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J�urgen SchmidhuberIDSIACorso Elvezia 366900 Lugano, Switzerlandjuergen@idsia.chhttp://www.idsia.ch/~juergenMarch 1996AbstractWe present a new algorithm for �nding low complexity neural networks with high gener-alization capability. The algorithm searches for a \
at" minimum of the error function. A
at minimum is a large connected region in weight-space where the error remains approxi-mately constant. An MDL-based, Bayesian argument suggests that 
at minima correspond to\simple" networks and low expected over�tting. The argument is based on a Gibbs algorithmvariant and a novel way of splitting generalization error into under�tting and over�tting error.Unlike many previous approaches, ours does not require Gaussian assumptions and does notdepend on a \good" weight prior { instead we have a prior over input/output functions, thustaking into account net architecture and training set. Although our algorithm requires thecomputation of second order derivatives, it has backprop's order of complexity. Automatically,it e�ectively prunes units, weights, and input lines. Various experiments with feedforwardand recurrent nets are described. In an application to stock market prediction, 
at minimumsearch outperforms (1) conventional backprop, (2) weight decay, (3) \optimal brain surgeon"/ \optimal brain damage". We also provide pseudo code of the algorithm (omitted from theNC-version).
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1 BASIC IDEAS / OUTLINEOur algorithm tries to �nd a large region in weight space with the property that each weight vectorfrom that region leads to similar small error. Such a region is called a \
at minimum" (Hochreiter& Schmidhuber, 1995). To get an intuitive feeling for why a 
at minimum is interesting, considerthis: a \sharp" minimum (see �gure 2) corresponds to weights which have to be speci�ed withhigh precision. A 
at minimum (see �gure 1) corresponds to weights many of which can be givenwith low precision. In the terminology of the theory of minimum description (message) length(MML, Wallace, 1968; MDL, Rissanen, 1978), fewer bits of information are required to describea 
at minimum (corresponding to a \simple" or low complexity-network). The MDL principlesuggests that low network complexity corresponds to high generalization performance. Similarly,the standard Bayesian view favors \fat" maxima of the posterior weight distribution (maximawith a lot of probability mass | see, e.g., Buntine & Weigend, 1991). We will see: 
at minimaare fat maxima.

Figure 1: Example of a \
at" minimum. Figure 2: Example of a \sharp" minimum.Unlike, e.g., Hinton and van Camp's method (1993), our algorithm does not depend on thechoice of a \good" weight prior. It �nds a 
at minimum by searching for weights that minimize bothtraining error and weight precision. This requires the computation of the Hessian. However, byusing an e�cient second order method (Pearlmutter, 1994; M�ller, 1993), we obtain conventionalbackprop's order of computational complexity. Automatically, the method e�ectively reducesnumbers of units, weights, and input lines, as well as output sensitivity with respect to remainingweights and units. Unlike, e.g., simple weight decay, our method automatically treats/prunes unitsand weights in di�erent layers in di�erent reasonable ways.Outline.� Section 2 formally introduces basic concepts, such as error measures, 
at minima etc.� Section 3 describes the novel algorithm called \
at minimum search" (FMS).� Section 4 formally derives the algorithm.� Section 5 reports experimental generalization results with feedforward and recurrent net-works. For instance, in an application to stock market prediction, 
at minimum searchoutperforms the following, widely used competitors: (1) conventional backprop, (2) weightdecay, (3) \optimal brain surgeon" / \optimal brain damage".� Section 6 mentions relations to previous work.� Section 7 mentions limitations of the algorithm and outlines future work.2



� The appendix presents a detailed theoretical justi�cation of our approach.Using a variant of the Gibbs algorithm, appendix A.1 de�nes generalization, under�ttingand over�tting error in a novel way. By de�ning an appropriate prior over input-outputfunctions, we postulate that the most probable network is a \
at" one.Appendix A.2 formally justi�es the error function minimized by our algorithm.Appendix A.3 describes an e�cient implementation of the algorithm.Appendix A.4 �nally presents pseudo code of the algorithm.2 TASK / ARCHITECTURE / BOXESGeneralization task. The task is to approximate an unknown function f � X � Y mapping a�nite set of possible inputs X � RN to a �nite set of possible outputs Y � RK . A data set D isobtained from f (see appendix A.1). All training information is given by a �nite set D0 � D. D0is called the training set. The pth element of D0 is denoted by an input/target pair (xp; yp).Architecture/ Net functions. For simplicity, we will focus on a standard feedforward net(but in the experiments, we will use recurrent nets as well). The net has N input units, Koutput units, L weights, and di�erentiable activation functions. It maps input vectors x 2 RNto output vectors o(w; x) 2 RK , where w is the L-dimensional weight vector, and the weight onthe connection from unit j to i is denoted wij . The net function induced by w is denoted net(w):for x 2 RN , net(w)(x) = o(w; x) = �o1(w; x); o2(w; x); : : : ; oK�1(w; x); oK (w; x)�, where oi(w; x)denotes the i-th component of o(w; x), corresponding to output unit i.Training error. We use squared error E(net(w); D0) :=P(xp;yp)2D0 k yp�o(w; xp) k2, wherek : k denotes the Euclidean norm.Tolerable error. To de�ne a region in weight space with the property that each weight vectorfrom that region leads to small error and similar output, we introduce the tolerable error Etol, apositive constant (see appendix A.1 for a formal de�nition of Etol). \Small" error is de�ned asbeing smaller than Etol. E(net(w); D0) > Etol implies \under�tting".Boxes. Each weight w satisfying E(net(w); D0) � Etol de�nes an \acceptable minimum"(compare M(D0) in appendix A.1). We are interested in a large region of connectedacceptable minima, where each weight w within this region leads to almost identicalnet functions net(w). Such a region is called a 
at minimum. We will see that 
atminima correspond to low expected generalization error. To simplify the algorithm for �nding alarge connected region (see below), we do not consider maximal connected regions but focus onso-called \boxes" within regions: for each acceptable minimum w, its box Mw in weight space isa L-dimensional hypercuboid with center w. For simplicity, each edge of the box is taken to beparallel to one weight axis. Half the length of the box edge in direction of the axis correspondingto weight wij is denoted by �wij(X). The �wij(X) are the maximal (positive) values such thatfor all L-dimensional vectors � whose components �ij are restricted by j�ij j � �wij(X), we have:E(net(w); net(w+�); X) � �, where E(net(w); net(w+�); X) =Px2X k o(w; x)�o(w+�; x) k2,and � is a small positive constant de�ning tolerable output changes (see also equation (1)). Notethat �wij(X) depends on �. Since our algorithm does not use �, however, it is notationallysuppressed. �wij(X) gives the precision of wij . Mw's box volume is de�ned by V (�w(X)) :=2LQi;j �wij (X), where �w(X) denotes the vector with components �wij(X). Our goal is to�nd large boxes within 
at minima.3 THE ALGORITHMLet X0 = fxp j (xp; yp) 2 D0g denote the inputs of the training set. We approximate �w(X) by�w(X0), where �w(X0) is de�ned like �w(X) in the previous section (replacing X by X0). Forsimplicity, in what follows, we will abbreviate �w(X0) by �w. Starting with a random initialweight vector, 
at minimum search (FMS) tries to �nd a w that not only has low E(net(w); D0) but3



also de�nes a box Mw with maximal box volume V (�w) and, consequently, minimal ~B(w;X0) :=� log( 12LV (�w)) = Pi;j � log�wij . Note the relationship to MDL: ~B is the number of bitsrequired to describe the weights, whereas the number of bits needed to describe the yp, given w(with (xp; yp) 2 D0), can be bounded by �xing Etol (see appendix A.1). In the next section wederive the following algorithm. We use gradient descent to minimize E(w;D0) = E(net(w); D0)+�B(w;X0), where B(w;X0) =Pxp2X0 B(w; xp), andB(w; xp) = 12 0B@�L log �+Xi;j logXk �@ok(w; xp)@wij �2 + L logXk 0@Xi;j j@ok(w;xp)@wij jqPk(@ok(w;xp)@wij )21A21CA .(1)Here ok(w; xp) is the activation of the kth output unit (given weight vector w and input xp), � isa constant, and � is the regularization constant (or hyperparameter) which controls the trade-o�between regularization and training error (see appendix A.1). To minimize B(w;X0), for eachxp 2 X0 we have to compute@B(w; xp)@wuv =Xk;i;j @B(w; xp)@(@ok(w;xp)@wij ) @2ok(w; xp)@wij@wuv for all u; v . (2)It can be shown that by using Pearlmutter's and M�ller's e�cient second order method, the gra-dient of B(w; xp) can be computed in O(L) time (see details in A.3). Therefore, our algorithmhas the same order of computational complexity as standard backprop.4 DERIVATION OF THE ALGORITHMOutline. We are interested in weights representing nets with tolerable error but 
at outputs (seesection 2 and appendix A.1). To �nd nets with 
at outputs, two conditions will be de�ned tospecify B(w; xp) for xp 2 X0 and, as a consequence, B(w;X0) (see section 3). The �rst conditionensures 
atness. The second condition enforces \equal 
atness" in all weight space directions, toobtain low variance of the net functions induced by weights within a box. The second conditionwill be justi�ed using an MDL-based argument. In both cases, linear approximations will be made(to be justi�ed in A.2).Formal details. We are interested in weights causing tolerable error (see \acceptable minima"in section 2) that can be perturbed without causing signi�cant output changes, thus indicatingthe presence of many neighboring weights leading to the same net function. By searching for theboxes from section 2, we are actually searching for low-error weights whose perturbation does notsigni�cantly change the net function.In what follows we treat the input xp as �xed: for convenience, we suppress xp, i.e. weabbreviate ok(w; xp) by ok(w). Perturbing the weights w by �w (with components �wij), weobtain ED(w; �w) :=Pk(ok(w+ �w)� ok(w))2, where ok(w) expresses ok's dependence on w (inwhat follows, however, w often will be suppressed for convenience, i.e. we abbreviate ok(w) byok). Linear approximation (justi�ed in A.2) gives us \Flatness Condition 1":ED(w; �w) � EDl(�w) :=Xk (Xi;j @ok@wij �wij)2 � EDl;max(�w) :=Xk (Xi;j j @ok@wij jj�wij j)2 � �, (3)where � > 0 de�nes tolerable output changes within a box and is small enough to allow for linearapproximation (it does not appear in B(w; xp)'s and B(w;D0)'s gradient, see section 3). EDlis ED's linear approximation, and EDl;max is maxfEDl(w; �v)j 8ij : �vij = ��wijg. Flatnesscondition 1 is a \robustness condition" (or \fault tolerance condition", or \perturbation tolerancecondition" { see, e.g., Minai & Williams, 1994; Murray & Edwards, 1993; Neti et al., 1992;Matsuoka, 1992; Bishop, 1993; Kerlirzin & Vallet, 1993; Carter et al., 1990).4



