
FLAT MINIMUM SEARCHFINDS SIMPLE NETSTechnical Report FKI-200-94Sepp Hochreiter J�urgen Schmidhuberhochreit@informatik.tu-muenchen.de schmidhu@informatik.tu-muenchen.deFakult�at f�ur Informatik, H2Technische Universit�at M�unchen80290 M�unchen, GermanyDecember 31, 1994AbstractWe present a new algorithm for �nding low complexity neural networks with high general-ization capability. The algorithm searches for a \
at" minimum of the error function. A 
atminimum is a large connected region in weight-space where the error remains approximatelyconstant. An MDL-based argument shows that 
at minima correspond to low expected over-�tting. Although our algorithm requires the computation of second order derivatives, it hasbackprop's order of complexity. Automatically, it e�ectively prunes units, weights, and inputlines. Various experiments with feedforward and recurrent nets are described. In an applica-tion to stock market prediction, 
at minimum search outperforms (1) conventional backprop,(2) weight decay, (3) \optimal brain surgeon" / \optimal brain damage".1 INTRODUCTIONOur algorithm �nds a large region in weight space with the property that each weight vector inthat region leads to similar small error. Such a region is called a \
at minimum" [15]. To getan intuitive feeling for why a 
at minimum is interesting, consider this (see also [50]): a \sharp"minimum (see �gure 2) corresponds to weights which have to be speci�ed with high precision.A 
at minimum (see �gure 1) corresponds to weights many of which can be given with lowprecision. In the terminology of the theory of minimum description length (MDL [45, 39]), fewerbits of information are required to describe a 
at minimum (corresponding to a \simple" or lowcomplexity-network). The MDL principle suggests that low network complexity corresponds tohigh generalization performance.Unlike e.g. Hinton and van Camp's method [14], our algorithm does not depend on the choiceof a \good" prior. It �nds a \
at" minimumby searching for weights that minimize both trainingerror and weight precision. This requires the computation of the Hessian. However, by usingPearlmutter's and M�ller's e�cient second order method [35, 26], we obtain conventional back-prop's order of computational complexity. Automatically, the method e�ectively reduces numbersof units, weights, and input lines, as well as output sensitivity with respect to remaining weightsand units. Unlike e.g. simple weight decay, the method treats/prunes units and weights in di�erentlayers in di�erent reasonable ways.Outline. Section 2 introduces basic concepts. Section 3 describes the novel algorithm. Excel-lent experimental generalization results are reported in section 4. Section 5 mentions relations toprevious work. A detailed theoretical justi�cation of our approach is presented in the appendix.1



Figure 1: Example of a \
at" minimum. Figure 2: Example of a \sharp" minimum.2 TASK / ARCHITECTURE / BOXESGeneralization task. The task is to approximate an unknown relation �D � X � Z between aset of possible inputs X � RN and a set of possible outputs Z � RK . �D is taken to be a function.A relation D is obtained from �D by adding noise to the outputs (see appendix A.1). All traininginformation is given by a �nite relation D0 � D. D0 is called the training set. The pth element ofD0 is denoted by an input/target pair (xp; dp).Architecture. For simplicity, we will focus on a standard feedforward net (but in the experi-ments, we will use recurrent nets as well). The net has N input units, K output units, W weights,and di�erentiable activation functions. It maps input vectors xp 2 RN to output vectors op 2 RK .The weight from unit j to i is denoted by wij. The W -dimensional weight vector is denoted by w.Training error. We use mean squared error Eq(w;D0) := 1jD0jP(xp;dp)2D0 k dp � op k2,where k : k denotes the Euclidian norm, and j:j denotes the cardinality of a set.Tolerable error. To de�ne a region in weight space with the property that each weightvector from that region has \similar small error", we introduce the tolerable error Etol, a pos-itive constant. \Small" error is de�ned as being smaller than Etol. Eq(w;D0) > Etol implies\under�tting".Boxes. Each weight w satisfying Eq(w;D0) � Etol de�nes an \acceptable minimum". We areinterested in a large region of connected acceptable minima. Such a region is called a
at minimum. They are associated with low expected generalization error (see appendix A.2).To simplify the algorithm for �nding a large connected region (see below), we do not considermaximal connected regions but focus on so-called \boxes" within regions: for each acceptableminimum w, its box Mw in weight space is a W -dimensional hypercuboid with center w. Forsimplicity, each edge of the box is taken to be parallel to one weight axis. Half the length of thebox edge in direction of the axis corresponding to weight wij is denoted by �wij, which is themaximal (positive) value such that for all pairs (i; j), all positive �ij � �wij can be added to orsubtracted from the corresponding wij simultaneously without violating Eq(:; D0) � Etol (�wijgives the precision of wij). Mw's box volume is de�ned by V (�w) := 2W Qi;j�wij, where �wdenotes the vector with components �wij.3 THE ALGORITHMStarting with a random initial weight vector, 
at minimum search (FMS) �nds a w de�ninga box Mw with maximal box volume V (�w) and minimal ~B(w;D0) := � log( 12W V (�w)) =Pi;j � log�wij. Note the relationship to MDL ( ~B is the number of bits required to describe theweights, see appendix A.3). 2



In A.3, we derive the following algorithm. We use gradient descent to minimize E(w;D0) =Eq(w;D0) + �B(w;D0), whereB(w;D0) = 12 0B@�W log �+Xi;j logXk ( @ok@wij )2 +W logXk 0@Xi;j j @ok@wij jqPk( @ok@wij )21A21CA . (1)Here ok is the activation of the kth output unit, � is a constant, and � is a positive variableensuring either Eq(w;D0) � Etol or an expected decrease of Eq(:; D0) during learning (see [47] foradjusting �). To minimize B(w;D0), we have to compute@B(w;D0)@wuv = Xk;i;j @B(w;D0)@( @ok@wij ) @2ok@wij@wuv for all u; v . (2)See details in appendix A.5.1. It can be shown that by using Pearlmutter's and M�ller's e�cientsecond order method [35, 26], the gradient of B(w;D0) can be computed in O(W ) time (see detailsin A.5). Therefore, our algorithm has the same order of computational complexity asstandard backprop.4 EXPERIMENTAL RESULTS4.1 EXPERIMENT 1 { noisy classi�cation.The �rst experiment is taken from Pearlmutter and Rosenfeld [36]. The task is to decide whetherthe x-coordinate of a point in 2-dimensional space exceeds zero (class 1) or doesn't (class 2). Noisytraining examples are generated as follows: data points are obtained from a Gaussian with zeromean and stdev 1.0, bounded in the interval [�3:0; 3:0]. The data points are misclassi�ed withprobability 0:05. Final input data is obtained by adding a zero mean Gaussian with stdev 0.15 tothe data points. In a test with 2,000,000 data points, it was found that the procedure above leadsto 9.27 per cent misclassi�ed data. No method will misclassify less than 9.27 per cent, due to theinherent noise in the data. The training set is based on 200 �xed data points (see �gure 3). Thetest set is based on 120,000 data points.
