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Abstract

We present a new algorithm for finding low complexity neural networks with high gener-
alization capability. The algorithm searches for a “flat” minimum of the error function. A
flat minimum is a large connected region in weight-space where the error remains approxi-
mately constant. An MDL-based, Bayesian argument suggests that flat minima correspond to
“simple” networks and low expected overfitting. The argument is based on a Gibbs algorithm
variant and a novel way of splitting generalization error into underfitting and overfitting error.
Unlike many previous approaches, ours does not require Gaussian assumptions and does not
depend on a “good” weight prior — instead we have a prior over input/output functions, thus
taking into account net architecture and training set. Although our algorithm requires the
computation of second order derivatives, it has backprop’s order of complexity. Automatically,
it effectively prunes units, weights, and input lines. Various experiments with feedforward
and recurrent nets are described. In an application to stock market prediction, flat minimum
search outperforms (1) conventional backprop, (2) weight decay, (3) “optimal brain surgeon”
/ “optimal brain damage”. We also provide pseudo code of the algorithm (omitted from the
NC-version).



1 BASIC IDEAS / OUTLINE

Our algorithm tries to find a large region in weight space with the property that each weight vector
from that region leads to similar small error. Such a region is called a “flat minimum” (Hochreiter
& Schmidhuber, 1995). To get an intuitive feeling for why a flat minimum is interesting, consider
this: a “sharp” minimum (see figure 2) corresponds to weights which have to be specified with
high precision. A flat minimum (see figure 1) corresponds to weights many of which can be given
with low precision. In the terminology of the theory of minimum description (message) length
(MML, Wallace, 1968; MDL, Rissanen, 1978), fewer bits of information are required to describe
a flat minimum (corresponding to a “simple” or low complexity-network). The MDL principle
suggests that low network complexity corresponds to high generalization performance. Similarly,
the standard Bayesian view favors “fat” maxima of the posterior weight distribution (maxima
with a lot of probability mass — see, e.g., Buntine & Weigend, 1991). We will see: flat minima
are fat maxima.

Figure 1: Example of a “flat” minimum. Figure 2: Example of a “sharp” minimum.

Unlike, e.g., Hinton and van Camp’s method (1993), our algorithm does not depend on the
choice of a “good” weight prior. It finds a flat minimum by searching for weights that minimize both
training error and weight precision. This requires the computation of the Hessian. However, by
using an efficient second order method (Pearlmutter, 1994; Mgller, 1993), we obtain conventional
backprop’s order of computational complexity. Automatically, the method effectively reduces
numbers of units, weights, and input lines, as well as output sensitivity with respect to remaining
weights and units. Unlike, e.g., simple weight decay, our method automatically treats/prunes units
and weights in different layers in different reasonable ways.

Outline.

e Section 2 formally introduces basic concepts, such as error measures, flat minima etc.
e Section 3 describes the novel algorithm called “flat minimum search” (FMS).

o Section 4 formally derives the algorithm.

e Section 5 reports experimental generalization results with feedforward and recurrent net-
works. For instance, in an application to stock market prediction, flat minimum search
outperforms the following, widely used competitors: (1) conventional backprop, (2) weight
decay, (3) “optimal brain surgeon” / “optimal brain damage”.

e Section 6 mentions relations to previous work.

e Section 7 mentions limitations of the algorithm and outlines future work.



e The appendix presents a detailed theoretical justification of our approach.

Using a variant of the Gibbs algorithm, appendix A.1 defines generalization, underfitting
and overfitting error in a novel way. By defining an appropriate prior over input-output
functions, we postulate that the most probable network is a “flat” one.

Appendix A.2 formally justifies the error function minimized by our algorithm.
Appendix A.3 describes an efficient implementation of the algorithm.

Appendix A.4 finally presents pseudo code of the algorithm.

2 TASK / ARCHITECTURE / BOXES

Generalization task. The task is to approximate an unknown function f C X x Y mapping a
finite set of possible inputs X C R" to a finite set of possible outputs ¥ C R¥. A data set D is
obtained from f (see appendix A.1). All training information is given by a finite set Dy C D. Dy
is called the training set. The pth element of Dy is denoted by an input/target pair (zp,yp)-

Architecture/ Net functions. For simplicity, we will focus on a standard feedforward net
(but in the experiments, we will use recurrent nets as well). The net has N input units, K
output units, L weights, and differentiable activation functions. It maps input vectors = € RN
to output vectors o(w,z) € R, where w is the L-dimensional weight vector, and the weight on
the connection from unit j to 7 is denoted w;;. The net function induced by w is denoted net(w):
for x € RN, net(w)(z) = o(w,z) = (o' (w,),0*(w,),...,0 1 (w,z),0" (w,z)), where of(w, z)
denotes the i-th component of o(w, ), corresponding to output unit i.

Training error. We use squared error E(net(w), Do) := >, \ep, || yp—o(w,zp) ||?

, Where

|| - || denotes the Euclidean norm.

Tolerable error. To define a region in weight space with the property that each weight vector
from that region leads to small error and similar output, we introduce the tolerable error Ej,;, a
positive constant (see appendix A.1 for a formal definition of E;y). “Small” error is defined as
being smaller than E},. E(net(w),Dy) > E, implies “underfitting”.

Boxes. Each weight w satisfying E(net(w), Dy) < Eiy, defines an “acceptable minimum”
(compare M (D) in appendix A.1). We are interested in a large region of connected
acceptable minima, where each weight w within this region leads to almost identical
net functions net(w). Such a region is called a flat minimum. We will see that flat
minima correspond to low expected generalization error. To simplify the algorithm for finding a
large connected region (see below), we do not consider maximal connected regions but focus on
so-called “bozes” within regions: for each acceptable minimum w, its box M,, in weight space is
a L-dimensional hypercuboid with center w. For simplicity, each edge of the box is taken to be
parallel to one weight axis. Half the length of the box edge in direction of the axis corresponding
to weight w;; is denoted by Aw;;(X). The Aw;;(X) are the maximal (positive) values such that
for all L-dimensional vectors x whose components k;; are restricted by |k;;| < Aw;;(X), we have:
E(net(w),net(w + k), X) < e, where E(net(w),net(w + k), X) =3 . || o(w,z) —o(w + &, z) |2,
and e is a small positive constant defining tolerable output changes (see also equation (1)). Note
that Aw;;(X) depends on e. Since our algorithm does not use €, however, it is notationally
suppressed. Aw;;(X) gives the precision of w;;. My’s box volume is defined by V(Aw(X)) :=
2L [I; ; Aw;;(X), where Aw(X) denotes the vector with components Aw;;(X). Our goal is to
find large boxes within flat minima.

3 THE ALGORITHM

Let Xo = {zp | (zp,yp) € Do} denote the inputs of the training set. We approximate Aw(X) by
Aw(Xy), where Aw(Xp) is defined like Aw(X) in the previous section (replacing X by Xj). For
simplicity, in what follows, we will abbreviate Aw(Xy) by Aw. Starting with a random initial
weight vector, flat minimum search (FMS) tries to find a w that not only has low E(net(w), Do) but



also deﬁnes a box M,, with maximal box volume V' (Aw) and, consequently, minimal B(w, Xy) :=

—log(5-V(Aw)) = >_i; —log Aw;;. Note the relationship to MDL: B is the number of bits
requlred to describe the’ weights, whereas the number of bits needed to describe the y,, given w
(with (2,,¥p) € Do), can be bounded by fixing E;, (see appendix A.1). In the next section we
derive the following algorithm. We use gradient descent to minimize E(w, Do) = E(net(w), Dg) +
AB(w, Xy), where B(w, Xy) = Zzpexo B(w,zp), and

Do (w,zp)
R

ok (w,zp
(el )2

B(w,a:p):% —Lloge+210gz<aoazj a:,,) +Llogz Z
ij
(1)

Here o* (w, z,) is the activation of the kth output unit (given weight vector w and input ), € is
a constant, and A is the regularization constant (or hyperparameter) which controls the trade-off
between regularization and training error (see appendix A.l). To minimize B(w, Xj), for each
zp, € Xop we have to compute

OB(w, zp) _ Z OB(w,z,) 0%0*(w,xp)

ok (w,xp)\  Aw, . Ow
ki N ag ) Wi OWuv

Bw.. for all u,v . (2)

It can be shown that by using Pearlmutter’s and Mgller’s efficient second order method, the gra-
dient of B(w, zp) can be computed in O(L) time (see details in A.3). Therefore, our algorithm
has the same order of computational complexity as standard backprop.

4 DERIVATION OF THE ALGORITHM

Outline. We are interested in weights representing nets with tolerable error but flat outputs (see
section 2 and appendix A.1). To find nets with flat outputs, two conditions will be defined to
specify B(w, z,) for =, € X, and, as a consequence, B(w, Xg) (see section 3). The first condition
ensures flatness. The second condition enforces “equal flatness” in all weight space directions, to
obtain low variance of the net functions induced by weights within a box. The second condition
will be justified using an MDL-based argument. In both cases, linear approximations will be made
(to be justified in A.2).

Formal details. We are interested in weights causing tolerable error (see “acceptable minima”
in section 2) that can be perturbed without causing significant output changes, thus indicating
the presence of many neighboring weights leading to the same net function. By searching for the
boxes from section 2, we are actually searching for low-error weights whose perturbation does not
significantly change the net function.

In what follows we treat the input z, as fixed: for convenience, we suppress z,, i.e. we
abbreviate of(w,z,) by o'(w). Perturbing the weights w by dw (with components dw;;), we
obtain ED(w, dw) := Y, (0" (w + 6w) — oF (w))?, where oF (w) expresses 0*’s dependence on w (in
what follows, however, w often will be suppressed for convenience, i.e. we abbreviate o*(w) by
o). Linear approximation (justified in A.2) gives us “Flatness Condition 1”:

k

Dot ot
ED(w,6w) ~ EDi(6w) := Y (3 5= 8wi;)? < EDimas (60) = Y _( Z| o ||6w23 <e (3)
i o k

where € > 0 defines tolerable output changes within a box and is small enough to allow for linear
approximation (it does not appear in B(w,z,)’s and B(w, Dy)’s gradient, see section 3). ED;
is ED’s linear approximation, and EDj 4, is maz{ED;(w,6v)| V;;: 6v;; = *dw;;}. Flatness
condition 1 is a “robustness condition” (or “fault tolerance condition”, or “perturbation tolerance
condition” — see, e.g., Minai & Williams, 1994; Murray & Edwards, 1993; Neti et al., 1992;
Matsuoka, 1992; Bishop, 1993; Kerlirzin & Vallet, 1993; Carter et al., 1990).



Many boxes M,, satisfy flatness condition 1. To select a particular, very flat M,,, the following
“Flatness Condition 2” uses up degrees of freedom left by inequality (3):

ok

OWyy

ok

8wij

) (4)

Viajauav : (611)”)2 Z(

)2 = (6wuv)2 Z(

Flatness condition 2 enforces equal “directed errors”

ED;j(w,bw;;) =Y, (0 (wij + bw;j) — oF(wi;))? = Zk({%fj §w;;)?, where o*(w;;) has the obvious
meaning, and dw;; is the ¢, j-th component of éw. Linear approximation is justified by the choice
of € in inequality (3). As will be seen in the MDL-justification to be presented below, flatness
condition 2 favors the box which minimizes the mean perturbation error within the box. This
corresponds to minimizing the variance of the net functions induced by weights within the box
(recall that ED(w,éw) is quadratic).

