Coulomb Classifiers:
Reinterpreting SVMs as Electrostatic Systems

Sepp Hochreiter and Michael C. Mozer
Technical Report CU-CS-921-01
Department of Computer Science

University of Colorado
Boulder, CO 80309-0430

{hochreit,mozer}@cs.colorado.edu

May 2001

Abstract

We introduce a family of classifiers based on a physical analogy to an
electrostatic system of charged conductors. The family, called Coulomb
classifiers, includes the two best-known support-vector machines (SVMs),
the »~SVM and the C-SVM. In the electrostatics analogy, a training ex-
ample corresponds to a charged conductor at a given location in space, the
classification function corresponds to the electrostatic potential function,
and the training objective function corresponds to the Coulomb energy.
The electrostatic framework not only provides a novel interpretation of
existing algorithms and their interrelationships, but it suggests a variety
of new methods for SVMs including kernels that bridge the gap between
polynomial and radial-basis functions, objective functions that do not re-
quire positive-definite kernels, regularization techniques that are not cast
in terms of violation of margin constraints, and speed-up techniques us-
ing either approximate or restricted-but-exact algorithms. Based on the
framework, we propose novel SVMs and perform simulation studies to
show that they are comparable or superior to standard SVMs. The elec-
trostatic framework subsumes not only SVMs but also nearest neighbor,
density estimation, vector quantization, and clustering techniques.

1 Introduction

Recently, Support Vector Machines (SVMs) [1, 8, 5] have attracted much inter-
est in the machine-learning community and are considered state of the art for
classification and regression problems. One appealing property of SVMs is that
they are based on a convex optimization problem, which means that a single



minimum exists and can be computed efficiently. In this paper, we present a
new derivation of SVMs by analogy to an electrostatic system of charged con-
ductors. The electrostatic framework not only provides a physical interpretation
of SVMs, but it also gives insight as to some of the seemingly arbitrary aspects
of SVMs (e.g., the diagonal elements in the quadratic form), and it allows us to
derive novel SVM approaches.

We will discuss the classification of an input vector x € X into one of two
categories, “4+” or “—”. We assume a supervised learning problem in which N
training examples are available, each example i consisting of an input x; and a
label y; € {-1,+1}.

We will introduce three electrostatic models that have direct analogy to
machine-learning (ML) classifiers, starting with a relatively limited electrostatic
model and the following two building on and generalizing from the previous. For
each model, we describe the physical system and show its correspondence to an
ML classifier.

1.1 Electrostatic model 1: Uncoupled point charges

Consider an electrostatic system of point charges populating a space X’ homol-
ogous to X'. Each point charge corresponds to a particular training example;
point charge i is fixed at location x; in X', and has a charge of sign y;. We
define two sets of fixed charges: St = {z; | y; = +1} and S~ = {z; | y; = —1}.
The charge of point i is denoted @); = y; a;, where a; > 0 is the amount of
charge, to be discussed below.

We briefly review some elementary physics. If a unit positive charge is at
z in X', it will be repelled by all charges in ST and attracted to all charges
in S7. To move the charge from z to &, the force must be overcome at every
point, along the trajectory; the path integral of the force along the trajectory is
called the work and does not depend on the trajectory. The potential at x is the
work that must be done to move a unit positive charge from a reference point
(usually infinity) to .

The potential at z is ¢ (z) = Zi\il Q; G (x;,z), where G is a kernel measur-
ing the distance between z and z; (in electrostatic systems, G (a,b) = 1/ ||a — b||,)-
From this definition, one can see that the potential at x is negative (positive) if
x is in a neighborhood of relatively many negative (positive) charges. Thus, the
potential indicates the sign and amount of charge in the local neighborhood.

