
LSTM CAN SOLVE HARDLONG TIME LAG PROBLEMSSepp HochreiterFakult�at f�ur InformatikTechnische Universit�at M�unchen80290 M�unchen, Germany J�urgen SchmidhuberIDSIACorso Elvezia 366900 Lugano, SwitzerlandAbstractStandard recurrent nets cannot deal with long minimal time lagsbetween relevant signals. Several recent NIPS papers propose alter-native methods. We �rst show: problems used to promote variousprevious algorithms can be solved more quickly by random weightguessing than by the proposed algorithms. We then use LSTM,our own recent algorithm, to solve a hard problem that can neitherbe quickly solved by random search nor by any other recurrent netalgorithm we are aware of.1 TRIVIAL PREVIOUS LONG TIME LAG PROBLEMSTraditional recurrent nets fail in case of long minimal time lags between input sig-nals and corresponding error signals [7, 3]. Many recent papers propose alternativemethods, e.g., [16, 12, 1, 5, 9]. For instance, Bengio et al. investigate methods suchas simulated annealing, multi-grid random search, time-weighted pseudo-Newtonoptimization, and discrete error propagation [3]. They also propose an EM ap-proach [1]. Quite a few papers use variants of the \2-sequence problem" (and \latchproblem") to show the proposed algorithm's superiority, e.g. [3, 1, 5, 9]. Some pa-pers also use the \parity problem", e.g., [3, 1]. Some of Tomita's [18] grammars arealso often used as benchmark problems for recurrent nets [2, 19, 14, 11].Trivial versus non-trivial tasks. By our de�nition, a \trivial" task is one thatcan be solved quickly by random search (RS) in weight space. RS works as follows:REPEAT randomly initialize the weights and test the resulting net on a training setUNTIL solution found.

Random search (RS) details. In all our RS experiments, we randomly initializeweights in [-100.0,100.0]. Binary inputs are -1.0 (for 0) and 1.0 (for 1). Targets areeither 1.0 or 0.0. All activation functions are logistic sigmoid in [0.0,1.0]. We use twoarchitectures (A1, A2) suitable for many widely used \benchmark" problems: A1 isa fully connected net with 1 input, 1 output, and n biased hidden units. A2 is likeA1 with n = 10, but less densely connected: each hidden unit sees the input unit,the output unit, and itself; the output unit sees all other units; all units are biased.All activations are set to 0 at each sequence begin. We will indicate where wealso use di�erent architectures of other authors. All sequence lengths are randomlychosen between 500 and 600 (most other authors facilitate their problems by usingmuch shorter training/test sequences). The \benchmark" problems always requireto classify two types of sequences. Our training set consists of 100 sequences, 50from class 1 (target 0) and 50 from class 2 (target 1). Correct sequence classi�cationis de�ned as \absolute error at sequence end below 0.1". We stop the search oncea random weight matrix correctly classi�es all training sequences. Then we test onthe test set (100 sequences). All results below are averages of 10 trials. In all oursimulations below, RS �nally classi�ed all test set sequences correctly;average �nal absolute test set errors were always below 0.001 | in mostcases below 0.0001.\2-sequence problem" (and \latch problem") [3, 1, 9]. The task is to observe andclassify input sequences. There are two classes. There is only one input unit or inputline. Only the �rst N real-valued sequence elements convey relevant informationabout the class. Sequence elements at positions t > N (we use N = 1) are generatedby a Gaussian with mean zero and variance 0.2. The �rst sequence element is 1.0(-1.0) for class 1 (2). Target at sequence end is 1.0 (0.0) for class 1 (2) (the latchproblem is a simple version of the 2-sequence problem that allows for input tuninginstead of weight tuning).Bengio et al.'s results. For the 2-sequence problem, the best method among thesix tested by Bengio et al. [3] was multigrid random search (sequence lengths 50| 100; N and stopping criterion unde�ned), which solved the problem after 6,400sequence presentations, with �nal classi�cation error 0.06. In more recent work,Bengio and Frasconi reported that an EM-approach [1] solves the problem within2,900 trials.RS results. RS with architecture A2 (A1, n = 1) solves the problem within only718 (1247) trials on average. Using an architecture with only 3 parameters (asin Bengio et al.'s architecture for the latch problem [3]), the problem was solvedwithin only 22 trials on average, due to tiny parameter space. According to ourde�nition above, the problem is trivial. RS outperforms Bengio et al.'s methods inevery respect: (1) many fewer trials required, (2) much less computation time pertrial. Also, in most cases (3) the solution quality is better (less error).It should be mentioned, however, that di�erent input representations and di�er-ent types of noise may lead to worse RS performance (Yoshua Bengio, personalcommunication, 1996).\Parity problem". The parity task [3, 1] requires to classify sequences withseveral 100 elements (only 1's or -1's) according to whether the number of 1's iseven or odd. The target at sequence end is 1.0 for odd and 0.0 for even.

