
NIPS 2000Beyond maximum likelihood and densityestimation: A sample-based riterion forunsupervised learning of omplex modelsSepp Hohreiter and Mihael C. MozerDepartment of Computer SieneUniversity of ColoradoBoulder, CO 80309{0430fhohreit,mozerg�s.olorado.eduAbstratThe goal of many unsupervised learning proedures is to bring twoprobability distributions into alignment. Generative models suhas Gaussian mixtures and Boltzmann mahines an be ast in thislight, as an reoding models suh as ICA and projetion pursuit.We propose a novel sample-based error measure for these lasses ofmodels, whih applies even in situations where maximum likelihood(ML) and probability density estimation-based formulations an-not be applied, e.g., models that are nonlinear or have intratableposteriors. Furthermore, our sample-based error measure avoidsthe diÆulties of approximating a density funtion. We prove thatwith an unonstrained model, (1) our approah onverges on theorret solution as the number of samples goes to in�nity, and (2)the expeted solution of our approah in the generative frameworkis the ML solution. Finally, we evaluate our approah via simula-tions of linear and nonlinear models on mixture of Gaussians andICA problems. The experiments show the broad appliability andgenerality of our approah.1 IntrodutionMany unsupervised learning proedures an be viewed as trying to bring two prob-ability distributions into alignment. Two well known lasses of unsupervised pro-edures that an be ast in this manner are generative and reoding models. In agenerative unsupervised framework, the environment generates training examples|whih we will refer to as observations|by sampling from one distribution; the otherdistribution is embodied in the model. Examples of generative frameworks are mix-tures of Gaussians (MoG) [2℄, fator analysis [4℄, and Boltzmann mahines [8℄. Inthe reoding unsupervised framework, the model transforms points from an obser-



vation spae to an output spae, and the output distribution is ompared either toa referene distribution or to a distribution derived from the output distribution.An example is independent omponent analysis (ICA) [11℄, a method that disoversa representation of vetor-valued observations in whih the statistial dependeneamong the vetor elements in the output spae is minimized. With ICA, the modeldemixes observation vetors and the output distribution is ompared against a fa-torial distribution whih is derived either from assumptions about the distribution(e.g., supergaussian) or from a fatorization of the output distribution. Other ex-amples within the reoding framework are projetion methods suh as projetionpursuit (e.g., [14℄) and prinipal omponent analysis. In eah ase we have desribedfor the unsupervised learning of a model, the objetive is to bring two probabilitydistributions|one or both of whih is produed by the model|into alignment. Toimprove the model, we need to de�ne a measure of the disrepany between the twodistributions, and to know how the model parameters inuene the disrepany.One natural approah is to use outputs from the model to onstrut a probabilitydensity estimator (PDE). The primary disadvantage of suh an approah is that theauray of the learning proedure depends highly on the quality of the PDE. PDEsfae the bias-variane trade-o�. For the learning of generative models, maximumlikelihood (ML) is a popular approah that avoids PDEs. In an ML approah, themodel's generative distribution is expressed analytially, whih makes it straightfor-ward to evaluate the posterior, p(data j model), and therefore, to adjust the modelparameters to maximize the likelihood of the data being generated by the model.This limits the ML approah to models that have tratable posteriors, true only ofthe simplest models [1, 6, 9℄.We desribe an approah whih, like ML, avoids the onstrution of an expliitPDE, yet does so without requiring an analyti expression for the posterior. Ourapproah, whih we all a sample-based method, assumes a set of samples from eahdistribution and proposes an error measure of the disagreement de�ned diretly interms of the samples. Thus, a seond set of samples drawn from the model serves inplae of a PDE or an analyti expression of the model's density. The sample-basedmethod is inspired by the theory of eletri �elds, whih desribes the interationsamong harged partiles. For more details on the metaphor, see [10℄.In this paper, we prove that our approah onverges to the optimal solution as thesample size goes to in�nity, assuming an unonstrained (maximally exible) model.We also prove that the expeted solution of our approah is the ML solution ina generative ontext. We present empirial results showing that the sample-basedapproah works for both linear and nonlinear models.2 The MethodConsider a model to be learned, fw, parameterized by weights w. The model mapsan input vetor, zi, indexed by i, to an output vetor xi = fw(zi). The modelinputs are sampled from a distribution pz(:), and the learning proedure alls foradjusting the model suh that the output distribution, px(:), omes to math a targetdistribution, py(:). For unsupervised reoding models, zi is an observation, xi isthe transformed representation of zi, and py(:) spei�es the desired ode properties.For unsupervised generative models, pz(:) is �xed and py(:) is the distribution ofobservations.