Figure 3: The 200 input examples of the training set. Crosses represent data points from class 1.Squares represent data points from class 0. 3



Backprop FMS Backprop FMSMSE dto MSE dto MSE dto MSE dto1 0.220 1.35 0.193 0.00 6 0.219 1.24 0.187 0.042 0.223 1.16 0.189 0.09 7 0.215 1.14 0.187 0.073 0.222 1.37 0.186 0.13 8 0.214 1.10 0.185 0.014 0.213 1.18 0.181 0.01 9 0.218 1.21 0.190 0.095 0.222 1.24 0.195 0.25 10 0.214 1.21 0.188 0.07Table 1: 10 comparisons of conventional backprop (BP) and 
at minimum search (FMS). Thesecond row (labeled \MSE") shows mean squared error on the test set. The third row (\dto") showsthe di�erence between the percentage of misclassi�cations and the optimal percentage (9.27). Theremaining rows provide the analoguous information for FMS, which clearly outperforms backprop.Results. 10 conventional backprop (BP) nets were tested against 10 equally initialized net-works trained by 
at minimumsearch (FMS).After 1,000 epochs, the weights of our nets essentiallystopped changing (automatic \early stopping"), while backprop kept changing weights to learn theoutliers in the data set and over�t. In the end, our approach left a single hidden unit h with amaximal weight of 30:0 or �30:0 from the x-axis input. Unlike with backprop, the other hiddenunits were e�ectively pruned away (outputs near zero). So was the y-axis input (zero weight toh). It can be shown that this corresponds to an \optimal" net with minimal numbers of units andweights. Table 1 illustrates the superior performance of our approach.Parameters:Learning rate: 0.1.Architecture: (2-20-1).Number of training epochs: 400,000.With FMS: Etol = 0:0001.See section 4.6 for parameters common to all experiments.4.2 EXPERIMENT 2 { recurrent nets.The method works for continually running fully recurrent nets as well. At every time step, arecurrent net with sigmoid activations in [0; 1] sees an input vector from a stream of randomlychosen input vectors from the set f(0; 0); (0; 1); (1; 0); (1; 1)g. The task is to switch on the �rstoutput unit whenever an input (1; 0) had occurred two time steps ago, and to switch on thesecond output unit without delay in response to any input (0; 1). The task can be solved by asingle hidden unit.Non-weight-decay-like results. With conventional recurrent net algorithms, after training,both hidden units were used to store the input vector. Not so with our new approach. We trained20 networks. All of them learned perfect solutions. Like with weight decay, most weights to theoutput decayed to zero. But unlike with weight decay, strong inhibitory connections (-30.0)switched o� one of the hidden units, e�ectively pruning it away.Parameters:Learning rate: 0.1.Architecture: (2-2-2).Number of training examples: 1,500.Etol = 0:0001.See section 4.6 for parameters common to all experiments.4



4.3 EXPERIMENT 3 { stock market prediction (1).We predict the DAX1 (the German stock market index) using fundamental indicators. FollowingRehkugler and Poddig [38], the net sees the following indicators: (a) German interest rate (\Um-laufsrendite"), (b) industrial production divided by money supply, (c) business sentiments (\IFOGesch�aftsklimaindex"). The input (scaled in the interval [-3.4,3.4]) is the di�erence between datafrom the current quarter and last year's corresponding quarter. The goal is to predict the sign ofnext year's corresponding DAX di�erence.The training set consists of 24 data vectors from 1966 to 1972. Positive DAX tendency ismapped to target 0.8, otherwise the target is -0.8. The test set consists of 68 data vectors from1973 to 1990. Flat minimum search (FMS) is compared against: (1) Conventional backprop (BP8)with 8 hidden units, (2) Backprop with 4 hidden units (BP4) (4 hidden units are chosen becausepruning methods favor 4 hidden units, but 3 is not enough), (3) Optimal brain surgeon (OBS[12]), with a few improvements (see section 4.6), (4) Weight decay (WD) according to [47] (WDand OBS were chosen because they are well-known and widely used). Three di�erent con�dencemeasures are used: network output exceeding 0.0 (0.6, 0.9) is interpreted as a prediction of positivetendency. Network output below 0.0 (-0.6, -0.9) is interpreted as a prediction of negative tendency.Other outputs don't count.Since wrong predictions lead to loss of money, performance is measured as follows. The sumof con�dently but incorrectly predicted DAX changes is subtracted from the sum of con�dentlyand correctly predicted DAX changes. The result is divided by the sum of absolute DAX changes.The most pro�table network predicts everything con�dently and correctly. With two networkswith equal performance, the one making fewer con�dent predictions is preferrable.Results. See table 2. Our method outperforms the other methods. Only with con-�dence measure 0.9, BP4 and BP8 exhibit better performance per prediction, but considerablyfewer predictions are made. Not much money can be made this way. Using FMS, the numberof con�ndent predictions does not change a lot if the con�ndence measure is changed. Thus,predicition quality does