
Coulomb Classi�ers:Reinterpreting SVMs as Ele
trostati
 SystemsSepp Ho
hreiter and Mi
hael C. MozerTe
hni
al Report CU-CS-921-01Department of Computer S
ien
eUniversity of ColoradoBoulder, CO 80309{0430fho
hreit,mozerg�
s.
olorado.eduMay 2001Abstra
tWe introdu
e a family of 
lassi�ers based on a physi
al analogy to anele
trostati
 system of 
harged 
ondu
tors. The family, 
alled Coulomb
lassi�ers, in
ludes the two best-known support-ve
tor ma
hines (SVMs),the �{SVM and the C{SVM. In the ele
trostati
s analogy, a training ex-ample 
orresponds to a 
harged 
ondu
tor at a given lo
ation in spa
e, the
lassi�
ation fun
tion 
orresponds to the ele
trostati
 potential fun
tion,and the training obje
tive fun
tion 
orresponds to the Coulomb energy.The ele
trostati
 framework not only provides a novel interpretation ofexisting algorithms and their interrelationships, but it suggests a varietyof new methods for SVMs in
luding kernels that bridge the gap betweenpolynomial and radial-basis fun
tions, obje
tive fun
tions that do not re-quire positive-de�nite kernels, regularization te
hniques that are not 
astin terms of violation of margin 
onstraints, and speed-up te
hniques us-ing either approximate or restri
ted-but-exa
t algorithms. Based on theframework, we propose novel SVMs and perform simulation studies toshow that they are 
omparable or superior to standard SVMs. The ele
-trostati
 framework subsumes not only SVMs but also nearest neighbor,density estimation, ve
tor quantization, and 
lustering te
hniques.1 Introdu
tionRe
ently, Support Ve
tor Ma
hines (SVMs) [1, 8, 5℄ have attra
ted mu
h inter-est in the ma
hine-learning 
ommunity and are 
onsidered state of the art for
lassi�
ation and regression problems. One appealing property of SVMs is thatthey are based on a 
onvex optimization problem, whi
h means that a single1



minimum exists and 
an be 
omputed eÆ
iently. In this paper, we present anew derivation of SVMs by analogy to an ele
trostati
 system of 
harged 
on-du
tors. The ele
trostati
 framework not only provides a physi
al interpretationof SVMs, but it also gives insight as to some of the seemingly arbitrary aspe
tsof SVMs (e.g., the diagonal elements in the quadrati
 form), and it allows us toderive novel SVM approa
hes.We will dis
uss the 
lassi�
ation of an input ve
tor x 2 X into one of two
ategories, \+" or \�". We assume a supervised learning problem in whi
h Ntraining examples are available, ea
h example i 
onsisting of an input xi and alabel yi 2 f�1;+1g.We will introdu
e three ele
trostati
 models that have dire
t analogy toma
hine-learning (ML) 
lassi�ers, starting with a relatively limited ele
trostati
model and the following two building on and generalizing from the previous. Forea
h model, we des
ribe the physi
al system and show its 
orresponden
e to anML 
lassi�er.1.1 Ele
trostati
 model 1: Un
oupled point 
hargesConsider an ele
trostati
 system of point 
harges populating a spa
e X 0 homol-ogous to X . Ea
h point 
harge 
orresponds to a parti
ular training example;point 
harge i is �xed at lo
ation xi in X 0, and has a 
harge of sign yi. Wede�ne two sets of �xed 
harges: S+ = fxi j yi = +1g and S� = fxi j yi = �1g.The 
harge of point i is denoted Qi � yi �i, where �i � 0 is the amount of
harge, to be dis
ussed below.We brie
y review some elementary physi
s. If a unit positive 
harge is atx in X 0, it will be repelled by all 
harges in S+ and attra
ted to all 
hargesin S�. To move the 
harge from x to ~x, the for
e must be over
ome at everypoint along the traje
tory; the path integral of the for
e along the traje
tory is
alled the work and does not depend on the traje