Turning back to the ML classifier, one might propose a classification rule
for some input z that assigns the label “+” if ¢(z) > 0 or “—” otherwise.
Abstracting from the electrostatic system, if a; = 1 and G is a function that
decreases sufficiently steeply with distance, we obtain a nearest-neighbor clas-
sifier. (By “sufficiently steeply,” we mean that if x; is the closest point to x
then G (z;,2) > N G (zj,2)Vj # i.) The potential can also be viewed as the
difference between a kernel density estimator for the “+” class and a kernel



density estimator for the “—” class if a; = |S¥

andV,: [G(a,z)dx =1.

(St =8t and ST = S7)

1.2 Electrostatic model 2: Coupled point charges

Consider now an electrostatic model that extends the previous model in two re-
spects. First, the point charges are replaced by conductors, e.g., metal spheres.
Each conductor i has a self-potential coefficient, denoted Pj;;, which is a mea-
sure of how much charge it can easily hold; for a metal sphere, P;; is related
to sphere’s diameter. Second, the conductors in ST are coupled, as are the
conductors in S7. “Coupling” means that charge is free to flow between the
conductors. (Technically, ST and S~ can each be viewed as a single conductor,
but we will still use “conductor” in correspondence with ¢ € {1...N}.)

In this model, we initially place the same charge on each conductor, and allow
charges within St and S~ to flow freely (we assume no resistance in the coupling
and no polarization of the conduc- ©) ©
tors). After the charges redistribute, ® @ ®® ®® ®® ©
charge will tend to end up on the @& @ ® © e © ©
periphery of a homogeneous neigh- ® ® ®
borhood of conductors, because like ©) (ga C%D@ © o
charges repel. Charge will also tend @ 5 @ o ©)

to end up along the ST—S~ bound- __
arv because opposite charges attract Figure 1: Coupled conductor system at the en-
y bp B * ergy minimum. Shading indicates the charge

See Figure 1 for a depiction of the re- magnitude. The zero potential isoline is shown.
distributed charges. The shading is

proportional to the magnitude «;.

An ML classifier can be built based on this model, once again using p(z) >
0 as the decision rule for classification. In this model, however, the «; are
not uniform; the conductors with large a; will have the greatest influence on
the potential function. Consequently, one can think of «; as the weight or
importance of example i. As we will show shortly, the examples with «; > 0 are
exactly support vectors of an SVM.

1.2.1 Formal Presentation

The potential on conductor i, ¢; = p(z;) can be described by the coefficients
Of potential Pij [6] Qi = Zjvzl Pij Q]‘, where P” Z Pij Z 0 and Pij = P]l Pij
specifies the potential induced on conductor ¢ by charge @; on conductor j. To
use a concrete physical example, if each conductor 7 is a metal sphere centered
at z; and has radius r;, the system can be modeled by a point charge @; at
x;, Py = G (x;,T;), where T; is an arbitrary point on the sphere surface, and
P;j = G (z;,z;) [2, 6]. G (a,b) must be isotropic, i.e., depend only on ||la — bl|,.
The free charge flow in ST and S~ corresponds to minimizing the Coulomb



energy,

e 1 1 <
E = 5;%’Qi = §QTPQ = iijglpijyiyjaiaj-

Initially, we set a; = K/ |SY| to assign the same total charge magnitude K to
St and S~ and to make the charge uniform for each conductor in each set.
Coulomb energy minimization redistributes the charges.

In order for this electrostatic model to serve as a classifier, we must enforce
the constraint a; > 0 to ensure that an example does not change its class
label. We do this by treating energy minimization as a constrained optimization
problem with 0 < a; < C, where C' is an optional upper bound (which can be
set to co to eliminate the constraint). In the physical model, the constraint on
a; can be satisfied by disconnecting a conductor i from the charge flow in S™
or S~ when «; reaches the lower or upper bound, which will freeze its value.