not depend strongly on the con�ndence measure to be chosen in advance.Table 3 shows upper performance bounds for early stopping methods. They are obtainedby cheating: test set performance is monitored during learning the training set. Column \b" showsthe minimal number of millions of training examples needed to achieve small test set error, column\e" shows the corresponding maximal number (where test set error starts growing again). Thecorresponding interval I tends to be relatively small (only the best result within I is shown). Meanperformance on I approximately equals the performance of WD and FMS based on con�dencemeasures 0.0/0.6, and is below the performance of WD and FMS based on con�dence measure0.9. The probability of early stopping within I, but without cheating, is small.1Raw DAX version according to Statistisches Bundesamt (federal o�ce of statistics). Other data are from thesame source (except for business sentiment). Collected by Christian Puritscher, for a diploma thesis in industrialmanagement at LMU, Munich.train test removed performance{nr.-pred.nr. MSE F1 F2 F3 MSE F1 F2 F3 w u con�dence: 0.0/0.6/0.9BP81 0.004 0 0 0 1.002 25 25 22 25.74-68 31.38-65 22.59-292 0.003 0 0 0 1.002 29 25 23 44.81-68 34.76-62 20.22-233 0.003 0 0 0 0.999 30 25 21 47.33-68 30.97-59 21.31-304 0.003 0 0 0 0.860 29 22 17 39.26-68 30.92-56 24.97-355 0.003 0 0 0 0.886 30 22 18 39.26-68 35.19-56 24.97-356 0.003 0 0 0 0.896 29 24 17 29.15-68 35.80-56 23.61-357 0.000 0 0 0 0.966 29 24 20 38.78-68 42.61-59 24.02-34�x 0.003 0 0 0 0.945 29 24 20 37.76-68 34.52-59 23.10-32performance per prediction: 0.56-68 0.59-59 0.73-32to be continued on next page5



continued from previous pagetrain test removed performance{nr.-pred.nr. MSE F1 F2 F3 MSE F1 F2 F3 w u con�dence: 0.0/0.6/0.9BP41 0.004 0 0 0 1.070 31 28 23 42.02-68 35.07-60 17.35-272 0.004 0 0 0 1.072 31 28 23 42.02-68 35.07-60 17.35-273 0.004 0 0 0 1.069 31 28 23 42.02-68 35.07-60 17.35-274 0.004 0 0 0 1.071 31 28 23 42.02-68 35.07-60 17.35-275 0.004 0 0 0 1.069 31 28 23 42.02-68 35.07-60 17.35-276 0.004 0 0 0 1.065 31 28 24 42.02-68 34.47-61 17.35-277 0.131 4 2 0 1.043 35 30 21 42.02-68 34.47-61 17.35-27�x 0.043 1 0 0 1.066 32 28 23 42.02-68 34.90-60 17.35-27performance per prediction: 0.62-68 0.58-60 0.64-27OBS1 0.016 0 0 0 1.081 27 24 21 9 1 45.18-68 32.04-62 32.98-582 0.017 0 0 0 1.073 28 24 21 14 3 45.25-68 35.99-57 28.69-553 0.386 8 7 0 1.049 28 24 21 16 4 48.89-68 40.53-61 31.72-554 0.158 4 2 2 1.154 27 24 23 15 3 44.67-68 35.61-64 8.39-555 0.016 0 0 0 1.181 32 28 25 14 3 32.82-68 32.04-61 36.13-526 0.016 0 0 0 1.071 29 24 22 14 2 48.14-68 37.01-61 31.19-567 0.014 1 0 0 1.009 26 25 22 17 4 27.17-68 36.23-64 15.82-50�x 0.089 2 1 0 1.088 28 25 22 14 3 41.73-68 35.64-61 26.42-54performance per prediction: 0.61-68 0.58-61 0.49-54WD1 0.061 3 0 0 1.123 25 24 24 24 5 44.47-68 44.79-66 39.46-602 0.080 3 2 0 1.122 25 24 24 23 5 44.47-68 44.06-67 38.95-593 0.147 6 3 0 1.102 32 26 21 24 6 36.47-68 23.20-57 19.56-494 0.142 6 3 0 1.018 30 25 23 20 5 46.41-68 39.19-61 30.00-575 0.084 3 1 0 1.111 27 25 22 22 5 43.65-68 38.41-63 32.19-606 0.073 3 1 0 1.126 25 24 24 22 5 44.47-68 44.06-67 39.00-607 0.088 4 1 0 1.115 25 24 22 22 5 44.47-68 45.39-65 38.80-59�x 0.096 4 2 0 1.102 27 25 23 22 5 43.49-68 39.87-64 33.99-58performance per prediction: 0.64-68 0.62-64 0.59-58FMS1 0.037 0 0 0 1.179 27 25 24 24 4 47.60-68 45.80-65 35.82-622 0.053 0 0 0 1.149 26 24 22 26 5 47.74-68 35.75-58 36.28-563 0.037 0 0 0 1.151 25 24 24 23 4 40.89-68 38.54-67 35.58-634 0.040 0 0 0 1.146 26 24 23 22 3 40.89-68 36.89-65 38.78-635 0.037 0 0 0 1.213 25 25 25 26 4 47.60-68 47.60-68 45.25-676 0.039 0 0 0 1.158 27 25 23 20 3 39.70-68 37.39-64 37.39-647 0.040 0 0 0 1.140 26 24 23 24 4 40.89-68 43.92-65 37.45-61�x 0.040 0 0 0 1.162 26 24 23 24 4 43.62-68 40.84-65 38.08-62performance per prediction: 0.64-68 0.63-65 0.61-62Table 2: 7 comparisons of conventional backprop (BP4, BP8), optimal brain surgeon (OBS),weight decay (WD), and 
at minimum search (FMS). All nets except BP4 start out with 8 hiddenunits. Column \MSE" shows mean squared error, \F1" (\F2",\F3") indicates number of errorsgreater than 0.2 (0.8, 1.4). \F2" indicates number of incorrect predictions (68 at most) usingcon�ndence measure 0.0, \F3" indicates number of incorrect con�dent predictions using con�dencemeasure 0.6. The di�erence between \F1" and 68 is the corresponding number of correct con�dentpredictions. Column \w" shows the number of pruned weights, column \u" shows the number ofpruned units, the �nal 3 rows (\0.0", \0.6", \0.9") list pairs of performance (see text) and numberof con�dent predictions. �x denotes the mean of 7 trials. Note that test MSE is insigni�cant forperformance evaluations (this is due to targets 0.8/-0.8, as opposed to the \real" DAX targets).With all con�dence measures, our method outperforms all other methods.6



