within the original response).

{
"type": "object",
"id": "user",
"properties": {
"id": { "type": "string" },
"name": {"type": "string" },
"birthday": { "type": "string",

"pattern":
"[0-9]{2}/[0-9]{2}/[0-9]{4}" },

"gender": { "type": "string",
"enum": ["male", "female"] },

"type": { "type": "string" },
"work": {
"type": "array",
"items": [
{
"type": "object",
"properties": {
"employer": {
"type": "object",
"id": "employer",
"properties": {
"id": { "type": "string" },
"name": {"type": "string" }

}
},
"start_date": { "type": "string" }

}
}, {
"type": "object",
"properties": {
"start_date": { "type": "string" },
"end_date": { "type": "string" }

} }] } } } schema.json

conforms to

5 properties of
primitive types

1 property of
complex type array

]

{
"id": "100002345678964",
"name": "Jane Doe",
"birthday": "04/18/1978",
"gender": "female",
"type": "user",
"work": [
{
"employer": {
"id": "106119876543210",
"name": "Doe Inc."

},
"start_date": "2007-08"

}, {
"start_date": "2004",
"end_date": "2007"

}
]

} instance.json

unique id of
user object

(= key)

{

foreign key (link to
employer object)

Figure 2: JSON data and extracted JSON Schema

WWW 2012 – MultiAPro'12 Workshop April 16–20, 2012, Lyon, France

940

2.2 Schema Extraction
In the schema extraction phase (cf. 2 in Fig. 1, details

in Sect. 4.1), a so far unknown schema Ls should be in-
ferred, which in turn conforms to another schema Lss. For
instance, in case of json data (Lx = json), the concrete so-
cial network schema (Ls) should be inferred, which conforms
to json Schema (Lss) (cf. right hand side of Fig. 2). In this
respect, schema extraction must find a mapping Lx → Ls

from fragments expressed in the generic markup language Lx

to an according schema Ls, also known as inductive reason-
ing. Since the extracted json data carries structural infor-
mation, such as the names of properties and their datatypes,
schema information may be automatically derived, as can be
exemplarily seen in Fig. 2, and detailed below.

Generalization Strategies. Schema extraction has to
cope with the challenge of going from specifics to general-
izations. For this challenge, positive data examples for the
source language Lx, i. e., examples that correspond to the
schema to be extracted, may be exploited, because the data
retrieved via the api are assumed to be valid instances. In
order to prevent overfitting of the to be extracted schema
Ls, i. e., the schema would only fit to a very limited amount
of examples expressed in Lx, the extraction needs to be re-
peated with multiple diverse data samples, each comprising
possibly complementing data fragments (e. g., two different
employment types have overlapping but distinct properties).

Merging and Clearance. Therefore, at first, multiple

schemas L1
s to Ln

s (subsumed by �Li
s) for each social network

are created (e. g., schemas L1
s1 to Ln

s1 for Facebook Ls1).

These extracted schemas �Li
s can then be merged to construct

a consistent schema Ls (�Li
s → Ls). In the course of this,

schema clearance, such as additions (e. g., additional prop-
erties) and modifications of previously extracted schemas
(e. g., change of cardinality) must be performed.

In order to account for the design characteristics of social
network apis (e. g., references in Facebook are specified via
id properties) prior knowledge about Ls may be utilized to
configure generalization and merging strategies. Such prior
knowledge, for instance, may be retrieved from documen-
tation, naming conventions, or by manual investigation of
examples. Especially, linking data fragments from multiple
requests requires additional knowledge, as the implementa-
tion of links differs between the apis of social networks.

Schema Refactoring. After having extracted a first ver-
sion of the schema from various instances, postprocessing
steps are needed to improve the resulting schemas. Such
improvements include the introduction of an inheritance hi-
erarchy or the specialization of general types (e. g., strings)
to more specific ones (e. g., enumerations).

2.3 Transformation
In order to reuse existing integration and modeling tools,

or otherwise exploit social network schemas and data, in the
transformation phase (cf. 3 in Fig. 1, details in Sect. 4.2)
the extracted schemas as well as the corresponding instance
data have to be transformed to possibly many different tech-
nical spaces. For automatically transforming the schemas, a
transformation Lss → Lss′ has to be specified, for instance,
from json Schema to xml Schema or ecore, which allows to
transform the corresponding schemas, i. e., Ls is transformed
to Ls′ . For transforming instances, according transforma-
tions between pairs of Ls and Ls′ are needed. For example,

to automatically transform json data into xml documents,
a transformation specification between the Facebook json
Schema and a Facebook xml Schema is required. So far
these transformations must be specified manually, but are
envisioned to be derived automatically from Lss → Lss′ .

2.4 Integration
To create an integrated user profile from the user profiles

of multiple social networks, in the integration phase (cf. 4
in Fig. 1), we then resort to existing integration processes,
which are supported by general purpose modeling tools, such
as Enterprise Architect9, and by a multitude of dedicated
integration tools, such as coma++[17] for similarity match-
ing, or MapForce10 for mapping.

In the following, the focus of this paper is on the schema
extraction and transformation phase, both being crucial pre-
requisites for user profile integration.

3. RELATED WORK
This section discusses related work on schema extraction

in the closely related field of data engineering, and in the
more broadly related areas of model and ontology engineer-
ing.

3.1 Data Engineering
Although json Schema for describing the structure of

json documents has been proposed and published as draft
by the Internet Engineering Task Force (ietf)11, to the best
of our knowledge, prior research did not focus on automated
extraction of json Schemas from json documents. So far,
only approaches that derive other artifacts from json docu-
ments exist, for instance, jsonGen12 enables on-the-fly gen-
eration of Java classes.