After the energy minimum is reached, the potential will be the same for all
i € ST which are still connected; we denote this potential ¢g+. Similarly, g
denotes the potential which is the same for all i € S~ which are still connected.
To use the potential, p(z), to classify an input z, we must ensure that pg+ =
ps- to eliminate any bias toward classification as “+” or “—”. We can do so
by introducing a constant potential b (something like ionized air in the physical
system), i.e., ¢ (z) = Ef;l Q; G (z;,x) + b, where b= —0.5 (pg+ + p5-).

We have described a system of coupled conductors with two additional con-
straints: (1) that the charge on a conductor is bounded, and (2) that positive
and negative potentials are balanced. This physical system corresponds to a v—
support vector machine (v—SVM) [5] if C'=1/N and ) ;.1 ;i = ) ;cq- @i =
0.5 v. The identity holds because the energy function is exactly the v—SVM
quadratic objective function, and in both the physical system and the SVM the
function is minimized. We know from optimization theory that at the minimum,
the Karush-Kuhn-Tucker conditions (KKTs) [1] must hold. The KKTs for v—
SVMs use the variables p, &, and u; which have a physical interpretation in our
model. p is the potential difference between ST and S™: p = 0.5 (ps+ — 5-),
or with b, we obtain p = +¢g+. Slack variable £; gives the potential difference
between ¢; and psvi: & = p—1y; ¢; > 0. Removing conductors with a; = 0
from the system makes { > 0 only for a; = C = 1/N. Variable y; mea-
sures the charge difference to the upper bound y; = 1/N — «; > 0 on i.
The diagonal elements in the quadratic form have a physical interpretation as
self-potential. As we discuss later, this interpretation will allow us to introduce
novel kernels and novel SVM methods.

1.3 Electrostatic model 3: Coupled point charges with
batteries

In electrostatic model 2, the same total charge is applied to ST and S~



and the potentials pg+ are balanced by b. However, we cannot control the
magnitude of the potentials, |@g+|. We can achieve this control by adding
batteries to the system. We do this in two ways. In model 3.1, we connect
ST to the positive pole of a battery with potential ™ and S~ to the negative
pole with potential ¢~ = —¢™. The battery forces g+ = ¢* and pg- = ¢~
The battery can then be removed and the potential remains. In model 3.2,
we treat each conductor not as a (solid) sphere but as a spherical shell. We
also connect each conductor shell ¢ to its own battery, B;,
but not by direct contact. Rather, each shell 7 has a small
sphere at its center which is connected to the positive pole
of B; if y; = —1 and the negative pole if y; = +1 (Figure 2).
Consequently, the induced constant potential, ¢;, has polarity
opposite that of the conductor (—y;). To add charges to S+ Figure2: Conductor
and S~ we ground both. Charges flow into the system until with batiery.

the potentials equalize. Therefore, after removing the batteries and fixing the
charges we have @; = —¢; (unless a conductor is disconnected).

1.3.1 Formal Presentation

¢; = — Bi yi (B; > 0) is the potential induced by the battery B; on conductor
i, the total potential on conductor i is ®; = ¢; + ¢;, the energy contribution of
the battery B; is 1/2 ¢; Q; [2], and the total Coulomb energy is:

N 1

N N
1 1
B (‘I’i+¢i)Qi=§QTPQ+¢TQ=§Zpijyiyj04iaj—Zﬂiai-
i=1 i,j=1 i=1

This physical system corresponds to a C—support vector machine (C-SVM)
[1, 8] if Vi : B; = 1 (that is, model 3.1 with |¢*| = 1). The Coulomb energy
is the C-SVM objective function. Our model yields pg+ —b = —pg- — b. The
KKT-condition variables receive a physical interpretation analogous to that in

the »—SVM.