train test interval I performance{nr.-pred.nr. MSE F1 F2 F3 MSE F1 F2 F3 b e con�dence: 0.0/0.6/0.9ES1 0.004 0 0 0 0.978 25 23 21 11.7 12.4 45.28-68 45.69-60 21.30-272 0.006 0 0 0 0.983 26 23 22 1.22 1.59 45.28-68 43.94-64 20.75-293 0.007 0 0 0 1.000 26 24 23 1.60 1.97 45.25-68 45.52-65 26.74-334 0.004 0 0 0 0.930 26 24 19 8.11 8.27 45.25-68 36.69-61 18.62-265 0.006 0 0 0 0.939 27 23 19 1.47 1.66 46.71-68 47.02-59 20.84-266 0.005 0 0 0 0.973 26 24 21 0.88 3.73 45.25-68 46.71-63 19.54-277 0.007 0 0 0 0.993 26 24 22 1.03 1.16 45.25-68 46.80-64 22.88-29�x 0.007 0 0 0 0.971 26 24 21 45.47-68 44.62-62 21.52-28performance per prediction: 0.67-68 0.72-62 0.76-28Table 3: Upper performance bounds for arbitrary early stopping (ES) methods. They are obtainedby cheating by looking at test set performance during learning. All nets start out with 8 hiddenunits. Column \MSE" shows mean squared error, \F1" (\F2",\F3") indicates number of errorsgreater than 0.2 (0.8, 1.4). \F2" indicates number of incorrect predictions (68 at most) usingcon�ndence measure 0.0, \F3" indicates number of incorrect con�dent predictions using con�dencemeasure 0.6. The di�erence between \F1" and 68 is the corresponding number of correct con�dentpredictions. Column \b" shows the minimal number of millions of training examples needed toachieve small test set error, column \e" shows the corresponding maximal number (where test seterror starts growing again). The �nal 3 rows (\0.0", \0.6", \0.9") list pairs of performance (seetext) and number of con�dent predictions. �x denotes the mean of 7 trials.Parameters:Learning rate: 0.01.Architecture: (3-8-1), except BP4 with (3-4-1).Number of training examples: 20,000,000.Method speci�c parameters:� FMS: Etol = 0:13; �� = 0:001.� WD: like with FMS, but w0 = 0:2.� OBS: Etol = 0:015 (the same result was obtained with higher Etol values, e.g. 0.13).See section 4.6 for parameters common to all experiments.4.4 EXPERIMENT 4 { stock market prediction (2).We predict the DAX again, using the basic set-up of the experiment in section 4.3. However, thefollowing modi�cations are introduced:� There are two additional inputs: (d) dividend rate, (c) foreign orders in manufacturingindustry.� Monthly predictions are made. The net input is the di�erence between the current month'sdata and last month's data. The goal is to predict the sign of next month's correspondingDAX di�erence.� There are 228 training examples and 100 test examples.� The target is the percentage of DAX change scaled in the interval [-1,1] (outliers are ignored).� Network output exceeding 0.0 (0.6, 0.8) is interpreted as a prediction of positive tendency.Network output below 0.0 (-0.6, -0.8) is interpreted as a prediction of negative tendency.Other outputs don't count. 7



� Performance of WD and FMS is also tested on networks \spoiled" by conventional backprop(\WDR" and \FMSR" { the \R" stands for Retraining).Results are shown in table 4. Average performance of our method almost alwaysexceeds the ones of weight decay, OBS, and conventional backprop. The only exceptionis weight decay with con�dence measure 0.6 (but with the other comparisons, 
at minimum searchoutperforms weight decay). Table 4 also shows superior performance of our approach when it comesto retraining \spoiled" networks (note that OBS is a retraining method by nature). FMS led tothe best improvements in generalization performance.Like table 3, table 5 shows upper performance bounds for early stopping methods. Again,they are obtained by cheating: test set performance is monitored during learning the trainingset. Columns \b" and \e" are analoguous to those in table 3. Mean performance on interval Iapproximately equals the performance of WD and FMS based on con�dence measures 0.0/0.8,and exceeds the performance of all investigated methods based on con�dence measure 0.6. Recallthat the probability of early stopping within I, but without cheating, is small.train test removed performance{nr.-pred.nr. MSE F1 F2 F3 MSE F1 F2 F3 w u con�dence: 0.0/0.6/0.8BP1 0.170 154 37 12 0.613 81 30 31 38.51-100 21.79-43 11.46-132 0.183 142 42 18 0.430 78 25 20 55.10-100 19.29-28 10.42-123 0.186 150 48 16 0.580 73 35 31 20.69-100 16.60-22 15.51-134 0.176 135 37 16 0.459 83 26 22 57.33-100 14.40-21 6.19-85 0.180 148 45 13 0.600 80 36 27 24.43-100 20.77-34 8.50-136 0.184 156 40 12 0.558 84 33 29 39.05-100 27.88-30 2.71-77 0.187 152 44 14 0.529 81 29 30 49.16-100 25.19-25 2.19-48 0.173 140 37 12 0.552 74 27 31 41.27-100 13.18-24 8.97-109 0.189 150 41 13 0.528 78 29 28 42.50-100 16.04-33 18.05-1810 0.186 143 41 16 0.503 82 30 25 48.06-100 11.42-27 9.30-11�x 0.181 147 41 14 0.535 79 30 27 41.61-100 18.67-29 9.33-11performance per prediction: 0.42-100 0.65-29 0.85-11OBS1 0.217 158 40 16 0.515 80 29 32 18 2 39.09-100 19.89-38 9.91-102 0.213 164 39 14 0.491 79 30 32 17 2 40.88-100 22.72-25 10.72-113 0.245 170 51 22 0.463 81 29 26 12 0 50.78-100 13.93-18 10.68-84 0.215 162 41 17 0.525 76 31 31 15 1 32.20-100 21.61-27 13.82-145 0.212 165 42 14 0.498 83 34 28 14 1 34.50-100 17.18-25 10.84-76 0.235 162 50 24 0.503 79 29 28 13 0 40.55-100 14.31-25 8.23-87 0.217 154 43 18 0.525 84 29 28 17 2 43.60-100 10.99-26 4.55-88 0.213 162 45 15 0.497 84 33 27 14 1 36.58-100 17.83-24 4.57-69 0.213 160 39 15 