Several studies have focused on extraction of xml Schemas
and dtds from xml documents [4, 7, 10, 18]. The XStruct
algorithm [10], for example, is capable of processing multi-
ple instance documents to produce a single comprehensive
schema. Heuristics to cluster similar entities can be used
to reduce the number of classes in the inferred schema [19],
and also an inductive logic programming approach was pro-
posed to infer the structure of xml documents [7]. In our
approach, we pursue a similar homogeneous schema extrac-
tion approach (i. e., schema extraction within the same tech-
nical space) for json data, which differs, however, in several
aspects, such as configurability to (social network) apis.

As an alternative, one could employ heterogeneous schema
extractions by translating json documents to xml first, for
which dedicated tools exists. However, these tools do not al-
low to consider social network peculiarities by configuration,
resulting in several shortcomings. To exemplify these short-
comings, xmlSpy13 as a prominent representation thereof
has been applied to the sample json instance shown in
Fig. 2. As result, first, xml schemas can be extracted from
a single xml document only, resulting in high specificity of
the extracted schema (e. g., all elements are marked manda-
tory, although they may not be present in all instance doc-
uments). Second, the extraction process can only be con-

9www.enterprisearchitect.at
10www.altova.com/mapforce
11tools.ietf.org/html/draft-zyp-json-schema-03
12jsongen.byingtondesign.com
13www.altova.com/xmlspy

WWW 2012 – MultiAPro'12 Workshop April 16–20, 2012, Lyon, France

941

figured in a generic manner (e. g., to decide whether type
definitions of elements should be kept local or global), but
does not allow one to consider specifics of social networks,
such as the linking of json instances by means of keys and
foreign keys as shown in Fig. 2.

3.2 Model and Ontology Engineering
As more broadly related work we additionally investi-

gated methods from model and ontology engineering. In
recent years, approaches from model engineering to extract
metamodels from models have been proposed. Javed et al.
[11] base on extraction techniques for programming language
grammars from source code (e. g., [16]). They propose au-
tomatic translation of model examples into a context free
grammar format, which then is fed into grammar extraction
tools as input. Finally, a transformation from the gram-
mar to an according metamodel is provided. Although this
approach would be theoretically applicable in our scenario,
specifics of social networks as well as their rapidly changing
schema would lead to numerous different transformations
and corresponding context free grammars. Consequently,
our approach is more flexible and reusable, since it allows
easy configuration and application of extraction strategies.

Research on schema extraction in the field of ontology en-
gineering is commonly subsumed under the term ontology
learning [6, 8]. As revealed by a recent survey [8], most of
todays ontology learning approaches focus on the extraction
of concepts and their taxonomic relationships only. Finding
non-taxonomic relations (i. e., references between classes)
and concept properties are the least considered problems
[15], whereby only a first approach for ontology extraction
from domain apis is described in [20]. In social network
schema extraction, we go beyond these approaches by pro-
viding heuristics for analyzing the links between json docu-
ments to derive non-taxonomic relations between concepts,
as well as concept properties.

4. EXTRACTION & TRANSFORMATION
To overcome the identified shortcomings of existing ap-

proaches, this section first introduces a schema extraction
process to automatically derive a social network schema ex-
pressed in json Schema from previously acquired positive
json examples, like the ones given in Fig. 2. Second, a
transformation of the extracted schemas to conceptual mod-
els is presented to enable the application of state-of-the-art
integration tools.

4.1 Schema Extraction
Several sub-steps are proposed to refine the schema ex-

traction phase, as shown in Fig. 3. These sub-steps may be
configured, in order to tailor the schema extraction phase
for a single social network or application. The steps include
the application of generalization strategies, resulting in one
schema part per json object. As mentioned before, the de-
rived schema parts often contain links to other json objects
(e. g., a user contains links to his/her current and past em-
ployments), for which according schema information must
be derived to gain a more comprehensive schema. After
having derived the schema parts, they need to be merged
to one single coherent schema, i. e., links between schemas
are replaced by the according schema contents. Further-
more, assuming that more than one user profile has been
available for extraction to prevent overfitting (cf. further-

SchemaSchema
(part)
Schema
(part)
Schema
(part)

33

Schema

End

[furtherProfiles
Requested]

[Schema.contains(links)
&& !abortCondition]

Schema
(without redundancy)

Refactoring
33

Schema
(part)

G li ti

Schema
(merged)

Clearance

11 22

.json

Generalization

Merging

JSON Request

Start

Figure 3: Steps of the schema extraction phase

ProfilesRequested), the merging step must also incorpo-
rate the merging of several derived schemas. Subsequently,
redundancies caused by merging are eliminated in a clear-
ance step. Finally, refactorings are applied to improve the
schema, for instance, by introducing inheritance hierarchies.

4.1.1 Generalization Strategies
The task of the generalization phase is (i) to extract json

schema parts starting from a json instance obtained from
a single request (entry point of process), and (ii) to intro-
duce schema links between the resulting part and other json
schema parts that were extracted by traversing the links in
json instances (which may be obtained until a certain pre-
defined depth of requests is achieved, cf. abortCondition in
Fig. 3). Consequently, the generalization strategies perform-
ing these tasks may be divided into, firstly, those which allow
to extract json schemas from json instances (cf. type extrac-
tion strategies and property extraction strategies in Table 1),
and secondly, those which allow to introduce links referring
to further json instances (cf. link extraction strategies in
Table 1).

To actually derive a schema from json instances, for each
object a type and for each key/value pair a corresponding
property is created.