tory. The potential at x is thework that must be done to move a unit positive 
harge from a referen
e point(usually in�nity) to x.The potential at x is ' (x) =PNi=1Qi G (xi; x), where G is a kernel measur-ing the distan
e between x and xi (in ele
trostati
 systems, G (a; b) = 1= ka� bk2).From this de�nition, one 
an see that the potential at x is negative (positive) ifx is in a neighborhood of relatively many negative (positive) 
harges. Thus, thepotential indi
ates the sign and amount of 
harge in the lo
al neighborhood.Turning ba
k to the ML 
lassi�er, one might propose a 
lassi�
ation rulefor some input x that assigns the label \+" if '(x) > 0 or \�" otherwise.Abstra
ting from the ele
trostati
 system, if �i = 1 and G is a fun
tion thatde
reases suÆ
iently steeply with distan
e, we obtain a nearest-neighbor 
las-si�er. (By \suÆ
iently steeply," we mean that if xi is the 
losest point to xthen G (xi; x) > N G (xj ; x)8j 6= i.) The potential 
an also be viewed as thedi�eren
e between a kernel density estimator for the \+" 
lass and a kernel2



density estimator for the \�" 
lass if �i = jSyi j�1 (S+1 � S+ and S�1 � S�)and 8a : R G (a; x) dx = 1.1.2 Ele
trostati
 model 2: Coupled point 
hargesConsider now an ele
trostati
 model that extends the previous model in two re-spe
ts. First, the point 
harges are repla
ed by 
ondu
tors, e.g., metal spheres.Ea
h 
ondu
tor i has a self{potential 
oeÆ
ient, denoted Pii, whi
h is a mea-sure of how mu
h 
harge it 
an easily hold; for a metal sphere, Pii is relatedto sphere's diameter. Se
ond, the 
ondu
tors in S+ are 
oupled, as are the
ondu
tors in S�. \Coupling" means that 
harge is free to 
ow between the
ondu
tors. (Te
hni
ally, S+ and S� 
an ea
h be viewed as a single 
ondu
tor,but we will still use \
ondu
tor" in 
orresponden
e with i 2 f1 : : :Ng.)In this model, we initially pla
e the same 
harge on ea
h 
ondu
tor, and allow
harges within S+ and S� to 
ow freely (we assume no resistan
e in the 
ouplingand no polarization of the 
ondu
-tors). After the 
harges redistribute,
harge will tend to end up on theperiphery of a homogeneous neigh-borhood of 
ondu
tors, be
ause like
harges repel. Charge will also tendto end up along the S+{S� bound-ary be
ause opposite 
harges attra
t.See Figure 1 for a depi
tion of the re-distributed 
harges. The shading is
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-Figure 1: Coupled 
ondu
tor system at the en-ergy minimum. Shading indi
ates the 
hargemagnitude. The zero potential isoline is shown.proportional to the magnitude �i.An ML 
lassi�er 
an be built based on this model, on
e again using '(x) >0 as the de
ision rule for 
lassi�
ation. In this model, however, the �i arenot uniform; the 
ondu
tors with large �i will have the greatest in
uen
e onthe potential fun
tion. Consequently, one 
an think of �i as the weight orimportan
e of example i. As we will show shortly, the examples with �i > 0 areexa
tly support ve
tors of an SVM.1.2.1 Formal PresentationThe potential on 
ondu
tor i, 'i � '(xi) 
an be des
ribed by the 
oeÆ
ientsof potential Pij [6℄: 'i =PNj=1 Pij Qj , where Pii � Pij � 0 and Pij = Pji. Pijspe
i�es the potential indu
ed on 
ondu
tor i by 
harge Qj on 
ondu
tor j. Touse a 
on
rete physi
al example, if ea
h 
ondu
tor i is a metal sphere 
enteredat xi and has radius ri, the system 
an be modeled by a point 
harge Qi atxi, Pii = G (xi; �xi), where �xi is an arbitrary point on the sphere surfa
e, andPij = G (xi; xj) [2, 6℄. G (a; b) must be isotropi
, i.e., depend only on ka� bk2.The free 
harge 
ow in S+ and S� 
orresponds to minimizing the Coulomb3



energy,E = 12 NXi=1 'i Qi = 12 QT P Q = 12 NXi;j=1Pij yi yj �i �j :Initially, we set �i = K= jSyi j to assign the same total 