How to derive the algorithm from flatness conditions 1 and 2. We first solve equation

(4) for |bw;j| = |6wuo| (fixing w,v for all 4, j). Then we insert the |6w;;| (with fixed

2

u,v) into inequality (3) (replacing the second “<” in (3) by “=", since we search for the box
with maximal volume). This gives us an equation for the |§w,,| (which depend on w, but this is
notationally suppressed):

Je

|6wyy| =

(5)

| 2|
dw;;
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uv »J Zk(%)2

The |6w;;| (u,v is replaced by i,j) approximate the Aw;; from section 2. The box M,, is
approximated by AM,, the box with center w and edge lengths 26w;;. M,,’s volume V(Aw) is
approximated by AM,’s box volume V (§w) := 2 [1;; 16wij|. Thus, B(w,z,) (see section 3) can
be approximated by B(w,zp) := —log 5V (6w) = >_i; —log|éw;;|. This immediately leads to
the algorithm given by equation (1).

How can the above approximations be justified? The learning process itself enforces
their validity (see A.2). Initially, the conditions above are valid only in a very small environment
of an “initial” acceptable minimum. But during search for new acceptable minima with more
associated box volume, the corresponding environments are enlarged. Appendix A.2 will prove
this for feedforward nets (experiments indicate that this appears to be true for recurrent nets as
well).

Comments. Flatness condition 2 influences the algorithm as follows: (1) The algorithm
prefers to increase the dw;;’s of weights whose current contributions are not important to compute
the target output. (2) The algorithm enforces equal sensitivity of all output units with respect to
weights of connections to hidden units. Hence, output units tend to share hidden units, i.e., differ-
ent hidden units tend to contribute equally to the computation of the target. The contributions
of a particular hidden unit to different output unit activations tend to be equal, too.

Flatness condition 2 is essential: flatness condition 1 by itself corresponds to nothing more but
first order derivative reduction (ordinary sensitivity reduction). However, as mentioned above,
what we really want is to minimize the variance of the net functions induced by weights near the
actual weight vector.

Automatically, the algorithm treats units and weights in different layers differently, and takes
the nature of the activation functions into account.

MDL-JUSTIFICATION OF FLATNESS CONDITION 2

Let us assume a sender wants to send a description of the function induced by w to a receiver
who knows the inputs z, but not the targets y,, where (zp,yp) € Dy. The MDL principle



suggests that the sender wants to minimize the expected description length of the net function.
Let EDpean(w, Xo) denote the mean value of ED on the box. Expected description length is
approximated by puEDpean(w, Xo) + B(w, Xo) + ¢, where ¢, u are positive constants. One way of
seeing this is to apply Hinton and van Camp’s “bits back” argument to a uniform weight prior
(EDpean corresponds to the output variance). However, we prefer to use a different argument:
we encode each weight w;; of the box center w by a bitstring according to the following procedure
(Aw;; is given):
(0) Define a variable interval I;; C R.
(1) Make I;; equal to the interval constraining possible weight values.
(2) While Iij ¢ [wij — Awij,wij + Awij]:

Divide I;; into 2 equally-sized disjunct intervals I; and I>.

If w;; € I then I;; « Iy; write ‘1°.

If w;; € I then I;; < Iy; write ‘0’.
The final set {I;;} corresponds to a “bit-box” within our box. This “bit-box” contains M,,’s center
w and is described by a bitstring of length B(w, Xy) + ¢, where the constant ¢ is independent of
the box M,,. From ED(w,w, —w) (wy is the center of the “bit-box”) and the bitstring describing
the “bit-box”, the receiver can compute w as follows: he selects an initialization weight vector
within the “bit-box” and uses gradient descent to decrease B(w,, Xy) until ED(w,,wp, — w,) =
ED(w,wy, —w), where w, in the bit-box denotes the receiver’s current approximation of w (w, is
constantly updated by the receiver). This is like “FMS without targets” — recall that the receiver
knows the inputs z),. Since w corresponds to the weight vector with the highest degree of local
flatness within the “bit-box”, the receiver will find the correct w.

ED(w,wp, —w) is described by a Gaussian distribution with mean zero. Hence, the description
length of ED(w,wy — w) is pED(w,w, — w) (Shannon, 1948). wy, the center of the “bit-box”,
cannot be known before training. However, we do know the expected description length of the net
function, which is pEDpmeqn +B(w, Xo)+¢ (¢ is a constant independent of w). Let us approximate
EDuean: EDymean(w, dw) := m fAMw ED(w,bv)dév =

e\ 2 e\ 2
mQL% Zz}j <(§wij)3 Zk (guo)u) Huﬂ)with w,v#4,j &U‘“)) = % Zi,j (6wij)2 Zk (8813:]) ’

Among those w that lead to equal B(w, Xy) (the negative logarithm of the box volume plus
Llog2), we want to find those with minimal description length of the function induced by w.
Using Lagrange multipliers (viewing the dw;; as variables), it can be shown that ED; ;;cqn
is minimal under the condition B(w, Xj) = constant iff flatness condition 2 holds. To
conclude: with given box volume, we need flatness condition 2 to minimize the expected description
length of the function induced by w.

5 EXPERIMENTAL RESULTS

5.1 EXPERIMENT 1 — noisy classification.

Task. The first task is taken from Pearlmutter and Rosenfeld (1991). The task is to decide whether
the xz-coordinate of a point in 2-dimensional space exceeds zero (class 1) or doesn’t (class 2). Noisy
training/test examples are generated as follows: data points are obtained from a Gaussian with
zero mean and stdev 1.0, bounded in the interval [—3.0,3.0]. The data points are misclassified
with probability 0.05. Final input data is obtained by adding a zero mean Gaussian with stdev
0.15 to the data points. In a test with 2,000,000 data points, it was found that the procedure
above leads to 9.27 per cent misclassified data. No method will misclassify less than 9.27 per cent,
due to the inherent noise in the data (including the test data). The training set is based on 200
fixed data points (see figure 3). The test set is based on 120,000 data points.

Results. 10 conventional backprop (BP) nets were tested against 10 equally initialized net-
works trained by flat minimum search (FMS). After 1,000 epochs, the weights of our nets essentially
stopped changing (automatic “early stopping”), while backprop kept changing weights to learn the
outliers in the data set and overfit. In the end, our approach left a single hidden unit h with a
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Figure 3: The 200 input examples of the training set. Crosses represent data points from class 1.
Squares represent data points from class 0.

Backprop FMS Backprop FMS
MSE dto | MSE dto MSE dto | MSE dto
110220 1.35]0.193 0.00| 6 | 0.219 1.24 | 0.187 0.04
210223 1.161]0.189 0.09 || 7 | 0.215 1.14 | 0.187 0.07
310222 1.37]0.18 0.13 8 |0.214 1.10 | 0.185 0.01
410213 1.18|0.181 0.01{ 9 | 0.218 1.21 | 0.190 0.09
510222 1.241]0.195 0.25 | 10 | 0.214 1.21 | 0.188 0.07

Table 1: 10 comparisons of conventional backprop (BP) and flat minimum search (FMS). The
second row (labeled “MSE”) shows mean squared error on the test set. The third row (“dto”) shows
the difference between the percentage of misclassifications and the optimal percentage (9.27). The
remaining rows provide the analogous information for FMS, which clearly outperforms backprop.

maximal weight of 30.0 or —30.0 from the x-axis input. Unlike with backprop, the other hidden
units were effectively pruned away (outputs near zero). So was the y-axis input (zero weight to
h). It can be shown that this corresponds to an “optimal” net with minimal numbers of units and
weights. Table 1 illustrates the superior performance of our approach.

Parameters:
Learning rate: 0.1.
Architecture: (2-20-1).
Number of training epochs: 400,000.
With FMS: E;,; = 0.0001.
See section 5.6 for parameters common to all experiments.

5.2 EXPERIMENT 2 — recurrent nets.

Time-varying inputs. The method works for continually running fully recurrent nets as well.
At every time step, a recurrent net with sigmoid activations in [0, 1] sees an input vector from a
stream of randomly chosen input vectors from the set {(0,0),(0,1),(1,0),(1,1)}. The task is to
switch on the first output unit whenever an input (1,0) had occurred two time steps ago, and to



switch on the second output unit without delay in response to any input (0,1). The task can be
solved by a single hidden unit.

Non-weight-decay-like results. With conventional recurrent net algorithms, after training,
both hidden units were used to store the input vector. Not so with our new approach. We trained
20 networks. All of them learned perfect solutions. Like with weight decay, most weights to the
output decayed to zero. But unlike with weight decay, strong inhibitory connections (-30.0)
switched off one of the hidden units, effectively pruning it away.

Parameters:

Learning rate: 0.1.

Architecture: (2-2-2).

Number of training examples: 1,500.

E;,; = 0.0001.

See section 5.6 for parameters common to all experiments.

5.3 EXPERIMENT 3 — stock market prediction (1).

Task. We predict the DAX! (the German stock market index) using fundamental indicators.
Following Rehkugler and Poddig (1990), the net sees the following indicators: (a) German in-
terest rate (“Umlaufsrendite”), (b) industrial production divided by money supply, (c) business
sentiments ( “TFO Geschdftsklimaindex”). The input (scaled in the interval [-3.4,3.4]) is the differ-
ence between data from the current quarter and last year’s corresponding quarter. The goal is to
predict the sign of next year’s corresponding DAX difference.

Details. The training set consists of 24 data vectors from 1966 to 1972. Positive DAX
tendency is mapped to target 0.8, otherwise the target is -0.8. The test set consists of 68 data
vectors from 1973 to 1990. Flat minimum search (FMS) is compared against: (1) Conventional
backprop (BP8) with 8 hidden units, (2) Backprop with 4 hidden units (BP4) (4 hidden units are
chosen because pruning methods favor 4 hidden units, but 3 is not enough), (3) Optimal brain
surgeon (OBS; Hassibi & Stork, 1993), ) with a few improvements (see section 5.6), (4) Weight
decay (WD) according to Weigend et. al (1991) (WD and OBS were chosen because they are
well-known and widely used).

Performance measure. Since wrong predictions lead to loss of money, performance is mea-
sured as follows. The sum of incorrectly predicted DAX changes is subtracted from the sum of
correctly predicted DAX changes. The result is divided by the sum of absolute DAX changes.

Results. See table 2. Our method outperforms the other methods.

MSE is irrelevant. Note that MSE is not a reasonable performance measure for this task.
For instance, although FMS typically makes more correct classifications than WD, FMS’ MSE
often exceeds WD’s. This is because WD’s wrong classifications tend to be close to 0, while FMS
often prefers large weights yielding strong output activations — FMS’ few false classifications tend
to contribute a lot to MSE.

Parameters:

Learning rate: 0.01.

Architecture: (3-8-1), except BP4 with (3-4-1).
Number of training examples: 20,000,000.
Method specific parameters:

FMS: E;, = 0.13; AX = 0.001.

WD: like with FMS, but wg = 0.2.

OBS: Ei, = 0.015 (the same result was obtained with higher Ey,; values, e.g. 0.13).

See section 5.6 for parameters common to all experiments.

IRaw DAX version according to Statistisches Bundesamt (federal office of statistics). Other data are from the
same source (except for business sentiment). Collected by Christian Puritscher, for a diploma thesis in industrial
management at LMU, Munich.