Type Extraction. The main challenge in type extrac-
tion arises in deriving a unique name for the extracted type.
For this, three strategies are proposed. First, the value of a
key/value pair may be employed, if it contains such informa-
tion (cf. IdFromValue in Table 1). For example, in Facebook
"type":"user" may be used to identify the corresponding
type. To apply this strategy, the extraction algorithm must
be configured with those keys, whose values may potentially
carry type information in a specific social network (cf. con-
figuration options in Table 1). Second, if an object is nested,
the name of the link to the nested object may be employed

WWW 2012 – MultiAPro'12 Workshop April 16–20, 2012, Lyon, France

942

Table 1: Generalization strategies

Strategy Configuration Options Priority Optional Description
TypeFromObject derives a type for each object
IdFromValue names of keys 1 derives the name of a type from the value of a property
IdFromReferenceName 2 derives the name of a nested type from the reference name
IdFromNameConcat 3 derives the name of the type by concatentating the names of the contained properties
PropertyFromKeyValuePair derives a property for each key/value pair
NameFromProperty derives the name of the property from the key of the key/value pair

TypeFromValue
derives the type of the property from the type of the value (String, Boolean, Number,
Array, Object)

EnumFromValue names of keys derives an enumeration for the key/value pair
IntervalFromValue names of keys derives an interval for the key/value pair
LinkFromProperty derives links between types
LinkRoleFromName names of keys derives the role name of the link from the key of a key/value pair
LinkPatternFromValue derives the href of the link from values that are valid URLs

Ty
pe

Ex
tr

ac
tio

n
Pr

op
er

ty
Ex

tr
ac

tio
n

Li
nk

In
tr

o.

as type name (cf. IdFromReferenceName in Table 1). For
example, in Facebook the work property of a user contains
only anonymous objects with no type information; hence,
the key “work” of the key/value pair may be used as name
for the types generated for these objects. Finally, if none
of the above strategies is applicable, the name may be de-
rived by concatenating the names of the keys contained in
the object (cf. IdFromNameConcat in Table 1).

Property Extraction. The main challenge in property
extraction is the derivation of specific types. Although json
instances allow the distinction between the primitive types
of strings, booleans, and numbers and the complex types of
arrays and objects (cf. TypeFromValue in Table 1), more
specific types may be desired, such as enumerations. There-
fore, the specific strategies EnumFromValue and Interval-
FromValue are offered, which allow to add restrictions to
strings and numbers. For this, the names of the keys, for
which enumerations should be generated, must be provided
by the user (cf. configuration options in Table 1).

Link Introduction. Concerning the introduction of links,
two main challenges arise: first, a role name of a link must
be found (in json schema, the role name is represented by
the property rel, with predefined values self, full, de-

scribedBy, and root that can be complemented with cus-
tom ones). Second, an actual reference (href) to another
json document must be defined. Therefore, the name of
a property, whose value is a valid url may be employed
as the role name of a link (LinkRoleFromName). Alterna-
tively, a user may select to introduce a link with one of the
pre-defined role names (or a custom one) whenever a prop-
erty with a particular name is encountered. For example,
in Facebook every property id represents a link to the full
representation of the enclosing object. To apply this strat-
egy, the extraction process may be configured with the role
names and those keys that potentially represent such a link.
Second, the value of a url property may be used as the ac-
tual reference (LinkPatternFromValue). In case that during
application of the first strategy a key/value pair was speci-
fied, whose values are not urls, an additional url pattern
must be provided. This pattern turns a value into a valid
url. For example, in Facebook the above-mentioned con-
vention that ids point to full representations of an object
(e. g., as employed for the user’s hometown) can be exploited
to issue an additional request to graph.facebook.com/{id},
where {id} is replaced with the value of the property id.

4.1.2 Merging and Clearance
Merging. In order to produce a single coherent schema,

in the merging phase, starting at the root schema of each
user profile, links must be resolved recursively. Therefore,
links between schemas are replaced by the according schema

contents, i. e., a merging �Li
s → Ls is performed. After hav-

ing performed link resolving and schema merging for each
json object, the resulting schema Ls may obviously contain
duplicate types.

Clearance. In the clearance phase, hence, all but the first
of these duplicate types are removed from the schema, and
the respective properties are defined with a reference to the
remaining sole type. Additional properties of the removed
duplicate types are copied into the remaining type, leading
to more comprehensive schemas.

4.1.3 Schema Refactoring
After completing the merging and clearance phase, refac-

torings may be applied on the schema to improve its quality.
In the following paragraphs, potential refactorings to be ap-
plied in our case study are discussed in detail.

BuildHierarchy. Types with different names and over-
lapping properties (i. e., types having non-empty intersec-
tions of property names) can be structured into an inheri-
tance hierarchy, as can be seen in Fig. 4. Thereby, this refac-
toring allows to specify the minimal number of intersecting
properties in order to avoid the introduction of unreasonably
fine-grained inheritance hierarchies.

LookupOntology. Top-level and domain specific ontolo-
gies as external sources of knowledge may be employed to
improve the quality of the generated json schema. For in-
stance, commonly agreed type names could be inferred by
searching ontologies for types that have considerable overlap
of properties with the types in the extracted schema. Also,
ontologies may be used in combination with the strategy
BuildHierarchy in order to infer accepted taxonomies.

HomogenizeArrayTypes. In json, arrays may contain
objects of different types. In order to respect the common
assumption that arrays contain only a single type (i. e., all
elements in the array are of equal type or assignable to a
shared base type), this refactoring homogenizes the types
of elements contained in the same array. Two different ap-
proaches to homogenizing types are considered: (i) a new
class containing the union of attributes is defined as sole el-
ement in the items schema element of an array, or (ii) alter-
natively, a class hierarchy can be inferred, with a base class

WWW 2012 – MultiAPro'12 Workshop April 16–20, 2012, Lyon, France

943

containing the intersection of properties, and subclasses ex-
tending this base class with additional properties.