harge magnitude K toS+ and S� and to make the 
harge uniform for ea
h 
ondu
tor in ea
h set.Coulomb energy minimization redistributes the 
harges.In order for this ele
trostati
 model to serve as a 
lassi�er, we must enfor
ethe 
onstraint �i � 0 to ensure that an example does not 
hange its 
lasslabel. We do this by treating energy minimization as a 
onstrained optimizationproblem with 0 � �i � C, where C is an optional upper bound (whi
h 
an beset to 1 to eliminate the 
onstraint). In the physi
al model, the 
onstraint on�i 
an be satis�ed by dis
onne
ting a 
ondu
tor i from the 
harge 
ow in S+or S� when �i rea
hes the lower or upper bound, whi
h will freeze its value.After the energy minimum is rea
hed, the potential will be the same for alli 2 S+ whi
h are still 
onne
ted; we denote this potential 'S+ . Similarly, 'S�denotes the potential whi
h is the same for all i 2 S� whi
h are still 
onne
ted.To use the potential, '(x), to 
lassify an input x, we must ensure that 'S+ ='S� to eliminate any bias toward 
lassi�
ation as \+" or \�". We 
an do soby introdu
ing a 
onstant potential b (something like ionized air in the physi
alsystem), i.e., ' (x) =PNi=1Qi G (xi; x) + b, where b = �0:5 ('S+ + 'S�).We have des
ribed a system of 
oupled 
ondu
tors with two additional 
on-straints: (1) that the 
harge on a 
ondu
tor is bounded, and (2) that positiveand negative potentials are balan
ed. This physi
al system 
orresponds to a �{support ve
tor ma
hine (�{SVM) [5℄ if C = 1=N and Pi2S+ �i =Pi2S� �i =0:5 �. The identity holds be
ause the energy fun
tion is exa
tly the �{SVMquadrati
 obje
tive fun
tion, and in both the physi
al system and the SVM thefun
tion is minimized. We know from optimization theory that at the minimum,the Karush{Kuhn{Tu
ker 
onditions (KKTs) [1℄ must hold. The KKTs for �{SVMs use the variables �, �i, and �i whi
h have a physi
al interpretation in ourmodel. � is the potential di�eren
e between S+ and S�: � = 0:5 ('S+ � 'S�),or with b, we obtain � = �'S� . Sla
k variable �i gives the potential di�eren
ebetween 'i and 'Syi : �i = �� yi 'i � 0. Removing 
ondu
tors with �i = 0from the system makes �i > 0 only for �i = C = 1=N . Variable �i mea-sures the 
harge di�eren
e to the upper bound �i = 1=N � �i � 0 on i.The diagonal elements in the quadrati
 form have a physi
al interpretation asself{potential. As we dis
uss later, this interpretation will allow us to introdu
enovel kernels and novel SVM methods.1.3 Ele
trostati
 model 3: Coupled point 
harges withbatteriesIn ele
trostati
 model 2, the same total 
harge is applied to S+ and S�4



and the potentials 'S� are balan
ed by b. However, we 
annot 
ontrol themagnitude of the potentials, j'S� j. We 
an a
hieve this 
ontrol by addingbatteries to the system. We do this in two ways. In model 3.1, we 
onne
tS+ to the positive pole of a battery with potential �+ and S� to the negativepole with potential �� = ��+. The battery for
es 'S+ = �+ and 'S� = ��.The battery 
an then be removed and the potential remains. In model 3.2,we treat ea
h 
ondu
tor not as a (solid) sphere but as a spheri
al shell. Wealso 
onne
t ea
h 
ondu
tor shell i to its own battery, Bi,but not by dire
t 
onta
t. Rather, ea
h shell i has a smallsphere at its 
enter whi
h is 
onne
ted to the positive poleof Bi if yi = �1 and the negative pole if yi = +1 (Figure 2).Consequently, the indu
ed 
onstant potential, �i, has polarityopposite that of the 
ondu
tor (�yi). To add 
harges to S+and S� we ground both. Charges 
ow into the system until B
atteryFigure 2: Condu
torwith battery.the potentials equalize. Therefore, after removing the batteries and �xing the