Method | train | test | removed performance
MSE | MSE | w u max min mean

BPS 0.003 | 0.945 4733 25.74 37.76
BP4 0.043 | 1.066 42.02 42.02 42.02
OBS 0.089 | 1.088 | 14 3 | 48.89 27.17 41.73
WD 0.096 | 1.102 | 22 4 | 44.47 36.47 43.49
FMS 0.040 | 1.162 | 24 4 | 47.74 39.70 43.62

Table 2: Comparisons of conventional backprop (BP4, BP8), optimal brain surgeon (OBS), weight
decay (WD), and flat minimum search (FMS). All nets except BPJ start out with 8 hidden units.
Each value is a mean of 7 trials. Column “MSE” shows mean squared error. Column “w” shows
the number of pruned weights, column “u” shows the number of pruned units, the final 3 rows
(“maz”, “min”, “mean”) list mazimal, minimal and mean performance (see text) over 7 trials.
Note that test MSE is insignificant for performance evaluations (this is due to targets 0.8/-0.8, as

opposed to the “real” DAX targets). Our method outperforms all other methods.

5.4 EXPERIMENT 4 — stock market prediction (2).

Task. We predict the DAX again, using the basic set-up of the experiment in section 5.3. However,
the following modifications are introduced:

e There are two additional inputs: (d) dividend rate, (c) foreign orders in manufacturing
industry.

Monthly predictions are made. The net input is the difference between the current month’s

data and last month’s data. The goal is to predict the sign of next month’s corresponding
DAX difference.

There are 228 training examples and 100 test examples.

The target is the percentage of DAX change scaled in the interval [-1,1] (outliers are ignored).

Performance of WD and FMS is also tested on networks “spoiled” by conventional backprop
(“WDR” and “FMSR” — the “R” stands for Retraining).

Results are shown in table 3. Average performance of our method exceeds the ones
of weight decay, OBS, and conventional backprop.

Table 3 also shows superior performance of our approach when it comes to retraining “spoiled”
networks (note that OBS is a retraining method by nature). FMS led to the best improvements
in generalization performance.

Parameters:

Learning rate: 0.01.
Architecture: (5-8-1).
Number of training examples: 20,000,000.
Method specific parameters:
FMS: Eyo = 0.235; AX = 0.0001; if Faverage < Etor then A is set to 0.001.
WD: like with FMS, but wg = 0.2.
FMSR: like with FMS, but E;,; = 0.15; number of retraining examples: 5,000,000.
WDR: like with FMSR, but wy = 0.2.
OBS: E;,; = 0.235. See section 5.6 for parameters common to all experiments.



Method | train | test | removed performance
MSE | MSE | w u max min mean

BP 0.181 | 0.535 57.33 20.69 41.61
OBS 0.219 | 0.502 | 15 50.78  32.20 40.43
WDR | 0.180 | 0.538 | 0 62.54 13.64 41.17
FMSR | 0.180 | 0.542 | 0 64.07 24.58 41.57
WD 0.235 | 0.452 | 17 54.04 32.03 40.75
FMS 0.240 | 0472 | 19 54.11 31.12 44.40

W wo o

Table 3: Comparisons of conventional backprop (BP), optimal brain surgeon (OBS), weight decay
after spoiling the net with BP (WDR), flat minimum search after spoiling the net with BP (FMSR),
weight decay (WD), flat minimum search (FMS). All nets start out with 8 hidden units. Each value
is a mean of 10 trials. Column “MSE” shows mean squared error. Column “w” shows the number
of pruned weights, column “u” shows the number of pruned units, the final 8 rows (“maz”, “min”,
“mean”) list mazimal, minimal and mean performance (see text) over 10 trials (note again that
MSE is an irrelevant performance measure for this task). Flat minimum search outperforms
all other methods.

5.5 EXPERIMENT 5 — stock market prediction (3).

Task. This time, we predict the DAX using weekly technical (as opposed to fundamental) indica-
tors. The data (DAX values and 35 technical indicators) was provided by Bayerische Vereinsbank.

Data analysis. To analyze the data, we computed: (1) The pairwise correlation coefficients
of the 35 technical indicators. (2) The maximal pairwise correlation coefficients of all indicators
and all linear combinations of two indicators. This analysis revealed that only 4 indicators are
not highly correlated. For such reasons, our nets see only the 8 most recent DAX-changes and the
following technical indicators: (a) the DAX value, (b) change of 24-week relative strength index
(“RSI”) — the relation of increasing tendency to decreasing tendency, (c¢) “5 week statistic”, (d)
“MACD” (smoothened difference of exponentially weighted 6 week and 24 week DAX).

Input data. The final network input is obtained by scaling the values (a-d) and the 8 most
recent DAX-changes in [—2,2]. The training set consists of 320 data points (July 1985 to August
1991). The targets are the actual DAX changes scaled in [—1,1].

Comparison. The following methods are applied to the training set: (1) Conventional back-
prop (BP), (2) optimal brain surgeon / optimal brain damage (OBS/OBD), (3) weight decay (WD)
according to Weigend et al., (4) flat minimum search (FMS). The resulting nets are evaluated on
a test set consisting of 100 data points (August 1991 to July 1993).

Performance is measured like in section 5.3.

Results. Table 4 shows the results. Again, our method outperforms the other methods.

Parameters:

Learning rate: 0.01.

Architecture: (12-9-1).

Training time: 10,000,000 examples.
Method specific parameters:

OBS/OBD: E;, = 0.34.

FMS: Ejo; = 0.34; AX = 0.003. If Eaverage < Etor then A is set to 0.03.
WD: like with FMS, but wy = 0.2.
See section 5.6 for parameters common to all experiments.
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Method | train | test | removed performance
MSE | MSE | w u | max min mean

BP 0.13 | 1.08 28.45 -16.7 8.08
OBS 038 | 0912 | 55 1 | 2737 -6.08 10.70
WD 051 | 0334 | 110 8 | 26.84 -6.88 12.97
FMS 046 | 0.348 | 103 7 | 29.72 18.09 21.26

Table 4: Comparisons of conventional backprop (BP), optimal brain surgeon (OBS), weight decay
(WD), flat minimum search (FMS). All nets start out with 9 hidden units. Each value is a mean
of 10 trials. Column “MSE” shows mean squared error. Column “w” shows the number of pruned
weights, column “u” shows the number of pruned units, the final 8 rows (“maz”, “min”, “mean”
list mazimal, minimal and mean performance (see text) over 10 trials (note again that MSE is an
irrelevant performance measure for this task). Flat minimum search outperforms all other

methods.

5.6 DETAILS / PARAMETERS

With exception of the experiment in section 5.2, all units are sigmoid in the range of [—1.0, 1.0].
Weights are constrained to [—30,30] and initialized in [-0.1,0.1]. The latter ensures high first order
derivatives in the beginning of the learning phase. WD is set up to hardly punish weights below
wo = 0.2. Egayerage is the average error on the training set, approximated using exponential decay:
Eaverage < VFEaverage + (1 —v)E(net(w), Dy), where v = 0.85.

FMS details. To control B(w, Dy)’s influence during learning, its gradient is normalized
and multiplied by the length of E(net(w),Dy)’s gradient (same for weight decay, see below). A
is computed like in (Weigend et al., 1991) and initialized with 0. Absolute values of first order
derivatives are replaced by 10720 if below this value. We ought to judge a weight w;; as being
pruned if dw;; (see equation (5) in section 4) exceeds the length of the weight range. However, the
unknown scaling factor e (see inequality (3) and equation (5) in section 4) is required to compute
dw;j. Therefore, we judge a weight w;; as being pruned if, with arbitrary €, dw;; is much bigger
than the corresponding §’s of the other weights (typically, there are clearly separable classes of
weights with high and low §’s, which differ from each other by a factor ranging from 102 to 10°).

If all weights to and from a particular unit are very close to zero, the unit is lost: due to tiny
derivatives, the weights will never again increase significantly. Sometimes, it is necessary to bring
lost units back into the game. For this purpose, every n;,;; time steps (typically, n;,; = 500,000),
all weights w;; with 0 < w;; < 0.01 are randomly re-initialized in [0.005,0.01]; all weights w;; with
0 > w;; > —0.01 are randomly initialized in [—0.01, —0.005], and A is set to O.

w?j Jwo

Weight decay details. We used Weigend et al.’s weight decay term: D(w) = Z” Tl g

Like with FMS, D(w, wg)’s gradient was normalized and multiplied by the length of E(net(w), Dy)’s
gradient. A was adjusted like with FMS. Lost units were brought back like with FMS.

Modifications of OBS. Typically, most weights exceed 1.0 after training. Therefore, higher
order terms of dw in the Taylor expansion of the error function do not vanish. Hence, OBS is
not fully theoretically justified. Still, we used OBS to delete high weights, assuming that higher
order derivatives are small if second order derivatives are. To obtain reasonable performance, we
modified the original OBS procedure (notation following Hassibi and Stork, 1993):

2
e To detect the weight that deserves deletion, we use both L, = ﬁ (the original value
aq
used by Hassibi and Stork) and T, := %wq + %‘;jﬁ w?. Here H denotes the Hessian and
q q

H~! its approximate inverse. We delete the weight causing minimal training set error (after
tentative deletion).

e Like with OBD (LeCun et al., 1990), to prevent numerical errors due to small eigenvalues
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of H, we do: if L, < 0.00001 or T, < 0.00001 or || I — H™'H ||> 10.0 (bad approximation
of H=1), we only delete the weight detected in the previous step — the other weights remain
the same. Here || . || denotes the sum of the absolute values of all components of a matrix.

e If OBS’ adjustment of the remaining weights leads to at least one absolute weight change
exceeding 5.0, then dw is scaled such that the maximal absolute weight change is 5.0. This
leads to better performance (also due to small eigenvalues).

o If Eaverage > Eior after weight deletion, then the net is retrained until either Eaverage < Etol
or the number of training examples exceeds 800,000. Practical experience indicates that the
choice of E;,; hardly influences the result.

e OBS is stopped if Eayerage > Eior after retraining. The most recent weight deletion is
countermanded.

6 RELATION TO PREVIOUS WORK

Most previous algorithms for finding low complexity networks with high generalization capability
are based on different prior assumptions. They can be broadly classified into two categories (see
Schmidhuber (1994a), however, for an exception):

(1) Assumptions about the prior weight distribution. Hinton and van Camp (1993) and
Williams (1994) assume that pushing the posterior weight distribution close to the weight prior
leads to “good” generalization (see more details below). Weight decay (e.g., Hanson & Pratt,
1989; Krogh & Hertz, 1992) can be derived, e.g., from Gaussian or Laplace weight priors. Nowlan
and Hinton (1992) assume that a distribution of networks with many similar weights generated by
Gaussian mixtures is “better” a priori. MacKay’s weight priors (1992b) are implicit in additional
penalty terms, which embody the assumptions made. The problem with the approaches above is
this: there may not be a “good” weight prior for all possible architectures and training sets. With
FMS, however, we don’t have to select a “good” weight prior — instead we choose a prior over
input/output functions. This automatically takes the net architecture and the training set into
account.

(2) Prior assumptions about how theoretical results on early stopping and network
complexity carry over to practical applications. Such assumptions are implicit in methods
based on validation sets (Mosteller & Tukey, 1968; Stone, 1974; Eubank, 1988; Hastie & Tibshirani,
1993), e.g., “generalized cross validation” (Craven & Wahba, 1979; Golub et al., 1979), “final
prediction error” (Akaike, 1970), “generalized prediction error” (Moody & Utans, 1994; Moody,
1992). See also Holden (1994), Wang et al. (1994), Amari and Murata (1993), and Vapnik’s
“structural risk minimization” (Guyon et al., 1992; Vapnik, 1992).

Constructive algorithms / pruning algorithms. Other architecture selection methods
are less flexible in the sense that they can be used only either before or after weight adjustments.
Examples are “sequential network construction” (Fahlman & Lebiere, 1990; Ash, 1989; Moody,
1989), input pruning (Moody, 1992; Refenes et al., 1994), unit pruning (White, 1989; Mozer &
Smolensky, 1989; Levin et al., 1994), weight pruning, e.g. “optimal brain damage” (LeCun et al.,
1990), “optimal brain surgeon” (Hassibi & Stork, 1993).