{
 "type": "object",
 "id": "user",
 "properties": {
 "id": { "type": "string" },
 "name": {"type": "string" },
 "birthday": { "type": "string",
 "pattern":
 "[0-9]{2}/[0-9]{2}/[0-9]{4}" },
 "gender": { "type": "string",
 "enum": ["male", "female"] },
 "type": { "type": "string" },
 "work": {
 "type": "array",
 "items": [
 {
 "type": "object",
 "properties": {
 "employer": {
 "type": "object",
 "id": "employer",
 "properties": {
 "id": { "type": "string" },
 "name": {"type": "string" }
 }
 },
 "start_date": { "type": "string" },
 }
 }, {
 "type": "object",
 "properties": {
 "start_date": { "type": "string" },
 "end_date": { "type": "string" }
} }] } } }

schema.json

Homogenize
ArrayType

" },
" }

BuildHierarchy
{
 "type": "object",
 "id": "user_employer",
 "properties": {
 "id": { "type": "string" },
 "name": {"type": "string" }
},
{
 "type": "object",
 "id": "user",
 "extends": "user_employer"
 "properties": {
 ...
 "work": {
 "type": "array",
 "items": [
 {
 "type": "object",
 "properties": {
 "employer": {
 "type": "object",
 "id": "employer",
 "extends": "user_employer"
 },
 "start_date": {"type":"string"},
 "end_date": {"type":"string"}
} }] } } }

schema.json

Figure 4: Sample refactoring

MergeReferenceIntoSource. In order to reduce the
number of classes, the properties of a referenced class may
be merged into the respective source class. For example,
in Facebook partly filled objects with a property id result
in schemas that have a dedicated partial type referring to a
full type using a reference named full. While such a schema
reveals the actual sequence of requests and the structure of
the respective responses and, hence, is particularly helpful to
organize the requests of an application, in some cases this
information might be unneeded. Then, the full type may
replace the partial type and the reference can be removed.

Assuming that the schema has been derived from multiple
user profiles, additional refactorings may be employed to
improve the quality, as discussed below.

UniteConstraints. Since datatype restrictions are dif-
ficult to detect from single json objects, heuristics may
be applied to detect such limitations from a set of objects
(i. e., from the respective types extracted for each object
in isolation). For instance, the user property gender may
be constrained with an enumeration "enum": ["female",

"male"], since every example only contains either value.
In order to ensure that all positive examples remain valid
with respect to the extracted constraints of properties (enu-
meration or value intervals), unions of enumerations and
minimum/maximum intervals are built when merging the
extracted schemas of several extraction runs.

ExtractPattern. From multiple schemas it is also possi-
ble to detect complex patterns described by regular expres-
sions, such as that various dates in Facebook correspond to
MM/DD/YYYY, in contrast to json’s date (YYYY-MM-DD).

DefineMandatoryProperty. Those properties, which
are present in multiple positive examples (i. e., values are set
in every instance), can be assumed to be mandatory, and,
hence, they can be set to required in the json schema.

4.2 Transformation
After having extracted a social network schema Ls, stan-

dard model transformation techniques known from the area
of model-driven engineering [5] may be employed to bridge
gaps between different technical spaces, i. e., we have to spec-
ify transformations of the form Lss → Lss′ . In our context,

Table 2: Transformation from JSON to ECORE
Source concept (JSON) Target concept (ECORE)

Type EClass

Primitive property
EAttribute (with corresponding
datatype EDataType)

Nested type (without link)
EReference (composition with
multiplicity 1)

Nested array (without link)
EReference (composition with
unbounded multiplicity)

Link
EReference (reference with
maximum multiplicity 1)

Array of links
EReference (reference with
unbounded multiplicity)

a transformation from json Schema to ecore has been spec-
ified in order to transform a concrete social network schema
to an according class diagram, as shown in Table 2. Based
on this schema representation in ecore, various other trans-
formations may be specified, for instance, to build an xml
Schema, or a schema description in an owl ontology, or to
create Java class files (pojos).

The transformation from json Schema to ecore has been
specified in Xtend14, one of the most prominent available
transformation languages. For the json Schema after refac-
toring introduced in Fig. 4 above, the transformation leads
to the class diagram depicted in Fig. 5.

{
 "type": "object",
 "id": "user_employer",
 "properties": {
 "id": { "type": "string" },
 "name": {"type": "string" }
},
{
 "type": "object",
 "id": "user",
 "extends": "user_employer"
 "properties": {
 ...
 "work": {
 "type": "array",
 "items": [
 {
 "type": "object",
 "properties": {
 "employer": {
 "type": "object",
 "id": "employer",
 "extends": "user_employer"
 },
 "start_date": { "type": "string" },
 "end_date": { "type": "string" }
} }] } } }

schema.json

Figure 5: Sample transformation

5. CASE STUDY & EVALUATION
The resulting schemas of the schema extraction and trans-

formation process build the basis for the envisioned user pro-
file integration. As a first step in this direction, in this sec-
tion we employ a case study of schema extraction and trans-
formation from user profiles of three major social networks—
namely Facebook, Google+, and LinkedIn—to determine
completeness and correctness with respect to the available
online documentation. Second, we identify semantic over-
laps, as well as structural and semantic heterogeneities be-
tween these social network schemas and, from these, derive
lessons learned for user profile integration.