Bengio et al.'s results. For sequences with only 25-50 steps, among the sixmethods tested in [3] only simulated annealing was reported to achieve �nal classi-�cation error of 0.000 (within about 810,000 trials | the authors did not mentionthe precise stopping criterion). A method called \discrete error BP" took about54,000 trials to achieve �nal classi�cation error 0.05. In more recent work [1], forsequences with 250-500 steps, their EM-approach took about 3,400 trials to achieve�nal classi�cation error 0.12.RS results. RS with A1 (n = 1) solves the problem within only 2906 trials onaverage. RS with A2 solves it within 2797 trials. We also ran another experimentwith architecture A2, but without self-connections for hidden units. RS solved theproblem within 250 trials on average.Again it should be mentioned that di�erent input representations and noise typesmay lead to worse RS performance (Yoshua Bengio, personal communication, 1996).Tomita grammars. Many authors also use Tomita's grammars [18] to test theiralgorithms. See, e.g., [2, 19, 14, 11, 10]. Since we already tested parity problemsabove, we now focus on a few \parity-free" Tomita grammars (nr.s #1, #2, #4).Previous work facilitated the problems by restricting sequence length. E.g., in[11], maximal test (training) sequence length is 15 (10). Reference [11] reports thenumber of sequences required for convergence (for various �rst and second ordernets with 3 to 9 units): Tomita #1: 23,000 { 46,000; Tomita #2: 77,000 { 200,000;Tomita #4: 46,000 { 210,000. RS, however, clearly outperforms the methods in[11]. The average results are: Tomita #1: 182 (A1, n = 1) and 288 (A2), Tomita#2: 1,511 (A1, n = 3) and 17,953 (A2), Tomita #4: 13,833 (A1, n = 2) and 35,610(A2).Non-trivial tasks / Outline of remainder. Solutions of non-trivial tasks aresparse in weight space. They require either many free parameters (e.g., inputweights) or high weight precision, such that RS becomes infeasible. To solve suchtasks we need a novel method called \Long Short-Term Memory", or LSTM forshort [8]. Section 2 will brie
y review LSTM. Section 3 will show results on a taskthat cannot be solved at all by any other recurrent net learning algorithm we areaware of. The task involves distributed, high-precision, continuous-valued represen-tations and long minimal time lags | there are no short time lag training exemplarsfacilitating learning.2 LONG SHORT-TERM MEMORYMemory cells and gate units: basic ideas. LSTM's basic unit is called amemory cell. Within each memory cell, there is a linear unit with a �xed-weightself-connection (compare Mozer's time constants [12]). This enforces constant, non-exploding, non-vanishing error
ow within the memory cell. A multiplicative inputgate unit learns to protect the constant error
ow within the memory cell fromperturbation by irrelevant inputs. Likewise, a multiplicative output gate unit learnsto protect other units from perturbation by currently irrelevant memory contentsstored in the memory cell. The gates learn to open and close access to constant error
ow. Why is constant error
ow important? For instance, with conventional \back-prop through time" (BPTT, e.g., [20]) or RTRL (e.g., [15]), error signals \
owingbackwards in time" tend to vanish: the temporal evolution of the backpropagated

error exponentially depends on the size of the weights. For the �rst theoretical error
ow analysis see [7]. See [3] for a more recent, independent, essentially identicalanalysis.LSTM details. In what follows, wuv denotes the weight on the connection fromunit v to unit u. netu(t); yu(t) are net input and activation of unit u (with activationfunction fu) at time t. For all non-input units that aren't memory cells (e.g. outputunits), we have yu(t) = fu(netu(t)), where netu(t) = Pv wuvyv(t � 1). The j-th memory cell is denoted cj . Each memory cell is built around a central linearunit with a �xed self-connection (weight 1.0) and identity function as activationfunction (see de�nition of scj below). In addition to netcj (t) = Puwcjuyu(t � 1),cj also gets input from a special unit outj (the \output gate"), and from anotherspecial unit inj (the \input gate"). inj 's activation at time t is denoted by yinj (t).outj's activation at time t is denoted by youtj (t). inj , outj are viewed as ordinaryhidden units. We have youtj (t) = foutj (netoutj (t)); yinj (t) = finj (netinj (t)), wherenetoutj (t) = Puwoutjuyu(t � 1), netinj (t) = Puwinjuyu(t � 1). The summationindices u may stand for input units, gate units, memory cells, or even conventionalhidden units if there are any (see also paragraph on \network topology" below).All these di�erent types of units may convey useful information about the currentstate of the net. For instance, an input gate (output gate) may use inputs fromother memory cells to decide whether to store (access) certain information in itsmemory cell. There even may be recurrent self-connections like wcjcj . It is up tothe user to de�ne the network topology. At time t, cj's output ycj (t) is computedin a sigma-pi-like fashion: ycj (t) = youtj (t)h(scj (t)), wherescj (0) = 0; scj (t) = scj (t� 1) + yinj (t)g �netcj (t)� for t > 0:The di�erentiable function g scales netcj . The di�erentiable function h scales mem-ory cell outputs computed from the internal state scj .Why gate units? inj controls the error
ow to memory cell cj 's input connectionswcju. outj controls the error
ow from unit j's output connections. Error signalstrapped within a memory cell cannot change { but di�erent error signals
owing intothe cell (at di�erent times) via its output gate may get superimposed. The outputgate will have to learn which errors to trap in its memory cell, by appropriatelyscaling them. Likewise, the input gate will have to learn when to release errors.Gates open and close access to constant error
ow.Network topology. There is one input, one hidden, and one output layer. Thefully self-connected hidden layer contains memory cells and corresponding gate units(for convenience, we refer to both memory cells and gate units as hidden unitslocated in the hidden layer). The hidden layer may also contain \conventional"hidden units providing inputs to gate units and memory cells. All units (except forgate units) in all layers have directed connections (serve as inputs) to all units inhigher layers.Memory cell blocks. S memory cells sharing one input gate and one output gateform a \memory cell block of size S". They can facilitate information storage.Learning with excellent computational complexity| see details in appendixof [8]. We use a variant of RTRL which properly takes into account the altered(sigma-pi-like) dynamics caused by input and output gates. However, to ensureconstant error backprop, like with truncated BPTT [20], errors arriving at \memory

cell net inputs" (for cell cj, this includes netcj , netinj , netoutj) do not get propagatedback further in time (although they do serve to change the incoming weights). Onlywithin memory cells, errors are propagated back through previous internal states scj .This enforces constant error
ow within memory cells. Thus only the derivatives@scj@wil need to be stored and updated. Hence, the algorithm is very e�cient,and LSTM's update complexity per time step is excellent in comparison to otherapproaches such as RTRL: given n units and a �xed number of output units, LSTM'supdate complexity per time step is at most O(n2), just like BPTT's.3 EXPERIMENT: ADDING PROBLEMOur previous experimental comparisons (on widely used benchmark problems)with RTRL (e.g., [15]; results compared to the ones in [17]), Recurrent Cascade-Correlation [6], Elman nets (results compared to the ones in [4]), and Neural Se-quence Chunking [16], demonstrated that LSTM leads to many more successfulruns than its competitors, and learns much faster [8]. The following task, though,is more di�cult than the above benchmark problems: it cannot be solved at all inreasonable time by RS (we tried various architectures) nor any other recurrent netlearning algorithm we are aware of (see [13] for an overview). The experiment willshow that LSTM can solve non-trivial, complex long time lag problems involvingdistributed, high-precision, continuous-valued representations.Task. Each element of each input sequence is a pair consisting of two components.The �rst component is a real value randomly chosen from the interval [�1; 1]. Thesecond component is either 1.0, 0.0, or -1.0, and is used as a marker: at the endof each sequence, the task is to output the sum of the �rst components of thosepairs that are marked by second components equal to 1.0. The value T is used todetermine average sequence length, which is a randomly chosen integer between Tand T + T10 . With a given sequence, exactly two pairs are marked as follows: we �rstrandomly select and mark one of the �rst ten pairs (whose �rst component is