2 Comparison of existing and novel models

2.1 Novel Kernels

E = [G(z,y) h(z) h(y) dedy > 0 must hold in a continuous physical
system for the energy E. Here h™ (h™) is the density of positive (negative)
charges and h = h™ — h™. This is exactly Mercer’s condition in the context
of SVM which ensures positive definite kernels [1]. To maintain properties of
the physical model (e.g., b = 0 in model 3.2), we fulfill Mercer’s condition by
restricting G' to isotropic kernels, ie., G (z;,z;) = g(||lz; — a:J||§), where g is
completely monotonic, i.e., (—=1)* g® (z) >0, V2 > 0 [7].

The electrostatic perspective makes apparent that SVM algorithms can break
down in high dimensions. The reason is that fast decreasing kernels induce



small potentials and, therefore, almost every conductor retains charge. We
want to use kernels which do not decrease exponentially. The self-potential
allows the use of kernels that would otherwise be invalid, such as a general-
ization of the electric field to d dimensions: g(z) = 2!7%%¢ where we define
G (zi,z;) = Py = g (rf) Smoothing this kernel by e and using an expo-
nent n leads to the Plummer potential which is used in computational physics
to simulate electrostatic fields g (2) = (z + 62)_0'5n with r; = min; ||z, z;]|,.
For ¢ > ¢p = max{0.5 z | z = ||z; —a:j||§ Vo z = 71?2} (we used ¢ = ¢p) is
g(2) = (¢c—0.52)" a polynomial and for n = 1 the conventional linear kernel.

2.2 Novel SVM models
Our electrostatic framework can help to derive many distinct SVM approaches,
several representative examples we now illustrate.

2.2.1 k—Support Vector Machine (k—SVM)

We can exploit the physical interpretation of P;; as conductor i’s self-potential,
(i.e., how easy it is to put charges on i). The P;;’s determine the entropy of the
charge distribution at the energy minimum. We can rescale the self potential—
Prev = g Pgl4—and use & to control the complexity of the SVM in electrostatic
models 3.1 and 3.2 with C' = co.

2.2.2 p—Support Vector Machine (p—SVM)

Without constraints, PQ) + ¢ = 0 at the energy minimum of model 3.1
and 3.2, which is Vi : ¢; + ¢; = 0. In physical terms this means that
potentials equalize. However, the solution Q = —P~'¢ suffers from violating

the constraint that a; > 0. We can instead minimize the potential differ-
ence, %HPQ + ¢)||§ = %QTPTPQ +QTPTy + %ngzb, where the last term
is constant. Without constraints, the minimum is @ = (PTP)f1 PT ¢, where
(PTP)_1 PT is P’s pseudo inverse. Using physical model 3.1, and defining
Wi = B Z;VZI y;y;Pi;, we obtain:

min,, %aTKa—uTa st. yTa=0A0<aq; <C,where K;; := y;y; [PTP] i
K is by construction positive definite so that this formulation does not de-

mand positive definite kernels. If we set 3; = —x——— then we obtain

Ej:l yiy; Pij
the generalized SVM in [3]; however, for other values of 3; (e.g., 8; = 1) we
obtain an SVM that automatically removes outliers, e.g., the p—SVM. Outliers

gets a negative or small u;, which results in a small «;.



2.3 Experiments

For the representative models we’ve introduced, we perform simulations and
make comparisons to the standard SVM models. The datasets are from the
UCI Benchmark Repository and preprocessed in [4], where the “banana” data
set stems from (http://www.first.gmd.de/ raetsch/data). We did 100-fold
validation on each data set, restricting the training set to 200 examples, and
using the remainder of examples for testing. We compared C—-SVM, v—-SVM, k—
SVM, and p—SVM. Additionally we combined the later to k—p—SVM allowing &
values which lead to not positive definite kernels. We used radial basis function
(RBF), polynomial (POL), and Plummer (PLU) kernels. Hyperparameters are
determined by 5—fold cross validation on the first 5 training sets. The search
for hyperparameter was not as intensive as in [4].

