
Low-Complexity Coding and DecodingSepp Hochreiter and J�urgen SchmidhuberTechnische Universit�at M�unchen, 80290 M�unchen, Germanyand IDSIA, Corso Elvezia 36, CH-6900-Lugano, SwitzerlandAbstract. We present a novel approach to sensory coding and unsu-pervised learning. It is called \Low-complexity coding and decoding"(Lococode). Unlike previous methods it explicitly takes into accountthe information-theoretic complexity of the code generator: lococodes (1)convey information about the input data and (2) can be computed anddecoded by low-complexity mappings. To implement Lococode we trainautoassociators with Flat Minimum Search, a recent method for discov-ering neural nets that can be described with few bits of information.Experiments show: unlike codes obtained with standard autoencoders,lococodes are based on familiar feature detectors, never unstructured,usually sparse, sometimes factorial or local (depending on the data).Unlike, e.g., independent component analysis (ICA) Lococode does notneed to know the number of independent data sources.1 INTRODUCTIONWhat is the goal of sensory coding [8]? There is no generally agreed-upon an-swer yet. Several information-theoretic objective functions (OFs) have been pro-posed to evaluate the quality of sensory codes. Most OFs focus on statisticalproperties of the code components (such as mutual information) | we referto them as code component-oriented OFs, or COCOFs. Some COCOFs explic-itly favor near-factorial, minimally redundant codes of the input data (see, e.g.,[3,18,26,30,33]). Such codes can be advantageous for (1) data compression, (2)speeding up subsequent gradient descent learning (e.g., [4]), (3) simplifying sub-sequent Bayes classi�ers (e.g., [29]). Other approaches favor local codes, e.g.,[24,15]. They can help to achieve (1) minimal crosstalk, (2) subsequent gradi-ent descent speed-ups, (3) facilitation of post training analysis, (4) simultaneousrepresentation of di�erent data items. Recently there also has been much workon COCOFs encouraging biologically plausible sparse distributed codes, e.g.,[9,21,34,8,25,17,6,20,10]. Sparse codes share certain advantages of both local anddense codes.Coding costs. COCOFs express desirable properties of the code itself, whileneglecting the costs of constructing the code from the data. A previous argumentfor ignoring coding costs [11,34] based on the principle of minimum descriptionlength (MDL, e.g., [31,32,22]) focuses on hypothetical costs of transmitting thedata from some sender to a receiver | how many bits are necessary to enablethe receiver to reconstruct the data? It goes more or less like this: \Total trans-mission cost is the number of bits required to describe (1) the data's code, (2)



the reconstruction error and (3) the decoding procedure. Since all input exem-plars are encoded/decoded by the same mapping, the coding/decoding costs arenegligible because they occur only once."We are not quite convinced by this argument. We doubt that sensory coding'ssole objective should be to transform data into a compact code that is cheaplytransmittable across some ideal, abstract channel. In fact, generating such acode may be very expensive in terms of information bits required to describe thecode-generating network, which may need many �nely tuned free parameters.Hence we believe that one of sensory coding's objectives should be to reduce thecost of code generation through data transformations in existing channels (e.g.,synapses etc.). Without denying the usefulness of certain COCOFs, we postulatethat an important scarce resource is the bits required to describe the mappingsthat generate and process the codes | after all, it is these mappings that needto be implemented, given some limited hardware.Lococodes. For such reasons we shift the point of view and focus on theinformation-theoretic costs of code-generation. We will present a novel approachto unsupervised learning called \low-complexity coding and decoding" (Lo-cocode). Without assuming particular goals such as data compression, simpli-fying subsequent classi�cation, etc., but in the MDL spirit, Lococode generatesso-called lococodes that (1) convey information about the input data and (2) canbe computed and decoded by low-complexity mappings.Typical lococodes are sparse. We will see that Lococode encouragesnoise-tolerant feature detectors reminiscent of those observed in the mammalianvisual cortex, because such detectors typically reduce coding and decoding costs:to code a given input all we need to know is which features are present andwhich are not. Inputs that are mixtures of a few regular features, such as edgesin images, can be described well in a sparse fashion (only code componentscorresponding to present features are non-zero).Lococodes through FMS. To implement Lococode we apply Flat Min-imum Search (FMS [12]) to an autoassociator (AA) whose hidden layer activa-tions represent the code. FMS is a general, gradient-based method for �ndingnetworks that can be described with few bits of information.Previous AAs. Backprop-trained AAs without a narrow hidden bottlenecktypically produce redundant, continuous-valued codes and unstructured weightpatterns. Linear AAs with a hidden layer bottleneck, however, produce codesthat are orthogonal projections onto the subspace spanned by the �rst principaleigenvectors of a covariance matrix associated with the training patterns [2].The mean squared error (MSE) surface has an unique minimum [2]. Nonlinearcodes have been obtained by nonlinear bottleneck AAs with more than 3 (e.g., 5)layers, e.g., [16,7]. None of these methods produces sparse, factorial or local codes| instead they produce �rst principal components or their nonlinear equivalents(\principal manifolds"). We will see that FMS-based AAs yield quite di�erentresults.