Hinton and van Camp (1993). They minimize the sum of two terms: the first is conventional

%D)O)dw between posterior p(w | Dy)

error plus variance, the other is the distance [ p(w | Dy)log & o

and weight prior p(w). They have to choose a “good” weight prior. But, as mentioned above,
perhaps there is no “good” weight prior for all possible architectures and training sets. With FMS,
however, we don’t depend on a “good” weight prior — instead we have a prior over input/output
functions, thus taking into account net architecture and training set. Furthermore, Hinton and
van Camp have to compute variances of weights and unit activations, which (in general) cannot
be done using linear approximation. Intuitively speaking, their weight variances are related to our
Aw;j;. Our approach, however, does justify linear approximation, as seen in appendix A.2.
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Wolpert (1994a). His (purely theoretical) analysis suggests an interesting different additional
error term (taking into account local flatness in all directions): the logarithm of the Jacobi de-
terminant of the functional from weight space to the space of possible nets. This term is small
if the net output (based on the current weight vector) is locally flat in weight space (if many
neighboring weights lead to the same net function in the space of possible net functions). It is not
clear, however, how to derive a practical algorithm (e.g., a pruning algorithm) from this.

Murray and Edwards (1993). They obtain additional error terms consisting of weight
squares and second order derivatives. Unlike our approach, theirs explicitly prefers weights near
zero. In addition, their approach appears to require much more computation time (due to second
order derivatives in the error term).

7 LIMITATIONS / FINAL REMARKS / FUTURE RE-
SEARCH

How to adjust A7 Given recent trends in neural computing (see, e.g., MacKay, 1992a, 1992b),
it may seem like a step backwards that A is adapted using an ad-hoc heuristic from Weigend
et al., 1991. However, for determining A in MacKay’s style, one would have to compute the
Hessian of the cost function. Since our term B(w, Xj) includes first order derivatives, adjusting
A would require the computation of third order derivatives. This is impracticable. Also, to
optimize the regularizing parameter A (see MacKay, 1992b), we need to compute the function
[ d¥wexp(—AB(w, X)), but it is not obvious how: the “quick and dirty version” (MacKay,
1992a) cannot deal with the unknown constant € in B(w, Xj).

Future work will investigate how to adjust A without too much computational effort. In fact,
as will be seen in appendix A.1, the choices of A and E;,; are correlated — the optimal choice of
E;,; may indeed correspond to the optimal choice of A.

Generalized boxes? The boxes found by the current version of FMS are axis-aligned. This
may cause an under-estimate of flat minimum volume. Although our experiments indicate that
box search works very well, it will be interesting to compare alternative approximations of flat
minimum volumes.

Multiple initializations? First, consider this FMS “alternative”: run conventional backprop
starting with several random initial guesses, and pick the flattest minimum with largest volume.
This does not work: conventional backprop changes the weights according to steepest descent —
it runs away from flat ranges in weight space! Using an “FMS committee” (multiple runs with
different initializations), however, would lead to a better approximation of the posterior. This is
left for future work.

Notes on generalization error. If the prior distribution of targets p(f) (see appendix A.1)
is uniform (or if the distribution of prior distributions is uniform), no algorithm can obtain a lower
expected generalization error than training error reducing algorithms (see, e.g., Wolpert, 1994b).
Typical target distributions in the real world are not uniform, however — the real world appears
to favor problem solutions with low algorithmic complexity. See, e.g., Schmidhuber (1994a).
MacKay (1992a) suggests to search for alternative priors if the generalization error indicates a
“poor regulariser”. He also points out that with a “good” approximation of the non-uniform
prior, more probable posterior hypothesis do not necessarily have a lower generalization error. For
instance, there may be noise on the test set, or two hypotheses representing the same function may
have different posterior values, and the expected generalization error ought to be computed over
the whole posterior and not for a single solution. Schmidhuber (1994b) proposes a general, “self-
improving” system whose entire life is viewed as a single training sequence and which continually
attempts to incrementally modify its priors based on experience with previous problems — see
also Schmidhuber (1996). It remains to be seen, however, whether this will lead to practicable
algorithms.

Ongoing work on low-complexity coding. FMS can also be useful for unsupervised learn-
ing. In recent work, we postulate that a “generally useful” code of given input data fulfills three
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MDL-inspired criteria: (1) It conveys information about the input data. (2) It can be computed
from the data by a low-complexity mapping. (3) The data can be computed from the code by
a low-complexity mapping. To obtain such codes, we simply train an auto-associator with FMS
(after training, codes are represented across the hidden units). In initial experiments, depending
on data and architecture, this always led to well-known kinds of codes considered useful in previ-
ous work by numerous researchers: we sometimes obtained factorial codes, sometimes local codes,
and sometimes sparse codes. In most cases, the codes were of the low-redundancy, binary kind.
Initial experiments with a speech data benchmark problem (vowel recognition) already showed
the true usefulness of codes obtained by FMS: feeding the codes into standard, supervised, over-
fitting backprop classifiers, we obtained much better generalization performance than competing
approaches.
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APPENDIX - THEORETICAL JUSTIFICATION

Contents:
A.1 Flat nets: the most probable hypotheses
A.2 Why does the Hessian decrease?
A .3 Efficient implementation of the algorithm
A 3.1 Explicit derivative of equation (1)
A.3.2 Fast multiplication by the Hessian
A.4 The algorithm in pseudo code
Note: Appendices A.3.2 and A.4 were omitted from the version for Neural Computation. An
alternative version of the entire appendix (but with some minor errors) can be found in Hochreiter
& Schmidhuber (1994).

A.l.

FLAT NETS: THE MOST PROBABLE HYPOTHESES

Short Guide Through Appendix A.1. We introduce a novel kind of generalization error that
can be split into an overfitting error and an underfitting error. To find hypotheses causing low
generalization error, we first select a subset of hypotheses causing low underfitting error. We are
interested in those of its elements causing low overfitting error.

More Detailed Guide Through Appendix A.1.

After listing relevant definitions we will introduce a somewhat unconventional variant of the
Gibbs algorithm, designed to take into account that FMS uses only the training data Dy to
determine G(. | Do), a distribution over the set of hypotheses expressing our prior belief in
hypotheses (here we do not care where the data came from — this will be treated later).

This variant of the Gibbs algorithm will help us to introduce the concept of “expected
extended generalization error”, which can be split into an “overfitting error” (relevant for
measuring whether the learning algorithm focuses too much on the training set) and an “un-
derfitting error” (relevant for measuring whether the algorithm sufficiently approximates the
training set). To obtain these errors, we measure the Kullback-Leibler distance between pos-
terior p(. | Do) after training on the training set and posterior pp, (. | D) after (hypothetical)
training on all data (here the subscript Dy indicates that for learning D, G(. | Do) is used as
prior belief in hypotheses, too). The overfitting error measures the information conveyed by
p(. | Do), but not by pp,(. | D). The underfitting error measures the information conveyed
by pp,(. | D), but not by p(. | Dy).

We then introduce the “tolerable error level” and the set of “acceptable minima”. The
latter contains hypotheses with low underfitting error, assuming that Dy indeed conveys
information about the test set (every training set error reducing algorithm makes this as-
sumption). In the remainder of the appendix, we will focus only on hypotheses within the
set of acceptable minima.

We introduce the “relative overfitting error”, which is the relative contribution of a hypoth-
esis to the mean overfitting error on the set of acceptable minima. The relative overfitting
error measures the overfitting error of hypotheses with low underfitting error. The goal is to
find a hypothesis with low overfitting error and, consequently, with low generalization error.

The relative overfitting error is approximated based on the trade-off between low training
set error and large values of G(. | Dg). The distribution G(. | Dy) is restricted to the set of
acceptable minima, to obtain the distribution Grr(p,)(- | Do)-

We then assume the data is obtained from a target chosen according to a given prior distri-
bution. Using previously introduced distributions, we derive the expected test set error and
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the expected relative overfitting error. We want to reduce the latter by choosing a certain
G (Do) (- | Do) and G(. | D).

e The special case of noise free data is considered.

e To be able to minimize the expected relative overfitting error, we need to adopt a certain
prior belief p(f). The only unknown distributions required to determine G ys(p,)(- | Do) are
p(Do | f) and p(D | f) — they describe how (noisy) data is obtained from the target. We
have to make the following assumptions: the choice of prior belief is “appropriate”, the noise
on data drawn from the target has mean 0, and small noise is more probable than large noise
(the noise assumptions ensure that reducing the training error — by choosing some A from
M (Dgy) — reduces the expected underfitting error). We don’t need Gaussian assumptions,
though.

e We show that FMS approximates our special variant of the Gibbs algorithm: the prior is
approximated locally in weight space, and flat net(w) are approximated by flat net(w’) with
w’ near w in weight space.

Definitions. Let A = {(z,y) | x € X,y € Y} be the set of all possible input/output pairs
(pairs of vectors). Let NET be the set of functions that can be implemented by the network.
For every net function g € NET we have g C A. Elements of NET are parameterized with a
parameter vector w from the set of possible parameters W. net(w) is a function which maps a
parameter vector w onto a net function g (net is surjective.) Let T be the set of target functions f,
where T'C NET. Let H be the set of hypothesis functions s, where H C T. For simplicity, take
all sets to be finite, and let all functions map each z € X to some y € Y. Values of functions with
argument x are denoted by g(z),net(w)(z), f(z), h(xz). We have (z,g(z)) € g;(z,net(w)(z)) €
net(w); (z, f(z)) € f; (z,h(z)) € h.

Let D = {(xp,yp) | 1 < p < m} be the data, where D C A. D is divided into a training set
Do = {(zp,yp) | 1 <p <n}and atest set D\ Dy = {(z,¥p) | » < p < m}. For the moment, we
are not interested in how D was obtained.

We use squared error E(D,h) := E;nzl Il yp — h(z},) ||?, where || . || is the Euclidean norm.
E(Do,h) i= X7, Il 9y — hwy) 2. E(D\ Doyh) i= Xy | wp — h(z,) 2. E(Dh) =
E(DO, h) + E(D \ D(), h) holds.

Learning. We use a variant of the Gibbs formalism (see Opper & Haussler, 1991, or Levin
et al., 1990). Consider a stochastic learning algorithm (random weight initialization, random
learning rate). The learning algorithm attempts to reduce training set error by randomly selecting
a hypothesis with low E(Dy,h), according to some conditional distribution G(. | Do) over H.
G(. | Do) is chosen in advance, but in contrast to traditional Gibbs (which deals with unconditional
distributions on H), we may take a look at the training set before selecting G. For instance, one
training set may suggest linear functions as being more probable than others, another one splines,
etc. The unconventional Gibbs variant is appropriate because FMS uses only X, (the set of first
components of Dy’s elements, see section 3) to compute the flatness of net(w’). The trade-off
between the desire for low E(Dg, h) and the a priori belief in a hypothesis according to G(. | Dy)
is governed by a positive constant 3 (interpretable as the inverse temperature from statistical
mechanics, or the amount of stochasticity in the training algorithm).