calledX1). Then we randomly select and mark one of the �rst T2 � 1 still unmarked pairs(whose �rst component is called X2). The second components of the remainingpairs are zero except for the �rst and �nal pair, whose second components are -1(X1 is set to zero in the rare case where the �rst pair of the sequence got marked).An error signal is generated only at the sequence end: the target is 0:5 + X1+X24:0(the sum X1 +X2 scaled to the interval [0; 1]). A sequence was processed correctlyif the absolute error at the sequence end is below 0.04.Architecture. We use a 3-layer net with 2 input units, 1 output unit, and 2memory cell blocks of size 2 (a cell block size of 1 works well, too). The outputlayer receives connections only from memory cells. Memory cells/ gate units receiveinputs from memory cells/gate units (fully connected hidden layer). Gate units(finj ; foutj) and output units are sigmoid in [0; 1]. h is sigmoid in [�1; 1], and g issigmoid in [�2; 2].State drift versus initial bias. Note that the task requires to store the precisevalues of real numbers for long durations | the system must learn to protect mem-ory cell contents against even minor \internal state drifts". Our simple but highlye�ective way of solving drift problems at the beginning of learning is to initially biasthe input gate inj towards zero. There is no need for �ne tuning initial bias: with

sigmoid logistic activation functions, the precise initial bias hardly matters becausevastly di�erent initial bias values produce almost the same near-zero activations. Infact, the system itself learns to generate the most appropriate input gate bias. Tostudy the signi�cance of the drift problem, we bias all non-input units, thus arti�-cially inducing internal state drifts. Weights (including bias weights) are randomlyinitialized in the range [�0:1; 0:1]. The �rst (second) input gate bias is initializedwith �3:0 (�6:0) (recall that the precise initialization values hardly matters, ascon�rmed by additional experiments).Training / Testing. The learning rate is 0.5. Training examples are generatedon-line. Training is stopped if the average training error is below 0.01, and the 2000most recent sequences were processed correctly (see de�nition above).Results. With a test set consisting of 2560 randomly chosen sequences, the averagetest set error was always below 0.01, and there were never more than 3 incorrectlyprocessed sequences. The following results are means of 10 trials: For T = 100(T = 500, T = 1000), training was stopped after 74,000 (209,000; 853,000) trainingsequences, and then only 1 (0, 1) of the test sequences was not processed correctly.For T = 1000, the number of required training examples varied between 370,000and 2,020,000, exceeding 700,000 in only 3 cases.The experiment demonstrates even for very long minimal time lags: (1) LSTM isable to work well with distributed representations. (2) LSTM is able to performcalculations involving high-precision, continuous values. Such tasks are impossibleto solve within reasonable time by other algorithms: the main problem of gradient-based approaches (including TDNN, pseudo Newton) is their inability to deal withvery long minimal time lags (vanishing gradient). A main problem of \global" and\discrete" approaches (RS, Bengio's and Frasconi's EM-approach, discrete errorpropagation) is their inability to deal with high-precision, continuous values.Other experiments. In [8] LSTM is used to solve numerous additional tasks thatcannot be solved by other recurrent net learning algorithm we are aware of. Forinstance, LSTM can extract information conveyed by the temporal order of widelyseparated inputs. LSTM also can learn real-valued, conditional expectations ofstrongly delayed, noisy targets, given the inputs.Conclusion. For non-trivial tasks (where RS is infeasible), we recommend LSTM.4 ACKNOWLEDGMENTSThis work was supported by DFG grant SCHM 942/3-1 from \Deutsche Forschungs-gemeinschaft".References[1] Y. Bengio and P. Frasconi. Credit assignment through time: Alternatives to backprop-agation. In J. D. Cowan, G. Tesauro, and J. Alspector, editors, Advances in NeuralInformation Processing Systems 6, pages 75{82. San Mateo, CA: Morgan Kaufmann,1994.[2] Y. Bengio and P. Frasconi. An input output HMM architecture. In G. Tesauro,D. S. Touretzky, and T. K. Leen, editors, Advances in Neural Information ProcessingSystems 7, pages 427{434. MIT Press, Cambridge MA, 1995.