0.498 81 28 28 18 2 40.36-100 21.52-28 8.52-710 0.212 167 41 19 0.500 83 30 25 13 1 45.72-100 20.39-26 8.23-10�x 0.219 162 43 17 0.502 81 30 29 15 1 40.43-100 18.04-26 9.01-9performance per prediction: 0.40-100 0.68-26 1.01-9WDR1 0.169 155 35 12 0.626 80 33 31 0 0 34.52-100 21.90-44 16.44-152 0.181 145 42 18 0.446 77 25 20 0 0 55.10-100 19.19-28 10.56-123 0.185 150 48 17 0.584 73 34 32 0 0 24.58-100 15.45-23 14.33-124 0.175 137 37 15 0.451 82 23 21 0 0 62.54-100 17.14-23 6.33-95 0.179 146 45 13 0.612 80 36 26 0 0 23.70-100 20.33-34 9.48-116 0.183 156 39 13 0.544 82 31 29 0 0 36.16-100 28.25-32 5.95-77 0.186 152 43 14 0.524 83 30 28 0 0 50.37-100 25.42-25 2.19-48 0.171 138 36 13 0.560 76 30 32 0 0 39.28-100 13.64-23 8.97-10to be continued on next page8



continued from previous pagetrain test removed performance{nr.-pred.nr. MSE F1 F2 F3 MSE F1 F2 F3 w u con�dence: 0.0/0.6/0.89 0.189 150 44 14 0.529 78 32 28 0 0 39.59-100 18.91-33 17.53-1910 0.186 142 41 15 0.504 85 32 27 0 0 45.88-100 13.72-29 7.79-10�x 0.180 147 41 14 0.538 80 31 27 0 0 41.17-100 19.39-29 9.95-11performance per prediction: 0.41-100 0.66-29 0.91-11FMSR1 0.168 154 35 11 0.627 80 32 32 0 0 36.14-100 23.79-40 16.44-152 0.180 146 42 18 0.449 76 26 21 0 0 53.86-100 19.19-28 10.56-123 0.185 148 48 16 0.583 74 34 32 0 0 24.58-100 15.45-23 15.51-134 0.174 136 36 15 0.447 81 22 21 0 0 64.07-100 19.24-24 8.15-105 0.179 143 44 13 0.611 80 35 26 0 0 23.70-100 22.74-33 9.48-116 0.182 156 39 13 0.546 81 32 29 0 0 34.52-100 26.77-31 5.95-77 0.185 151 43 14 0.525 82 29 28 0 0 50.53-100 27.71-25 2.19-48 0.170 138 36 13 0.559 77 29 32 0 0 40.69-100 12.83-24 8.97-109 0.188 156 40 14 0.535 76 31 29 0 0 39.92-100 24.30-34 17.09-1810 0.186 143 40 15 0.542 84 32 27 0 0 47.34-100 11.37-27 7.79-10�x 0.180 147 40 14 0.542 79 29 28 0 0 41.57-100 20.34-29 10.21-11performance per prediction: 0.42-100 0.70-29 0.93-11WD1 0.235 159 54 23 0.435 80 29 25 18 3 37.04-100 18.51-13 1.06-12 0.235 158 54 23 0.429 81 27 25 18 3 43.43-100 18.98-13 1.06-13 0.235 159 55 23 0.435 82 28 24 18 3 44.47-100 18.51-13 1.96-24 0.235 164 55 25 0.454 79 27 24 13 2 54.04-100 12.61-17 0.51-15 0.235 158 54 23 0.438 82 29 25 18 3 36.50-100 18.51-13 1.96-26 0.235 158 48 24 0.464 89 28 32 18 3 50.53-100 20.77-11 0.90-17 0.235 164 56 26 0.512 83 32 28 14 2 35.60-100 15.27-17 9.01-68 0.235 166 54 24 0.471 81 33 24 18 3 32.03-100 20.12-14 7.65-49 0.235 158 54 23 0.442 78 29 26 18 3 36.81-100 17.88-12 1.06-110 0.235 158 54 23 0.440 80 30 26 18 3 37.04-100 17.88-12 1.06-1�x 0.235 160 54 24 0.452 82 29 26 17 3 40.75-100 17.90-12 2.62-2performance per prediction: 0.41-100 1.32-12 1.31-2FMS1 0.236 156 47 21 0.464 78 27 26 18 3 54.11-100 17.51-13 10.84-62 0.223 167 51 22 0.466 79 30 26 18 3 48.73-100 18.20-15 4.52-43 0.237 150 49 21 0.490 75 27 24 17 3 49.77-100 16.09-16 14.35-74 0.253 166 57 24 0.461 83 30 29 24 4 44.26-100 18.40-11 9.38-55 0.245 170 47 20 0.501 83 29 25 18 3 39.49-100 17.58-11 0.71-16 0.247 164 58 25 0.486 81 30 27 24 4 31.12-100 24.00-16 16.33-107 0.237 161 53 24 0.478 81 31 27 18 3 36.04-100 12.14-10 0.82-18 0.252 166 57 24 0.459 84 29 28 21 4 45.38-100 17.83-12 1.38-19 0.235 163 56 24 0.453 82 29 24 18 3 43.81-100 16.61-14 1.06-110 0.235 158 44 23 0.462 82 27 26 18 3 51.26-100 17.62-13 0.43-1�x 0.240 162 52 23 0.472 81 29 26 19 3 44.40-100 17.60-13 5.98-4performance per prediction: 0.44-100 1.24-13 1.62-4Table 4: 10 comparisons of conventional backprop (BP), optimal brain surgeon (OBS), weightdecay after spoiling the net with BP (WDR), 
at minimum search after spoiling the net with BP(FMSR), weight decay (WD), 
at minimum search (FMS). All nets start out with 8 hidden units.Column \MSE" shows mean squared error, \F1" (\F2",\F3") indicates number of errors greaterthan 0.2 (0.8, 1.4). Column \w" shows the number of pruned weights, column \u" shows thenumber of pruned units. The �nal 3 rows (\0.0", \0.6", \0.8") list pairs of performance (see text)and number of con�dent predictions. �x denotes the mean of 10 trials. In one case (con�dencemeasure 0.6), weight decay does slightly better than FMS. But in all other cases, 
at minimumsearch outperforms all other methods, including WD.9



train test interval I performance{nr.-pred.nr. MSE F1 F2 F3 MSE F1 F2 F3 b e con�dence: 0.0/0.6/0.8ES1 0.209 159 54 17 0.487 77 29 26 0.96 10.4 42.77-100 22.87-22 12.99-82 0.206 153 50 17 0.405 74 25 20 1.12 1.24 56.12-100 22.52-19 9.86-83 0.209 154 47 21 0.530 74 29 33 1.20 1.32 42.93-100 19.95-24 14.33-94 0.198 149 46 19 0.436 76 24 25 1.52 2.24 61.71-100 11.67-17 9.36-95 0.227 160 55 20 0.467 77 28 25 0.52 0.80 48.38-100 20.41-19 9.03-76 0.234 163 54 20 0.444 77 28 24 0.44 0.72 43.85-100 22.06-19 10.44-57 0.222 157 55 19 0.425 78 24 23 0.60 0.96 60.75-100 25.13-21 4.51-48 0.233 160 58 19 0.460 79 28 24 0.44 0.64 43.23-100 24-08-18 1.38-19 0.236 158 58 21 0.430 83 26 24 0.36 0.48 50.83-100 14.88-13 2.44-210 0.232 162 58 20 0.441 80 28 25 0.36 0.52 44.66-100 15.99-19 2.44-2�x 0.221 158 54 19 0.453 78 27 25 49.52-100 19.95-19 7.68-5.5performance per prediction: 0.50-100 1.04-19 1.40-5.5Table 