2 FLAT MINIMUM SEARCH: REVIEWFMS Overview. FMS is a general method for �nding low complexity-networkswith high generalization capability. FMS �nds a large region in weight space suchthat each weight vector from that region has similar small error. Such regions arecalled \
at minima". In MDL terminology, few bits of information are requiredto pick a weight vector in a \
at" minimum (corresponding to a low complexity-network) | the weights may be given with low precision. In contrast, weightsin a \sharp" minimum require a high-precision speci�cation. As a natural by-product of net complexity reduction, FMS automatically prunes weights (bysetting them to zero) and units (e.g., by giving them a strong bias), and reducesoutput sensitivity with respect to remaining weights and units. Previous FMSapplications focused on supervised learning [12]: FMS led to better stock marketprediction results than various alternative methods. In this paper, however, wewill use it for unsupervised coding only.Architecture. We use a 3-layer feedforward net. Each layer is fully con-nected to the next layer. Let O;H; I denote index sets for output, hidden, inputunits, respectively. For l 2 O[H, the activation yl of unit l is yl = f(sl), wheresl = Pmwlmym is the net input of unit l (m 2 H for l 2 O and m 2 I forl 2 H), wlm denotes the weight on the connection from unit m to unit l, fdenotes the activation function, and for m 2 I, ym denotes the m-th componentof an input vector. W = j(O�H) [ (H � I)j is the number of weights.Algorithm. FMS' objective function includes an unconventional term:B = Xi;j2O�H[H�I logXk2O( @yk@wij )2+W logXk2O0@ Xi;j2O�H[H�I j @yk@wij jqPk2O( @yk@wij )21A2 :Eq + �B is minimized by gradient descent, where Eq is the training set meansquared error (MSE), and � is a positive \regularizer" scaling B's in
uence.De�ning � corresponds to choosing a tolerable error level (there is no a priori\optimal" way of doing so). B measures the weight precision (number of bitsneeded to describe all weights in the net). Reducing B without increasing Eqmeans removing weight precision without increasing MSE. Given a constantnumber of output units, all of this can be done e�ciently, namely, with standardBP's order of computational complexity. For details see [12]. For even moregeneral attempts at reducing net complexity see [27].3 EXPERIMENTSIn all our experiments we will associate input data with itself, using an FMS-trained 3-layer autoassociator (AA) with semilinear activation function in thehidden layer. Unless stated otherwise we use 700,000 training exemplars.



3.1 EXPERIMENT 1: local, sparse, factorial codesTask. The data consists of 8 input vectors with 8 components each. The i-thcomponent of the i-th vector is 0.8. The other components are 0.2. The sigmoidhidden units (HUs) are active in [0,1]. Code units and output units have anadditional bias input. Code units are initialized with a negative bias of -2.0.Experiment 1.1: uniformly distributed inputs, 500,000 training examples.Each input vector has probability 18 of being chosen next. Parameters: learningrate: 0.1, the \tolerable error" Etol = 0:1, �� = 1:0, 
 = 2:0 (�� is a param-eter for the � update, and 
 is a parameter for 2-phase learning | see [12]).Architecture: (8-5-8) (8 input units, 5 HUs, 8 output units).Results: factorial codes. In 7 out of 10 trials, FMS e�ectively pruned 2HUs (huge negative bias! zero unit activation! incoming weights pruned dueto extremely low required precision), and produced a factorial binary code withstatistically independent code components. In 2 trials FMS pruned 2 HUs andproduced an almost binary code | with one trinary unit taking on values of0.0, 0.5, 1.0. In one trial FMS produced a binary code with only one HU beingpruned away. Obviously, under certain constraints on the input data, FMS tendstowards the compact, nonredundant codes advocated by numerous researchers.Experiment 1.2: like Experiment 1.1, but with architecture (8-8-8), 200,000training examples and input values in f0:0; 1:0g (as opposed to input values inf0:2; 0:8g). We use more HUs than in Experiment 1.1, to make clear that in thiscase fewer units are pruned.Results: local codes. 10 trials were conducted. FMS always produced abinary code. In 7 trials, only 1 HU was pruned, in the remaining trials 2 HUs.Unlike with standard BP, almost all inputs almost always were coded in an en-tirely local manner, i.e., only one HU was switched on, the others switched o�.Recall that local codes were also advocated by many researchers { but they areprecisely \the opposite" of the factorial codes from the previous experiment.How can Lococode justify such di�erent codes? How to explain this apparentdiscrepancy? The reason is: with the di�erent input representation, the addi-tional HUs do not necessarily result in much more additional complexity of themappings for coding and decoding. The zero-valued inputs allow for low weightprecision (low coding complexity) for connections leading to HUs (similarly forconnections leading to output units). In contrast to Experiment 1.1 it is possi-ble to describe the i-th possible input by the following feature: \the i-th inputcomponent does not equal zero".Experiment 1.3: like Experiment 1.2, but architecture (1-8-1) and one-dimensional inputs: 0.05, 0.1, 0.15, 0.2, 0.8, 0.85, 0.9, 0.95. Parameters: learningrate: 0.1, Etol = 0:00004, �� = 1:0, 