Many boxesMw satisfy 
atness condition 1. To select a particular, very 
at Mw, the following\Flatness Condition 2" uses up degrees of freedom left by inequality (3):8i; j; u; v : (�wij)2Xk ( @ok@wij )2 = (�wuv)2Xk ( @ok@wuv )2 . (4)Flatness condition 2 enforces equal \directed errors"EDij(w; �wij ) =Pk(ok(wij + �wij)� ok(wij))2 �Pk( @ok@wij �wij)2, where ok(wij) has the obviousmeaning, and �wij is the i; j-th component of �w. Linear approximation is justi�ed by the choiceof � in inequality (3). As will be seen in the MDL-justi�cation to be presented below, 
atnesscondition 2 favors the box which minimizes the mean perturbation error within the box. Thiscorresponds to minimizing the variance of the net functions induced by weights within the box(recall that ED(w; �w) is quadratic).How to derive the algorithm from 
atness conditions 1 and 2. We �rst solve equation(4) for j�wij j = j�wuv jvuutPk� @ok@wuv �2Pk� @ok@wij �2 (�xing u; v for all i; j). Then we insert the j�wij j (with �xedu; v) into inequality (3) (replacing the second \�" in (3) by \=", since we search for the boxwith maximal volume). This gives us an equation for the j�wuv j (which depend on w, but this isnotationally suppressed):j�wuv j = p�qPk( @ok@wuv )2vuuutPk0@Pi;j j @ok@wij jqPk( @ok@wij )21A2 . (5)The j�wij j (u; v is replaced by i; j) approximate the �wij from section 2. The box Mw isapproximated by AMw, the box with center w and edge lengths 2�wij . Mw's volume V (�w) isapproximated by AMw's box volume V (�w) := 2LQij j�wij j. Thus, ~B(w; xp) (see section 3) canbe approximated by B(w; xp) := � log 12LV (�w) = Pi;j � log j�wij j. This immediately leads tothe algorithm given by equation (1).How can the above approximations be justi�ed? The learning process itself enforcestheir validity (see A.2). Initially, the conditions above are valid only in a very small environmentof an \initial" acceptable minimum. But during search for new acceptable minima with moreassociated box volume, the corresponding environments are enlarged. Appendix A.2 will provethis for feedforward nets (experiments indicate that this appears to be true for recurrent nets aswell).Comments. Flatness condition 2 in
uences the algorithm as follows: (1) The algorithmprefers to increase the �wij 's of weights whose current contributions are not important to computethe target output. (2) The algorithm enforces equal sensitivity of all output units with respect toweights of connections to hidden units. Hence, output units tend to share hidden units, i.e., di�er-ent hidden units tend to contribute equally to the computation of the target. The contributionsof a particular hidden unit to di�erent output unit activations tend to be equal, too.Flatness condition 2 is essential: 
atness condition 1 by itself corresponds to nothing more but�rst order derivative reduction (ordinary sensitivity reduction). However, as mentioned above,what we really want is to minimize the variance of the net functions induced by weights near theactual weight vector.Automatically, the algorithm treats units and weights in di�erent layers di�erently, and takesthe nature of the activation functions into account.MDL-JUSTIFICATION OF FLATNESS CONDITION 2Let us assume a sender wants to send a description of the function induced by w to a receiverwho knows the inputs xp but not the targets yp, where (xp; yp) 2 D0. The MDL principle5



suggests that the sender wants to minimize the expected description length of the net function.Let EDmean(w;X0) denote the mean value of ED on the box. Expected description length isapproximated by �EDmean(w;X0) +B(w;X0) + c, where c; � are positive constants. One way ofseeing this is to apply Hinton and van Camp's \bits back" argument to a uniform weight prior(EDmean corresponds to the output variance). However, we prefer to use a di�erent argument:we encode each weight wij of the box center w by a bitstring according to the following procedure(�wij is given):(0) De�ne a variable interval Iij � R.(1) Make Iij equal to the interval constraining possible weight values.(2) While Iij 6� [wij ��wij ; wij +�wij ]:Divide Iij into 2 equally-sized disjunct intervals I1 and I2.If wij 2 I1 then Iij  I1; write `1'.If wij 2 I2 then Iij  I2; write `0'.The �nal set fIijg corresponds to a \bit-box" within our box. This \bit-box" containsMw's centerw and is described by a bitstring of length ~B(w;X0) + c, where the constant c is independent ofthe box Mw. From ED(w;wb�w) (wb is the center of the \bit-box") and the bitstring describingthe \bit-box", the receiver can compute w as follows: he selects an initialization weight vectorwithin the \bit-box" and uses gradient descent to decrease B(wa; X0) until ED(wa; wb � wa) =ED(w;wb �w), where wa in the bit-box denotes the receiver's current approximation of w (wa isconstantly updated by the receiver). This is like \FMS without targets" { recall that the receiverknows the inputs xp. Since w corresponds to the weight vector with the highest degree of local
atness within the \bit-box", the receiver will �nd the correct w.ED(w;wb�w) is described by a Gaussian distribution with mean zero. Hence, the descriptionlength of ED(w;wb � w) is �ED(w;wb � w) (Shannon, 1948). wb, the center of the \bit-box",cannot be known before training. However, we do know the expected description length of the netfunction, which is �EDmean+ ~B(w;X0)+c (c is a constant independent of w). Let us approximateEDmean: EDl;mean(w; �w) := 1V (�w) RAMw EDl(w; �v)d�v =1V (�w)2L 13Pi;j �(�wij)3Pk � @ok@wij �2Qu;vwith u;v 6=i;j �wuv� = 13Pi;j (�wij)2Pk � @ok@wij �2.Among those w that lead to equal B(w;X0) (the negative logarithm of the box volume plusL log 2), we want to �nd those with minimal description length of the function induced by w.Using Lagrange multipliers (viewing the �wij as variables), it can be shown that EDl;meanis minimal under the condition B(w;X0) = constant i� 
atness condition 2 holds. Toconclude: with given box volume, we need 
atness condition 2 to minimize the expected descriptionlength of the function induced by w.5 EXPERIMENTAL RESULTS5.1 EXPERIMENT 1 { noisy classi�cation.Task. The �rst task is taken from Pearlmutter and Rosenfeld (1991). The task is to decide whetherthe x-coordinate of a point in 2-dimensional space exceeds zero (class 1) or doesn't (class 2). Noisytraining/test examples are generated as follows: data points are obtained from a Gaussian withzero mean and stdev 1.0, bounded in the interval [�3:0; 3:0]. The data points are misclassi�edwith probability 0:05. Final input data is obtained by adding a zero mean Gaussian with stdev0.15 to the data points. In a test with 2,000,000 data points, it was found that the procedureabove leads to 9.27 per cent misclassi�ed data. No method will misclassify less than 9.27 per cent,due to the inherent noise in the data (including the test data). The training set is based on 200�xed data points (see �gure 3). The test set is based on 120,000 data points.Results. 10 conventional backprop (BP) nets were tested against 10 equally initialized net-works trained by 
at minimum search (FMS). After 1,000 epochs, the weights of our nets essentiallystopped changing (automatic \early stopping"), while backprop kept changing weights to learn theoutliers in the data set and over�t. In the end, our approach left a single hidden unit h with a6



Figure 3: The 200 input examples of the training set. Crosses represent data points from class 1.Squares represent data points from class 0.Backprop FMS Backprop FMSMSE dto MSE dto MSE dto MSE dto1 0.220 1.35 0.193 0.00 6 0.219 1.24 0.187 0.042 0.223 1.16 0.189 0.09 7 0.215 1.14 0.187 0.073 0.222 1.37 0.186 0.13 8 0.214 1.10 0.185 0.014 0.213 1.18 0.181 0.01 9 0.218 1.21 0.190 0.095 0.222 1.24 0.195 0.25 10 0.214 1.21 0.188 0.07Table 1: 10 comparisons of conventional backprop (BP) and 
at minimum search (FMS). Thesecond row (labeled \MSE") shows mean squared error on the test set. The third row (\dto") showsthe di�erence between the percentage of misclassi�cations and the optimal percentage (9.27). Theremaining rows provide the analogous information for FMS, which clearly outperforms backprop.maximal weight of 30:0 or �30:0 from the x-axis input. Unlike with backprop, the other hiddenunits were e�ectively pruned away (outputs near zero). So was the y-axis input (zero weight toh). It can be shown that this corresponds to an \optimal" net with minimal numbers of units andweights. Table 1 illustrates the superior performance of our approach.Parameters:Learning rate: 0.1.Architecture: (2-20-1).Number of training epochs: 400,000.With FMS: Etol = 0:0001.See section 5.6 for parameters common to all experiments.5.2 EXPERIMENT 2 { recurrent nets.Time-varying inputs. The method works for continually running fully recurrent nets as well.At every time step, a recurrent net with sigmoid activations in [0; 1] sees an input vector from astream of randomly chosen input vectors from the set f(0; 0); (0; 1); (1; 0); (1; 1)g. The task is toswitch on the �rst output unit whenever an input (1; 0) had occurred two time steps ago, and to7



switch on the second output unit without delay in response to any input (0; 1). The task can besolved by a single hidden unit.Non-weight-decay-like results. With conventional recurrent net algorithms, after training,both hidden units were used to store the input vector. Not so with our new approach. We trained20 networks. All of them learned perfect solutions. Like with weight decay, most weights to theoutput decayed to zero. But unlike with weight decay, strong inhibitory connections (-30.0)switched o� one of the hidden units, e�ectively pruning it away.Parameters:Learning rate: 0.1.Architecture: (2-2-2).Number of training examples: 1,500.Etol = 0:0001.See section 5.6 for parameters common to all experiments.5.3 EXPERIMENT 3 { stock market prediction (1).Task. We predict the DAX1 (the German stock market index) using fundamental indicators.Following Rehkugler and Poddig (1990), the net sees the following indicators: (a) German in-terest rate (\Umlaufsrendite"), (b) industrial production divided by money supply, (c) businesssentiments (\IFO Gesch�aftsklimaindex"). The input (scaled in the interval [-3.4,3.4]) is the di�er-ence between data from the current quarter and last year's corresponding quarter. The goal is topredict the sign of next year's corresponding DAX di�erence.Details. The training set consists of 24 data vectors from 1966 to 1972. Positive DAXtendency is mapped to target 0.8, otherwise the target is -0.8. The test set consists of 68 datavectors from 1973 to 1990. Flat minimum search (FMS) is compared against: (1) Conventionalbackprop (BP8) with 8 hidden units, (2) Backprop with 4 hidden units (BP4) (4 hidden units arechosen because pruning methods favor 4 hidden units, but 3 is not enough), (3) Optimal brainsurgeon (OBS; Hassibi & Stork, 1993), ) with a few improvements (see section 5.6), (4) Weightdecay (WD) according to Weigend et. al (1991) (WD and OBS were chosen because they arewell-known and widely used).Performance measure. Since wrong predictions lead to loss of money, performance is mea-sured as follows. The sum of incorrectly predicted DAX changes is subtracted from the sum ofcorrectly predicted DAX changes. The result is divided by the sum of absolute DAX changes.Results. See table 2. Our method outperforms the other methods.MSE is irrelevant. Note that MSE is not a reasonable performance measure for this task.For instance, although FMS typically makes more correct classi�cations than WD, FMS' MSEoften exceeds WD's. This is because WD's wrong classi�cations tend to be close to 0, while FMSoften prefers large weights yielding strong output activations | FMS' few false classi�cations tendto contribute a lot to MSE.Parameters:Learning rate: 0.01.Architecture: (3-8-1), except BP4 with (3-4-1).Number of training examples: 20,000,000.Method speci�c parameters:FMS: Etol = 0:13; �� = 0:001.WD: like with FMS, but w0 = 0:2.OBS: Etol = 0:015 (the same result was obtained with higher Etol values, e.g. 0.13).See section 5.6 for parameters common to all experiments.1Raw DAX version according to Statistisches Bundesamt (federal o�ce of statistics). Other data are from thesame source (except for business sentiment). Collected by Christian Puritscher, for a diploma thesis in industrialmanagement at LMU, Munich. 8