5: Upper performance bounds for arbitrary early stopping (ES) methods. They are obtainedby cheating by looking at test set performance during learning. All nets start out with 8 hiddenunits. Column \MSE" shows mean squared error, \F1" (\F2",\F3") indicates number of errorsgreater than 0.2 (0.8, 1.4). Column \b" shows the minimal number of millions of training examplesneeded to achieve small test set error, column \e" shows the corresponding maximal number (wheretest set error starts growing again). The �nal 3 rows (\0.0", \0.6", \0.8") list pairs of performance(see text) and number of con�dent predictions. �x denotes the mean of 10 trials.Parameters:Learning rate: 0.01.Architecture: (5-8-1).Number of training examples: 20,000,000.Method speci�c parameters:� FMS: Etol = 0:235; �� = 0:0001; if Eaverage < Etol then �� is set to 0.001.� WD: like with FMS, but w0 = 0:2.� FMSR: like with FMS, but Etol = 0:15; number of retraining examples: 5,000,000.� WDR: like with FMSR, but w0 = 0:2.� OBS: Etol = 0:235.See section 4.6 for parameters common to all experiments.4.5 EXPERIMENT 5 { stock market prediction (3).This time, we predict the DAX using weekly technical (as opposed to fundamental) indicators.The data (DAX values and 35 technical indicators) was provided by Bayerische Vereinsbank.To analyze the data, we computed: (1) The pairwise correlation coe�cients of the 35 technicalindicators. (2) The maximal pairwise correlation coe�cients of all indicators and all linear combi-nations of two indicators. This analysis reveiled that only 4 indicators are not highly correlated.For such reasons, our nets see only the 8 most recent DAX-changes and the following technicalindicators: (a) the DAX value, (b) change of 24-week relative strength index (\RSI") { the relationof increasing tendency to decreasing tendency, (c) \5 week statistic", (d) \MACD" (smootheneddi�erence of exponentially weighted 6 week and 24 week DAX).The �nal network input is obtained by scaling the values (a-d) and the 8 most recent DAX-changes in [�2; 2]. The training set consists of 320 data points (July 1985 to August 1991). Thetargets are the actual DAX changes scaled in [�1; 1].10



The following methods are applied to the training set: (1) Conventional backprop (BP), (2)weight decay (WD) according to [47], (3) 
at minimum search (FMS). The resulting nets areevaluated on a test set consisting of 100 data points (August 1991 to July 1993).Like in section 4.3, three di�erent con�dence measures are used: network output exceeding 0.0(0.2, 0.4) is interpreted as a prediction of positive tendency. Network output below 0.0 (-0.2, -0.4)is interpreted as a prediction of negative tendency. Other outputs don't count. Performance ismeasured like in section 4.3.Results. Table 6 shows the results. Again, our method outperforms the other methods.train test rem. performance{nr.-pred.MSE F1 F2 F3 F4 MSE F1 F2 F3 F4 w u con�dence: 0.0/0.2/0.4BP1 0.15 21 121 19 13 1.10 44 85 54 21 5.65-100 4.86-96 8.60-912 0.14 23 136 13 12 1.03 44 85 51 26 11.07-100 12.32-93 8.46-853 0.14 27 132 18 15 0.96 39 82 47 14 12.66-100 14.12-89 15.59-864 0.10 24 102 13 13 1.19 47 84 59 24 5.86-100 5.75-94 4.64-925 0.13 22 119 16 12 1.07 48 88 52 24 13.75-100 12.35-94 11.13-926 0.13 34 134 17 21 1.21 52 87 60 21 -16.7-100 -13.9-92 -13.2-847 0.12 20 131 14 12 1.08 48 87 53 21 9.67-100 12.06-92 10.16-888 0.13 24 116 19 16 0.90 37 81 44 16 28.45-100 28.67-92 28.13-899 0.13 16 116 15 10 1.22 53 90 63 28 -11.0-100 -14.0-94 -5.00-8810 0.12 23 108 12 16 1.00 44 82 50 21 21.53-100 20.12-95 21.00-93�x 0.13 23 122 16 14 1.08 46 85 53 22 8.08-100 8.23-93 8.95-89performance per prediction: 0.081-100 0.088-93 0.101-89WD11 0.51 148 275 125 85 0.330 43 68 24 22 109 8 18.69-100 0.0-0 0.0-02 0.51 149 275 124 86 0.330 39 71 23 20 110 8 25.60-100 0.0-0 0.0-03 0.51 148 276 124 85 0.342 48 70 23 22 109 8 -6.88-100 0.0-0 0.0-04 0.51 145 276 126 84 0.339 48 70 24 21 111 8 4.97-100 0.0-0 0.0-05 0.51 147 275 125 85 0.331 39 71 23 20 111 8 23.44-100 0.0-0 0.0-06 0.51 147 275 124 85 0.343 48 70 23 22 110 8 -6.88-100 0.0-0 0.0-07 0.51 146 276 126 84 0.330 38 71 23 21 110 8 26.84-100 0.0-0 0.0-08 0.51 145 276 127 84 0.337 47 69 23 22 110 8 -3.28-100 0.0-0 0.0-09 0.51 146 275 125 85 0.330 38 70 24 22 110 8 25.84-100 0.0-0 0.0-010 0.51 150 275 124 87 0.332 44 68 24 22 110 8 21.40-100 0.0-0 0.0-0�x 0.51 147 275 125 85 0.334 43 70 23 21 110 8 12.97-100 0.0-0 0.0-0performance per prediction: 0.130-100 0.0-0 0.0-0WD21 0.34 84 215 60 46 0.425 44 74 26 20 64 3 22.04-100 13.08-53 9.01-252 0.34 106 230 61 63 0.422 50 81 25 24 75 3 1.75-100 3.95-42 4.70-213 0.34 75 239 57 43 0.453 47 83 27 26 76 3 5.67-100 5.53-52 8.97-334 0.34 89 231 61 36 0.410 45 79 21 18 69 3 5.64-100 6.60-53 5.97-175 0.34 86 232 50 47 0.409 46 77 23 23 77 3 5.61-100 10.93-70 14.59-216 0.34 89 244 66 50 0.527 46 79 29 19 67 3 5.26-100 -7.20-62 -1.18-357 0.34 84 230 60 48 0.401 44 74 24 22 80 3 9.75-100 3.56-44 0.53-248 0.34 86 242 62 59 0.481 40 75 21 21 72 3 5.79-100 7.63-69 -14.0-289 0.34 90 234 51 47 0.463 47 76 25 26 68 2 12.32-100 20.61-70 0.23-3210 0.34 93 234 68 53 0.362 46 72 20 23 67 3 15.98-100 19.98-36 9.90-18�x 0.34 88 233 60 49 0.435 46 77 24 22 72 3 8.98-100 8.47-55 3.88-25performance per prediction: 0.090-100 0.154-55 0.153-25FMS11 0.38 111 231 87 60 0.391 44 76 25 22 103 7 18.82-100 5.97-23 7.46-192 0.45 127 258 96 73 0.349 45 81 24 22 102 7 23.26-100 5.14-20 8.55-183 0.47 126 276 109 77 0.356 45 79 16 23 103 7 26.11-100 9.42-13 9.42-13to be continued on next page11



