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J�urgen SchmidhuberIDSIACorso Elvezia 366900 Lugano, Switzerlandjuergen@idsia.chABSTRACTLow-complexity coding and decoding (Lococode), anovel approach to sensory coding, trains autoassocia-tors (AAs) by Flat Minimum Search (FMS), a recentgeneral method for �nding low-complexity networkswith high generalization capability. FMS works byminimizing both training error and required weight pre-cision. We �nd that as a by-product Lococode sepa-rates nonlinear superpositions of sources without know-ing their number. Assuming that the input data canbe reduced to few simple causes (this is often the casewith visual data), according to our theoretical analysisthe hidden layer of an FMS-trained AA tends to codeeach input by a sparse code based on as few simple,independent features as possible. In experiments Lo-cocode extracts optimal codes for di�cult, nonlinearversions of the \noisy bars" benchmark problem, whiletraditional ICA and PCA do not.1. INTRODUCTIONBlind source separation and Independent ComponentAnalysis (ICA) refer to recovering original source sig-nals from observed mixtures of them. This belongs tothe area of unsupervised learning and has become oneof the most active areas in signal processing. ICA fa-vors near-factorial, minimally redundant codes of theinput data. Recent e�orts have focused on linear sourcemixtures and fall into two major categories: MaximumEntropy (ME) [3, 19] and Minimum Mutual Informa-tion (MMI) [1, 5, 4, 15, 17]. Both are based on \codecomponent-oriented objective functions (COCOFs)":ME maximizes code entropy, MMI minimizes the mu-tual information between code components. Most cur-rent variants require a priori knowledge of the numberof independent sources.There has been work on COCOFs for nonlinear ICAgiven unknown source numbers, e.g., [2, 21, 7, 22].

In particular, to the best of our knowledge reference[21] represents the �rst \neural" approach to nonlin-ear ICA. Here, however, we shift the point of viewaway from COCOF-based approaches and instead fo-cus on the information-theoretic costs of code genera-tion. We use a novel approach to unsupervised learn-ing called \low-complexity coding and decoding" (Lo-cocode [14]). In the spirit of research on minimum de-scription length (MDL), Lococode generates so-calledlococodes that (1) convey information about the inputdata, (2) can be computed from the data by a low-complexity mapping (LCM), and (3) can be decodedby an LCM.To implement Lococode we regularize an autoas-sociator (AA) whose hidden layer activations representthe code. The hidden layer is forced to code infor-mation about the input data by minimizing trainingerror; the regularizer reduces coding/decoding costs.Our regularizer of choice will be Flat Minimum Search(FMS) [13].We will see that nonlinear ICA actually occurs asa by-product of Lococode's more general complexity-minimizing strategy: we �nd that Lococode encour-ages sparse codes based on few, separated, simple com-ponent functions (the functions determining the activa-tion of a code component in response to a given input).This also establishes a connection to extensive re-cent work on biologically plausible, sparse distributedcodes [18, 9, 23, 8, 6, 20, 11, 16]. In fact, we �nd thatLococode is appropriate for extracting independentsources if single inputs (with many input components)are determined by few sources computable by simplefunctions. Hence, assuming that visual data usuallycan be reduced to few simple causes, Lococode is ap-propriate for visual coding. Unlike recent linear ICAmethods, Lococode (a) is not inherently limited tothe linear case, and (b) does not need a priori infor-mation about the number of independent data sources



- it simply prunes superuous code components.2. FLAT MINIMUM SEARCH: REVIEWAND ANALYSISFMS is a general gradient-based method for �ndinglow-complexity networks with high generalization ca-pability. FMS �nds a large region in weight space suchthat each weight vector from that region has similarsmall error. Such regions are called \at minima". InMDL terminology, few bits of information are requiredto pick a weight vector in a \at" minimum (corre-sponding to a low-complexity network) | the weightsmay be given with low precision. Previous FMS appli-cations focused on supervised learning [12, 13].Notation. Let O;H; I denote index sets for out-put, hidden, and input units, respectively. For l 2O [H , the activation yl of unit l is yl = f (sl), wheresl = Pmwlmym is the net input of unit l (m 2 Hfor l 2 O and m 2 I for l 2 H), wlm denotes theweight on the connection from unit m to unit l, f de-notes the activation function, and for m 2 I , ym de-notes the m-th component of an input vector. W =j(O �H) [ (H � I)j is the number of weights.Algorithm. FMS' objective function E featuresan unconventional error term:B = Xi;j: i2O[H logXk2O� @yk@wij�2 + (1)W logXk2O0BB@ Xi;j:i2O[H ��� @yk@wij ���rPk2O � @yk@wij �21CCA2 :E = Eq + �B is minimized by gradient descent, whereEq is the training set mean squared error (MSE), and� a positive \regularization constant" scaling B's in-uence. B measures the weight precision (number ofbits needed to describe all weights in the net). Givena constant number of output units, FMS can be imple-mented e�ciently, namely, with standard backprop'sorder of computational complexity [13].2.1. FMS AnalysisSimple component functions (CFs). MinimizingB's term T1 := Xi;j: i2O[H logXk2O� @yk@wij �2obviously reduces output sensitivity with respect toweights (and therefore units). T1 is responsible for