Method train test removed performanceMSE MSE w u max min meanBP8 0.003 0.945 47.33 25.74 37.76BP4 0.043 1.066 42.02 42.02 42.02OBS 0.089 1.088 14 3 48.89 27.17 41.73WD 0.096 1.102 22 4 44.47 36.47 43.49FMS 0.040 1.162 24 4 47.74 39.70 43.62Table 2: Comparisons of conventional backprop (BP4, BP8), optimal brain surgeon (OBS), weightdecay (WD), and 
at minimum search (FMS). All nets except BP4 start out with 8 hidden units.Each value is a mean of 7 trials. Column \MSE" shows mean squared error. Column \w" showsthe number of pruned weights, column \u" shows the number of pruned units, the �nal 3 rows(\max", \min", \mean") list maximal, minimal and mean performance (see text) over 7 trials.Note that test MSE is insigni�cant for performance evaluations (this is due to targets 0.8/-0.8, asopposed to the \real" DAX targets). Our method outperforms all other methods.5.4 EXPERIMENT 4 { stock market prediction (2).Task. We predict the DAX again, using the basic set-up of the experiment in section 5.3. However,the following modi�cations are introduced:� There are two additional inputs: (d) dividend rate, (c) foreign orders in manufacturingindustry.� Monthly predictions are made. The net input is the di�erence between the current month'sdata and last month's data. The goal is to predict the sign of next month's correspondingDAX di�erence.� There are 228 training examples and 100 test examples.� The target is the percentage of DAX change scaled in the interval [-1,1] (outliers are ignored).� Performance of WD and FMS is also tested on networks \spoiled" by conventional backprop(\WDR" and \FMSR" { the \R" stands for Retraining).Results are shown in table 3. Average performance of our method exceeds the onesof weight decay, OBS, and conventional backprop.Table 3 also shows superior performance of our approach when it comes to retraining \spoiled"networks (note that OBS is a retraining method by nature). FMS led to the best improvementsin generalization performance.Parameters:Learning rate: 0.01.Architecture: (5-8-1).Number of training examples: 20,000,000.Method speci�c parameters:FMS: Etol = 0:235; �� = 0:0001; if Eaverage < Etol then �� is set to 0.001.WD: like with FMS, but w0 = 0:2.FMSR: like with FMS, but Etol = 0:15; number of retraining examples: 5,000,000.WDR: like with FMSR, but w0 = 0:2.OBS: Etol = 0:235. See section 5.6 for parameters common to all experiments.
9



Method train test removed performanceMSE MSE w u max min meanBP 0.181 0.535 57.33 20.69 41.61OBS 0.219 0.502 15 1 50.78 32.20 40.43WDR 0.180 0.538 0 0 62.54 13.64 41.17FMSR 0.180 0.542 0 0 64.07 24.58 41.57WD 0.235 0.452 17 3 54.04 32.03 40.75FMS 0.240 0.472 19 3 54.11 31.12 44.40Table 3: Comparisons of conventional backprop (BP), optimal brain surgeon (OBS), weight decayafter spoiling the net with BP (WDR), 
at minimum search after spoiling the net with BP (FMSR),weight decay (WD), 
at minimum search (FMS). All nets start out with 8 hidden units. Each valueis a mean of 10 trials. Column \MSE" shows mean squared error. Column \w" shows the numberof pruned weights, column \u" shows the number of pruned units, the �nal 3 rows (\max", \min",\mean") list maximal, minimal and mean performance (see text) over 10 trials (note again thatMSE is an irrelevant performance measure for this task). Flat minimum search outperformsall other methods.5.5 EXPERIMENT 5 { stock market prediction (3).Task. This time, we predict the DAX using weekly technical (as opposed to fundamental) indica-tors. The data (DAX values and 35 technical indicators) was provided by Bayerische Vereinsbank.Data analysis. To analyze the data, we computed: (1) The pairwise correlation coe�cientsof the 35 technical indicators. (2) The maximal pairwise correlation coe�cients of all indicatorsand all linear combinations of two indicators. This analysis revealed that only 4 indicators arenot highly correlated. For such reasons, our nets see only the 8 most recent DAX-changes and thefollowing technical indicators: (a) the DAX value, (b) change of 24-week relative strength index(\RSI") { the relation of increasing tendency to decreasing tendency, (c) \5 week statistic", (d)\MACD" (smoothened di�erence of exponentially weighted 6 week and 24 week DAX).Input data. The �nal network input is obtained by scaling the values (a-d) and the 8 mostrecent DAX-changes in [�2; 2]. The training set consists of 320 data points (July 1985 to August1991). The targets are the actual DAX changes scaled in [�1; 1].Comparison. The following methods are applied to the training set: (1) Conventional back-prop (BP), (2) optimal brain surgeon / optimal brain damage (OBS/OBD), (3) weight decay (WD)according to Weigend et al., (4) 
at minimum search (FMS). The resulting nets are evaluated ona test set consisting of 100 data points (August 1991 to July 1993).Performance is measured like in section 5.3.Results. Table 4 shows the results. Again, our method outperforms the other methods.Parameters:Learning rate: 0.01.Architecture: (12-9-1).Training time: 10,000,000 examples.Method speci�c parameters:OBS/OBD: Etol = 0:34.FMS: Etol = 0:34; �� = 0:003. If Eaverage < Etol then �� is set to 0.03.WD: like with FMS, but w0 = 0:2.See section 5.6 for parameters common to all experiments.
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Method train test removed performanceMSE MSE w u max min meanBP 0.13 1.08 28.45 -16.7 8.08OBS 0.38 0.912 55 1 27.37 -6.08 10.70WD 0.51 0.334 110 8 26.84 -6.88 12.97FMS 0.46 0.348 103 7 29.72 18.09 21.26Table 4: Comparisons of conventional backprop (BP), optimal brain surgeon (OBS), weight decay(WD), 
at minimum search (FMS). All nets start out with 9 hidden units. Each value is a meanof 10 trials. Column \MSE" shows mean squared error. Column \w" shows the number of prunedweights, column \u" shows the number of pruned units, the �nal 3 rows (\max", \min", \mean")list maximal, minimal and mean performance (see text) over 10 trials (note again that MSE is anirrelevant performance measure for this task). Flat minimum search outperforms all othermethods.5.6 DETAILS / PARAMETERSWith exception of the experiment in section 5.2, all units are sigmoid in the range of [�1:0; 1:0].Weights are constrained to [�30; 30] and initialized in [-0.1,0.1]. The latter ensures high �rst orderderivatives in the beginning of the learning phase. WD is set up to hardly punish weights beloww0 = 0:2. Eaverage is the average error on the training set, approximated using exponential decay:Eaverage  
Eaverage + (1� 
)E(net(w); D0), where 
 = 0:85.FMS details. To control B(w;D0)'s in
uence during learning, its gradient is normalizedand multiplied by the length of E(net(w); D0)'s gradient (same for weight decay, see below). �is computed like in (Weigend et al., 1991) and initialized with 0. Absolute values of �rst orderderivatives are replaced by 10�20 if below this value. We ought to judge a weight wij as beingpruned if �wij (see equation (5) in section 4) exceeds the length of the weight range. However, theunknown scaling factor � (see inequality (3) and equation (5) in section 4) is required to compute�wij . Therefore, we judge a weight wij as being pruned if, with arbitrary �, �wij is much biggerthan the corresponding �'s of the other weights (typically, there are clearly separable classes ofweights with high and low �'s, which di�er from each other by a factor ranging from 102 to 105).If all weights to and from a particular unit are very close to zero, the unit is lost: due to tinyderivatives, the weights will never again increase signi�cantly. Sometimes, it is necessary to bringlost units back into the game. For this purpose, every ninit time steps (typically, ninit = 500,000),all weights wij with 0 � wij < 0:01 are randomly re-initialized in [0:005; 0:01]; all weights wij with0 � wij > �0:01 are randomly initialized in [�0:01;�0:005], and � is set to 0.Weight decay details. We used Weigend et al.'s weight decay term: D(w) =Pi;j w2ij=w01+w2ij=w0 .Like with FMS,D(w;w0)'s gradient was normalized and multiplied by the length of E(net(w); D0)'sgradient. � was adjusted like with FMS. Lost units were brought back like with FMS.Modi�cations of OBS. Typically, most weights exceed 1.0 after training. Therefore, higherorder terms of �w in the Taylor expansion of the error function do not vanish. Hence, OBS isnot fully theoretically justi�ed. Still, we used OBS to delete high weights, assuming that higherorder derivatives are small if second order derivatives are. To obtain reasonable performance, wemodi�ed the original OBS procedure (notation following Hassibi and Stork, 1993):� To detect the weight that deserves deletion, we use both Lq = w2q[H�1]qq (the original valueused by Hassibi and Stork) and Tq := @E@wqwq + 12 @2E@w2q w2q . Here H denotes the Hessian andH�1 its approximate inverse. We delete the weight causing minimal training set error (aftertentative deletion).� Like with OBD (LeCun et al., 1990), to prevent numerical errors due to small eigenvalues11



of H , we do: if Lq < 0:00001 or Tq < 0:00001 or k I �H�1H k> 10:0 (bad approximationof H�1), we only delete the weight detected in the previous step { the other weights remainthe same. Here k : k denotes the sum of the absolute values of all components of a matrix.� If OBS' adjustment of the remaining weights leads to at least one absolute weight changeexceeding 5.0, then �w is scaled such that the maximal absolute weight change is 5.0. Thisleads to better performance (also due to small eigenvalues).� If Eaverage > Etol after weight deletion, then the net is retrained until either Eaverage < Etolor the number of training examples exceeds 800,000. Practical experience indicates that thechoice of Etol hardly in
uences the result.� OBS is stopped if Eaverage > Etol after retraining. The most recent weight deletion iscountermanded.6 RELATION TO PREVIOUS WORKMost previous algorithms for �nding low complexity networks with high generalization capabilityare based on di�erent prior assumptions. They can be broadly classi�ed into two categories (seeSchmidhuber (1994a), however, for an exception):(1) Assumptions about the prior weight distribution. Hinton and van Camp (1993) andWilliams (1994) assume that pushing the posterior weight distribution close to the weight priorleads to \good" generalization (see more details below). Weight decay (e.g., Hanson & Pratt,1989; Krogh & Hertz, 1992) can be derived, e.g., from Gaussian or Laplace weight priors. Nowlanand Hinton (1992) assume that a distribution of networks with many similar weights generated byGaussian mixtures is \better" a priori. MacKay's weight priors (1992b) are implicit in additionalpenalty terms, which embody the assumptions made. The problem with the approaches above isthis: there may not be a \good" weight prior for all possible architectures and training sets. WithFMS, however, we don't have to select a \good" weight prior | instead we choose a prior overinput/output functions. This automatically takes the net architecture and the training set intoaccount.(2) Prior assumptions about how theoretical results on early stopping and networkcomplexity carry over to practical applications. Such assumptions are implicit in methodsbased on validation sets (Mosteller & Tukey, 1968; Stone, 1974; Eubank, 1988; Hastie & Tibshirani,1993), e.g., \generalized cross validation" (Craven & Wahba, 1979; Golub et al., 1979), \�nalprediction error" (Akaike, 1970), \generalized prediction error" (Moody & Utans, 1994; Moody,1992). See also Holden (1994), Wang et al. (1994), Amari and Murata (1993), and Vapnik's\structural risk minimization" (Guyon et al., 1992; Vapnik, 1992).Constructive algorithms / pruning algorithms. Other architecture selection methodsare less 
exible in the sense that they can be used only either before or after weight adjustments.Examples are \sequential network construction" (Fahlman & Lebiere, 1990; Ash, 1989; Moody,1989), input pruning (Moody, 1992; Refenes et al., 1994), unit pruning (White, 1989; Mozer &Smolensky, 1989; Levin et al., 1994), weight pruning, e.g. \optimal brain damage" (LeCun et al.,1990), \optimal brain surgeon" (Hassibi & Stork, 1993).Hinton and van Camp (1993). They minimize the sum of two terms: the �rst is conventionalerror plus variance, the other is the distance R p(w j D0) log p(wjD0)p(w) dw between posterior p(w j D0)and weight prior p(w). They have to choose a \good" weight prior. But, as mentioned above,perhaps there is no \good" weight prior for all possible architectures and training sets. With FMS,however, we don't depend on a \good" weight prior | instead we have a prior over input/outputfunctions, thus taking into account net architecture and training set. Furthermore, Hinton andvan Camp have to compute variances of weights and unit activations, which (in general) cannotbe done using linear approximation. Intuitively speaking, their weight variances are related to our�wij . Our approach, however, does justify linear approximation, as seen in appendix A.2.12



