
Recurrent Neural Net Learning and Vanishing GradientInternational Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 6(2):107{116, 1998Sepp HochreiterInstitut f�ur InformatikTechnische Universit�at M�unchenD-80290 M�unchen, GermanyE-Mail: hochreit@informatik.tu-muenchen.dehttp://www7.informatik.tu-muenchen.de/~hochreitAbstract. Recurrent nets are in principle capable to store past inputs to produce thecurrently desired output. This recurrent net property is used in time series predictionand process control. Practical applications involve temporal dependencies spanning manytime steps between relevant inputs and desired outputs. In this case, however, gradientdescent learning methods take to much time. The learning time problem appears becausethe error vanishes as it gets propagated back. The decaying error ow is theoreticallyanalyzed. Then methods trying to overcome vanishing gradient are mentioned. Finally,experiments comparing conventional algorithms and alternative methods are presented.Experiments using advanced methods show that learning long time lags problems can bedone in reasonable time.Keywords: recurrent neural nets, vanishing gradient, long-term dependencies.1 INTRODUCTIONRecurrent neural nets are capable to extract temporal dependencies. Therefore recurrentnets are used for many applications including temporal delays of relevant signals, e.g.,speech processing, non-Markovian control, time series analysis, process control (e.g.[18]),and music composition (e.g.[14]). Recurrent nets must learn which past inputs have to bestored and computed to produce the current desired output. With gradient based learningmethods the current error signal has to \ow back in time" over the feedback connectionsto past inputs for building up an adequate input storage. Conventional backpropagation,however, su�er from too much learning time, when minimal time lags between relevantinputs and corresponding teacher signals are extended. For instance, with \backpropthrough time" (BPTT, e.g. [28]) or \Real-Time Recurrent Learning" (RTRL, e.g., [20]),error signals owing backwards in time tend to vanish. In this case long-term dependenciesare hard to learn because of insu�cient weight changes. The next Section 2 theoreticallyanalysis the vanishing gradient. Then Section 3 presents methods trying to overcome theproblem of vanishing gradient. In the experimental Section 4 conventional algorithms arecompared with some advanced methods on tasks including long time lags. This paper ispartly based on [8].



2 DECAYING GRADIENTConventional gradient descent. Assume a fully connected recurrent net with units 1; : : : ; n.The activation of a non-input unit i is yi(t) = fi(neti(t)) with activation function fi, andnet input neti(t) = Pj wijyj(t� 1). wij is the weight on the connection from unit j to i.Let dk(t) denote output unit k's target at current time t. Using mean squared error, k'sexternal (target) error is Ek(t) = f 0k(netk(t))(dk(t) � yk(t)) (all non-output units i havezero external error Ei(t) = 0). At an arbitrary time � � t non-input unit j's error signalis the sum of the external error and the backpropagated error signal from previous timestep: #j(� ) = f 0j(netj(� )) Ej(� ) +Xi wij#i(� + 1)! :Error signals are set to zero if activations are reset at time � : #j(� ) = 0 (f 0j(netj(� )) = 0).The weight update at time � is wnewjl = woldjl + �#j(� )yl(� � 1), where � is the learningrate, and l is an arbitrary unit connected to unit j.Vanishing error problem. See also [2] and [7]. Propagating back an error occurring at anunit u at time step t to an unit v for q time steps, scales the error by:@#v(t� q)@#u(t) = ( f 0v(netv(t� 1))wuv q = 1f 0v(netv(t� q))Pnl=1 @#l(t�q+1)@#u(t) wlv q > 1 : (1)With lq = v and l0 = u, the scaling factor is@#v(t� q)@#u(t) = nXl1=1 : : : nXlq�1=1 qYm=1 f 0lm(netlm(t�m))wlmlm�1 . (2)Analyzing equation (2). Here the relation between the experimentally observed vanishinggradient and equation (2) should be given. The sum of the nq�1 terms Qqm=1 f 0lm(netlm(t�m))wlmlm�1 scales the error back ow. These terms may have di�erent signs, therefore,increasing the number of units n does not necessarily increase the absolute error ow value.But with more units the expectation of the error back ow's absolute value increases. If�(m; lm; lm�1) := jf 0lm(netlm(t � m))wlmlm�1j < 1:0 for all m the largest product in (2)decreases exponentially with q, that is, the error ow vanishes. A vanishing error backow has almost no e�ect on weight updates. Given constant ylm�1 6= 0 �(m; lm; lm�1)is maximal where wlmlm�1 = 1ylm�1 coth(12netlm). Increasing the absolute weight valuesjwlmlm�1j ! 1 lead to �(m; lm; lm�1) ! 0. Thus, the vanishing gradient cannot beavoided by increasing the absolute weight values.If flm is the logistic sigmoid function, then the maximal value of f 0lm is 0.25, therefore,�(m; lm; lm�1) is less than 1:0 for jwlmlm�1j < 4:0. If wmax < 4:0 holds for the absolutemaximal weight value wmax (e.g. initialization) then all �(m; lm; lm�1) are smaller than1.0. Hence, with logistic activation functions the error ow tends to vanish especially atstarting to learn.