14www.eclipse.org/xtend

WWW 2012 – MultiAPro'12 Workshop April 16–20, 2012, Lyon, France

944

5.1 Case Study Setup
In order to obtain comparable results, two connected test

user profiles were created in each of the selected social net-
works. Both profiles provide information about name, city,
birthday, and a profile picture. Additionally, education and
work information was entered: high school, university, and
two jobs. Finally, the test users were connected as friends for
exchanging messages, also with attached images (images not
supported in LinkedIn), both, directly and within a group
(shared circle in Google+). On the basis of these profiles,
the schema extraction process was configured and applied to
each of the selected social networks separately, as detailed
below. As a result, three distinct schemas were extracted,
reflecting that partial user profiles, but not the complete in-
formation available in each of the social networks. Nonethe-
less, as these schemas were created in a consistent manner,
they are suited for a first evaluation.

Facebook. During Facebook schema extraction, type ids
were obtained using the strategy IDFromValue on the prop-
erties category and type, and as a fallback, using IdFrom-
ReferenceName. Links were automatically created whenever
a property id was found, using LinkRoleFromName and a
Facebook specific url pattern based on metadata (content
of the connections information is provided specifically upon
request using the http parameter metadata=1).

Google+. Type ids in Google+ were generated from
property values using IdFromValue on kind, type, and ob-

jectType (prefix #plus was removed). Analogously to Face-
book, as a fallback IdFromReferenceName was used, and
links were created whenever a property id was found. Us-
ing this strategy, only links from views on objects to their
respective full representation can be created in Google+.
Thus, in order to enable automatic merging, two additional
links (from user to activities, and from activities to com-
ments) had to be added manually.

LinkedIn. Hints for type ids are not provided in LinkedIn
json data. Thus, all ids were created automatically us-
ing IdFromNameConcatenation, and later replaced manu-
ally. Analogously to Google+, links were automatically cre-
ated for id properties, whereas four were added manually:
between persons and their group memberships, their con-
nections and their suggestions, as well as between activities
and comments.

5.2 Extraction and Transformation
To evaluate the generated schemas as well as the sub-

sequent transformation phase, we compared the conceptual
models to the api documentation of the corresponding social
networks15. Due to reasons of brevity, in the following we
discuss only a subset of the extracted schemas, focusing on
the properties of users and their references to other entities.
The extracted schemas (as uml diagrams and ecore mod-
els), as well as manually created ones on the basis of online
documentation, can be found on our project website16. To
give a first impression of the extracted schemas here, Table 3
summarizes the number of classes, properties and references
as metrics. These metrics provide a first hint on the degree of
schema heterogeneity. For example, the extracted Facebook

15developers.facebook.com/docs,
developers.google.com/+/api,
developer.linkedin.com/apis

16social-nexus.net/publications

Table 3: Metrics for extracted schemas

Metric Facebook Google+ LinkedIn
Number of Classes 58 25 34
Number of Properties 269 71 75
Number of References 93 23 58

schema comprises around twice as many classes as Google+
and LinkedIn do, since Facebook provides metadata, which
allowed us to extract further information linked indirectly
to the test users (e. g., a city in Facebook is represented as
a first-class entity with further links to other users). When
comparing Google+ and LinkedIn, which both do not pro-
vide such metadata, one can conclude that LinkedIn tends
to represent information in terms of first class objects (34
classes in LinkedIn versus 25 in Google+) whereas Google+
provides these information rather in terms of properties (on
average, 3 properties per class in Google+ vs. 2 properties
per class in LinkedIn).

To get an impression of the completeness of the schemas,
Table 4 contrasts the number of properties and references
found in the documentation with the ones successfully ex-
tracted. Interestingly, for Facebook and LinkedIn our pro-
cess was actually able to extract more schema elements than
we would have expected to be present in the test user pro-
files, as detailed below. However, the extracted set is not a
superset, as indicated by their intersection.

Table 4: Documentation vs. extracted schemas

Source Facebook Google+ LinkedIn
API documentation of user 71 45 60
Subset expected for test user 24 27 24
Successfully extracted 30 20 29
Intersection of expected & extracted 19 18 23

No. of properties & references

Facebook. The created Facebook schema (cf. excerpt in
Figure 6) contains 19 of 24 expected user properties and
references. The extracted schema contains an additional
property type, originating from a metadata property con-
tained in the response, which was used to extract the class
name (but is not listed in the documentation). This meta-
information also provides names of properties, references,
and types, which thus, match the documentation. Concern-
ing the types of properties, all primitive types match. Still,
the documentation gives additional constraints on the prop-
erties link (string that may only contain a url), locale
(iso language/country code), and updated_time (iso date-
time). As documented, the references work and education

match to type array with unbounded cardinality. Notably,
Facebook often encloses collections of references (e. g., list
of friends) inside dedicated types to support retrieving sub-
sets of the collection (e. g., the reference from friends to
paging).

Concerning Facebook pages, the prime concept to repre-
sent entities apart from users, the documentation does not
specify concrete subclasses. However, many subclasses of
page exist, as indicated in the web ui during the creation of
pages, as well as in extracted json data. Thus, the prop-
erty category was turned into subclasses of page, and ad-
ditional intermediary classes distinguishing between refer-

WWW 2012 – MultiAPro'12 Workshop April 16–20, 2012, Lyon, France

945

Figure 6: Excerpt of Facebook schema

enced page subsets were introduced (e. g., class education

with its two subclasses HighSchool and College created
by HomogenizingArrayType, each having different additional
properties). Obviously, with our limited test user profiles,
these inferred class hierarchies are far from being complete,
not least, since new page categories are introduced by Face-
book every now and then.