Wolpert (1994a). His (purely theoretical) analysis suggests an interesting di�erent additionalerror term (taking into account local 
atness in all directions): the logarithm of the Jacobi de-terminant of the functional from weight space to the space of possible nets. This term is smallif the net output (based on the current weight vector) is locally 
at in weight space (if manyneighboring weights lead to the same net function in the space of possible net functions). It is notclear, however, how to derive a practical algorithm (e.g., a pruning algorithm) from this.Murray and Edwards (1993). They obtain additional error terms consisting of weightsquares and second order derivatives. Unlike our approach, theirs explicitly prefers weights nearzero. In addition, their approach appears to require much more computation time (due to secondorder derivatives in the error term).7 LIMITATIONS / FINAL REMARKS / FUTURE RE-SEARCHHow to adjust �? Given recent trends in neural computing (see, e.g., MacKay, 1992a, 1992b),it may seem like a step backwards that � is adapted using an ad-hoc heuristic from Weigendet al., 1991. However, for determining � in MacKay's style, one would have to compute theHessian of the cost function. Since our term B(w;X0) includes �rst order derivatives, adjusting� would require the computation of third order derivatives. This is impracticable. Also, tooptimize the regularizing parameter � (see MacKay, 1992b), we need to compute the functionR dLw exp(��B(w;X0)), but it is not obvious how: the \quick and dirty version" (MacKay,1992a) cannot deal with the unknown constant � in B(w;X0).Future work will investigate how to adjust � without too much computational e�ort. In fact,as will be seen in appendix A.1, the choices of � and Etol are correlated | the optimal choice ofEtol may indeed correspond to the optimal choice of �.Generalized boxes? The boxes found by the current version of FMS are axis-aligned. Thismay cause an under-estimate of 
at minimum volume. Although our experiments indicate thatbox search works very well, it will be interesting to compare alternative approximations of 
atminimum volumes.Multiple initializations? First, consider this FMS \alternative": run conventional backpropstarting with several random initial guesses, and pick the 
attest minimum with largest volume.This does not work: conventional backprop changes the weights according to steepest descent |it runs away from 
at ranges in weight space! Using an \FMS committee" (multiple runs withdi�erent initializations), however, would lead to a better approximation of the posterior. This isleft for future work.Notes on generalization error. If the prior distribution of targets p(f) (see appendix A.1)is uniform (or if the distribution of prior distributions is uniform), no algorithm can obtain a lowerexpected generalization error than training error reducing algorithms (see, e.g., Wolpert, 1994b).Typical target distributions in the real world are not uniform, however { the real world appearsto favor problem solutions with low algorithmic complexity. See, e.g., Schmidhuber (1994a).MacKay (1992a) suggests to search for alternative priors if the generalization error indicates a\poor regulariser". He also points out that with a \good" approximation of the non-uniformprior, more probable posterior hypothesis do not necessarily have a lower generalization error. Forinstance, there may be noise on the test set, or two hypotheses representing the same function mayhave di�erent posterior values, and the expected generalization error ought to be computed overthe whole posterior and not for a single solution. Schmidhuber (1994b) proposes a general, \self-improving" system whose entire life is viewed as a single training sequence and which continuallyattempts to incrementally modify its priors based on experience with previous problems | seealso Schmidhuber (1996). It remains to be seen, however, whether this will lead to practicablealgorithms.Ongoing work on low-complexity coding. FMS can also be useful for unsupervised learn-ing. In recent work, we postulate that a \generally useful" code of given input data ful�lls three13



MDL-inspired criteria: (1) It conveys information about the input data. (2) It can be computedfrom the data by a low-complexity mapping. (3) The data can be computed from the code bya low-complexity mapping. To obtain such codes, we simply train an auto-associator with FMS(after training, codes are represented across the hidden units). In initial experiments, dependingon data and architecture, this always led to well-known kinds of codes considered useful in previ-ous work by numerous researchers: we sometimes obtained factorial codes, sometimes local codes,and sometimes sparse codes. In most cases, the codes were of the low-redundancy, binary kind.Initial experiments with a speech data benchmark problem (vowel recognition) already showedthe true usefulness of codes obtained by FMS: feeding the codes into standard, supervised, over-�tting backprop classi�ers, we obtained much better generalization performance than competingapproaches.
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APPENDIX { THEORETICAL JUSTIFICATIONContents:A.1 Flat nets: the most probable hypothesesA.2 Why does the Hessian decrease?A.3 E�cient implementation of the algorithmA.3.1 Explicit derivative of equation (1)A.3.2 Fast multiplication by the HessianA.4 The algorithm in pseudo codeNote: Appendices A.3.2 and A.4 were omitted from the version for Neural Computation. Analternative version of the entire appendix (but with some minor errors) can be found in Hochreiter& Schmidhuber (1994).A.1. FLAT NETS: THE MOST PROBABLE HYPOTHESESShort Guide Through Appendix A.1. We introduce a novel kind of generalization error thatcan be split into an over�tting error and an under�tting error. To �nd hypotheses causing lowgeneralization error, we �rst select a subset of hypotheses causing low under�tting error. We areinterested in those of its elements causing low over�tting error.More Detailed Guide Through Appendix A.1.� After listing relevant de�nitions we will introduce a somewhat unconventional variant of theGibbs algorithm, designed to take into account that FMS uses only the training data D0 todetermine G(: j D0), a distribution over the set of hypotheses expressing our prior belief inhypotheses (here we do not care where the data came from | this will be treated later).� This variant of the Gibbs algorithm will help us to introduce the concept of \expectedextended generalization error", which can be split into an \over�tting error" (relevant formeasuring whether the learning algorithm focuses too much on the training set) and an \un-der�tting error" (relevant for measuring whether the algorithm su�ciently approximates thetraining set). To obtain these errors, we measure the Kullback-Leibler distance between pos-terior p(: j D0) after training on the training set and posterior pD0(: j D) after (hypothetical)training on all data (here the subscript D0 indicates that for learning D, G(: j D0) is used asprior belief in hypotheses, too). The over�tting error measures the information conveyed byp(: j D0), but not by pD0(: j D). The under�tting error measures the information conveyedby pD0(: j D), but not by p(: j D0).� We then introduce the \tolerable error level" and the set of \acceptable minima". Thelatter contains hypotheses with low under�tting error, assuming that D0 indeed conveysinformation about the test set (every training set error reducing algorithm makes this as-sumption). In the remainder of the appendix, we will focus only on hypotheses within theset of acceptable minima.� We introduce the \relative over�tting error", which is the relative contribution of a hypoth-esis to the mean over�tting error on the set of acceptable minima. The relative over�ttingerror measures the over�tting error of hypotheses with low under�tting error. The goal is to�nd a hypothesis with low over�tting error and, consequently, with low generalization error.� The relative over�tting error is approximated based on the trade-o� between low trainingset error and large values of G(: j D0). The distribution G(: j D0) is restricted to the set ofacceptable minima, to obtain the distribution GM(D0)(: j D0).� We then assume the data is obtained from a target chosen according to a given prior distri-bution. Using previously introduced distributions, we derive the expected test set error and15



the expected relative over�tting error. We want to reduce the latter by choosing a certainGM(D0)(: j D0) and G(: j D0).� The special case of noise free data is considered.� To be able to minimize the expected relative over�tting error, we need to adopt a certainprior belief p(f). The only unknown distributions required to determine GM(D0)(: j D0) arep(D0 j f) and p(D j f) | they describe how (noisy) data is obtained from the target. Wehave to make the following assumptions: the choice of prior belief is \appropriate", the noiseon data drawn from the target has mean 0, and small noise is more probable than large noise(the noise assumptions ensure that reducing the training error | by choosing some h fromM(D0) | reduces the expected under�tting error). We don't need Gaussian assumptions,though.� We show that FMS approximates our special variant of the Gibbs algorithm: the prior isapproximated locally in weight space, and 
at net(w) are approximated by 
at net(w0) withw0 near w in weight space.De�nitions. Let A = f(x; y) j x 2 X; y 2 Y g be the set of all possible input/output pairs(pairs of vectors). Let NET be the set of functions that can be implemented by the network.For every net function g 2 NET we have g � A. Elements of NET are parameterized with aparameter vector w from the set of possible parameters W . net(w) is a function which maps aparameter vector w onto a net function g (net is surjective.) Let T be the set of target functions f ,where T � NET . Let H be the set of hypothesis functions h, where H � T . For simplicity, takeall sets to be �nite, and let all functions map each x 2 X to some y 2 Y . Values of functions withargument x are denoted by g(x); net(w)(x); f(x); h(x). We have (x; g(x)) 2 g; (x; net(w)(x)) 2net(w); (x; f(x)) 2 f ; (x; h(x)) 2 h.Let D = f(xp; yp) j 1 � p � mg be the data, where D � A. D is divided into a training setD0 = f(xp; yp) j 1 � p � ng and a test set D nD0 = f(xp; yp) j n < p � mg. For the moment, weare not interested in how D was obtained.We use squared error E(D;h) := Pmp=1 k yp � h(xp) k2, where k : k is the Euclidean norm.E(D0; h) := Pnp=1 k yp � h(xp) k2. E(D n D0; h) := Pmp=n+1 k yp � h(xp) k2. E(D;h) =E(D0; h) +E(D nD0; h) holds.Learning. We use a variant of the Gibbs formalism (see Opper & Haussler, 1991, or Levinet al., 1990). Consider a stochastic learning algorithm (random weight initialization, randomlearning rate). The learning algorithm attempts to reduce training set error by randomly selectinga hypothesis with low E(D0; h), according to some conditional distribution G(: j D0) over H .G(: j D0) is chosen in advance, but in contrast to traditional Gibbs (which deals with unconditionaldistributions on H), we may take a look at the training set before selecting G. For instance, onetraining set may suggest linear functions as being more probable than others, another one splines,etc. The unconventional Gibbs variant is appropriate because FMS uses only X0 (the set of �rstcomponents of D0's elements, see section 3) to compute the 
atness of net(w0). The trade-o�between the desire for low E(D0; h) and the a priori belief in a hypothesis according to G(: j D0)is governed by a positive constant � (interpretable as the inverse temperature from statisticalmechanics, or the amount of stochasticity in the training algorithm).We obtain p(h j D0), the learning algorithm applied to data D0:p(h j D0) = G(h j D0) exp(��E(D0; h))Z(D0; �) ; (6)where Z(D0; �) = Xh2HG(h j D0) exp(��E(D0; h)): (7)Z(D0; �) is the \error momentum generating function", or the \weighted accessible volume incon�guration space" or \the partition function" (from statistical mechanics).16