Increasing the learning rate does not countermand the e�ects of vanishing gradient, be-cause it won't change the ratio of long-range error ow and short-range error ow (recentinput have still greater inuence on the current output).Upper bound for the absolute scaling factor. Matrix A's element in the i-th column andj-th row is denoted by [A]ij. The i-th component of vector x is denoted by [x]i. The acti-vation vector at time t is [Y (t)]i := yi(t) with net input vector Net(t) := W Y (t� 1) andweight matrix [W ]ij := wij . The activation function vector is [F (Net(t)]i := fi(neti(t)),therefore Y (t) = F (Net(t)) = F (W Y (t� 1)). F 0(t) is the diagonal matrix of �rst orderderivatives de�ned as: [F 0(t)]ij := f 0i(neti(t)) if i = j, and [F 0(t)]ij := 0 otherwise. Wv isunit v's outgoing weight vector ([Wv]i := [W ]iv = wiv), WuT is unit u's incoming weightvector ([WuT ]i := [W ]ui = wui). The vector @Y (t)@netv(t�q) is de�ned as [ @Y (t)@netv(t�q) ]i := @yi(t)@netv(t�q)for q � 0 and the matrix rY (t�1)Y (t) is de�ned as [rY (t�1)Y (t)]ij := @yi(t)@yj(t�1) .From the de�nitions rY (t�1)Y (t) = F 0(t) W is obtained. Again, the scaling factor of anerror owing back from an unit u (at time t) for q time steps to an unit v is computed:@#v(t� q)@#u(t) = @netu(t)@netv(t� q) = rY (t�1)netu(t) @Y (t� 1)@netv(t� q) = (3)rY (t�1)netu(t) q�2Ym=1 (rY (t�m�1)Y (t�m)) @Y (t� q + 1)@netv(t� q) =(WuT )T q�2Ym=1 (F 0(t�m)W ) F 0(t� q + 1) Wv f 0v(netv(t� q));where T is the transposition operator.Using a matrix norm k : kA compatible with vector norm k : kx, f 0max is de�ned asf 0max := maxm=1;:::;qfk F 0(t � m) kAg. For maxi=1;:::;nfjxijg � k x kx one gets jxTyj �n k x kx k y kx. Since jf 0v(netv(t� q))j � k F 0(t� q) kA � f 0max, the following inequalityis obtained:j @#v(t� q)@#u(t) j � n (f 0max)q kWv kx kWuT kx k W kq�2A � n (f 0max kW kA)q :This inequality results from k Wv kx = k Wev kx � k W kA k ev kx � k W kA andk WuT kx = k euW kx � k W kA k eu kx � k W kA, where ek is the unit vector of zerosand only the k-th component is 1.This best case upper bound will only be reached if all k F 0(t�m) kA are maximal, andcontributions from all error ow paths have equal sign (see the product terms in equation(2)). Large k W kA, however, leads to small values of k F 0(t � m) kA. Most sigmoidunits are saturated and the derivatives are small (also con�rmed by experiments). Takingthe norms k W kA := maxrPs jwrsj and k x kx:= maxrjxrj, f 0max = 0:25 holds for thelogistic sigmoid. For jwijj � wmax < 4:0n 8i; j one gets k W kA � nwmax < 4:0. If setting� := �nwmax4:0 � < 1:0 then we get the exponential decay j @#v(t�q)@#u(t) j � n (�)q.Remember that large k W kA leads to small k F 0(t � m) kA and, therefore, vanishinggradient is almost ever observed.



3 METHODS FOR LONG TIME LAG LEARNINGGradient descent based algorithms. The methods [5, 6, 27, 22, 15], and other mentionedin [16] su�er from the vanishing gradient. They are hardly able to learn long-term depen-dencies. To overcome the vanishing gradient problem there are four types of solutions:(1) Methods which do not use gradients.(2) Methods which keep gradients on larger values.(3) Methods which operate on higher levels.(4) Methods which use special architectures.(1) Global search methods do not use a gradient. In [2] methods such as simulatedannealing, multi-grid random search were investigated. Random weight guessing wastested in [21]. It was found that global search methods work well on \simple" problemsinvolving long-term dependencies. \Simple" problems are characterized by being solvedwith nets having few parameters and not needing the computation of precise continuousvalues.(2) The gradient can be kept on larger values by time-weighted pseudo-Newton opti-mization and discrete error propagation [2]. It seems that these methods have problemslearning to store precise real-valued information over time.(3) An EM approach for target propagation was proposed in [1]. This approach uses adiscrete number of states and, therefore, will have problems with continuous values.Kalman �lter techniques are used in [18] for recurrent network training. But a derivativediscount factor leads to vanishing gradient problems.If a long-time lag problem contains local regularities then a hierarchical chunker system[23] works well.In [19] higher order units to bridge long time lags were used. This very fast method isnot capable to generalize to temporal dependencies not being trained and the number ofadditive units increase with the time lags.(4) Second order nets (using sigma-pi units) are in principle capable to increase the errorow. But vanishing error problems can hardly be avoided. For experiments with thesenetwork types see [26] and [13].With Time-Delay Neural Networks (TDNN, e.g. [11]) old net activations are fed backinto the net using �xed delay lines. These delay lines can be viewed as \jump ahead"connections between copies in a time-unfolded network. In best case the length of thedelay line is the ratio of the error owing steps in a conventional net and the error owingsteps using a TDNN. In TDNN the error decrease is slowed down because the error uses\shortcuts" as it gets propagated back. TDNN have to deal with a trade-o�: increasingthe delay line length increases the error ow but the net has more parameters/units. For a