Clv s [plwp C]v ]k [p]erp

thyroid heart

RBF | 64 94 7.7 5.4 | 8.6 214 | 19.1 | 179 | 224 | 17.8
POL | 228 | 126 | 7.0 | 13.3 | 6.9 204 | 204 | 19.3 | 23.0 | 19.3
PLU | 6.1 6.2 6.1 5.7 6.1 16.3 | 16.3 | 16.3 | 174 | 16.3

breast—cancer banana

RBF | 33.6 | 31.6 | 33.8 | 32.4 | 33.7 || 13.2 | 36.7 | 13.2 | 11.6 | 13.4
POL | 36.0 | 25.7 | 29.6 | 27.1 | 29.1 || 35.3 | 35.0 | 11.5 | 224 | 11.5
PLU | 334 | 33.1 | 33.4 | 30.6 | 33.4 | 15.7 | 15.7 | 15.7 | 21.9 | 15.7

german

RBF | 28.7 | 293 | 29.0 | 27.8 | 28.8
POL | 33.7 | 29.6 | 26.2 | 31.8 | 26.2
PLU | 28.8 | 285 | 33.3 | 27.1 | 333

Table 1: Mean % misclassification over 100 replications. The columns corre-
spond to SVMs and the rows to kernel functions.

The Plummer potential is more robust against hyperparameter and SVM
choices. The proposed novel methods performed well compared to known ap-
proaches.

2.4 Other SVM approaches

This work leads to many models that could be explored. For example, the
variables f3; in model 3.2 were not further investigated. With fixed charge, 3;
determines how conductor i retains its charge. Here, however, we will present
SVM speed ups.



2.4.1 Support Vector Machine By Linear Programming

We minimize [|[P @ + ¢|[; by minimizing Ziil s; with constraints §; — s; <
yi [P Ql; <Bi+si, »;yi i =0,and a; > 0. Maximizing the j3; as well results
in the linear SVM formulation, e.g., [3].

2.4.2 Support Vector Machine By Solving One Equation

We will adjust the Pj; so that Q = —P~'¢ does not violate a; > 0. We divide
P = P + D into diagonal matrix D (D;; = ki) and zero diagonal matrix P.

Fast, iterative algorithm.

K; > Zj,#i P;; ensures a; > 0. This means that P is diagonal dominant
and the fast Jacobi iteration is possible.

Standard equation solving algorithms.

We set V; : k; = ko and perform a k—step bisection to find a minimal kg
which does not violate o; > 0.

2.4.3 Support Vector Machine By A Quick and Dirty Approxima-
tion

We solve y; Z;\le y;jPijo; = B; with the assumption that conductors are sur-
rounded by conductors with the same charge magnitude, i.e. a; = a;. We get
a; = B;/pi, where we keep u; > e.

2.5 Vector quantization and clustering

SVMs focus on the boundaries whereas vector quantization and clustering algo-
rithms focus on high density regions in order to obtain prototype vectors or clus-
ter centers. This corresponds to energy maximization in our physical systems
with a; > e. We get a dual between SVM and vector quantization/clustering.
For example, constraints can determine the number of clusters or prototypes.

3 Conclusion

The electrostatic framework and its analogy to SVMs has led to several im-
portant ideas: (1) It suggests SVM methods that are valid for kernels that are
not positive definite. (2) It allowed us to derive fast SVM methods based on
linear programming and linear equations. (3) It suggested novel approaches and
kernels that perform at least as well as standard methods.

We argued that the electrostatic framework not only characterizes a fam-
ily of support-vector machines, but it also characterizes other techniques such
as nearest neighbor classification, classification by density estimation, vector
quantization, and clustering. Perhaps the most important contribution of the
electrostatic framework is that, by interrelating and encompassing a variety



of methods, it lays out a broad space of possible algorithms. At present, the
space is sparsely populated and has barely been explored. But by making the
dimensions of this space explicit, the electrostatic framework allows one to eas-
ily explore the space and discover novel algorithms. In the history of machine
learning, such general frameworks have led to important advances in the field.
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