For theoretical purposes, assume we know D and may use it for learning. To learn, we use thesame distribution G(h j D0) as above (prior belief in some hypotheses h is based exclusively onthe training set). There is a reason why we do not use G(h j D) instead: G(h j D) does not allowfor making a distinction between a better prior belief in hypotheses and a better approximationof the test set data. However, we are interested in how G(h j D0) performs on the test set dataD nD0. We obtain pD0(h j D) = G(h j D0) exp(��E(D;h))ZD0(D; �) ; (8)where ZD0(D; �) = Xh2HG(h j D0) exp(��E(D;h)): (9)The subscript D0 indicates that the prior belief is chosen based on D0 only.Expected extended generalization error. We de�ne the expected extended generalizationerror EG(D;D0) on the unseen test exemplars D nD0:EG(D;D0) := Xh2H p(h j D0)E(D nD0; h)�Xh2H pD0(h j D)E(D nD0; h): (10)Here EG(D;D0) is the mean error onDnD0 after learning with D0, minus the mean error onDnD0after learning with D. The second (negative) term is a lower bound (due to non-zero temperature)for the error on D nD0 after learning the training set D0. Note: for the zero temperature limit� !1 we get (summation convention explained at the end of this paragraph)EG(D;D0) = Ph2H;D0�h G(hjD0)Z(D0) E(D n D0; h), where Z(D0) = Ph2H;D0�hG(h j D0). In thiscase, the generalization error depends on G(h j D0), restricted to those hypotheses h compatiblewith D0 (D0 � h). For � ! 0 (full stochasticity), we get EG(D;D0) = 0.Summation convention: in general,Ph2H;D0�h denotes summation over those h satisfying h 2 Hand D0 � h. In what follows, we will keep an analogous convention: the �rst symbol is the runningindex, for which additional expressions specify conditions.Over�tting and under�tting error. Let us separate the generalization error into an over-�tting error Eo and an under�tting error Eu (in analogy to Wang et al., 1994; and Guyon et al.,1992). We will see that over�tting and under�tting error correspond to the two di�erent errorterms in our algorithm: decreasing one term is equivalent to decreasing Eo, decreasing the otheris equivalent to decreasing Eu. Using the Kullback-Leibler distance (Kullback, 1959), we measurethe information conveyed by p(: j D0), but not by pD0(: j D) (see �gure 4). We may view this asinformation about G(: j D0): since there are more h which are compatible with D0 than there areh which are compatible with D, G(: j D0)'s in
uence on p(h j D0) is stronger than its in
uenceon pD0(h j D). To get the non-stochastic bias (see de�nition of EG), we divide this informationby � and obtain the over�tting error:Eo(D;D0) := 1� Xh2H p(h j D0) ln p(h j D0)pD0(h j D) = (11)Xh2H p(h j D0)E(D nD0; h) + 1� ln ZD0(D; �)Z(D0; �) :Analogously, we measure the information conveyed by pD0(: j D), but not by p(: j D0) (see�gure 5). This information is about D nD0. To get the non-stochastic bias (see de�nition of EG),we divide this information by � and obtain the under�tting error:
17



p(. | D), the D-posterior

p(. | Do), the Do-posterior

positive contributions to the overfitting error

Figure 4: Positive contributions to the over�t-ting error Eo(D;D0), after learning the train-ing set with a large �.
p(. | Do), the Do-posterior

positive contributions to the underfitting error

p(. | D), the D-posterior

Figure 5: Positive contributions to the under�t-ting error Eu(D0; D), after learning the train-ing set with a small �. Again, we use theD-posterior from �gure 4, assuming it is al-most fully determined by E(D;h) (even if � issmaller than in �gure 4).Eu(D;D0) := 1� Xh2H pD0(h j D) ln pD0(h j D)p(h j D0) = (12)�Xh2H pD0(h j D)E(D nD0; h) + 1� ln Z(D0; �)ZD0(D; �) :Peaks in G(: j D0) which do not match peaks of pD0(: j D) produced by D n D0 lead toover�tting error. Peaks of pD0(: j D) produced by D nD0 which do not match peaks of G(: j D0)lead to under�tting error. Over�tting and under�tting error tell us something about the shapeof G(: j D0) with respect to D nD0, i.e., to what degree is the prior belief in h compatible withD nD0.Why are they called \over�tting" and \under�tting" error? Positive contributionsto the over�tting error are obtained where peaks of p(: j D0) do not match (or are higher than)peaks of pD0(: j D): there some h will have large probability after training on D0 but will havelower probability after training on all data D. This is either because D0 has been approximatedtoo closely, or because of sharp peaks in G(: j D0) | the learning algorithm specializes eitheron D0 or on G(: j D0) (\over�tting"). The specialization on D0 will become even worse if D0is corrupted by noise | the case of noisy D0 will be treated later. Positive contributions to theunder�tting error are obtained where peaks of pD0(: j D) do not match (or are higher than) peaksof p(: j D0): there some h will have large probability after training on all data D, but will havelower probability after training on D0. This is either due to a poor D0 approximation (note thatp(: j D0) is almost fully determined by G(: j D0)), or to insu�cient information about D conveyedby D0 (\under�tting"). Either the algorithm did not learn \enough" of D0, or D0 does not tellus anything about D. In the latter case, there is nothing we can do | we have to focus on thecase where we did not learn enough about D0.Analysis of over�tting and under�tting error. EG(D;D0) = Eo(D;D0) + Eu(D;D0)holds. Note: for zero temperature limit � ! 1 we obtain ZD0(D) = Ph2H;D�hG(h j D0) andZ(D0) =Ph2H;D0�hG(h j D0).Eo(D;D0) = Ph2H;D0�h G(hjD0)Z(D0) E(D n D0; h) = EG(D;D0). Eu(D;D0) = 0, i.e., there is nounder�tting error. For � ! 0 (full stochasticity) we get Eu(D;D0) = 0 and Eo(D;D0) = 0 (recallthat EG is not the conventional but the extended expected generalization error).Since D0 � D, ZD0(D; �) < Z(D0; �) holds. In what follows, averages after learning on D0are denoted by <D0 : >, and averages after learning on D are denoted by <D : >.18



Since ZD0(D; �) =Ph2H G(h j D0) exp(��E(D0; h)) exp(��E(D nD0; h)), we haveZD0 (D;�)Z(D0;�) =Ph2H p(h j D0) exp(��E(D nD0; h)) = <D0 exp(��E(D nD0; :))>.Analogously, we have Z(D0;�)ZD0 (D;�) = <D exp(�E(D nD0; :))>.Thus, Eo(D;D0) = <D0E(D nD0; :)> + 1� ln <D0 exp(��E(D nD0; :))>, andEu(D;D0) = � <DE(D nD0; :)> + 1� ln <D exp(�E(D nD0; :))>.2 With large �, after learningon D0, Eo measures the di�erence between average test set error and a minimal test set error.With large �, after learning on D, Eu measures the di�erence between average test set errorand a maximal test set error. So assume we do have a large � (large enough to exceed theminimum of 1� ln ZD0 (D;�)Z(D0;�) ). We have to assume that D0 indeed conveys information about thetest set: preferring hypotheses h with small E(D0; h) by using a larger � leads to smaller testset error (without this assumption no error decreasing algorithm would make sense). Eu canbe decreased by enforcing less stochasticity (by further increasing �), but this will increase Eo.Likewise, decreasing � (enforcing more stochasticity) will decrease Eo but increase Eu. Increasing� decreases the maximal test set error after learning D more than it decreases the average test seterror, thus decreasing Eu, and vice versa. Decreasing � increases the minimal test set error afterlearning D0 more than it increases the average test set error, thus decreasing Eo, and vice versa.This is the above-mentioned trade-o� between stochasticity and �tting the training set, governedby �.Tolerable error level / Set of acceptable minima. Let us implicitly de�ne a tolerableerror level Etol(�; �) which, with con�dence 1 � �, is the upper bound of the training set errorafter learning.p(E(D0; h) � Etol(�; �)) = Xh2H;E(D0;h)�Etol(�;�) p(h j D0) = 1� �: (13)With (1� �)-con�dence, we have E(D0; h) � Etol(�; �) after learning. Etol(�; �) decreases withincreasing �; �. Now we de�ne M(D0) := fh 2 H j E(D0; h) � Etol(�; �)g, which is the setof acceptable minima | see section 2. The set of acceptable minima is a set of hypotheses withlow under�tting error. With probability 1 � �, the learning algorithm selects a hypothesis fromM(D0) � H . Note: for the zero temperature limit � !1 we haveEtol(�) = 0 and M(D0) = fh 2 H j D0 � hg. By �xing a small Etol (or a large �), Eu will beforced to be low.We would like to have an algorithm decreasing (1) training set error (this corresponds todecreasing under�tting error), and (2) an additional error term, which should be designed toensure low over�tting error, given a �xed small Etol. The remainder of this section will lead toan answer for the question: how to design this additional error term? Since low under�tting isobtained by selecting a hypothesis from M(D0), in what follows we will focus on M(D0) only.Using an appropriate choice of prior belief, at the end of this section, we will �nally see that theover�tting error can be reduced by an error term expressing preference for 
at nets.
2We have � @ lnZ(D0;�)@� = <D0 E(D0; :)> and � @ lnZD0 (D;�)@� = <D E(D; :)>. Furthermore, @2 lnZ(D0;�)@�2 =<D0 (E(D0; :)� <D0 E(D0; :)>)2 > and @2 lnZD0 (D;�)@�2 = <D (E(D; :)� <D E(D; :)>)2 >. See also Levin et al.(1990). Using these expressions, it can be shown: by increasing � (starting from � = 0), we will �nd a � thatminimizes 1� ln ZD0 (D;�)Z(D0;�) < 0. Increasing � further makes this expression go to 0.19



Relative over�tting error. Let us formally de�ne the relative over�tting error Ero, whichis the relative contribution of some h 2 M(D0) to the mean over�tting error of hypotheses setM(D0): Ero(D;D0;M(D0); h) = pM(D0)(h j D0)E(D nD0; h); (14)where pM(D0)(h j D0) := p(h j D0)Ph2M(D0) p(h j D0) (15)for h 2M(D0), and zero otherwise.For h 2 M(D0), we approximate p(h j D0) as follows. We assume that G(h j D0) is largewhere E(D0; h) is large (trade-o� between low E(D0; h) and G(h j D0)). Then p(h j D0) has largevalues (due to large G(h j D0)) where E(D0; h) � Etol(�; �) (assuming Etol(�; �) is small). Wegetp(h j D0) � G(hjD0) exp(��Etol(�;�))Z(D0;�) . The relative over�tting error can now be approximated byEro(D;D0;M(D0); h) � G(h j D0)Ph2M(D0)G(h j D0)E(D nD0; h): (16)To obtain a distribution over M(D0), we introduce GM(D0)(: j D0), the normalized distributionG(: j D0) restricted to M(D0). For approximation (16) we haveEro(D;D0;M(D0); h) � GM(D0)(h j D0)E(D nD0; h): (17)Prior belief in f and D. Assume D was obtained from a target function f . Let p(f) be theprior on targets and p(D j f) the probability of obtaining D with a given f . We havep(f j D0) = p(D0 j f)p(f)p(D0) ; (18)where p(D0) =Pf2T p(D0 j f)p(f).The data is drawn from a target function with added noise (the noise-free case is treatedbelow). We don't make any assumptions about the nature of the noise | it does not have to beGaussian (like, e.g., in MacKay's work, 1992b).We want to select a G(: j D0) which makes Ero small, i.e., those h 2 M(D0) with smallE(D nD0; h) should have high probabilities G(h j D0).We don't know DnD0 during learning. D is assumed to be drawn from a target f . We computethe expectation of Ero, given D0. The probability of the test set D nD0, given D0, isp(D nD0 j D0) =Xf2T p(D nD0 j f)p(f j D0); (19)where we assume p(D n D0 j f;D0) = p(D n D0 j f) (we don't remember which exemplars werealready drawn). The expected test set error E(:; h) for some h, given D0, isXDnD0 p(D nD0 j D0)E(D nD0; h) =Xf2T p(f j D0) XDnD0 p(D nD0 j f)E(D nD0; h): (20)The expected relative over�tting error Ero(:; D0;M(D0); h) is obtained by inserting equation(20) into equation (17):Ero(:; D0;M(D0); h) � GM(D0)(h j D0)Xf2T p(f j D0) XDnD0 p(D nD0 j f)E(D nD0; h): (21)20