special case of TDNN (called NARX networks) see [12]. A weighted sum of old activationsinstead of a �xed delay line was used in [17]. A more complex version of a TDNN wasproposed in [4]. The error ow can be controlled by designing special units.In [14] time constants determine the scaling factor of the error if it gets propagated back forone time step at a single unit. But only with external time constant �ne tuning extendedtime gaps can be processed. In [25] a single unit is updated by adding the old activationand the scaled current net input. But the stored value is sensible to perturbations bylater irrelevant net inputs.\Long Short Term Memory" (LSTM) [8, 10, 9] uses a special architecture to enforcesconstant error ow through special units. Unlike in [25] perturbations by current irrelevantsignals are prevented by multiplicative units.4 EXPERIMENTS4.1 EXPERIMENT 1: EMBEDDED REBER GRAMMARTask. The \embedded Reber grammar" was used by various previous authors, e.g., [24],[3] and [6]. This task do not include long time lags and, therefore, can be learned by con-ventional methods. The experiment serves to show that even on short time lag problemsalternative methods outperform gradient descent methods.
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REBERFigure 2: Embedded Reber grammar.Being at the leftmost node (with an empty string) in Figure 2 a string is produced byfollowing the directed edges and adding the corresponding symbols to the current stringuntil being in the rightmost node. Alternative edges are chosen randomly (probability:0.5). The net sequentially processes the string getting as input the actual symbol andhaving to predict the next symbol. To know the last but one string symbol the net haveto store the second symbol.The task was tried to be solved by RTRL, Elman nets (ELM), Fahlman's \RecurrentCascade-Correlation" (RCC), and LSTM. Experimental details can be found in the ref-



Table 1: EXPERIMENT 1 | Embedded Reber grammar. Percentage of successful trialsand learning time for successful trials for RTRL (results taken from [24]), Elman nets(results taken from [3]), RCC (results taken from [6]) and LSTM (results taken from [8]).method hidden units # weights learning rate % of success success afterRTRL 3 � 170 0.05 \some fraction" 173,000RTRL 12 � 494 0.1 \some fraction" 25,000ELM 15 � 435 0 >200,000RCC 7-9 � 119-198 50 182,000LSTM 3 blocks, size 2 276 0.5 100 8,440erences listed in table 1. Table 1 gives the results. Only LSTM always learned the taskand correct solution are learned faster then with gradient based methods.4.2 EXPERIMENT 2: LONG TIME LAGSThe limitations of gradient descent based methods can be seen on this simple task in-volving long minimal time lags. But advanced methods are able to learn the task withminimal time lags of 100.Two sequences are use for training: (y; a1; a2; : : : ; ap�1; y) and (x; a1; a2; : : : ; ap�1; x). Thesymbols are coded locally which gives a p + 1 dimensional input vector. Strings areprocessed sequentially and the net have to predict the next string symbol. For predictingthe last symbol the net has to remember the �rst symbol. Therefore this task involves aminimal time lag of p.RTRL [20], BPTT, the neural sequence chunker (CH) [23], and LSTM are applied to thetask. Experimental details can be found in [8]. Table 2 gives the results. Gradient basedmethods (RTRL, BPTT) get into trouble when the minimal time lag exceeds 10 steps.CH and LSTM are able to solve the task with long time lags.Note: The sequences have local regularities required by the neural sequence chunker butnot by LSTM. LSTM performs well at sequences without local regularities (see [8]).5 CONCLUSIONThe error ow for gradient based recurrent learning methods was theoretically analyzed.This analysis showed that learning to bridge long time lags can be di�cult. Advancedmethods to overcome the vanishing gradient problem were mentioned. But most ap-proaches have disadvantages (e.g., practicable only for discrete problems). The exper-iments con�rmed that conventional learning algorithms for recurrent nets cannot learnlong time lag problems in reasonable time. With conventional methods two advanced
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