We obtain p(h | Dy), the learning algorithm applied to data Dy:

G(h | Do) exp(=BE(Do, h))
Z(Dy, 3) ’

p(h | Do) = (6)

where

Z(Dy,B) =Y G(h| Do) exp(—BE(Dq, h)). (7)

heH

Z(Dy, ) is the “error momentum generating function”, or the “weighted accessible volume in
configuration space” or “the partition function” (from statistical mechanics).
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For theoretical purposes, assume we know D and may use it for learning. To learn, we use the
same distribution G(h | Dy) as above (prior belief in some hypotheses h is based exclusively on
the training set). There is a reason why we do not use G(h | D) instead: G(h | D) does not allow
for making a distinction between a better prior belief in hypotheses and a better approximation
of the test set data. However, we are interested in how G(h | Dy) performs on the test set data
D\ Dy. We obtain

G(h | Do) exp(=BE(D, h))

poy(h | D) = el

(8)
where

Zpy(D,B) = Y G(h | Do) exp(~BE(D, h)). (9)
heH

The subscript Dy indicates that the prior belief is chosen based on Dy only.
Expected extended generalization error. We define the expected extended generalization
error Eq(D, Dy) on the unseen test exemplars D \ Dy:

Eg(D, Do) := Y p(h| Do)E(D\ Do, h) = > ppy(h | D)E(D \ Dy, h). (10)
heH heH

Here Eg(D, Do) is the mean error on D\ Dy after learning with Dy, minus the mean error on D\ Dy
after learning with D. The second (negative) term is a lower bound (due to non-zero temperature)
for the error on D \ Dy after learning the training set Dy. Note: for the zero temperature limit
B — 0o we get (summation convention explained at the end of this paragraph)

Ec(D,Do) = Y pen.poch S B(D \ Do, h), where Z(Do) = ¥y pycn G(h | Do)- Tn this
case, the generalization error depends on G(h | Dy), restricted to those hypotheses h compatible
with Dy (Dg C h). For 8 — 0 (full stochasticity), we get Eg(D, Dg) = 0.

Summation convention: in general, ZheH7Doch denotes summation over those h satisfying h € H
and Dy C h. In what follows, we will keep an analogous convention: the first symbol is the running
index, for which additional expressions specify conditions.

Overfitting and underfitting error. Let us separate the generalization error into an over-
fitting error E, and an underfitting error E, (in analogy to Wang et al., 1994; and Guyon et al.,
1992). We will see that overfitting and underfitting error correspond to the two different error
terms in our algorithm: decreasing one term is equivalent to decreasing E,, decreasing the other
is equivalent to decreasing E,,. Using the Kullback-Leibler distance (Kullback, 1959), we measure
the information conveyed by p(. | D), but not by pp,(. | D) (see figure 4). We may view this as
information about G(. | Dy): since there are more h which are compatible with Dy than there are
h which are compatible with D, G(. | Dy)’s influence on p(h | Dy) is stronger than its influence
on pp,(h | D). To get the non-stochastic bias (see definition of Eq), we divide this information
by 8 and obtain the overfitting error:

(h p(h | Do)

E(D,Dy) = 3 Z (h ] Do)In =y = (11)
heH
l nZDo(Daﬂ)

heH

Analogously, we measure the information conveyed by pp,(. | D), but not by p(. | Do) (see
figure 5). This information is about D\ Dy. To get the non-stochastic bias (see definition of Eg),
we divide this information by # and obtain the underfitting error:
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[ positive contributions to the underfitting error

[ positive contributions to the overfitting error p(. | D), the D-posterior

_ p(. | Do), the Do-posterior

(.| D). the D-posterior p(. | Do), the Do-posterior

Figure 5: Positive contributions to the underfit-
ting error Ey(Dy, D), after learning the train-
ing set with a small 3. Again, we use the
D-posterior from figure 4, assuming it is al-
most fully determined by E(D,h) (even if 3 is
smaller than in figure 4).

Figure 4: Positive contributions to the overfit-
ting error E,(D, Dy), after learning the train-
ing set with a large 3.

1, Pou(h | D) _

BAD.Dy) = 53 po(h] D) BT

/6 heH

_ 1, 2o, )
heZHpDo(h | D)E(D\Dﬂah) + ﬂln ZDO(Daﬁ)‘

Peaks in G(. | Dy) which do not match peaks of pp,(. | D) produced by D \ Dy lead to
overfitting error. Peaks of pp,(. | D) produced by D\ Dy which do not match peaks of G(. | Do)
lead to underfitting error. Overfitting and underfitting error tell us something about the shape
of G(. | Dy) with respect to D \ Dy, i.e., to what degree is the prior belief in h compatible with
D\ Dy.

Why are they called “overfitting” and “underfitting” error? Positive contributions
to the overfitting error are obtained where peaks of p(. | Dy) do not match (or are higher than)
peaks of pp, (. | D): there some h will have large probability after training on Dy but will have
lower probability after training on all data D. This is either because Dy has been approximated
too closely, or because of sharp peaks in G(. | Dy) — the learning algorithm specializes either
on Dy or on G(. | Dy) (“overfitting”). The specialization on Dy will become even worse if Dy
is corrupted by noise — the case of noisy Dy will be treated later. Positive contributions to the
underfitting error are obtained where peaks of pp, (. | D) do not match (or are higher than) peaks
of p(. | Dyp): there some h will have large probability after training on all data D, but will have
lower probability after training on Dg. This is either due to a poor Dy approximation (note that
p(. | Do) is almost fully determined by G(. | Dy)), or to insufficient information about D conveyed
by Dy (“underfitting”). Either the algorithm did not learn “enough” of Dy, or Dy does not tell
us anything about D. In the latter case, there is nothing we can do — we have to focus on the
case where we did not learn enough about Dj.

Analysis of overfitting and underfitting error. Eg(D,Dy) = E,(D,Dy) + E(D, Dy)
holds. Note: for zero temperature limit 8 — oo we obtain Zp, (D) = >,y pcy G(h | Do) and
Z(Do) = ZheILDOch G(h | Do).

Eo(D,Dy) = ¥ pep.poch S B(D \ Do,h) = Eg(D,Dy). E,(D,Dy) = 0, ie., there is no
underfitting error. For 8 — 0 (full stochasticity) we get E, (D, Dy) = 0 and E,(D, Dgy) = 0 (recall
that E¢ is not the conventional but the extended expected generalization error).

Since Dy C D, Zp,(D,B) < Z(Dy, ) holds. In what follows, averages after learning on Dy
are denoted by <p, . >, and averages after learning on D are denoted by <p . >.
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Since Zpy(D,B) =3 hcu G(h | Do) exp(=BE(Dy, h))exp(=BE(D \ Dy, h)), we have
Zpo (D,
22002 = 5 en p(h | Do) exp(=BE(D \ Dy, h)) = <p,exp(—BE(D \ Dy, .))>.
Analogously, we have % = <pexp(BE(D \ Dy,.))>.

0 )
ThllS, Eo(Da DO) = <D, E(D \ D07 ) > +% In <Dy exp(—ﬂE(D \ D07 )) >, and
E.(D,Dy) = — <p E(D\ Dy,.)> -I-% In <pexp(BE(D \ Dy,.))>.? With large 3, after learning
on Dy, E, measures the difference between average test set error and a minimal test set error.
With large 3, after learning on D, E, measures the difference between average test set error
and a maximal test set error. So assume we do have a large 8 (large enough to exceed the

minimum of %ln %).

We have to assume that Dy indeed conveys information about the
test set: preferring hypotheses h with small E(Dy,h) by using a larger 3 leads to smaller test
set error (without this assumption no error decreasing algorithm would make sense). E, can
be decreased by enforcing less stochasticity (by further increasing (), but this will increase E,.
Likewise, decreasing 3 (enforcing more stochasticity) will decrease E, but increase E,. Increasing
[ decreases the maximal test set error after learning D more than it decreases the average test set
error, thus decreasing F,, and vice versa. Decreasing (3 increases the minimal test set error after
learning Dy more than it increases the average test set error, thus decreasing F,, and vice versa.
This is the above-mentioned trade-off between stochasticity and fitting the training set, governed
by 3.

Tolerable error level / Set of acceptable minima. Let us implicitly define a tolerable
error level Ey(a, ) which, with confidence 1 — «, is the upper bound of the training set error
after learning.

p(E(Do, h) < Epo(e, ) = > p(h | Do) =1—a. (13)
h€ H,E(Do,h)<Eiq(a,3)

With (1 — «)-confidence, we have E(Dy, h) < Eio(a, 8) after learning. FEio(a, 8) decreases with
increasing 8,. Now we define M(Dy) := {h € H | E(Dy,h) < Eio(a, )}, which is the set
of acceptable minima — see section 2. The set of acceptable minima is a set of hypotheses with
low underfitting error. With probability 1 — «, the learning algorithm selects a hypothesis from
M(Dy) C H. Note: for the zero temperature limit 3 — co we have

Eioi(a) =0 and M(Dy) = {h € H | Dy C h}. By fixing a small E;y (or a large 3), E, will be
forced to be low.

We would like to have an algorithm decreasing (1) training set error (this corresponds to
decreasing underfitting error), and (2) an additional error term, which should be designed to
ensure low overfitting error, given a fixed small E;,;. The remainder of this section will lead to
an answer for the question: how to design this additional error term? Since low underfitting is
obtained by selecting a hypothesis from M (Dy), in what follows we will focus on M (Dy) only.
Using an appropriate choice of prior belief, at the end of this section, we will finally see that the
overfitting error can be reduced by an error term expressing preference for flat nets.

9InZp, (D.B) _

2
2We have _%ﬁDo,B) = <p, E(Do,.)> and — <p E(D,.)>. Furthermore, % =

9B
8%21InZp, (D, .
<py (E(Do,.)— <p, E(Do,.)>)%? > and na+(ﬁ) = <p (E(D,.)- <p E(D,.) >)? >. See also Levin et al.
(1990). Using these expressions, it can be shown: by increasing 3 (starting from 3 = 0), we will find a 3 that
Zp, (D, . . .
minimizes %ln % < 0. Increasing (3 further makes this expression go to 0.
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Relative overfitting error. Let us formally define the relative overfitting error E,,, which
is the relative contribution of some h € M (Dy) to the mean overfitting error of hypotheses set
M(DO)Z

ETO(D5D07M(D0)7h) = pM(Dg)(h | DO)E(D \ D07h)7 (14)

where

p(h | Do)

paston (b | Do) = (13)

M(De) > near(ny) Pk | Do)
for h € M(Dy), and zero otherwise.

For h € M(Dy), we approximate p(h | Do) as follows. We assume that G(h | Do) is large
where E(Dy, h) is large (trade-off between low E(Dg, h) and G(h | Dy)). Then p(h | Dy) has large
values (due to large G(h | Dy)) where E(Dy,h) ~ Ei,(a, 3) (assuming Eyoi(a, 3) is small). We
get

p(h | Dy) ~ G(h‘DO)eZX(pl();%]ft"’(a’ﬁ)). The relative overfitting error can now be approximated by

L GOIDy
Ero(D, Do, M(Do), b) = 2 nem(py) G(h | Do)

To obtain a distribution over M (Dy), we introduce Gar(py)(- | Do), the normalized distribution
G(. | Do) restricted to M (Dy). For approximation (16) we have

E(D\ Do, h). (16)

E,o(D, Do, M (Do), h) = Gur(py)(h | Do)E(D \ Do, h). (17)

Prior belief in f and D. Assume D was obtained from a target function f. Let p(f) be the
prior on targets and p(D | f) the probability of obtaining D with a given f. We have

p(Do | Np(f)

_D

where p(Do) =37 (Do | f)p(f).
The data is drawn from a target function with added noise (the noise-free case is treated

below). We don’t make any assumptions about the nature of the noise — it does not have to be
Gaussian (like, e.g., in MacKay’s work, 1992b).

We want to select a G(. | Dy) which makes E,., small, i.e., those h € M(Dy) with small
E(D \ Dy, h) should have high probabilities G(h | Dy).