Minimizing expected relative over�tting error. We de�ne a GM(D0)(: j D0) such thatGM(D0)(: j D0) has its largest value near small expected test set error E(:; :) (see (17) and (20)).This de�nition leads to a low expectation of Ero(:; D0;M(D0); :) (see equation (21)). De�neGM(D0)(h j D0) := � �argminh02M(D0) (E(:; h0))� h� , (22)where � is the Dirac delta function, which we will use with loose formalism | the context willmake clear how the delta function is used.Using equation (20) we getGM(D0)(h j D0) = �0@argminh02M(D0)0@Xf2T p(f j D0) XDnD0 p(D nD0 j f)E(D nD0; h0)1A� h1A . (23)GM(D0)(: j D0) determines the hypothesis h from M(D0) that leads to lowest expected test seterror. Consequently, we achieve the lowest expected relative over�tting error.GM(D0) helps us to de�ne G:G(h j D0) := � +GM(D0)(h j D0)Ph2H(� +GM(D0)(h j D0)) , (24)where GM(D0)(h j D0) = 0 for h =2 M(D0), and where � is a small constant ensuring positiveprobability G(h j D0) for all hypotheses h.To appreciate the importance of the prior p(f) in the de�nition of GM(D0) (see also equation(29)), in what follows, we will focus on the noise-free case.The special case of noise-free data. Let p(D0 j f) be equal to �(D0 � f) (up to annormalizing constant): p(f j D0) = �(D0 � f)p(f)Pf2T;D0�f p(f) (25)Assume p(D nD0 j f) = �(DnD0�f)PDnD0 �(DnD0�f) . Let F be the number of elements in X .p(D nD0 j f) = �(DnD0�f)2F�n . We expand PDnD0 p(D nD0 j f)E(D nD0; h) from equation (20):12F�n XDnD0�f E(D nD0; h) = 12F�n XDnD0�f X(x;y)2DnD0E((x; y); h) = (26)12F�n X(x;y)2fnD0E((x; y); h) F�nXi=1 �F � n� 1i� 1 � = 12E(f nD0; h):Here E((x; y); h) =k y�h(x) k2, E(f nD0; h) =P(x;y)2fnD0 k y�h(x) k2, andPF�ni=1 �F�n�1i�1 � =2F�n�1. The factor 12 results from considering the mean test set error (where the test set is drawnfrom f), whereas E(f n D0; h) is the maximal test set error (obtained by using a maximal testset). From (20) and (26), we obtain the expected test set error E(:; h) for some h, given D0:XDnD0 p(D nD0 j D0)E(D nD0; h) = 12 Xf2T p(f j D0)E(f nD0; h): (27)From (27) and (17), we obtain the expected Ero(:; D0;M(D0); h):Ero(:; D0;M(D0); h) � 12 GM(D0)(h j D0)Xf2T p(f j D0)E(f nD0; h): (28)21



For GM(D0)(h j D0) we obtain in this noise free caseGM(D0)(h j D0) = �0@argminh02M(D0)0@Xf2T p(f j D0)E(f nD0; h0)1A� h1A . (29)The lowest expected test set error measured by 12Pf2T p(f j D0)E(f nD0; h). See equation(27).Noisy data and noise-free data: conclusion. For both the noise-free and the noisy case,equation (18) shows that given D0 and h, the expected test set error depends on prior targetprobability p(f).Choice of prior belief. Now we select some p(f), our prior belief in target f . We introducea formalism similar to Wolpert's (Wolpert, 1994a ). p(f) is de�ned as the probability of obtainingf = net(w) by choosing a w randomly according to p(w).Let us �rst have a look at Wolpert's formalism: p(f) = R dwp(w)�(net(w)� f). By restrictingW to Winj , he obtains an injective function netinj : Winj ! NET : netinj(w) = net(w) , whichis net restricted to Winj . netinj is surjective (because net is surjective):p(f) = ZW p(w)�(netinj(w) � f)jdet net0inj(w)j jdet net0inj(w)jdw = (30)ZNET p(net�1inj(g)) �(g � f)jdet net0inj(net�1inj(g))jdg =p(net�1inj(f))jdet net0inj(net�1inj(f))j ;where jdet net0inj(w)j is the absolute Jacobian determinant of netinj , evaluated at w. If there is alocally 
at net(w) = f (
at around w), then p(f) is high.However, we prefer to follow another path. Our algorithm (
at minimum search) tends toprune a weight wi if net(w) is very 
at in wi's direction. It prefers regions where det net0(w) = 0(where many weights lead to the same net function). Unlike Wolpert's approach, ours distinguishesthe probabilities of targets f = net(w) with det net0(w) = 0. The advantage is: we do not onlysearch for net(w) which are 
at in one direction but for net(w) which are 
at in many directions(this corresponds to a higher probability of the corresponding targets). De�nenet�1(g) := fw 2 W j net(w) = gg (31)and p(net�1(g)) := Xw2net�1(g) p(w): (32)We have p(f) = Pg2NET p(net�1(g))�(g � f)Pf2TPg2NET p(net�1(g))�(g � f) = p(net�1(f))Pf2T p(net�1(f)) : (33)net partitions W into equivalence classes. To obtain p(f), we compute the probability of wbeing in the equivalence class fw j net(w) = fg, if randomly chosen according to p(w). Anequivalence class corresponds to a net function, i.e., net maps all w of an equivalence class to thesame net function.Relation to FMS algorithm. FMS (from section 3) works locally in weight space W .Let w0 be the actual weight vector found by FMS (with h = net(w0)). Recall the de�nition of22



GM(D0)(h j D0) (see (22) and (23)): we want to �nd a hypothesis h which best approximates thosef with large p(f) (the test data has high probability of being drawn from such targets). We willsee that those f = net(w) with 
at net(w) locally have high probability p(f). Furthermore wewill see that a w0 close to w with 
at net(w) has 
at net(w0), too. To approximate such targets f ,the only thing we can do is �nd a w0 close to many w with net(w) = f and large p(f). To justifythis approximation (see de�nition of p(f j D0) while recalling that h 2 GM(D0)), we assume (1)that the noise has mean 0, and (2) that small noise is more likely than large noise (e.g., Gaussian,Laplace, Cauchy distributions).To restrict p(f) = p(net(w)) to a local range in W , we de�ne regions of equal net functionsF (w) = f �w j 8�0 � � � 1; w + �( �w � w) 2 W : net(w) = net(w + �( �w � w))g.Note: F (w) � net�1(net(w)). If net(w) is 
at along long distances in many directions �w�w, thenF (w) has many elements. Locally in weight space, at w0 with h = net(w0), for 
 > 0 we de�ne:if the minimum w = argmin �wfk �w � w0 k j k �w � w0 k< 
; net( �w) = fg exists, then pw0;
(f) =c p(F (w)), where c is a constant. If this minimum does not exist, then pw0;
(f) = 0. pw0;
(f)locally approximates p(f). During search for w0 (corresponding to a hypothesis h = net(w0)), tolocally decrease the expected test set error (see equation (20)), we want to enter areas where manylarge F (w) are near w0 in weight space. We wish to decrease the test set error, which is causedby drawing data from highly probable targets f (those with large pw0;
(f)). We do not know,however, which w's are mapped to target's f by net(:). Therefore, we focus on F (w) (w near w0in weight space), instead of pw0;
(f). Assume k w0 � w k is small enough to allow for a Taylorexpansion, and that net(w0) is 
at in direction ( �w � w0):net(w) = net(w0 + (w�w0)) = net(w0) +rnet(w0)(w�w0) + 12 (w�w0)H(net(w0))(w�w0) + : : :,where H(net(w0)) is the Hessian of net(:) evaluated at w0, rnet(w)( �w � w0) = rnet(w0)( �w �w0) + O(w � w0), and ( �w � w0)H(net(w))( �w � w0) = ( �w � w0)H(net(w0))( �w � w0) + O(w � w0)(analogously for higher order derivatives). We see: in a small environment of w0, there is 
atnessin direction ( �w�w0), too. Likewise, if net(w0) is not 
at in any direction, this property also holdswithin a small environment of w0. Only near w0 with 
at net(w0), there may exist w with largeF (w). Therefore, it is reasonable to search for a w0 with h = net(w0), where net(w0) is 
at within alarge region. This means to search for the h determined by GM(D0)(: j D0) of equation (22). Sinceh 2M(D0), E(D0; net(w0)) � Etol holds: we search for a w0 living within a large connected region,where for all w within this region E(net(w0); net(w); X) =Px2X k net(w0)(x)�net(w)(x) k2� �,where � is de�ned in section 2. To conclude: we decrease the relative over�tting error and theunder�tting error by searching for a 
at minimum (see de�nition of 
at minima in section 2).Practical realization of the Gibbs variant.(1) Select � and Etol(�; �), thus implicitly choosing �.(2) Compute the set M(D0).(3) Assume we know how data is obtained from target f , i. e. we know p(D0 j f), p(D nD0 j f),and the prior p(f). Then we can compute GM(D0)(: j D0) and G(: j D0).(4) Start with � = 0 and increase � until equation (13) holds. Now we know the � from theimplicit choice above.(5) Since we know all we need to compute p(h j D0), select some h according to this distribution.Three comments on certain FMS limitations.1. FMS only approximates the Gibbs variant given by the de�nition of GM(D0)(h j D0) (see (22)and (23)).We only locally approximate p(f) in weight space. If f = net(w) is locally 
at around w thenthere exist units or weights which can be given with low precision (or can be removed). If thereare other weights wi with net(wi) = f , then one may assume that there are also points in weightspace near such wi where weights can be given with low precision (think of, e.g., symmetricalexchange of weights and units). We assume the local approximation of p(f) is good. The mostprobable targets represented by 
at net(w) are approximated by a hypothesis h which is also23



represented by a 
at net(w0) (where w0 is near w in weight space). To allow for approximation ofnet(w) by net(w0), we have to assume that the hypothesis set H is dense in the target set T . Ifnet(w0) is 
at in many directions then there are many net(w) = f that share this 
atness and arewell-approximated by net(w0). The only reasonable thing FMS can do is to make net(w0) as 
at aspossible in a large region around w0, to approximate the net(w) with large prior probability (recallthat 
at regions are approximated by axis-aligned boxes, as discussed in section 7, paragraphentitled \Generalized boxes?"). This approximation is �ne if net(w0) is smooth enough in \un
at"directions (small changes in w0 should not result in quite di�erent net functions).2. Concerning point (3) above:p(f j D0) depends on p(D0 j f) (how the training data is drawn from the target, see (18)).GM(D0)(h j D0) depends on p(f j D0) and p(D n D0 j f) (how the test data is drawn from thetarget). Since we do not know how the data is obtained, the quality of the approximation of theGibbs algorithm may su�er from noise which has not mean 0, or from large noise being moreprobable than small noise.Of course, if the choice of prior belief does not match the true target distribution, the qualityof GM(D0)(h j D0)'s approximation will su�er as well.3. Concerning point (5) above:FMS outputs only a single h instead of p(h j D0). This issue is discussed in section 7 (paragraphentitled \multiple initializations?").To conclude: Our FMS algorithm from section 3 only approximates the Gibbs algorithmvariant. Two important assumptions are made: The �rst is that an appropriate choice of priorbelief has been made. The second is that the noise on the data is not too \weird" (mean 0, smallnoise more likely). The two assumptions are necessary for any algorithm based on an additionalerror term besides the training error. The approximations are: p(f) is approximated locally inweight space, and 
at net(w) are approximated by 
at net(w0) with w0 near w's. Our Gibbsvariant takes into account that FMS uses only X0 for computing 
atness.A.2. WHY DOES THE HESSIAN DECREASE?Outline. This section shows that second order derivatives of the output function vanish during
at minimum search. This justi�es the linear approximations in section 4.Intuition. We show that the algorithm tends to suppress the following values: (1) unitactivations, (2) �rst order activation derivatives, (3) the sum of all contributions of an arbitraryunit activation to the net output. Since weights, inputs, activation functions, and their �rst andsecond order derivatives are bounded, the entries in the Hessian decrease where the correspondingj�wij j increase.Formal details. We consider a strictly layered feedforward network with K output units andg layers. We use the same activation function f for all units. For simplicity, in what follows wefocus on a single input vector xp. xp (and occasionally w itself) will be notationally suppressed.We have @yl@wij = f 0(sl)( yjPm wlm @ymwij for i = lfor i 6= l) , (34)where ya denotes the activation of the a-th unit, and sl =Pm wlmym.The last term of equation (1) (the \regulator") expresses output sensitivity (to be minimized)with respect to simultaneous perturbations of all weights. \Regulation" is done by equalizing thesensitivity of the output units with respect to the weights. The \regulator" does not in
uence thesame particular units or weights for each training example. It may be ignored for the purposes ofthis section. Of course, the same holds for the �rst (constant) term in (1). We are left with thesecond term. With (34) we obtain:
24