 = 2:0.Results: feature detectors. 10 trials were conducted. FMS always pro-duced the following code: one binary HU making a distinction between inputvalues less than 0.5 and input values greater than 0.5, 2 HUs with continuousvalues, one of which is zero (or one) whenever the binary unit is on, while theother is zero (one) otherwise. All remaining HUs adopt constant values of either



1.0 or 0.0, thus being essentially pruned away. The binary unit serves as a binaryfeature detector, grouping the inputs into 2 classes.Experiment 1.4: nonuniformly distributed inputs. Input vectors like in Ex-periment 1.1, but occurring with probabilities 14 ; 14 ; 18 ; 18 ; 116 ; 116 ; 116 ; 116 . Parame-ters: learning rate: 0.005, Etol = 0:01, �� = 1:0, 
 = 2:0. Architecture: (8-5-8).Results: sparse codes. In 4 out of 10 trials, FMS found a binary code (noHUs pruned). In 3 trials: a binary code with one HU pruned. In one trial: acode with one HU removed, and a trinary unit adopting values of 0.0, 0.5, 1.0.In 2 trials: a code with one pruned HU and 2 trinary HUs. Obviously, with thisset-up, FMS prefers codes known as sparse distributed representations.Explanation.Why is the result di�erent from Experiment 1.1's? To achieveequal error contributions for all inputs, the weights for coding/decoding highlyprobable inputs have to be given with higher precision than the weights forcoding/decoding inputs with low probability: the input distribution from Ex-periment 1.1 will result in a more complex network. The next experiment willmake this e�ect even more pronounced.Experiment 1.5: like Experiment 1.4, but with architecture (8-8-8).Results: sparse codes. In 10 trials, FMS always produced binary codes.In 2 trials only 1 HU was pruned. In 1 trial 3 units were pruned. In 7 trials 2units were pruned. Unlike with standard BP, almost all inputs almost alwayswere coded in a sparse, distributed manner: typically, 2 HUs were switched on,the others switched o�, and most HUs responded to exactly 2 di�erent inputpatterns. The mean probability of a unit being switched on was 0.28, and theprobabilities of di�erent HUs being switched on tended to be equal.3.2 EXPERIMENT 2: Independent Bars (Overview)In separate publications [13,14] we successfully use Lococode to solve di�cultvariants of the \bars" benchmark problem [6,25,10]. Lococode discovers theunderlying statistics and extracts the essential, statistically independent fea-tures, even in presence of noise. Standard BP AAs accomplish none of thesefeats (Dayan and Zemel, 1995) | this has been con�rmed by additional exper-iments conducted by ourselves. Lococode achieves success solely by reducinginformation-theoretic (de)coding costs. Unlike previous approaches, it does notdepend on explicit terms enforcing independence [26], zero mutual informationamong code components [18], or sparseness [34,8,20,10]. Like \independent com-ponent analysis" (ICA, e.g., [1,5]), Lococode untangles mixtures of indepen-dent data sources. Unlike ICA, however, it does not need to know in advancethe number of such sources | like \predictability minimization" [26] it simplyprunes away super
uous code components.3.3 EXPERIMENT 3: More Realistic Visual DataTask 3.1 (overview). In a separate publication [13] we successfully use Lo-cocode to code image data (based on the aerial shot of a village). Lococode



generates sparse codes based on well-known on-center-o�-surround feature de-tectors. Super
uous HUs are pruned, few survive. Standard backprop, however,does not produce any recognizable weight structures or simple feature detectors,and does not prune any of the AA's HUs.Task 3.2. Figure 1 shows a wood cell image with 150 � 150 pixels, eachtaking on one of 256 gray levels. 7 � 7 pixels subsections are randomly chosenas training inputs, where gray levels are scaled to input activations in [�0:5; 0:5]and to targets in [�0:7; 0:7]. The sigmoid HUs (output units) are active in [0,1]([-1,1]). Normal weights are initialized in [�0:1; 0:1], bias weights with -1.0, �with 0.5. Training stop: after 250,000 training examples. Parameters: learningrate: 1.0, Etol = 1:0, �� = 0:01. Architecture: (49-25-49).Fig. 1. Task 3.2 | wood cells: imagesection used for training. Fig. 2. Task 3.3 | striped wood: imagesection used for training.