We don’t know D\ Dy during learning. D is assumed to be drawn from a target f. We compute
the expectation of E,,, given Dg. The probability of the test set D \ Dy, given Dy, is

p(D\ Do | Do) = ZP(D \ Do | f)p(f | Do), (19)

fer

where we assume p(D \ Dy | f, Do) = p(D \ Dy | f) (we don’t remember which exemplars were
already drawn). The expected test set error E(.,h) for some h, given Dy, is

> p(D\ Do | Do)E(D\ Do,h) = > p(f | Do) Y p(D\ Dy | f)E(D \ Dy, h). (20)

D\Dg feT D\ D,

The expected relative overfitting error E,.,(., Do, M (Dy), h) is obtained by inserting equation
(20) into equation (17):

Ero(., Do, M(Dy), h) = Gar(py) (b | Do) Zp(f | Do) Z p(D\ Do | f)E(D\ Do,h).  (21)
fer D\ Do
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Minimizing expected relative overfitting error. We define a Gy (p,)(. | Do) such that
G (Do) (- | Do) has its largest value near small expected test set error E(.,.) (see (17) and (20)).
This definition leads to a low expectation of E,,(., Do, M(Dy),.) (see equation (21)). Define

GM(DO)(h | Dy) =6 (aTgminh'eM(Dg) (E(., h')) - h) ) (22)

where ¢ is the Dirac delta function, which we will use with loose formalism — the context will
make clear how the delta function is used.
Using equation (20) we get

Gum(po)(h | Do) =6 | argming car(py) Zp(f | Do) Z p(D\ Do | f)E(D\ Do,h') | —h | .(23)
feT D\ Do

G (Do) (- | Do) determines the hypothesis h from M (Dy) that leads to lowest expected test set
error. Consequently, we achieve the lowest expected relative overfitting error.
G M (Do) helps us to define G:

__ CH Gy (b | Do)
ZheH(C+ GM(DO)(h | DO)) ’

where Gar(py)(h | Do) = 0 for h ¢ M(D,), and where ¢ is a small constant ensuring positive
probability G(h | Dy) for all hypotheses h.

To appreciate the importance of the prior p(f) in the definition of Gy (p,) (see also equation
(29)), in what follows, we will focus on the noise-free case.

The special case of noise-free data. Let p(Dy | f) be equal to 6(Dy C f) (up to an
normalizing constant):

G(h | Dy) : (24)

6(Do C f)p(f)
p(f| Do) ==—"" "=
ZfeT,DOCf p(f)
Assume p(D\ Dg | f) = 5 ﬁ(D\ﬁl();)%{)lcf)' Let F be the number of elements in X.
D\Dg
p(D\ Dy | f) = 2BY2EN  We expand Y, p, p(D \ Do | f)E(D \ Do, k) from equation (20):

(25)

1 1
oF Z E(D\ Dg,h) = oF Z Z E((z,y),h) = (26)
D\DoCf D\DoCf (z,y)eD\Do
F—n
1 F—n-1 1
L Benn X (77 =3B
(z,y)€f\Do i=1

Here B((z,y),h) =y — h(@) I1', B(f\ Do,h) = Xoyrepion | 9= hla) 2, and 257" (7707 =
2F—n=1_The factor % results from considering the mean test set error (where the test set is drawn
from f), whereas E(f \ Dy, h) is the maximal test set error (obtained by using a maximal test
set). From (20) and (26), we obtain the expected test set error E(., h) for some h, given Dy:

S p(D\ Dy | D)E(D\ Do, h) = 3 37 plf | Do)E(f \ Do, ). (27)
D\Dg feT

From (27) and (17), we obtain the expected E,,(., Do, M(Dy), h):

Eyo(., Do, M(Dg),h) = = Gar(p,)(h | Do) Zp(f | Do)E(f \ Do, h). (28)

FET

1
2
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For G yr(py)(h | Do) we obtain in this noise free case

Gui(poy(h | Do) = 6 | argmingerrpyy | Y p(f | Do)E(f\ Do, k') | —h | . (29)
JET

The lowest expected test set error measured by 3 > terP(f | Do)E(f \ Do,h). See equation
(27).

Noisy data and noise-free data: conclusion. For both the noise-free and the noisy case,
equation (18) shows that given D, and h, the expected test set error depends on prior target

probability p(f).

Choice of prior belief. Now we select some p(f), our prior belief in target f. We introduce
a formalism similar to Wolpert’s (Wolpert, 1994a ). p(f) is defined as the probability of obtaining
f = net(w) by choosing a w randomly according to p(w

Let us first have a look at Wolpert’s formalism: p(f) = [ dwp(w)é(net(w) — f). By restricting
W to Wiy,;, he obtains an injective function netin; : Win; — NET : netnj(w) = net(w) , which
is net restricted to Wiy;. net;n; is surjective (because net is surjective):

o) = [ ol S et nety, () = (30)
-1 6(g = f)
/NET p(netmj(g)) |det net;nj (net;nlj (9))]
p(net;, s (f))
|det net! (neti_nlj(f))|’

inj

dg =

where |det net},;(w)| is the absolute Jacobian determinant of net;n;, evaluated at w. If there is a
locally flat net(w) = f (flat around w), then p(f) is high.

However, we prefer to follow another path. Our algorithm (flat minimum search) tends to
prune a weight w; if net(w) is very flat in w;’s direction. It prefers regions where det net'(w) =0
(where many weights lead to the same net function). Unlike Wolpert’s approach, ours distinguishes
the probabilities of targets f = net(w) with det net'(w) = 0. The advantage is: we do not only
search for net(w) which are flat in one direction but for net(w) which are flat in many directions
(this corresponds to a higher probability of the corresponding targets). Define

net™'(g) = {w € W | net(w) = g} (31)
and
plnet™(9)) == > plw). (32)
wenet—1(g)
We have
> genprP(net ' (9))8(g — f) p(net=1(f))

p(f)

TS er Sen e P )G — ) S yer pnet 1) (33)

net partitions W into equivalence classes. To obtain p(f), we compute the probability of w
being in the equivalence class {w | net(w) = f}, if randomly chosen according to p(w). An
equivalence class corresponds to a net function, i.e., net maps all w of an equivalence class to the
same net function.

Relation to FMS algorithm. FMS (from section 3) works locally in weight space W.
Let w' be the actual weight vector found by FMS (with A = net(w')). Recall the definition of
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G (Do) (I | Do) (see (22) and (23)): we want to find a hypothesis h which best approximates those
f with large p(f) (the test data has high probability of being drawn from such targets). We will
see that those f = net(w) with flat net(w) locally have high probability p(f). Furthermore we
will see that a w' close to w with flat net(w) has flat net(w'), too. To approximate such targets f,
the only thing we can do is find a w' close to many w with net(w) = f and large p(f). To justify
this approximation (see definition of p(f | Do) while recalling that h € Gr(p,)), we assume (1)
that the noise has mean 0, and (2) that small noise is more likely than large noise (e.g., Gaussian,
Laplace, Cauchy distributions).

To restrict p(f) = p(net(w)) to a local range in W, we define regions of equal net functions
Fw)={w |Y.0<7<lL,w+7(w —w) € W : net(w) = net(w + 7(&0 — w))}.
Note: F(w) C net~!(net(w)). If net(w) is flat along long distances in many directions w —w, then
F(w) has many elements. Locally in weight space, at w’ with h = net(w'), for v > 0 we define:
if the minimum w = argming{|| @ —w' || | || @ — w' ||< v,net(w) = f} exists, then py ,(f) =
¢ p(F(w)), where ¢ is a constant. If this minimum does not exist, then py (f) = 0. puwr ,(f)
locally approximates p(f). During search for w’ (corresponding to a hypothesis h = net(w')), to
locally decrease the expected test set error (see equation (20)), we want to enter areas where many
large F'(w) are near w' in weight space. We wish to decrease the test set error, which is caused
by drawing data from highly probable targets f (those with large py (f)). We do not know,
however, which w’s are mapped to target’s f by net(.). Therefore, we focus on F(w) (w near w’
in weight space), instead of p, (f). Assume || w' —w || is small enough to allow for a Taylor
expansion, and that net(w') is flat in direction (w — w'):
net(w) = net(w' + (w—w')) = net(w') + Vnet(w')(w — w') + £ (w — w')H (net(w'))(w — w') +. . .,
where H(net(w')) is the Hessian of net(.) evaluated at w’, Vnet(w)(w — w') = Vnet(w')(w —
w') + O(w —w'), and (w — w')H (net(w))(w —w') = (0w — w')H(net(w'))(w — w') + O(w — w')
(analogously for higher order derivatives). We see: in a small environment of w’, there is flatness
in direction (w —w'), too. Likewise, if net(w’) is not flat in any direction, this property also holds
within a small environment of w’. Only near w’ with flat net(w’), there may exist w with large
F(w). Therefore, it is reasonable to search for a w' with h = net(w'), where net(w') is flat within a
large region. This means to search for the h determined by G y(p,)(. | Do) of equation (22). Since
h € M(Dy), E(Dy,net(w')) < Ey holds: we search for a w’ living within a large connected region,
where for all w within this region E(net(w'), net(w), X) =Y .« || net(w')(z) — net(w)(z) |*<e,
where € is defined in section 2. To conclude: we decrease the relative overfitting error and the
underfitting error by searching for a flat minimum (see definition of flat minima in section 2).

Practical realization of the Gibbs variant.
(1) Select o and Eypi(cx, 8), thus implicitly choosing 3.
(2) Compute the set M (Dy).
(3) Assume we know how data is obtained from target f, i. e. we know p(Dy | f), (D \ Do | f),
and the prior p(f). Then we can compute G'ar(p,)(- | Do) and G(. | Dy).
(4) Start with 8 = 0 and increase 8 until equation (13) holds. Now we know the § from the
implicit choice above.
(5) Since we know all we need to compute p(h | Dy), select some h according to this distribution.

Three comments on certain FMS limitations.

1. FMS only approvimates the Gibbs variant given by the definition of G rr(p,)(h | Do) (see (22)
and (23)).

We ounly locally approximate p(f) in weight space. If f = net(w) is locally flat around w then
there exist units or weights which can be given with low precision (or can be removed). If there
are other weights w; with net(w;) = f, then one may assume that there are also points in weight
space near such w; where weights can be given with low precision (think of, e.g., symmetrical
exchange of weights and units). We assume the local approximation of p(f) is good. The most
probable targets represented by flat met(w) are approximated by a hypothesis A which is also
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represented by a flat net(w') (where w' is near w in weight space). To allow for approximation of
net(w) by net(w'), we have to assume that the hypothesis set H is dense in the target set T'. If
net(w') is flat in many directions then there are many net(w) = f that share this flatness and are
well-approximated by net(w’). The only reasonable thing FMS can do is to make net(w') as flat as
possible in a large region around w', to approximate the net(w) with large prior probability (recall
that flat regions are approximated by axis-aligned boxes, as discussed in section 7, paragraph
entitled “Generalized boxes?”). This approximation is fine if net(w’) is smooth enough in “unflat”
directions (small changes in w’ should not result in quite different net functions).

2. Concerning point (3) above:

p(f | Do) depends on p(Dy | f) (how the training data is drawn from the target, see (18)).
G (Do) (h | Do) depends on p(f | Do) and p(D \ Do | f) (how the test data is drawn from the
target). Since we do not know how the data is obtained, the quality of the approximation of the
Gibbs algorithm may suffer from noise which has not mean 0, or from large noise being more
probable than small noise.

Of course, if the choice of prior belief does not match the true target distribution, the quality
of Gar(py)(h | Do)’s approximation will suffer as well.

3. Concerning point (5) above:

FMS outputs only a single h instead of p(h | Dy). This issue is discussed in section 7 (paragraph
entitled “multiple initializations?”).