harges we have 'i = ��i (unless a 
ondu
tor is dis
onne
ted).1.3.1 Formal Presentation�i = � �i yi (�i � 0) is the potential indu
ed by the battery Bi on 
ondu
tori, the total potential on 
ondu
tor i is �i = 'i + �i, the energy 
ontribution ofthe battery Bi is 1=2 �i Qi [2℄, and the total Coulomb energy is:12 NXi=1 (�i + �i) Qi = 12 QT P Q + �T Q = 12 NXi;j=1Pij yi yj �i �j � NXi=1 �i �i :This physi
al system 
orresponds to a C{support ve
tor ma
hine (C{SVM)[1, 8℄ if 8i : �i = 1 (that is, model 3.1 with j��j = 1). The Coulomb energyis the C{SVM obje
tive fun
tion. Our model yields 'S+ � b = �'S� � b. TheKKT-
ondition variables re
eive a physi
al interpretation analogous to that inthe �{SVM.2 Comparison of existing and novel models2.1 Novel KernelsE = R G (x; y) h (x) h (y) dxdy � 0 must hold in a 
ontinuous physi
alsystem for the energy E. Here h+ (h�) is the density of positive (negative)
harges and h = h+ � h�. This is exa
tly Mer
er's 
ondition in the 
ontextof SVM whi
h ensures positive de�nite kernels [1℄. To maintain properties ofthe physi
al model (e.g., b = 0 in model 3.2), we ful�ll Mer
er's 
ondition byrestri
ting G to isotropi
 kernels, i.e., G (xi; xj) � g(kxi � xjk22), where g is
ompletely monotoni
, i.e., (�1)k g(k) (x) � 0, 8x � 0 [7℄.The ele
trostati
 perspe
tive makes apparent that SVM algorithms 
an breakdown in high dimensions. The reason is that fast de
reasing kernels indu
e5



small potentials and, therefore, almost every 
ondu
tor retains 
harge. Wewant to use kernels whi
h do not de
rease exponentially. The self{potentialallows the use of kernels that would otherwise be invalid, su
h as a general-ization of the ele
tri
 �eld to d dimensions: g (z) = z1�0:5d, where we de�neG (xi; xi) := Pii = g �r2i �. Smoothing this kernel by � and using an expo-nent n leads to the Plummer potential whi
h is used in 
omputational physi
sto simulate ele
trostati
 �elds g (z) = �z + �2��0:5n with ri = minj kxi; xjk2.For 
 � 
0 = maxf0:5 z j z = kxi � xjk22 _ z = r2i g (we used 
 = 
0) isg (z) = (
� 0:5z)n a polynomial and for n = 1 the 
onventional linear kernel.2.2 Novel SVM modelsOur ele
trostati
 framework 
an help to derive many distin
t SVM approa
hes,several representative examples we now illustrate.2.2.1 �{Support Ve
tor Ma
hine (�{SVM)We 
an exploit the physi
al interpretation of Pii as 
ondu
tor i's self{potential,(i.e., how easy it is to put 
harges on i). The Pii's determine the entropy of the
harge distribution at the energy minimum. We 
an res
ale the self potential|Pnewii = � P oldii |and use � to 
ontrol the 
omplexity of the SVM in ele
trostati
models 3.1 and 3.2 with C =1.2.2.2 p{Support Ve
tor Ma
hine (p{SVM)Without 
onstraints, PQ + � = 0 at the energy minimum of model 3.1and 3.2, whi
h is 8i : 'i + �i = 0. In physi
al terms this means thatpotentials equalize. However, the solution Q = �P�1� su�ers from violatingthe 
onstraint that �i � 0. We 
an instead minimize the potential di�er-en
e, 12 kPQ + �k22 = 12QTP TPQ + QTP T� + 12�T�, where the last termis 
onstant. Without 
onstraints, the minimum is Q = �P TP ��1 P T�, where�P TP ��1 P T is P 's pseudo inverse. Using physi
al model 3.1, and de�ning�i := �i PNj=1 yiyjPij , we obtain:min� 12�TK���T� s.t. yT� = 0 ^ 0 � �i � C, whereKij := yiyj �P TP �ij .K is by 
onstru
tion positive de�nite so that this formulation does not de-mand positive de�nite kernels. If we set �i = 1PNj=1 yiyjPij then we obtainthe generalized SVM in [3℄; however, for other values of �i (e.g., �i = 1) weobtain an SVM that automati
ally removes outliers, e.g., the p{SVM. Outliersgets a negative or small �i, whi
h results in a small �i.