Figure 7: Excerpt of Google+ schema

Google+. In case of Google+, the extracted schema (cf.
excerpt in Fig. 7) contains 18 of the 27 expected proper-
ties and references from the documentation, whereupon all
names and types match. An additional one, namely activ-

ities_public, comes from manually adding a link to the
schema, which resulted in a request to the Activities api of
Google+. Similar to Facebook, Google+ provides a concept
for retrieving subsets of collections (e. g., utilized in activi-

tyFeed). Interestingly, even though the user’s birthday was
entered for the Google+ user, the api does not deliver a
value for the corresponding documented property.

LinkedIn. The schema extraction process for LinkedIn
found 23 of 24 expected properties and references (cf. ex-
cerpt in Fig. 8). Note, that in ecore dashes are not allowed
within property names, thus, they have been removed. Sim-
ilar to Facebook, the documentation notes restrictions for
several properties of type string, which were not inferred
automatically due to the small number of input profiles.

Note, that LinkedIn uses the same structure for all refer-
ences of json objects. This structure is similar to Facebook
and Google+. It consists of referenced objects in an array
named values, and a property _total providing their total
count. Hence, all classes referenced by person were initially
named _totalvalues, and had to be renamed manually for
clarity of presentation in this paper. As a remainder of the
initial structure, the schema excerpt of LinkedIn contains a
class named _total, which is the target of five references.

Figure 8: Excerpt of LinkedIn schema

The name of this class was derived automatically from its
sole property _total. The values arrays resolved to be
empty, since no instances were provided in the test user
profile. Hence, the schema extraction process was unable
to derive a single concrete class per reference.

5.3 Integration—Cross-Network Analysis
Overlap. To complement our previous work [12, 13] on

comprehensive user modeling, we tried to find mappings be-
tween semantically equivalent schema elements of the dif-
ferent social networks. Therefore, as a starting point, we
used the well-known schema and ontology matching tool
coma++ 17 [2, 17]. To import the schemas in coma++,
we simply exported the ecore models to xml Schemas, be-
ing conform to the xmi18 interchange format. The three
schemas were then compared in a pairwise manner.

A brief manual evaluation showed, that the results at hand
already provide a solid basis for integration, specifying mul-
tiple semantically correct 1:1 correspondences between at-
tributes. However, after a first examination the number of
false positives seems to be rather high. Certainly, the ca-
pabilities of coma++ were not fully exhausted. Also, for a
thorough evaluation of the matching results, manually cre-
ated “perfect mappings” would be required, which are, how-
ever, not yet available. A few information samples about
users and their addresses are shown in Table 5, already giv-
ing an impression of heterogeneities amongst social network
schemas, along with the computed similarity values from
coma++ in Table 6. The heterogeneities found between
these properties are discussed in the following.

Table 5: Sample user and address properties
Google+ Facebook LinkedIn

username Person.displayName User.name (not available)
firstname Name.givenName User.first_name Person.firstName
lastname Name.familyName User.last_name Person.lastName
gender Person.gender User.gender (not available)
date of birth (not available) User.birthday Person.dateOfBirth
zip PlacesLived.value Location.zip (not available)
city PlacesLived.value Location.city Location.name
country PlacesLived.value Location.country Location.country

U
se

r
Ad

dr
es

s

17coma version 2008f, matcher: coma opt
18www.omg.org/spec/XMI

WWW 2012 – MultiAPro'12 Workshop April 16–20, 2012, Lyon, France

946

Table 6: User and address cross-network overlap
Google+ vs. Facebook Google+ vs. LinkedIn Facebook vs. LinkedIn

username 0.55 (not applicable) (not applicable)
firstname 0.48 0.41 0.73
lastname 0.46 0.39 0.73
gender 0.74 (not applicable) (not applicable)
date of birth (not applicable) (not applicable) 0.34
zip (not applicable) (not applicable) (not applicable)
city 0.2 0.33 0.31
country 0.2 0.17 0.88

U
se

r
Ad

dr
es

s

Heterogeneities. Analyzing the corresponding schema
elements manually, we found that even in such tiny ex-
tracts of social network data, manifold heterogeneities ex-
ist, as outlined in Table 5. These include semantic as well
as structural heterogeneities [14]. Concerning the former,
we see that certain information is not available from all so-
cial networks, such as gender (cf. LinkedIn), or birthday
(cf. Google+). Consequently, the integration of user pro-
files from several social networks will lead to semantically
enriched user profiles, as also indicated by Abel et al. [1].
Concerning the latter, one may find that information is rep-
resented structurally different. Such structural differences
[23] range from simple naming differences (e. g., the concept
of a first name is represented by three differently named
attributes being givenName, first_name and firstName)
over fine-grained cardinality differences with respect to at-
tributes (e.g., zip code, city, and country, the concepts mak-
ing up an address, are represented as a single string value in
Google+) to coarse-grained cardinality differences with re-
spect to classes (e.g., Google+ represents user information
in two separate classes Person and Name, whereas Facebook
and LinkedIn represent the same information within a sin-
gle class). Consequently, the application of integration tools
for schema matching and mapping is mandatory to support
the task of user profile integration in the context of social
networks.

6. LESSONS LEARNED & FUTURE WORK
In the following paragraphs, we summarize lessons learned

from schema extraction, transformation, and analysis for in-
tegration, and thereupon discuss directions of further work.