continued from previous pagetrain test rem. performance{nr.-pred.MSE F1 F2 F3 F4 MSE F1 F2 F3 F4 w u con�dence: 0.0/0.2/0.44 0.48 126 276 109 71 0.339 43 79 23 18 103 7 26.46-100 9.68-13 8.59-125 0.46 122 274 108 75 0.344 42 78 24 22 103 7 27.49-100 8.43-13 4.86-116 0.48 129 270 116 76 0.343 46 76 24 22 103 7 18.09-100 6.64-6 6.64-67 0.47 124 274 108 76 0.352 43 77 24 22 103 7 24.53-100 8.82-12 4.96-98 0.48 126 276 109 71 0.330 44 79 22 20 103 7 26.46-100 9.68-13 8.59-129 0.48 129 273 114 77 0.340 46 76 24 22 103 7 18.09-100 5.60-7 5.60-710 0.47 121 274 101 65 0.340 43 78 26 20 103 7 29.72-100 11.42-27 10.91-24�x 0.46 124 268 106 72 0.348 44 78 23 21 103 7 21.26-100 8.08-15 6.70-13performance per prediction: 0.213-100 0.550-15 0.511-13FMS21 0.34 105 218 64 65 0.400 40 73 19 21 52 4 14.60-100 13.61-39 5.56-112 0.34 103 223 65 59 0.362 39 71 20 20 52 4 18.88-100 14.55-33 5.91-93 0.34 94 222 64 58 0.421 36 75 22 16 51 4 20.54-100 11.15-40 3.83-124 0.34 97 228 65 53 0.370 42 79 20 19 52 4 22.07-100 23.44-32 7.50-105 0.34 89 243 59 49 0.631 54 82 36 25 52 4 2.02-100 -7.08-68 -3.77-436 0.34 102 219 64 58 0.359 39 70 19 20 52 4 20.08-100 17.40-36 8.80-117 0.34 98 227 64 54 0.368 42 77 19 19 52 4 22.07-100 26.38-33 7.50-108 0.34 90 231 57 53 0.605 48 85 38 23 52 4 3.71-100 -14.8-55 -12.8-419 0.34 98 228 65 54 0.371 42 78 19 19 52 4 22.07-100 23.44-32 7.50-1010 0.34 95 217 73 54 0.410 46 75 27 21 52 4 9.75-100 1.49-13 0.59-12�x 0.34 97 226 64 56 0.430 43 76 24 20 52 4 15.58-100 10.95-38 3.06-17performance per prediction: 0.156-100 0.287-38 0.181-17Table 6: 10 comparisons of conventional backprop (BP), optimal brain surgeon (OBS), weightdecay (WD), 
at minimum search (FMS). All nets start out with 9 hidden units. Column \MSE"shows mean squared error, \F1" indicates number of tendency errors, \F2" (\F3") indicatesnumber of errors greater than 0.2 (0.8), \F4" indicates number of tendency errors for changesfrom increasing DAX tendency to decreasing DAX tendency (or vice versa). Column \w" showsthe number of pruned weights, column \u" shows the number of pruned units, the �nal 3 rows(\0.0", \0.2", \0.4") list pairs of performance (see text) and number of con�dent predictions. �xdenotes the mean of 10 trials. With all con�dence measures, our method outperformsBP and WD.Parameters:Learning rate: 0.01.Architecture: (12-9-1).Training time: 10,000,000 examples.Method speci�c parameters:� FMS1: Etol = 0:34; �� = 0:003.� FMS2: like with FMS1, but �� = 0:0005. If Eaverage < Etol then �� is set to 0.001.� WD1: like with FMS1, but w0 = 0:2.� WD2: like with FMS2, but w0 = 0:2.See section 4.6 for parameters common to all experiments.12



4.6 DETAILS / PARAMETERSWith exception of the experiment in section 4.2, all units are sigmoid in the range of [�1:0; 1:0].Weights are constrained to [�30; 30] and initialized in [-0.1,0.1]. The latter ensures high �rst orderderivatives in the beginning of the learning phase. WD is set up to hardly punish weights beloww0 = 0:2. Eaverage is the average error on the training set, approximated using exponential decay:Eaverage  
Eaverage + (1 � 
)Eq(w;D0), where 
 = 0:85. All nets with the same number (seetables 1 - 6) start with the same weight initialization.FMS details. To control B(w;D0)'s in
uence during learning, its gradient is normalized andmultiplied by the length of Eq(w;D0)'s gradient (same for weight decay, see below). � is computedlike in [47] and initialized with 0. Absolute values of �rst order derivatives are replaced by 10�20if below this value. We ought to judge a weight wij as being pruned if �wij (see equation (11)in appendix A.3) exceeds the length of the weight range. However, the unknown scaling factor �(see equations (9) and (11) in appendix A.3) is required to compute �wij. Therefore, we judge aweight wij as being pruned if, with arbitrary �, �wij is much bigger than the corresponding �'s ofthe other weights (typically, there are clearly separable classes of weights with high and low �'s).If all weights to and from a particular unit are very close to zero, the unit is lost: due to tinyderivatives, the weights will never again increase signi�cantly. Sometimes, it is necessary to bringlost units back into the game. For this purpose, every ninit time steps (typically, ninit = 500,000),all weights wij with 0 � wij < 0:01 are randomly re-initialized in [0:005; 0:01]; all weights wij with0 � wij > �0:01 are randomly initialized in [�0:01;�0:005], and � is set to 0.Weight decay details. We used the weight decay term in [47]: D(w;w0) = Pi;j w2ij=w01+w2ij=w0 .Like with FMS, D(w;w0)'s gradient was normalized and multiplied by the