pruning weights (and, therefore, units). T1 is one rea-son why low-complexity (or simple) CFs are preferred:weight precision (or complexity) is mainly determinedby @yk@wij . The chain rule allows for rewriting@yk@wij = @yk@yi @yi@wij = @yk@yi f 0i(si) yj ; (2)where f 0i(si) is the derivative of the activation functionof unit i with activation yi. We obtainT1 = 2 Xi2O[H fan-in(i) log f 0i(si) +2 Xj2H[I fan-out(j) log yj +Xi2O[H fan-in(i) logXk2O�@yk@yi �2 ;where fan-in(i) (fan-out(i)) denotes the number of in-coming (outgoing) weights of unit i.T1 makes (1) unit activations decrease to zero inproportion to their fan-outs, (2) �rst-order derivativesof activation functions decrease to zero in proportion totheir fan-ins, and (3) the inuence of units on the out-put decrease to zero in proportion to the unit's fan-in.For a detailed analysis see Hochreiter and Schmidhuber(1997a).Sparseness. Point (1) above favors sparse hid-den unit activations (here: few active components);point (2) favors non-informative hidden unit activa-tions hardly a�ected by small input changes. Point(3) favors sparse hidden unit activations in the sensethat \few hidden units contribute to producing the out-put". In particular, sigmoid hidden units with activa-tion function 11+exp(�x) favor near-zero activations.B's second termT2 := W logXk2O0BB@ Xi;j2O[H ��� @yk@wij ���rPk2O � @yk@wij �21CCA2
punishes units with similar inuence on the output.Using equation (2) and for i 2 O���@yk@yi ���rPk2O �@yk@yi �2 = �ki ;where � is the Kronecker delta (�ki = 1 if k = i and 0otherwise), we obtain



T2 =W log jOj jO �H j2 + jI j2 Xk2OXi2H Xu2H���@yk@yi ��� ��� @yk@yu ���rPk2O �@yk@yi �2rPk2O � @yk@yu�21CCASee [14] for intermediate reformulation steps of T2.We observe: (1) an output unit that is very sensitivewith respect to two given hidden units will heavily con-tribute to T2 (compare the numerator in the last termof T2). (2) This large contribution can be reduced bymaking both hidden units have large impact on otheroutput units (see denominator in the last term of T2).Few separated component functions. HenceFMS tries to �gure out a way of using (1) as few CFs aspossible for determining the activation of each outputunit, while simultaneously (2) using the same CFs fordetermining the activations of as many output units aspossible (common CFs). (1) and T1 separate the CFs:the force towards simplicity (see T1) prevents inputinformation from being channelled through a single CF;the force towards few CFs per output makes them non-redundant. (1) and (2) cause few CFs to determine alloutputs.Summary. Collectively T1 and T2 (which makeup B) encourage sparse codes based on few separatedsimple component functions producing all outputs. Dueto space limitations a more detailed analysis (e.g. linearoutput activation) had to be left to a TR [14] (on theWWW). 3. EXPERIMENTSNonlinear noisy bars adapted from [10, 11]. Theinput is a 5� 5 pixel grid with horizontal and verticalbars at random positions. The task is to extract theindependent features (the bars). Each of the 10 pos-sible bars appears with probability 15 . Bar intensitiesvary in [0:1; 0:5]; input units that see a pixel of a barare activated correspondingly others adopt activation�0:5. We add Gaussian noise with variance 0.05 andmean 0 to each pixel. In contrast to [10, 11] we allowfor mixing of vertical and horizontal bars | this makesthe task harder, because the bars do not add linearly,thus exemplifying a major characteristic of real visualinputs.Comparison. We compare Lococode to PCAand ICA, which is realized by Cardoso's JADE algo-rithm based on whitening and subsequent joint diago-nalization of 4th-order cumulant matrices. To measure