Obtainment of user profile data is a critical suc-
cess factor. The proposed process obviously depends on
the availability of user profile data. This data may be either
obtained from real users or from generated pseudo users.
Concerning the former case, authorization from users is re-
quired to allow requests for user profile information. Con-
cerning the latter case, the mass of information that may be
entered into today’s social networks makes the creation of
artificial user profiles a tedious task. For example, in Face-
book, entering information for the multi-purpose class page
is supported with a wizard-like user interface, which allows
selection of a page category by combining a main category
and a sub-category from drop-down lists. Each combina-
tion leads to a dynamically created input form for speci-
fying property values. The properties of a particular page
category may partly overlap with the ones of other page cat-
egories. Altogether, 193 different page categories could be
entered (cf. Excel sheet on our website19). However, the fact
that Facebook does not delete information leads to some-

19social-nexus.net/publications

what surprising results: For example, upon selection of a
main category, such as Hotel, specific text fields (e. g., public
transit and general manager) can be filled in. When switch-
ing to a different main category (e. g., Books&magazines),
surprisingly these input fields are still available, although
they are not when this category was selected initially. More-
over, instances created this way also provide public transit
and general manager information when requested from the
api.

Comprehensive schema extraction requires man-
ual intervention. In order to request complementary parts
of user profiles, links between json documents are necessary.
Facebook provides such links upon request (metadata=1),
but Google+ and LinkedIn do not. Consequently, links must
be obtained from the documentation and added manually.
Since the documentation is available in html, information
extraction techniques may reduce this manual effort.

Same objects are represented differently. All three
investigated social networks provide different views on the
same objects, depending on the kind of issued request. For
example, in Facebook a user’s name and profile picture are
provided with each feed entry, whereas only the name is
provided in the list of friends. As a result, extracted schemas
may comprise a large number of view classes (one for each
different view that is employed in a particular context), each
ultimately referring to the same full class. Consequently, the
merging of resulting type definitions is indispensable.

Queries: restriction vs. relaxation. Social network
providers apply different policies concerning their api re-
quests: while Facebook and Google+ deliver complete re-
sponses and support restriction with queries on demand,
LinkedIn by default delivers only restricted responses and
demands that further information is queried. In the latter
case, automated schema extraction is only possible for the
default information (alternatively, extraction can base on
different input information, such as html documentation).
Completely private objects vs. reusable objects.

In the three social networks, some objects (e. g., a particular
employment period of a user) are designed to be completely
private, which means that they do not have an id and can-
not be requested separately. Others are reusable and can be
referred to from many objects. Sometimes, surprising enti-
ties are designed reusable: For example, in Facebook, years
are dedicated pages, which are referenced from other objects
instead of being modeled as properties thereof.

Heterogeneous arrays may not be representable
in every technical space. In json Schema, arrays can
be completely heterogeneous (i. e., each element in the array
may have its own schema). In contrast, in uml a common
base type is assumed to exist as the target of an association,
which may lead to schemas comprising a generic root class
and wrappers for primitive types, such as known from Java.

Transformation of instances are prerequisite for
profile integration. Besides the transformation of models
to bridge technical spaces between different modeling tools,
a particularly interesting question towards the integration
of user profiles arises: Can we automatically derive trans-
formations on the model level from those being defined on
the meta model level, such that the instances of the source
model (e. g., json data of a user profile) can be automati-
cally translated into instances of the newly generated target
model (e. g., instances of Java classes)? Answering this ques-
tion, firstly, would give us further insight on the value and

WWW 2012 – MultiAPro'12 Workshop April 16–20, 2012, Lyon, France

947

accuracy of the extracted schemas. Secondly, it may bring
us towards automated creation of mapping tools, not only
for user profile integration, but for various other scenarios
as well.

Co-evolution of instance extraction and user pro-
file integration applications with social networks. As
further work basing on automatically extracted schemas, we
plan to create a model-driven instance extraction frame-
work for social networks, which, given schemas of social net-
works and transformations, can be used to (i) create request
code for these networks, (ii) create test mockups for third-
party applications thereof, (iii) derive user profile integra-
tion rules from schema mappings, and especially, (iv) sup-
port co-evolution of request code and integration rules with
the accessed social networks. As a first implementation of
that framework, on the basis of a transformation from social
network schemas to owl ontologies, social network informa-
tion extraction into rdf graphs is planned. Thereupon, user
profile integration shall be implemented, using semantic web
techniques, such as rule reasoners fed with integration rules
derived from schema mappings.

7. ACKNOWLEDGMENTS
This work has been funded by the Austrian Federal Min-

istry of Transport, Innovation and Technology (bmvit) un-
der grant fit-it 825070.

8. REFERENCES
[1] F. Abel, S. Araújo, Q. Gao, and G. J. Houben.

Analyzing cross-system user modeling on the social
web. In Proc. of the 11th Int. Conf. on Web
Engineering (ICWE), pages 28–43. Springer, 2011.

[2] D. Aumueller, H. H. Do, S. Massmann, and E. Rahm.
Schema and ontology matching with COMA++. In
Proc. of the Int. Conf. on Management of Data
(SIGMOD), pages 906–908. ACM, 2005.

[3] S. Berkovsky, T. Kuflik, and F. Ricci. Mediation of
user models for enhanced personalization in
recommender systems. User Modeling and
User-Adapted Interaction, 18(3):245–286, Aug. 2008.

[4] G. J. Bex, F. Neven, and S. Vansummeren. Inferring
XML schema definitions from XML data. In Proc. of
the 33rd Int. Conf. on Very Large Data Bases
(VLDB), pages 998–1009. VLDB Endowment, 2007.

[5] J. Bézivin. On the unification power of models.
Software and Systems Modeling, 4(2):171–188, 2005.