To conclude: Our FMS algorithm from section 3 only aepprozimates the Gibbs algorithm
variant. Two important assumptions are made: The first is that an appropriate choice of prior
belief has been made. The second is that the noise on the data is not too “weird” (mean 0, small
noise more likely). The two assumptions are necessary for any algorithm based on an additional
error term besides the training error. The approximations are: p(f) is approximated locally in
weight space, and flat net(w) are approximated by flat net(w’) with w' near w’s. Our Gibbs
variant takes into account that FMS uses only X, for computing flatness.

A.2. WHY DOES THE HESSIAN DECREASE?

Outline. This section shows that second order derivatives of the output function vanish during
flat minimum search. This justifies the linear approximations in section 4.

Intuition. We show that the algorithm tends to suppress the following values: (1) unit
activations, (2) first order activation derivatives, (3) the sum of all contributions of an arbitrary
unit activation to the net output. Since weights, inputs, activation functions, and their first and
second order derivatives are bounded, the entries in the Hessian decrease where the corresponding
|6w;;| increase.

Formal details. We consider a strictly layered feedforward network with K output units and
g layers. We use the same activation function f for all units. For simplicity, in what follows we
focus on a single input vector z,. z, (and occasionally w itself) will be notationally suppressed.
We have

oyt Zf'(Sl){ y’ fori:l} , (34)

Owi 3 Wim G for i # 1

where y* denotes the activation of the a-th unit, and s; =", wimy™.

The last term of equation (1) (the “regulator”) expresses output sensitivity (to be minimized)
with respect to simultaneous perturbations of all weights. “Regulation” is done by equalizing the
sensitivity of the output units with respect to the weights. The “regulator” does not influence the
same particular units or weights for each training example. It may be ignored for the purposes of
this section. Of course, the same holds for the first (constant) term in (1). We are left with the
second term. With (34) we obtain:
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ok
1 2
2]: 0g Xk:( Fur)

2 Z (fan-in of unit k) log | f'(sk)| +
unit £ in the g th layer
2 Z (fan-out, of unit j)log |y| +

unit j in the (g—1)th layer

Z (fan-in of unit 7) log Z (f'(sk)wkj)2 +

unit j in the (g—1)th layer k
2 Z (fan-in of unit j)log |f'(s;)] +
unit j in the (g—1)th layer
2 Z (fan-out, of unit j) log |y| +

unit j in the (g—2)th layer

Z (fan-in of unit j) logz (f'(sk) Z f’(Sz)wklwlj> +
l

unit j in the (g—2)th layer k
2 Z (fan-in of unit j)log |f'(s;)] +
unit j in the (g—2)th layer
2 Z (fan-out, of unit j)log |y| +

unit j in the (g—3)th layer

l> 2
> log; (f'(sk) ;f’(sll)wkll ;wlllz%ﬁ> (35)

i,j, where unit ¢ in a layer <(g—2)

Let us have a closer look at this equation. We observe:
(1) Activations of units decrease in proportion to their fan-outs.
(2) First order derivatives of the activation functions decrease in proportion to their fan-ins.
(3) A term of the form Y, (f'(sk) Xy, f/(s0)wrty 2oy, - Doy, f’(slr)wlrfllrwlrj)2 expresses the
sum of unit j’s squared contributions to the net output. Here r ranges over {0,1,...,g9 — 2}, and
unit j is in the (9 — 1 — r)th layer (for the special case r = 0, we get ), (f’(sk)wkj)2). These
terms also decrease in proportion to unit j’s fan-in. Analogously, equation (35) can be extended
to the case of additional layers.

Comment. Let us assume that f'(s;) = 0 and f(s;) = 0 is “difficult to achieve” (can be
achieved only by fine-tuning all weights on connections to unit j). Instead of minimizing |f(s;)]
or |f'(s;)| by adjusting the net input of unit j (this requires fine-tuning of many weights), our
algorithm prefers pushing weights wy; on connections to output units towards zero (other weights
are less affected). On the other hand, if f'(s;) = 0 and f(s;) = 0 is not “difficult to achieve”,
then, unlike weight decay, our algorithm does not necessarily prefer weights close to
zero. Instead, it prefers (possibly very strong) weights which push f(s;) or f'(s;) towards zero
(e.g., with sigmoid units active in [0,1]: strong inhibitory weights are preferred; with Gaussian
units: high absolute weight values are preferred). See the experiment in section 5.2.

How does this influence the Hessian? The entries in the Hessian corresponding to output

o can be written as follows:
920k f"(s) 90* 9o , 0%y _ 0y oy
i 0Wway  (f'(55))2 Ows; Oy + f'(sk) ;wm Dy 0wy + b B + Ouk dury ) (36)

where § is the Kronecker-Delta. Searching for big boxes, we run into regions of acceptable minima,
with o*’s close to target (section 2). Thus, by scaling the targets, ﬁ can be bounded.
Therefore, the first term in equation (36) decreases during learning.
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According to the analysis above, the first order derivatives in the second term of (36) are
pushed towards zero. So are the wy; of the sum in the second term of (36).
The only remaining expressions of interest are second order derivatives of units in layer (g —1).

The Bw Bw

order derlvatlves, and (d) the inputs are bounded. This is indeed the case, as will be shown for
networks with one or two hidden layers:
Case 1: For unit [ in a single hidden layer (¢ = 3), we obtain

are bounded if (a) the weights, (b) the activation functions, (c) their first and second

aZyl

0w | = |6wbiaf" (s)y’y"| < C1 (37)
1] uv

where y7,y? are the components of an input vector z,, and C; is a positive constant.
Case 2: For unit [ in the third layer of a net with 2 hidden layers (¢ = 4), we obtain

62 l . . _
52| = | ) + B o + Bu®) +
ij wv
£ (s1) (wiadinf" (3:)y7y" + 8ubuj f'(85)y" + 6uwbiv ' (s0)y?) | < Ca (38)

where C5 is a positive constant. Analogously, the boundedness of second order derivatives can be
shown for additional hidden layers.
Conclusion: As desired, our algorithm makes the HF

17w decrease where |6w;;| or
|6wy,| increase.

A.3. EFFICIENT IMPLEMENTATION OF THE ALGORITHM

Outline. We first explicitly compute the derivatives of (1). Then we show how to use Pearlmutter
and Mpgller’s algorithm to speed up the computation of second order terms (A.3.2).

For simplicity, in what follows we focus on a single input vector z,. Again, x, (and occasionally
w itself) will be notationally suppressed.

A.3.1 EXPLICIT DERIVATIVE OF EQUATION (1)
The derivative of the right-hand side of (1) is:

20k 22,k
E :k Dw;; Dw;;Owuy

OB(w,z,) __
OWay v - Zz,] Z (Bo )2 +

k Z oM 32Om
m Bw” Tw;; 0wuy

‘aatgl-c- ‘ ok FITErT e awm, -
", | sign(ges) =
S e z( : <z e
L V - (39)

ok

|20
Dw;;

Y| X =/
k ¥ Zm(gi—:-nj)2

To compute (2), we need

90k
8B(w xp) _ dwjj

Z (Bw”

m m k
12 aom Bk Y (B2 e fe
—r_——— | SIgn D,
Zm(z ( PSS! 2) S X, Bamn)?
2 (5, ) |
E (f’wzr
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where § is the Kronecker-Delta. Using the nabla operator and (40), we can compress (39):

Vo B(w, ;) ZH’” ot B(w,z,)) , (41)

where H is the Hessian of the output o*. Since the sums over I, 7 in (40) need to be computed
only once (the results are reusable for all i,5), V 5.0 B(w,z,) can be computed in O(L) time.

wij

The product of the Hessian and a vector can be computed in O(L) time (see next section). With
constant number of output units, the computational complexity of our algorithm is O(L).

A.3.2. FAST MULTIPLICATION BY THE HESSIAN

Pearlmutter (1994) and Mgller (1993) compute the product of a vector and the Hessian of the
error in O(L) time. Using Pearlmutter’s notation, we do the same with the Hessian of the output.
An operator R is defined as follows:

Ryl9(@)} = profa + ) limo - (12)

The Hessian of the kth output o* of a feedforward net is computed in 3 successive passes:
1. First backward pass (y' = oF):

oy 1 fori =1
oy’ {Z wﬂas for i # l} ’ (43)
' L, 0y
% (14)
oyt _ ;0
8w]~i - 68]' ' (45)

2. First forward pass:

- OB(w,xzp)
R{s;i} = Z(win{Z/]} + %Zﬂ) ; (46)
i W)
: 0 for y* input
= . 4
By {R{sl}fl’(sl) otherwise } (47)
3. Second backward pass (y' = o*):
oyt 0 for ¢ in layers not below 7' (48)
il Ayl 8B(w,z,) Oyl i3 [ ’
Oy >, ( JlR{gy b+ ((5’7%))‘9_3]> for y¢ in layers below y
!
Ry = o s&f{'(si)g‘zl , (19)
ot .
Ry =y r G+ R S (50)

The elements of the vector H’”’(VMB(w,zp)) are R{ 88110}-- (see (41)). Using the technique
Dw; ji

n (Pearlmutter, 1994), recurrent networks can be dealt with as well.

27



A.4. PSEUDO CODE OF THE ALGORITHM

Below the algorithm in pseudo code (using fast multiplication as in appendix A.3.2). Comments are
marked by “**”. Note: the pseudo code was omitted from the version for Neural Computation.
We recommend not to blindly reimplement the algorithm from the pseudo code, but to make a
serious effort to understand it, by consulting the body of the paper as well. We believe that this
will greatly facilitate proper, problem-specific use of the algorithm.

Notation. In what follows, the variable integers ¢ and j stand for units.

Variables k,m, k; are reserved for output units only.

g is the number of layers, where the gth layer is the output layer and the 1st layer is the input
layer.

The current pattern consists of input vector x and target vector ¢ (see section 2).

x[j] is the component of the input vector corresponding to input unit j.

t[k] is the component of the output vector corresponding to output unit k.

w(i][j] is the real-valued weight on the connection from unit j to unit ¢ (see w;; in section 2).
s[j] is the net input of unit j (see equation (34) and text thereafter).

f; is the activation function of unit j, f; is the first derivative, f;' is the second derivative of f;
(see appendix A.2).

y[j] is the activation of the j-th unit (see appendix A.2).

error[k] is the error of the k-th output unit.

ky[k][J] is ZZ—[’;]] (see equation (43)).
ks[k][7] is 8%”]] (see equation (44)).

ykw(k][i][§] is 8?1]%]]”’[]].] (see equation (45)).
ywli][j] is % = VE, the gradient of the quadratic error.

abs(z) denotes the absolute value of real z.

kron(m = k) returns 1 if m =k and 0 otherwise.

sign(z) returns the sign of real x.

t1[][], t2[], t3, t4 are variables (used to compute the right hand side of equation (40)).

2
- Bylk -
tl[z][]] = Zk is output unit (szﬁ]k[]]]) = Zk is output unit (ykw[k] [Z][]])2'

abs (5t )

w[l] .7] Z ( By[k] )2
& is output unit \ 9wkIl]

t2[k] = = D wlill] abs(ykw(k[{[j]) (see the sums over I,r in

t1[4][3]
(40)).

2
abs (i)
13 = Zk is output unit Zu[z] 4] - ) = Zk is output unit (t2[k1)2 (see the
\/Zk is output unit ( aw[l][]])
denumerator in the second line of equation (40))
abs it )
t4 = Zm is output unit Z 1" R Dulh
\/E (22 )
kq iS output unit \ 2wl[r]
8y[k1] ) oy[m] _dylk]
Qwli][j] Owlil[j] __

. Oy[m] kron(m=Fk) Zkl is output unlt( 1051
SIBN \ Buli][] outes
kq iS output unit [i105]

(S0, i output wnit (355)°)

S is output unit 120m] sign(ykuw{m][i][j]) <rertm =iy byl viultlEUL

([
in the second line of equation (40)).