Xi;j logXk ( @ok@wij )2 =2 Xunit k in the g th layer(fan-in of unit k) log jf 0(sk)j+2 Xunit j in the (g�1)th layer(fan-out of unit j) log jyj j+Xunit j in the (g�1)th layer(fan-in of unit j) logXk (f 0(sk)wkj)2 +2 Xunit j in the (g�1)th layer(fan-in of unit j) log jf 0(sj)j+2 Xunit j in the (g�2)th layer(fan-out of unit j) log jyj j+Xunit j in the (g�2)th layer(fan-in of unit j) logXk  f 0(sk)Xl f 0(sl)wklwlj!2 +2 Xunit j in the (g�2)th layer(fan-in of unit j) log jf 0(sj)j+2 Xunit j in the (g�3)th layer(fan-out of unit j) log jyj j+Xi,j, where unit i in a layer <(g�2) logXk  f 0(sk)Xl1 f 0(sl1)wkl1 Xl2 wl1l2 @yl2@wij!2 (35)Let us have a closer look at this equation. We observe:(1) Activations of units decrease in proportion to their fan-outs.(2) First order derivatives of the activation functions decrease in proportion to their fan-ins.(3) A term of the form Pk �f 0(sk)Pl1 f 0(sl1)wkl1 Pl2 :::Plr f 0(slr )wlr�1lrwlrj�2 expresses thesum of unit j's squared contributions to the net output. Here r ranges over f0; 1; : : : ; g � 2g, andunit j is in the (g � 1 � r)th layer (for the special case r = 0, we get Pk (f 0(sk)wkj)2). Theseterms also decrease in proportion to unit j's fan-in. Analogously, equation (35) can be extendedto the case of additional layers.Comment. Let us assume that f 0(sj) = 0 and f(sj) = 0 is \di�cult to achieve" (can beachieved only by �ne-tuning all weights on connections to unit j). Instead of minimizing jf(sj)jor jf 0(sj)j by adjusting the net input of unit j (this requires �ne-tuning of many weights), ouralgorithm prefers pushing weights wkl on connections to output units towards zero (other weightsare less a�ected). On the other hand, if f 0(sj) = 0 and f(sj) = 0 is not \di�cult to achieve",then, unlike weight decay, our algorithm does not necessarily prefer weights close tozero. Instead, it prefers (possibly very strong) weights which push f(sj) or f 0(sj) towards zero(e.g., with sigmoid units active in [0,1]: strong inhibitory weights are preferred; with Gaussianunits: high absolute weight values are preferred). See the experiment in section 5.2.How does this in
uence the Hessian? The entries in the Hessian corresponding to outputok can be written as follows:@2ok@wij@wuv = f 00(sk)(f 0(sk))2 @ok@wij @ok@wuv + f 0(sk) Xl wkl @2yl@wij@wuv + ��ik @yj@wuv + ��uk @yv@wij! , (36)where �� is the Kronecker-Delta. Searching for big boxes, we run into regions of acceptable minimawith ok's close to target (section 2). Thus, by scaling the targets, f 00(sk)(f 0(sk))2 can be bounded.Therefore, the �rst term in equation (36) decreases during learning.25



According to the analysis above, the �rst order derivatives in the second term of (36) arepushed towards zero. So are the wkl of the sum in the second term of (36).The only remaining expressions of interest are second order derivatives of units in layer (g�1).The @2yl@wij@wuv are bounded if (a) the weights, (b) the activation functions, (c) their �rst and secondorder derivatives, and (d) the inputs are bounded. This is indeed the case, as will be shown fornetworks with one or two hidden layers:Case 1: For unit l in a single hidden layer (g = 3), we obtainj @2yl@wij@wuv j = j��li��luf 00(sl)yjyvj < C1 , (37)where yj ; yv are the components of an input vector xp, and C1 is a positive constant.Case 2: For unit l in the third layer of a net with 2 hidden layers (g = 4), we obtainj @2yl@wij@wuv j = jf 00(sl)(wliyj + ��ilyj)(wluyv + ��ulyv) +f 0(sl) �wli��iuf 00(si)yjyv + ��il��ujf 0(sj)yv + ��ul��ivf 0(sv)yj� j < C2 , (38)where C2 is a positive constant. Analogously, the boundedness of second order derivatives can beshown for additional hidden layers.Conclusion: As desired, our algorithm makes the Hkij;uv decrease where j�wij j orj�wuv j increase.A.3. EFFICIENT IMPLEMENTATION OF THE ALGORITHMOutline. We �rst explicitly compute the derivatives of (1). Then we show how to use Pearlmutterand M�ller's algorithm to speed up the computation of second order terms (A.3.2).For simplicity, in what follows we focus on a single input vector xp. Again, xp (and occasionallyw itself) will be notationally suppressed.A.3.1 EXPLICIT DERIVATIVE OF EQUATION (1)The derivative of the right-hand side of (1) is:@B(w;xp)@wuv =Pi;j Pk @ok@wij @2ok@wij@wuvPm( @om@wij )2 +LPk0@Pi;j j @ok@wij jqPm( @om@wij )2 Pi;j sign( @ok@wij ) @2ok@wij@wuv Pm( @om@wij )2� @ok@wij Pm @om@wij @2om@wij@wuv(Pm( @om@wij )2) 32 !1APk0@Pi;j j @ok@wij jqPm( @om@wij )21A2 . (39)To compute (2), we need @B(w;xp)@( @ok@wij ) = @ok@wijPm( @om@wij )2+LPm Pl;r� j @om@wlr jpP �m( @o �m@wlr )2�sign( @om@wij ) ��mkP �m( @o �m@wij )2� @om@wij @ok@wij(P �m( @o �m@wij )2) 32 !Pm�Pl;r j @om@wlr jpP �m( @o �m@wlr )2�2 , (40)26



where �� is the Kronecker-Delta. Using the nabla operator and (40), we can compress (39):ruvB(w; xp) =Xk Hk(r @ok@wij B(w; xp)) , (41)where Hk is the Hessian of the output ok. Since the sums over l; r in (40) need to be computedonly once (the results are reusable for all i; j), r @ok@wij B(w; xp) can be computed in O(L) time.The product of the Hessian and a vector can be computed in O(L) time (see next section). Withconstant number of output units, the computational complexity of our algorithm is O(L).A.3.2. FAST MULTIPLICATION BY THE HESSIANPearlmutter (1994) and M�ller (1993) compute the product of a vector and the Hessian of theerror in O(L) time. Using Pearlmutter's notation, we do the same with the Hessian of the output.An operator R is de�ned as follows:Ryfg(x)g � @@tg(x+ ty) jt=0 . (42)The Hessian of the kth output ok of a feedforward net is computed in 3 successive passes:1. First backward pass (yl = ok):@yl@yi = ( 1Pj wji @yl@sj for i = lfor i 6= l) , (43)@yl@si = f 0i(si)@yl@yi , (44)@yl@wji = yi @yl@sj . (45)2. First forward pass: Rfsig =Xj (wijRfyjg+ @B(w; xp)@( @ok@wij ) yj) , (46)Rfyig = � 0Rfsigf 0i(si) for yi inputotherwise � . (47)3. Second backward pass (yl = ok):Rf@yl@yi g = 8><>: 0Pj �wjiRf @yl@sj g+ @B(w;xp)@( @ok@wji ) @yl@sj� for yi in layers not below ylfor yi in layers below yl 9>=>; , (48)Rf@yl@si g = f 0i(si)Rf@yl@yi g+Rfsigf 00i (si)@yl@yi , (49)Rf @yl@wji g = yiRf@yl@sj g+Rfyig@yl@sj . (50)The elements of the vector Hk(r @ok@wij B(w; xp)) are Rf @ok@wji g (see (41)). Using the techniquein (Pearlmutter, 1994), recurrent networks can be dealt with as well.
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A.4. PSEUDO CODE OF THE ALGORITHMBelow the algorithm in pseudo code (using fast multiplication as in appendix A.3.2). Comments aremarked by \**". Note: the pseudo code was omitted from the version for Neural Computation.We recommend not to blindly reimplement the algorithm from the pseudo code, but to make aserious e�ort to understand it, by consulting the body of the paper as well. We believe that thiswill greatly facilitate proper, problem-speci�c use of the algorithm.Notation. In what follows, the variable integers i and j stand for units.Variables k;m; k1 are reserved for output units only.g is the number of layers, where the gth layer is the output layer and the 1st layer is the inputlayer.The current pattern consists of input vector x and target vector t (see section 2).x[j] is the component of the input vector corresponding to input unit j.t[k] is the component of the output vector corresponding to output unit k.w[i][j] is the real-valued weight on the connection from unit j to unit i (see wij in section 2).s[j] is the net input of unit j (see equation (34) and text thereafter).fj is the activation function of unit j, f 0j is the �rst derivative, f 00j is the second derivative of fj(see appendix A.2).y[j] is the activation of the j-th unit (see appendix A.2).error[k] is the error of the k-th output unit.ky[k][j] is @y[k]@y[j] (see equation (43)).ks[k][j] is @y[k]@s[j] (see equation (44)).ykw[k][i][j] is @y[k]@w[i][j] (see equation (45)).yw[i][j] is @E@w[i][j] = rwE, the gradient of the quadratic error.abs(x) denotes the absolute value of real x.kron(m = k) returns 1 if m = k and 0 otherwise.sign(x) returns the sign of real x.t1[][]; t2[]; t3; t4 are variables (used to compute the right hand side of equation (40)).t1[i][j] =Pk is output unit � @y[k]@w[i][j]�2 =Pk is output unit(ykw[k][i][j])2.t2[k] = Pw[i][j] abs� @y[k]@w[i][j]�qPk is output unit� @y[k]@w[i][j]�2 = Pw[i][j] abs(ykw[k][i][j])pt1[i][j] (see the sums over l; r in(40)).t3 =Pk is output unit0@Pw[i][j] abs� @y[k]@w[i][j]�qPk is output unit� @y[k]@w[i][j]�21A2 =Pk is output unit(t2[k])2 (see thedenumerator in the second line of equation (40)).t4 =Pm is output unit Pw[l][r] abs� @y[m]@w[l][r]�qPk1 is output unit� @y[k1]@w[l][r]�2sign� @y[m]@w[i][j]� kron(m=k)Pk1 is output unit� @y[k1]@w[i][j]�2� @y[m]@w[i][j] @y[k]@w[i][j]�Pk1 is output unit� @y[k1]@w[i][j]�2� 32 =Pm is output unit t2[m] sign(ykw[m][i][j])kron(m=k)t1[i][j]�ykw[m][i][j] ykw[k][i][j](t1[i][j]) 32 (see the numeratorin the second line of equation (40)).weights stands for the number of weights that make a signi�cant contribution to the computationof the current pattern.�w[i][j] is an approximation of w[i][j]'s precision (approximation because � is unknown).insignificant[i][j] marks whether or not w[i][j] provides a signi�cant contribution to the compu-tation of the current pattern. 28