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ative) weights. The circle radius is proportional to the weight's absolute value.Bias weights of HUs are shown on top of the squares' upper left corners. Thecircle representing some HU's maximal absolute weight has maximal possibleradius (circles representing other weights are scaled accordingly). Output biasweights are all negative. To activate some HU, its input must match the struc-ture of the incoming weights to cancel the inhibitory bias. 9 to 11 units survive.They are obvious feature detectors and can be characterized by the positions ofthe centers of their on-center-o�-surround structures relative to the input �eld:the entire input is covered by them.Task 3.3. Like Task 3.2 | but now we use the image of a striped piece ofwood. See Figure 2. Etol = 0:1. Training stop: after 300,000 training examples.Results. 4 trials led to similar results. Only 3 to 5 of the 25 HUS survive andbecome obvious feature detectors, now of a di�erent kind: they detect whethertheir receptive �eld covers a dark stripe to the left, to the right, or in the middle.
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uous units.Taking into account statistical properties of the visual input data, it generatesappropriate feature detectors such as the familiar on-center-o�-surround and bardetectors. It also produces biologically plausible sparse codes. FMS's objectivefunction, however, does not contain explicit terms enforcing such codes (thiscontrasts previous methods, e.g., [20]).3.4 EXPERIMENT 4: vowel recognitionIn separate publications [13,14] we successfully use Lococode as a preprocessorfor a standard vowel recognition benchmark problem [23]. The training data is



�rst coded using an FMS AA. Then the AA's weights are frozen. From now on,the vowel codes across all nonconstant HUs are used as inputs for a conventionalsupervised BP classi�er, which is trained to recognize the vowels from the code.In our comparison, this simple approach outperforms (1) various neural nets,(2) Nearest neighbor, (3) linear discriminant analysis, (4) Softmax, (5) quadraticdiscriminant analysis, (6) CART, (7) 
exible discriminant analysis (FDA) usingadditive models with adaptive selection of terms and splines smoothing parame-ters, (8) Softmax with a set of basis functions for better class separation, (9) FDAusing multivariate adaptive regression splines (MARS), (10) Softmax/MARS.Although we made no attempt at preventing classi�er over�tting, we achievedexcellent results. From this we conclude that the lococodes fed into the clas-si�er already conveyed the \essential", almost noise-free information necessaryfor excellent classi�cation. We are led to believe that Lococode is a promisingmethod for data preprocessing.4 CONCLUSIONLococode's notion of optimality takes into account the information-theoreticcomplexity of the mappings used for coding and decoding. Lococodes typicallycompromise between con
icting goals. They tend to be sparse and exhibit lowbut not minimal redundancy | if the complexity costs of generating minimalredundancy are too high. Lococodes tend towards binary, informative feature de-tectors, but occasionally there are trinary or continuous-valued code components(where complexity considerations suggest such alternatives).A general principle? Our results indicate that local, factorial, or sparsecodes actually are natural, input-dependent by-products of Lococode, althoughbiologically plausible sparseness is the most common case. Unlike the objectivefunctions of previous methods (e.g., [20]), however, Lococode's does not con-tain an explicit term enforcing, say, sparse codes. This seems to suggest thatLococode's objective may embody a general principle of unsupervised learninggoing beyond previous, more specialized ones. We would like to emphasize, how-ever, that our focus on low mapping complexity (LMC) is meant to complementprevious views rather than to replace them. We see LMC as one fragment ofa puzzle whose solution would correspond to a better understanding of the yetunknown, \true" goal of sensory coding.Limitations.FMS' order of computational complexity depends on the num-ber of output units. For typical classi�cation tasks (requiring few output units)it equals standard backprop's. In the AA case, however, the output's dimension-ality grows with the input's. That's why large scale FMS-trained AAs seem torequire a parallel implementation.Outlook.We suspect that Lococode reduces to \principal component anal-ysis" (PCA, e.g., [19]) and \independent component analysis" (ICA, e.g., [1,5])in case of certain simple linear signal mixtures. Lococode appears to go be-yond ICA, however, because it (a) is not inherently limited to the linear case, and(b) does not need a priori information about the number of independent data
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