The Sample-based Method: The Intuitive StoryAssume that we have data points sampled from two di�erent distributions, la-beled \{" and \+" (Figure 1). The sample-based error measure spei�es how sam-ples should be moved so that the two distributions arebrought into alignment. In the �gure, samples from thelower left and upper right orners must be moved to theupper left and lower right orners. Our goal is to estab-lish an expliit orrespondene between eah \{" sampleand eah \+" sample. Toward this end, our sample-based method utilizes on mass interations among thesamples, by introduing a repelling fore between sam- Figure 1ples from the same distribution and an attrative fore between samples from dif-ferent distributions, and allowing the samples to move aording to these fores.The Sample-based Method: The Formal PresentationIn oneiving of the problem in terms of samples that attrat and repel one another,it is natural to think in terms of physial interations among harged partiles.Consider a set of positively harged partiles at loations denoted by xi, i = 1:::Nx,and a set of negatively harged partiles at loations denoted by yj , j = 1:::Ny.The partiles orrespond to data samples from two distributions. The interationamong partiles is haraterized by the Coulomb energy, E:E = 12  1N2x NxXi=1 NxXk=1 � �xi; xk� � 2NyNx NxXi=1 NyXj=1 � �xi; yj� + 1N2y NyXk=1 NyXj=1 � �yk; yj�! ;where �(a; b) is a distane measure|Green's funtion|whih results in nearbypartiles having a strong inuene on the energy, but distant partiles having onlya weak inuene. Green's funtion is de�ned as �(a; b) = (d) = ka� bkd�2, whered is the dimensionality of the spae, (d) is a onstant only depending on d, and k:kdenotes the Eulidean distane. For d = 2, �(a; b) = k ln (ka� bk).The Coulomb energy is low when negative and positive partiles are near one an-other, positive partiles are far from one another, and negative partiles are far fromone another. This is exatly the state we would like to ahieve for our two distribu-tions of samples: bringing the two distributions into alignment without ollapsingeither distribution into a trivial form. Consequently, our sample-based methodproposes using the Coulomb energy as an objetive funtion to be minimized.The gradient of E with respet to a sample's loation is readily om-puted (it is the fore ating on that sample), and this gradient an behained with the Jaobian of the loation with respet to the model pa-rameters w to obtain a gradient-based update rule: �w = �� rwE =�� � 1Nx PNxk=1 ��xk�w �T rxk� �xk� � 1Ny PNyk=1 ��yk�w �T ryk� �yk��, where � is astep size, �(a) := N�1x PNxi=1 �(a; xi) � N�1y PNyj=1 �(a; yj) is the potential withN�1a ra�(a) = raE, T is the transposition and a = xk or yk. Here �xk=�w is theJaobian of fw(zk) and the time derivative of xk is _xk = _fw(zk) = �r�(xk). If ykdepends on w then yk{notation is analogous else �yk=�w is the zero matrix.There turns out to be an advantage to using Green's funtion as the partile in-terations basis over other possibilities, e.g., a Gaussian funtion (e.g., [12, 13, 3℄).



The advantage stems from the fat that with Green's funtion, the fore betweentwo nearby points goes to in�nity as the points are pushed together, whereas withthe Gaussian, the fore goes to zero. Consequently, without Green's funtion, onemight expet loal optima in whih lusters of points ollapse onto a single loation.Empirially, simulations on�rmed this onjeture.Proof: Corretness of the Update RuleAs the numbers of samples Nx and Ny go to in�nity, � an be expressed as�(a) = R �(b) �(a; b) db, where �(b) := px(b) � py(b). Our sample-based methodmoves data points, but by moving data points, the method impliitly alters theprobability density whih gave rise to the data. The relation between the move-ment of data points and the hange in the density an be expressed using an op-erator from vetor analysis, the divergene. The divergene at a loation a is thenumber of data points moving out of a volume surrounding a minus the numberof data points moving in to the same volume. Thus, the negative divergene ofmovements at a gives the density hange at a. The movement of data points isgiven by �r�(a). We get _�(a) = _px(a) � _py(a) = �div (�r�(a)). For Carte-sian (orthogonal) oordinates the divergene div of a vetor �eld V at a is de�nedas div (V (a)) := Pdl=1 �Vl(a)=�al. The Laplae operator 4 of a salar funtion Ais de�ned as 4A(a) := div (rA(a)) = Pdl=1 �2A(a)=�a2l . The Laplae operatorallows an important haraterization of Green's funtion: 4a�(a; b) = �Æ(a � b),where Æ is the Dira delta funtion. This haraterization gives 4�(a) = ��(a)._�(a) = �(a) div (r�(a)) = �(a) 4�(a) = ��(a) �(a) ; �(a) � �0 > 0 ;where �(a) gives the e�etiveness of the algorithm in moving a sample at a. We get�(a; t) = �(a; 0) exp(��(a) t). For the integrated squared error (ISE) of the twodistributions we obtainISE(t) = Z (�(a; t))2 da � exp(��0 t) Z (�(a; 0))2 da = exp(��0 t) ISE(0) ;where ISE(0) is independent of t. Thus, the ISE between the two distributions isguaranteed to derease during learning, when the sample size goes to in�nity.Proof: Expeted Generative Solution is ML SolutionIn the ase of a generative model whih has no onstraints (i.e., an model anydistribution), the maximum likelihood solution will have distribution px(a) =1Ny PNyj=1 Æ(yj � a), i.e., the model will produe only the observations and all ofthem with equal probability. For this ase, we show that our sample-based methodwill yield the same solution in expetation as ML.The sample-based method onverges to a loal minimum of the energy, wherehra�(a)ix = 0 for all a, where h:ix is the expetation over model output. Equiva-lently, hra� (a; x)ix � 1Ny PNyj=1ra� �a; yj� = 0 orhra� (a; x)ix = Z px(x) ra� (a; x) dx = 1Ny NyXj=1ra� �a; yj� :Beause this equation holds for all a, we obtain px(a) = 1Ny PNyj=1 Æ(yj � a), whihis the ML solution. Thus, the sample-based method an be viewed as an approxi-mation to ML whih gets more exat as the number of samples goes to in�nity.