[6] L. Drumond and R. Girardi. A survey of ontology
learning procedures. In Proc. of the 3rd Workshop on
Ont. and their Applications. CEUR-WS.org, 2008.

[7] M. Eki, T. Ozono, and T. Shintani. Extracting XML
schema from multiple implicit xml documents based
on inductive reasoning. In Proc. of the 17th Int. Conf.
on World Wide Web, pages 1219–1220. ACM, 2008.

[8] M. Hazman, S. R. El-Beltagy, and A. Rafea. A Survey
of Ontology Learning Approaches. Int. Journal of
Computer Applications, 22(8):36–43, May 2011.

[9] D. Heckmann, T. Schwartz, B. Brandherm,
M. Schmitz, and M. von Wilamowitz-Moellendorff.
GUMO - The General User Model Ontology. In
Proceedings of the 10th International Conference on
User Modeling, pages 428–432. Springer, July 2005.

[10] J. Hegewald, F. Naumann, and M. Weis. XStruct:
Efficient schema extraction from multiple and large
XML documents. In Proc. of the 22nd Int. Conf. on
Data Engineering, page 81. IEEE, 2006.

[11] F. Javed, M. Mernik, J. Gray, and B. R. Bryant.
MARS: A metamodel recovery system using grammar
inference. Information and Software Technology,
50(9-10):948–968, Aug. 2008.

[12] E. Kapsammer, S. Mitsch, B. Pröll,
W. Retschitzegger, W. Schwinger, M. Wimmer,
M. Wischenbart, and S. Lechner. Towards a Reference
Model for Social User Profiles: Concept &
Implementation. In Proc. of the Int. Workshop on
Personalized Access, Profile Management, and Context
Awareness in Databases (PersDB), 2011.

[13] E. Kapsammer, S. Mitsch, B. Pröll, W. Schwinger,
M. Wimmer, and M. Wischenbart. A first step towards
a conceptual reference model for comparing social user
profiles. In Proc. of the Int. Workshop on User Profile
Data on the Social Semantic Web (UWeb), 2011.

[14] V. Kashyap and A. Sheth. Semantic and schematic
similarities between database objects: a context-based
approach. The VLDB Journal, 5(4):276–304, 1996.

[15] M. Kavalec, A. Maedche, and V. Svátek. Discovery of
lexical entries for non-taxonomic relations in ontology
learning. In Proc. of SOFSEM: Theory and Practice of
Computer Science, pages 17–33. Springer, 2004.

[16] R. Lämmel and C. Verhoef. Semi-automatic grammar
recovery. Softw. Pract. Exper., 31:1395–1448, 2001.

[17] S. Massmann, S. Raunich, D. Aumüller, P. Arnold,
and E. Rahm. Evolution of the COMA match system.
In Proc. of the 6th Int. Workshop on Ontology
Matching, Oct. 2011.

[18] I. Mlynkova. An Analysis of Approaches to XML
Schema Inference. In Proc. of the Int. Conf. on Signal
Image Technology and Internet Based Systems
(SITIS), pages 16–23. IEEE, Nov. 2008.

[19] S. Nestorov, S. Abiteboul, and R. Motwani.
Extracting schema from semistructured data. In Proc.
of the 1998 Int. Conf. on Management of data
(SIGMOD), SIGMOD ’98, pages 295–306. ACM, 1998.

[20] D. Ratiu, M. Feilkas, and J. Jurjens. Extracting
domain ontologies from domain specific APIs. In Proc.
of the 12th European Conf. on Software Maintenance
and Reengineering, pages 203–212. IEEE, 2008.

[21] M. Viviani, N. Bennani, and E. Egyed-Zsigmond. A
survey on user modeling in multi-application
environments. In Proc. of the 3rd Int. Conf. on
Advances in Human-Oriented and Personalized
Mechanisms, Technologies and Services, pages
111–116. IEEE, 2010.

[22] M. Wimmer, G. Kappel, A. Kusel, W. Retschitzegger,
J. Schönböck, and W. Schwinger. Surviving the
heterogeneity jungle with composite mapping
operators. In Proc. of the 3rd Int. Conf. on Model
Transformation, pages 260–275. Springer, 2010.

[23] M. Wimmer, G. Kappel, A. Kusel, W. Retschitzegger,
J. Schönböck, and W. Schwinger. Towards an
expressivity benchmark for mappings based on a
systematic classification of heterogeneities. In Proc. of
the 1st Int. Workshop on Model-Driven Interoperability
(MDI @ MoDELS), pages 32–41. ACM, 2010.

WWW 2012 – MultiAPro'12 Workshop April 16–20, 2012, Lyon, France

948

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Academy
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Alba
 /AlbaMatter
 /AlbaSuper
 /Algerian
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /BabyKruffy
 /BaskOldFace
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Cambria
 /Cambria-Bold
 /Cambria-BoldItalic
 /Cambria-Italic
 /CambriaMath
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chick
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Croobie
 /CurlzMT
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /Fat
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Freshbot
 /Frosty
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GlooGun
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /Jenkinsv20
 /Jenkinsv20Thik
 /Jokerman-Regular
 /Jokewood
 /JuiceITC-Regular
 /Karat
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /MaturaMTScriptCapitals
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MSOutlook
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /OCRAExtended
 /OldEnglishTextMT
 /Onyx
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /Poornut
 /PoorRichard-Regular
 /Porkys
 /PorkysHeavy
 /Pristina-Regular
 /PussycatSassy
 /PussycatSnickers
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /ShowcardGothic-Reg
 /Shruti
 /SnapITC-Regular
 /Square721BT-Roman
 /Stencil
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /WeltronUrban
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2003
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