[3] Y. Bengio, P. Simard, and P. Frasconi. Learning long-term dependencies with gradientdescent is di�cult. IEEE Transactions on Neural Networks, 5(2):157{166, 1994.[4] A. Cleeremans, D. Servan-Schreiber, and J. L. McClelland. Finite-state automataand simple recurrent networks. Neural Computation, 1:372{381, 1989.[5] S. El Hihi and Y. Bengio. Hierarchical recurrent neural networks for long-term depen-dencies. In Advances in Neural Information Processing Systems 8, 1995. to appear.[6] S. E. Fahlman. The recurrent cascade-correlation learning algorithm. In R. P. Lipp-mann, J. E. Moody, and D. S. Touretzky, editors, Advances in Neural InformationProcessing Systems 3, pages 190{196. San Mateo, CA: Morgan Kaufmann, 1991.[7] J. Hochreiter. Untersuchungen zu dynamischen neuronalen Netzen. Diploma thesis,Institut f�ur Informatik, Lehrstuhl Prof. Brauer, Technische Universit�at M�unchen,1991. See www7.informatik.tu-muenchen.de/~hochreit.[8] S. Hochreiter and J. Schmidhuber. Long short-term memory. Technical Report FKI-207-95, Fakult�at f�ur Informatik, Technische Universit�at M�unchen, 1995. Revised 1996(see www.idsia.ch/~juergen, www7.informatik.tu-muenchen.de/~hochreit).[9] T. Lin, B. G. Horne, P. Tino, and C. L. Giles. Learning long-term dependencies isnot as di�cult with NARX recurrent neural networks. Technical Report UMIACS-TR-95-78 and CS-TR-3500, Institute for Advanced Computer Studies, University ofMaryland, College Park, MD 20742, 1995.[10] P. Manolios and R. Fanelli. First-order recurrent neural networks and deterministic�nite state automata. Neural Computation, 6:1155{1173, 1994.[11] C. B. Miller and C. L. Giles. Experimental comparison of the e�ect of order inrecurrent neural networks. International Journal of Pattern Recognition and Arti�cialIntelligence, 7(4):849{872, 1993.[12] M. C. Mozer. Induction of multiscale temporal structure. In J. E. Moody, S. J.Hanson, and R. P. Lippman, editors, Advances in Neural Information ProcessingSystems 4, pages 275{282. San Mateo, CA: Morgan Kaufmann, 1992.[13] B. A. Pearlmutter. Gradient calculations for dynamic recurrent neural networks: Asurvey. IEEE Transactions on Neural Networks, 6(5):1212{1228, 1995.[14] J. B. Pollack. The induction of dynamical recognizers. Machine Learning, 7:227{252,1991.[15] A. J. Robinson and F. Fallside. The utility driven dynamic error propagation net-work. Technical Report CUED/F-INFENG/TR.1, Cambridge University EngineeringDepartment, 1987.[16] J. H. Schmidhuber. Learning complex, extended sequences using the principle ofhistory compression. Neural Computation, 4(2):234{242, 1992.[17] A. W. Smith and D. Zipser. Learning sequential structures with the real-time re-current learning algorithm. International Journal of Neural Systems, 1(2):125{131,1989.[18] M. Tomita. Dynamic construction of �nite automata from examples using hill-climbing. In Proceedings of the Fourth Annual Cognitive Science Conference, pages105{108. Ann Arbor, MI, 1982.[19] R. L. Watrous and G. M. Kuhn. Induction of �nite-state automata using second-order recurrent networks. In J. E. Moody, S. J. Hanson, and R. P. Lippman, editors,Advances in Neural Information Processing Systems 4, pages 309{316. San Mateo,CA: Morgan Kaufmann, 1992.[20] R. J. Williams and J. Peng. An e�cient gradient-based algorithm for on-line trainingof recurrent network trajectories. Neural Computation, 4:491{501, 1990.