3 ExperimentsWe illustrate the sample-based approah for two ommon unsupervised learningproblems: MoG and ICA. In both ases, we demonstrate that the sample-basedapproah works in the linear ase. We also onsider a nonlinear ase to illustratethe power of the sample-based approah.Mixture of GaussiansIn this generative model framework,m denotes a mixture omponent whih is hosenwith probability vm from M omponents, and has assoiated model parameterswm = (
m; �m). In the standard MoG model, given a hoie of omponent m,the (linear) model output is obtained by xi = fwm(zi) = 
m zi + �m, where ziis drawn from the Gaussian distribution with zero mean and identity ovarianematrix. For a nonlinear mixture model, we used a 3-layer sigmoidal neural networkfor fwm(zi). An update rule for vm an be derived for our approah: �vm =��v PNxi=1 �zi�T �zi�xi _xi, where �v is a step size and PMm=1 vm = 1 is enfored.We trained a linear MoG model with the standard expeted maximization (EM)algorithm (using ode from [5℄) and a linear and a nonlinear MoG with our sample-based approah. A �xed training set of Ny = 100 samples was used for all models,and all models had M = 10 exept one nonlinear model whih had M = 1. In thesample-based approah, we generated 100 samples from our model (the xi) followingevery training epoh. The nonlinear model was trained with bakpropagation.Figure 2 shows the results. The linear ML model is better than the sample-basedmodel. That is not surprising beause ML omputes the model probability valuesanalytially (the posterior is tratable) and our algorithm uses only samples toapproximate the model probability values. We used only 100 model samples ineah epoh and the linear sample-based model found an aeptable solution andis not muh worse than the ML model. The nonlinear models �t better the truering-like distribution and do not su�er from sharp orners and edges.
linear (10)      nonlinear (10)     nonlinear (1)

trainings set original       ML (10 − linear) Figure 2: (upper panel, left to right)training samples hosen from a ringdensity, a larger sample from thisdensity, the solutions obtained fromthe linear model trained with EM;(lower panels) models trained withthe sample-based method (left toright): linear model, nonlinear model,nonlinear model with one omponent.Independent Component AnalysisWith a reoding model we tried to demix subgaussian soure distributions whereeah has supergaussian modes. Most ICA methods are not able to demix subgaus-sian soures. Figure 3 shows the results, whih are nearly perfet. The ideal resultis a saled and permuted identity matrix when the mixing and demixing matriesare multiplied. For more details see [10℄.
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Figure 3: For a three-dimensional linearmixture projetions of soures (�rst row),mixtures (seond row), and soures reov-ered by our approah (third row) on a two-dimensional plane are shown.The demixing matrix multiplied with the mix-ing matrix yields:-0.0017 0.0010 0.2523-0.0014 0.1850 -0.0101-0.1755 0.0003 0.0053In a seond experiment, we tried to reover soures from two nonlinear mixings.This problem is impossible for standard ICA methods beause they are designedfor linear mixings. The result is shown in Figure 4. An exat demixing annot beexpeted, beause nonlinear ICA has no unique solution. For more details see [10℄.
 

   

  

Sources Mixtures Recovered Sources Figure 4: For two two-dimensionalnonlinear mixing funtions| upperrow, (z+ a)2, and lower row, pz + a,with omplex variable z|the soures,mixtures, and reovered soures. Themixing funtion is not ompletely in-verted but the soures are reoveredreognizable.4 DisussionAlthough our sample-based approah is intuitively straightforward, its implemen-tation has two drawbaks: (1) One has to be autious of samples that are losetogether, beause they lead to unbounded gradients; and (2) all samples must beonsidered when omputing the fore on a data point, whih makes the approahomputation intensive. However, in [10, 7℄ approximations are proposed that reduethe omputational omplexity of the approah.In this paper, we have presented simulations showing the generality and powerof our sample-based approah to unsupervised learning problems, and have alsoproven two important properties of the approah: (1) With ertain assumptions,the approah will �nd the orret solution. (2) With an unonstrained model, theexpeted solution of our approah is the ML solution. In onlusion, our sample-based approah an be applied to unsupervised learning of omplex models whereML does not work and our method avoids the drawbaks of PDE approahes.
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