b[k][i][j] is @B@� @y[k]@w[i][j]� (see equation (40)).rs[k][i] is Rfs[i]g (see equation (46)).ry[k][i] is Rfy[i]g (see equation (47)).rdks[i] is Rf@y[k]@s[i] g (see equation (49)).rdky[i] is Rf@y[k]@y[i] g (see equation (48)).rdw[i][j] is Rf @y[k]@w[i][j]g = rwB = PkHk(r @ok@wij B), the gradient of the additional error term B(see equation (50)).E is the current pattern's quadratic error (see section 2 and appendix A.1).� is the learning rate for the quadratic error.� is the learning rate for the additional error term (the following values are used to make lambdaupdates according to Weigend et al., 1991, see also section 5.6).�� is a parameter needed for updating �.� is a parameter needed for updating �, typical value is 0.5.Eo is the most recent epoch's average error.En is the current epoch's average error.Ea is the exponentially weighted average epoch error.
 is the parameter for the exponentially weighted error | a typical value is 0.9 or 0.99, dependingon training set size.Etol is the tolerable error level { it depends on the task to be solved (see section 2 and appendixA.1, equation (13)).exemplars is the number of exemplars observed during training.epochlength is the length of an epoch, measured in number of presented training patterns.epochs = exemplars % epochlength is the current number of epochs so far, where % representsinteger division.lyw; lrdw; scale are variables required for normalizing B' gradient to the length of E's gradient.wasalive[i][j] is TRUE if w[i][j] was alive for at least one pattern presented during the previousepoch, and FALSE otherwise.alive[i][j] is TRUE if wasalive[i][j] is TRUE and if alive[i][j] was always TRUE during all epochssince w[i][j] was set alive for the last time (otherwise alive[i][j] is FALSE). denotes the assignment operator.Additional comments.� For simplicity, the description of the algorithm neglects bias weights and \true units".� Targets should be scaled to bound �rst order derivatives of output units { see text afterequation (36) in A.2 (e.g., for sigmoids active in [0; 1] scale targets to range [0:2; 0:8]).� Removing more than one weight (alive[i][j]  FALSE) at a time may cause the error toincrease. Removing only one weight at a time leads to smoother performance improvement.� To prevent accidental weight removal in case of small training sets, we recommend not touse too many near-zero inputs | weights from such inputs may be evaluated insignificantdespite being signi�cant.� Likewise, the random weight initialization in the beginning of the learning phase may causeaccidental weight removal due to small, random, initial derivatives. This can be preventedby keeping all weights alive for a certain initial time interval.� Initially, K's value does not yet have a sensible interpretation. One may start with a largeK and decrease it as the error decreases.� For each pattern, there is a minimal �w[i][j] (stored in �min). �min represents weight precisionrequired for signi�cant weights. 29



Speeding up the algorithm. It makes sense to separate the algorithm into two phases. Phase 1is conventional backprop, phase 2 is FMS. The backprop phase consists of the forward pass, the�rst backward pass, and the weight update based on � = 0 (marked in the algorithm). Start withphase 1. Switch to phase 2 if Ea < 0:9 Etol. Switch again to phase 1 if Ea > 1:1 Etol (the values0:9 and 1:1 can be changed).Two-phase learning does not sensitively depend on � (but avoid � values that are always toosmall). Two-phase learning is justi�ed because weights with large �w[i][j] (and small @E@w[i][j] )hardly in
uence E's gradient | it makes sense to let FMS focus on low-precision weights, and letbackprop focus on the others.ALGORITHM.Initialization. Set K = 102 or K = 103 (the exponent is the di�erence between the numbers ofsigni�cant digits required for maximal and minimal precision).Set � to an arbitrary small value.Set exemplars and epochs to 0.Initialize w[i][j] for all i; j.Initialize �; � (typically, � = 0), and provide a criterion for stopping the learning procedure.Set 
; �;��, for instance, 
 = 0:9 or 0:99; � = 0:5;�� = 0:01 � or �� = 0:001 �.Set Etol to some desired error value after learning.Set E;Ea; Eo; En to 0.Set epochlength.Set exemplars; epochs to 0.Set alive[i][j] = TRUE for all i; j.Set wasalive[i][j] = FALSE for all i; j.Set �min to a large value.Set alive[i][j] = FALSE for non-existing w[i][j].While training not stopped dobegin(while)select pattern pair (x; t).** The following variables can be set after they were used for the last time in the previous loop.**set all components of s[]; yw[][]; ky[][]; t1[][]; t2[]; rs[][]; rdw[][]; rdky[] to 0set all components of insignificant[][] to FALSEset t3; t4; E to 0** Forward pass. **for all input units j dobeginj y[j] x[j]end
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for u = 2 to g dobeginj for all units i in layer u doj beginj j for all units j in layer u� 1 doj j beginj j j if (alive[i][j]) doj j j beginj j j j s[i] s[i] + w[i][j] y[j]j j j endj j endj j y[i] fi(s[i])j endend** Compute the error. **for all output units k dobeginj error[k]  t[k]� y[k]j E  E + (error[k])2endEn  En +E** Compute the error gradient **** 1. backward pass. **for all output units k dobeginj ks[k][k] f 0k(s[k])j for u = 1 to g � 1 doj beginj j for all units j in layer g � u doj j beginj j j (IF u 6= 1 THEN: for all units i in layer g � u+ 1 ELSE: i = k) doj j j beginj j j j if (alive[i][j]) doj j j j beginj j j j j ykw[k][i][j] y[j] ks[k][i]j j j j j set abs(ykw[k][i][j]) > 1E-5 ** to avoid division over
ow **j j j j j yw[i][j] yw[i][j] + ykw[k][i][j] error[k]j j j j j ky[k][j] ky[k][j] + w[i][j] ks[k][i]j j j j j t1[i][j] t1[i][j] + (ykw[k][i][j])2j j j j endj j j endj j j ks[k][j] f 0j(s[j])ky[k][j]j j endj endend** End of conventional backprop (phase 1). **31



** compute b[k][i][j] = @B@� @ok@wij � **** we recommend to introduce additional local variables for inner loops, such as h1 = pt1[i][j]and h2 = ykw[k][i][j] = t1[i][j] **for all output units k dobeginj for all i; j, such that (alive[i][j]) doj beginj j t2[k] t2[k] + abs(ykw[k][i][j]) = pt1[i][j]j endj t3 t3 + (t2[k])2end** some weights are insigni�cant to compute the current pattern **for all i; j, such that (alive[i][j]) dobeginj �w[i][j] p� = (pt1[i][j]pt3)j if (�w[i][j] < �min ) doj beginj j �min  �w[i][j]j endendweights 0for all i; j, such that (alive[i][j]) dobeginj if (�w[i][j] > K �min ) doj beginj j insignificant[i][j] TRUEj j for all output units k doj j beginj j j t1[i][j] t1[i][j]� (ykw[k][i][j])2j j endj endj else doj beginj j weights weights+ 1j j wasalive[i][j] TRUEj endend
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** update variables after having marked the current pattern's insigni�cant weights **t3 0for all output units k dobeginj t2[k] 0j for all i; j, such that (alive[i][j] AND NOT insignificant[i][j] ) doj beginj j t2[k] t2[k] + abs(ykw[k][i][j])=pt1[i][j]j endj t3 t3 + (t2[k])2endfor all output units k dobeginj for all i; j, such that (alive[i][j] AND NOT insignificant[i][j] ) doj beginj j t4 0j j for all output units m doj j beginj j j t4 t4 + t2[m] sign(ykw[m][i][j])j j j ( kron(m = k) t1[i][j]� ykw[m][i][j] ykw[k][i][j] ) = (t1[i][j]) 32j j endj j b[k][i][j] ykw[k][i][j] = t1[i][j] + weights t4 = t3j endend** Forward pass. **for all output units k dobeginj for all input units j doj beginj j ry[k][j] 0j endj for u = 2 to g doj beginj j (IF u 6= g THEN: for all units i in layer u ELSE: i = k) doj j beginj j j for all units j in layer u� 1 doj j j beginj j j j if (alive[i][j] AND NOT insignificant[i][j] ) doj j j j beginj j j j j rs[k][i] rs[k][i] + w[i][j] ry[k][j] + b[k][i][j] y[j]j j j j endj j j endj j j ry[k][i] rs[k][i] f 0i(s[i])j j endj endend
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** 2. backward pass. **for all output units k dobeginj rdks[k] rs[k][k] f 00k (s[k])j for u = 1 to g � 1 doj beginj j for all units j in layer g � u doj j beginj j j rdky[j] 0j j j (IF u 6= 1 THEN: for all units i in layer g � u+ 1 ELSE: i = k) doj j j beginj j j j if (alive[i][j] AND NOT insignificant[i][j] ) doj j j j beginj j j j j rdky[j] rdky[j] + w[i][j] rdks[i] + b[k][i][j] ks[k][i]j j j j j rdw[i][j] rdw[i][j] + y[j] rdks[i] + ry[k][j] ks[k][i]j j j j endj j j endj j j rdks[j] f 0j(s[j]) rdky[j] + rs[k][j] f 00j (s[j]) ky[k][j]j j endj endend** Normalize B's gradient to the length of E's gradient. **lyw  0lrdw  0for all i; j, such that (alive[i][j] AND NOT insignificant[i][j] ) dobeginj lyw  lyw + (yw[i][j])2j lrdw  lrdw + (rdw[i][j])2endscale = plyw=plrdw ** scale = k yw k = k rdw k **** End of B's gradient computation (phase 2). **** Weight update. **for all i; j, such that (alive[i][j] AND NOT insignificant[i][j] ) dobeginj w[i][j] w[i][j] + � yw[i][j]� � scale rdw[i][j]end** Update learning parameters. **exemplars exemplars+ 1
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if (exemplars mod epochlength = 0) do ** \mod" is the modulo function **beginj epochs epochs+ 1j En  En = epochlengthj Ea  
 Ea + (1� 
) Enj ** lambda update according to Weigend et al.(1991). **j if (En � Etol OR En � Eo) doj beginj j � �+��j endj else doj beginj j if (En � Ea) doj j beginj j j � ����j j j if (� < 0) doj j j beginj j j j � 0j j j endj j endj j else doj j beginj j j � � �j j endj endj Eo  Enj En  0j ** update weights that are alive, **j ** a weight is alive if it was alive (marked by wasalive[][]) **j ** for at least one pattern presented during the previous epoch. **j for all i; j, such that (alive[i][j]) doj beginj j if (wasalive[i][j] = FALSE) doj j beginj j j alive[i][j] = FALSEj j endj j wasalive[i][j] = FALSEj endj if (epochs mod 100 = 0 OR Ea > 2.0 Etol) doj ** weights are re-animated if the average error is too large; weights are also **j ** re-animated every 100-th epoch, to enable faster reduction of quadratic error **j ** (due to weight changes, some previously dead weight may turn out to deserve **j ** to live again); one may use values other than 100 and 2.0 **j beginj j for all i; j such that w[i][j] exists doj j beginj j j alive[i][j] = TRUEj j endj endenddecide whether to stop learning or notend(while) 35
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