3
2

see the numerator

weights stands for the number of weights that make a significant contribution to the computation
of the current pattern.

dwl[i][j] is an approximation of wi][j]’s precision (approximation because € is unknown).

insigni ficanti][j] marks whether or not w[i][j] provides a significant contribution to the compu-
tation of the current pattern.
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blk][][5] is m (see equation (40)).
[i ]]

rs[k][i] is R{s[i]} (see equation (46)).

] [i]}
ry[k] [i] is R{y[i]} (see equation (47)).
rdks[i] is R{ 8s[l]]} (see equation (49)).

]
rdky[i] is R{ ‘?9?;[’:]} (see equation (48)).
[J

]
rdwli][j] is R{-> B Z][J]} = VuB =Y, H¥(V sor 2ot B), the gradient of the additional error term B

Ow;;

(see equation (50)).

E is the current pattern’s quadratic error (see section 2 and appendix A.1).

« is the learning rate for the quadratic error.

A is the learning rate for the additional error term (the following values are used to make lambda
updates according to Weigend et al., 1991, see also section 5.6).

A is a parameter needed for updating .

o is a parameter needed for updating A, typical value is 0.5.

E, is the most recent epoch’s average error.

E,, is the current epoch’s average error.

E, is the exponentially weighted average epoch error.

7 is the parameter for the exponentially weighted error — a typical value is 0.9 or 0.99, depending
on training set size.

E,, is the tolerable error level — it depends on the task to be solved (see section 2 and appendix
A1, equation (13)).

exemplars is the number of exemplars observed during training.

epochlength is the length of an epoch, measured in number of presented training patterns.
epochs = exemplars % epochlength is the current number of epochs so far, where % represents
integer division.

lyw, lrdw, scale are variables required for normalizing B’ gradient to the length of E’s gradient.
wasalive[i][j] is TRUE if w[i][j] was alive for at least one pattern presented during the previous
epoch, and FALSE otherwise.

alive[i][j] is TRUE if wasalive[i][j] is TRUE and if alive[i][j] was always TRUE during all epochs
since wi][j] was set alive for the last time (otherwise alive[i][j] is FALSE).

«— denotes the assignment operator.

Additional comments.

e For simplicity, the description of the algorithm neglects bias weights and “true units”.

e Targets should be scaled to bound first order derivatives of output units — see text after
equation (36) in A.2 (e.g., for sigmoids active in [0, 1] scale targets to range [0.2,0.8]).

e Removing more than one weight (alive[i][j] «FALSE) at a time may cause the error to
increase. Removing only one weight at a time leads to smoother performance improvement.

e To prevent accidental weight removal in case of small training sets, we recommend not to
use too many near-zero inputs — weights from such inputs may be evaluated insigni ficant
despite being significant.

e Likewise, the random weight initialization in the beginning of the learning phase may cause
accidental weight removal due to small, random, initial derivatives. This can be prevented
by keeping all weights alive for a certain initial time interval.

e Initially, K’s value does not yet have a sensible interpretation. One may start with a large
K and decrease it as the error decreases.

e For each pattern, there is a minimal dw[i][j] (stored in é,in). Omin represents weight precision
required for significant weights.

29



Speeding up the algorithm. It makes sense to separate the algorithm into two phases. Phase 1
is conventional backprop, phase 2 is FMS. The backprop phase consists of the forward pass, the
first backward pass, and the weight update based on A = 0 (marked in the algorithm). Start with
phase 1. Switch to phase 2 if E, < 0.9 E},;. Switch again to phase 1 if E, > 1.1 E;, (the values
0.9 and 1.1 can be changed).

Two-phase learning does not sensitively depend on A (but avoid A values that are always too
small). Two-phase learning is justified because weights with large dw[i][j] (and small %)
hardly influence E’s gradient — it makes sense to let FMS focus on low-precision weights, and let
backprop focus on the others.

ALGORITHM.

Initialization. Set K = 10% or K = 10 (the exponent is the difference between the numbers of
significant digits required for maximal and minimal precision).

Set € to an arbitrary small value.

Set exemplars and epochs to 0.

Initialize wi][j] for all i, j.

Initialize A, « (typically, A = 0), and provide a criterion for stopping the learning procedure.
Set 7,0, A\, for instance, v = 0.9 or 0.99,0 = 0.5, A\ = 0.01 « or AX = 0.001 .

Set Ei,; to some desired error value after learning.

Set E,E,,E,, E, to 0.

Set epochlength.

Set exemplars, epochs to 0.

Set alive[i][j] = TRUE for all i, j.

Set wasalivel[i][j] = FALSE for all i, j.

Set 6min to a large value.

Set alive[i][j] = FALSE for non-existing w[i][j].

While training not stopped do
begin(while)

select pattern pair (z,t).

** The following variables can be set after they were used for the last time in the previous loop.
*ok

set all components of s, yw[|[], ky[][], t1[][, 2], rs[][], rdw(][], rdky]] to O
set all components of insigni ficant]][] to FALSE
set t3,t4,F to 0

** Forward pass. **

for all input units 5 do
begin

|yl < xlj]

end
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foru =2 to g do

begin

| for all units 7 in layer u do

| begin

| | for all units j in layer u — 1 do
| | begin

1| if (ative[d[f]) do

||| begin

L sli] e sfi] + wlill] o)
1| end

| | end

|yl < fils[i])

| end

end

** Compute the error. **

for all output units k& do
begin

| error[k] « t[k] — y[k]
| E « E + (error[k])?
end

E, — E,+E

** Compute the error gradient **

** 1. backward pass. **
for all output units k& do
begin

ks[k][k] — fi.(s[k])
foru=1tog—1do

|

|

| begin

| | for all units j in layer g — u do

| | begin

| | | (IF uw # 1 THEN: for all units i in layer g —u + 1 ELSE: i = k) do
| | | begin

1| if (aliveld][5]) do

||| Degin

b ykw k][] < yi] ks[E][i]

b | set abs(ykw[k][7]

b ywlil] < ywll] + ykwk][i[5] error(k]
T kylRIG) < kylRI[] + wli] 5] ks(R][i]

I I I I | ; t1[i][5] — $1[i][5] + (ykw(k][][5])?

| | | end

| ks[RIL] < Fi(sliDky[F] ]

| | end

| end

end

** End of conventional backprop (phase 1). **
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** compute b[k][i][j] = — 2B~ **
()
** we recommend to introduce additional local variables for inner loops, such as hl = /t1]i][/]

and h2 = ykw(k][i][j] / 1[i][5] **

for all output units k& do

begin

| for all i, 7, such that (alive[d][j]) do

| begin

1 P R stk G /T
| t3 — t3 + (t2[k])*

end

** some weights are insignificant to compute the current pattern **

for all 4, j, such that (alive[i][j]) do
begin

| swlillj) < Ve / (VELLIVES)
| if (bwl[i][j] < 6min ) do
| begin

| | Omin — dwli][7]

| end

end

weights < 0

for all 7, j, such that (alive[i][j]) do

begin

| if (bwli][§] > K 6min ) do
| begin

| | insignificant[i][j] — TRUE
| | for all output units & do
| | begin
I ] - ] - (R R (])?
| | end
| end

| else do

| begin

| | weights — weights + 1
| | wasalive[i][j] — TRUE
| end

end
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** ypdate variables after having marked the current pattern’s insignificant weights **
t3 — 0
for all output units k& do

begin

| t2[k] < 0

| for all ¢, j, such that (alive[i][j] AND NOT insignificant[i][j] ) do
| begin

|1 £2[k] « #2[k] + abs(ykw[k][i][j]) //#1[i][]]

| end

| t3 — t3 + (t2[k])?

end

for all output units k& do

begin

for all i, j, such that (alive[i][j] AND NOT insignificant[i][j] ) do
begin

| t4 0

| for all output units m do

| begin

| | t4 — t4 + t2[m] sign(ykw[m][i][j])

| (keon(m = k) A1[i][j] — ykwm]ilj] ykwKEG]) / (165D
| end

|

|
|
|
|
|
|
I
I ; blk][i][j] < ykwlk][i][j] / t1[][j] + weights t4 ] t3
en
end

** Forward pass. **

for all output units k& do

begin

for all input units j do

begin

| rylkl) 0

end

for u =2 to g do

begin

(IF u # g THEN: for all units i in layer w ELSE: i = k) do
begin

| for all units j in layer u — 1 do

| begin

| | if (alive[i][j] AND NOT insignificant[i][j] ) do

| | begin

L rslkll) < rslkIG + will] rylKIL) + kA oli)
| | end

| end

|

|
|
|
|
|
|
|
|
I rylk][i] — rs[k][i] fi(s[i))

end

end
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** 2. backward pass. **

for all output units k& do

begin

rdks[k] — rs[kE] f{/(s[k))

foru=1tog—1do

begin

for all units j in layer g — u do

begin

rdkylj] — 0

(IF w # 1 THEN: for all units ¢ in layer ¢ — u + 1 ELSE: i = k) do
begin

| if (alive[i][j] AND NOT insignificant[i][j] ) do

| begin

|| rdkyl) — rdkylj] + wlillj] rdks(i] + bIKIGT) KSR
| rdwlillj] < rdwfillj] + ylj] rdksli] + rylkI] ks[RI
| end

end

|
|
|
|
|
|
|
I
| rdks(j] < fi(sl5]) rdkylj] + rsk][5] £ (s(5]) kylF][j]

end

end
end

** Normalize B’s gradient to the length of E’s gradient. **

lyw 0
lrdw « 0

for all 4, j, such that (alive[i][j] AND NOT insignificant[i][j] ) do
begin

| lyw — lyw + (ywli][5])?

| Irdw « Irdw + (rdw(i][j])?

end

scale = v/lyw/VIrdw ** scale = || yw || / || rdw || **

** End of B’s gradient computation (phase 2). **

** Weight update. **

for all 7, j, such that (alive[i][j] AND NOT insignificant[i][j] ) do
begin

| wlilj] <« willj] + e yw(i)[j] — A scale rdw[i][]

end

** Update learning parameters. **

exemplars «— exemplars + 1
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if (exemplars mod epochlength = 0) do ** “mod” is the modulo function **
begin

epochs < epochs + 1

E, — E, | epochlength

E,—~vE,+(1-—%)E,

** lambda update according to Weigend et al.(1991). **

if (En < Eil OR E, < Eo) do

begin

| A=A+ AN

end

else do

|

|

|

| | if (A <0) do
| | begin
1 A<0
| | end

| end

| else do

| begin

| | Ao

| end

E, 0

** update weights that are alive, **

** a weight is alive if it was alive (marked by wasalive]][])
** for at least one pattern presented during the previous epoch. **
for all ¢, 7, such that (alive[i][j]) do

*3k

begin

| if (wasalive[i][j] = FALSE) do
| begin

| | alive[i][j] = FALSE

| end

| wasalive[i][j] = FALSE

end

if (epochs mod 100 =0 OR E, > 2.0 E;,;) do
** weights are re-animated if the average error is too large; weights are also **

** re-animated every 100-th epoch, to enable faster reduction of quadratic error **
** (due to weight changes, some previously dead weight may turn out to deserve **

** to live again); one may use values other than 100 and 2.0 **

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|  Eo< En
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

begin

| for all i, j such that w[i][j] exists do
| begin

| | aliveli][j] = TRUE

| end

end

end

decide whether to stop learning or not

end(while)
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