6



2.3 ExperimentsFor the representative models we've introdu
ed, we perform simulations andmake 
omparisons to the standard SVM models. The datasets are from theUCI Ben
hmark Repository and prepro
essed in [4℄, where the \banana" dataset stems from (http://www.first.gmd.de/~raets
h/data). We did 100-foldvalidation on ea
h data set, restri
ting the training set to 200 examples, andusing the remainder of examples for testing. We 
ompared C{SVM, �{SVM, �{SVM, and p{SVM. Additionally we 
ombined the later to �{p{SVM allowing �values whi
h lead to not positive de�nite kernels. We used radial basis fun
tion(RBF), polynomial (POL), and Plummer (PLU) kernels. Hyperparameters aredetermined by 5{fold 
ross validation on the �rst 5 training sets. The sear
hfor hyperparameter was not as intensive as in [4℄.C � � p �-p C � � p �-pthyroid heartRBF 6.4 9.4 7.7 5.4 8.6 21.4 19.1 17.9 22.4 17.8POL 22.8 12.6 7.0 13.3 6.9 20.4 20.4 19.3 23.0 19.3PLU 6.1 6.2 6.1 5.7 6.1 16.3 16.3 16.3 17.4 16.3breast{
an
er bananaRBF 33.6 31.6 33.8 32.4 33.7 13.2 36.7 13.2 11.6 13.4POL 36.0 25.7 29.6 27.1 29.1 35.3 35.0 11.5 22.4 11.5PLU 33.4 33.1 33.4 30.6 33.4 15.7 15.7 15.7 21.9 15.7germanRBF 28.7 29.3 29.0 27.8 28.8POL 33.7 29.6 26.2 31.8 26.2PLU 28.8 28.5 33.3 27.1 33.3Table 1: Mean % mis
lassi�
ation over 100 repli
ations. The 
olumns 
orre-spond to SVMs and the rows to kernel fun
tions.The Plummer potential is more robust against hyperparameter and SVM
hoi
es. The proposed novel methods performed well 
ompared to known ap-proa
hes.2.4 Other SVM approa
hesThis work leads to many models that 
ould be explored. For example, thevariables �i in model 3.2 were not further investigated. With �xed 
harge, �idetermines how 
ondu
tor i retains its 
harge. Here, however, we will presentSVM speed ups. 7



2.4.1 Support Ve
tor Ma
hine By Linear ProgrammingWe minimize kP Q + �k1 by minimizing PNi=1 si with 
onstraints �i � si �yi [P Q℄i � �i+si,Pi yi �i = 0, and �i � 0. Maximizing the �i as well resultsin the linear SVM formulation, e.g., [3℄.2.4.2 Support Ve
tor Ma
hine By Solving One EquationWe will adjust the Pii so that Q = �P�1� does not violate �i � 0. We divideP = ~P +D into diagonal matrix D (Dii = �i) and zero diagonal matrix ~P .Fast, iterative algorithm.�i � Pj;j 6=i Pij ensures �i � 0. This means that P is diagonal dominantand the fast Ja
obi iteration is possible.Standard equation solving algorithms.We set 8i : �i = �0 and perform a k{step bise
tion to �nd a minimal �0whi
h does not violate �i � 0.2.4.3 Support Ve
tor Ma
hine By A Qui
k and Dirty Approxima-tionWe solve yiPNj=1 yjPij�j = �i with the assumption that 
ondu
tors are sur-rounded by 
ondu
tors with the same 
harge magnitude, i.e. �j = �i. We get�i = �i=�i, where we keep �i � �.2.5 Ve
tor quantization and 
lusteringSVMs fo
us on the boundaries whereas ve
tor quantization and 
lustering algo-rithms fo
us on high density regions in order to obtain prototype ve
tors or 
lus-ter 
enters. This 
orresponds to energy maximization in our physi
al systemswith �i � �. We get a dual between SVM and ve
tor quantization/
lustering.For example, 
onstraints 
an determine the number of 
lusters or prototypes.3 Con
lusionThe ele
trostati
 framework and its analogy to SVMs has led to several im-portant ideas: (1) It suggests SVM methods that are valid for kernels that arenot positive de�nite. (2) It allowed us to derive fast SVM methods based onlinear programming and linear equations. (3) It suggested novel approa
hes andkernels that perform at least as well as standard methods.We argued that the ele
trostati
 framework not only 
hara
terizes a fam-ily of support-ve
tor ma
hines, but it also 
hara
terizes other te
hniques su
has nearest neighbor 
lassi�
ation, 
lassi�
ation by density estimation, ve
torquantization, and 
lustering. Perhaps the most important 
ontribution of theele
trostati
 framework is that, by interrelating and en
ompassing a variety8



of methods, it lays out a broad spa
e of possible algorithms. At present, thespa
e is sparsely populated and has barely been explored. But by making thedimensions of this spa
e expli
it, the ele
trostati
 framework allows one to eas-ily explore the spa
e and dis
over novel algorithms. In the history of ma
hinelearning, su
h general frameworks have led to important advan
es in the �eld.Referen
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