the information conveyed by resulting codes we traina standard backprop net on the training set used forcode generation. Its inputs are the code components;its task is to reconstruct the original input. The testset consists of 500 o�-training set exemplars. Codinge�ciency is the average number of bits needed to codea test set input pixel. The code components are scaledto the interval [0; 1] and partitioned into discrete inter-vals. Assuming independence of the code componentswe estimate the probability of each discrete code valueby Monte Carlo sampling on the training set. To ob-tain the test set codes' bits per pixel (Shannon's opti-mal value) the average sum of all negative logarithms ofcode component probabilities is divided by the numberof input components.Source numbers. For ICA and PCA we have toprovide information about the number (ten) of inde-pendent sources (tests with n assumed sources will bedenoted by ICA-n and PCA-n). Lococode does notrequire this | using 25 hidden units (HUs) we expectLococode to prune the 15 superuous HUs. The non-linearly added sources make the task hard for PCAand ICA. All details necessary for reimplementationare given in [14].Results. See Table 1. Lococode �nds indepen-dent sources that exactly mirror the pattern generationprocess. PCA codes and ICA-15 codes, however, areunstructured and dense. While ICA-10 codes are al-most sparse and do recognize some sources, the sourcesare not clearly separated like with Lococode. Whilethe reconstruction errors of all methods are similar,Lococode has the best coding e�ciency. 15 of its 25HUs are indeed automatically pruned.# rec. code bits per pixelc. err. type 10 50 100LOC 10 1.05 sparse 0.58 1.16 1.37ICA 10 1.02 sparse 0.81 1.45 1.68PCA 10 1.03 dense 0.80 1.42 1.66ICA 15 0.71 dense 1.19 2.14 2.50PCA 15 0.72 dense 1.17 2.11 2.47Table 1: Results: coding method, number of relevantcode components (code size), reconstruction error, na-ture of code observed on the test set. PCA's and ICA'scode sizes need to be prewired. Lococode's, however,are found automatically: we always start with 25 HUsbut eventually end up with the optimal number of 10.The �nal 3 columns show the coding e�ciency mea-sured in bits per pixel, assuming the real-valued HU ac-tivations are partitioned into 10, 50, and 100 discreteintervals. Lococode codes most e�ciently.



For each of the 25 HUs, Figure 1 shows a 5 � 5square depicting 25 typical post-training weights onconnections from 25 inputs. Figure 2 shows the accord-ing post-training weights on connections to 25 outputs.White (black) circles on gray (white) background arepositive (negative) weights. The circle radius is pro-portional to the weight's absolute value. Figure 1 alsoshows the bias weights (on top of the squares' upper leftcorners). The circle representing some HU's maximalabsolute weight has maximal possible radius (circlesrepresenting other weights are scaled accordingly).
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Figure 1: Lococode's input-to-hidden weights (seetext for explanation). Despite noise and non-linearity, Lococode exactly extracts the indepen-dent sources and prunes the 15 superuous code com-ponents.Lococode can exploit the advantages of sigmoidoutput functions and is applicable to nonlinear signalmixtures. PCA and ICA, however, are limited to linearsource superpositions. See Figure 3 for PCA results.See Figure 4 for ICA-10 result with a priori informationabout the number of sources. See Figure 5 for ICA-15results. 4. CONCLUSIONAccording to our analysis Lococode attempts to de-scribe single inputs with as few and as simple sourcesas possible. Given the statistical properties of many vi-sual inputs (with few de�ning features), this typically
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Figure 2: Lococode's hidden-to-output weights.
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Figure 3: PCA weights to code components. PCAdoes not extract the true independent sources at all.results in sparse codes. Since Lococodeminimizes theinformation-theoretic complexity of the mappings usedfor coding and decoding, the resulting codes typicallycompromise between conicting goals. They tend to be
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Figure 4: ICA with 10 components: weights to codecomponents. We observe that some of the sources arepartially reected by some of ICA-10's feature detec-tors. The results are better than those of ICA-15, butby far not as convincing as Lococode's.
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Figure 5: ICA with 15 components: weights to codecomponents. ICA-15 codes fail to represent the truesources.sparse and exhibit low but not minimal redundancy |if the cost of minimal redundancy is too high.Our results suggest that Lococode's objective mayembody a general principle of unsupervised learning go-ing beyond previous, more specialized, COCOF-basedones. We see that there is at least one representative(FMS) of a broad class of algorithms (regularizers thatreduce network complexity) which (1) can do optimalfeature extraction as a by-product, (2) outperforms tra-ditional ICA and PCA on nonlinear visual source sepa-ration tasks, and (3) unlike ICA does not even need toknow the number of independent sources in advance.This reveals an interesting, previously ignored connec-tion between regularization and ICA research, and mayrepresent a �rst step towards uni�cation of regulariza-tion and unsupervised learning.More. Due to space limitations, much additionaltheoretical and experimental analysis had to be left to
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