length of Eq(w;D0)'sgradient. � was adjusted like with FMS. Lost units were brought back like with FMS.Modi�cations of OBS. Typically, most weights exceed 1.0 after training. Therefore, higherorder terms of �w in the Taylor expansion of the error function do not vanish. Hence, OBS isnot fully theoretically justi�ed. Still, we used OBS to delete high weights, assuming that higherorder derivatives are small if second order derivatives are. To obtain reasonable performance, wemodi�ed the original OBS procedure (notation following Hassibi and Stork [12]):� To detect the weight that deserves deletion, we use both Lq = w2q[H�1 ]qq (the original valueused by Hassibi et al.) and Tq := � @E@wqwq + 12 @2E@w2qw2q . Here H denotes the Hessian andH�1 its approximate inverse. We delete the weight causing minimal training set error (aftertentative deletion).� Like with OBD [20], to prevent numerical errors due to small eigenvalues of H, we do: ifLq < 0:0001 or Tq < 0:0001 or k I �H�1H k> 10:0 (bad approximation of H�1), we onlydelete the weight detected in the previous step { the other weights remain the same. Herek : k denotes the sum of the absolute values of all components of a matrix.� If OBS' adjustment of the remaining weights leads to at least one absolute weight changeexceeding 5.0, then �w is scaled such that the maximal absolute weight change is 5.0. Thisleads to better performance (also due to small eigenvalues).� If Eaverage > Etol after weight deletion, then the net is retrained until either Eaverage < Etolor the number of training examples exceeds 800,000. Practical experience indicates that thechoice of Etol hardly in
uences the result.� OBS is stopped if Eaverage > Etol after retraining. The most recent weight deletion iscountermanded. 13



5 RELATION TO PREVIOUS WORKMost previous algorithms for �nding low complexity networks with high generalization capabilityare based on more prior assumptions than our approach (see appendix A.2). They can be broadlyclassi�ed into two categories (see [40], however, for an exception):(1) Assumptions about the prior weight distribution. Hinton and van Camp [14] andWilliams [49] assume that pushing the posterior distribution (after learning) close to the priorleads to \good" generalization (see more details below). Weight decay (e.g. [11, 18]) can bederived e.g. from Gaussian or Laplace priors. Nowlan and Hinton [34] assume that networks withmany similar weights generated by Gaussian mixtures are \better" a priori. MacKay's priors [23]are implicit in additional penalty terms, which embody the assumptions made.(2) Prior assumptions about how theoretical results on early stopping and networkcomplexity carry over to practical applications. Such assumptions are implicit in methodsbased on validation sets [30, 43, 7, 13], e.g. \generalized cross validation" [6, 9], \�nal predictionerror" [1], \generalized prediction error" [29, 28]. See also Holden [16], Wang et al. [46], Amariand Murata [2], and Vapnik's \structural risk minimization" [10, 44].Constructive algorithms / pruning algorithms. Other architecture selection methodsare less 
exible in the sense that they can be used only either before or after weight adjustments.Examples are \sequential network construction" [8, 3, 27], input pruning [28, 37], unit pruning[48, 31, 21], weight pruning, e.g. \optimal brain damage" (OBD [20]), \optimal brain surgeon"(OBS [12]).Hinton and van Camp [14]. They minimize the sum of two terms: the �rst is conventionalerror plus variance, the other is the distance R p(� j D0) log p(�jD0)p(�) d� between posterior p(� j D0)and prior p(�). The problem is to choose a \good" prior. In contrast to their approach, ourapproach does not require a \good" prior given in advance. Furthermore, Hinton and van Camphave to compute variances of weights and unit activations, which (in general) cannot be done usinglinear approximation. Intuitively speaking, their weight variances are related to our �wij. Ourapproach, however, does justify linear approximation, as seen in appendix A.4.Wolpert [50]. His (purely theoretical) analysis suggests an interesting di�erent additional errorterm (taking into account local 
atness in all directions): the logarithm of the Jacobi determinantof a functional from weight space to the space of possible nets. This term is small if the net output(based on the current weight vector) is locally 
at in weight space (if many weights lead to thesame net function in the space of possible net functions). It is not clear, however, how to derivea practical algorithm (e.g. a pruning algorithm) from this.Murray and Edwards [32]. They obtain additional error terms consisting of weight squaresand second order derivatives. Unlike our approach, theirs explicitly prefers weights near zero. Inaddition, their approach appears to require much more computation time (due to second orderderivatives in the error term).
14



APPENDIX { THEORETICAL JUSTIFICATIONContents:A.1 The probability distributionsA.2 Over�tting errorA.2.1 \Closeness" of D0 to DA.2.2 \Flatness" of DA.2.3 Approximation and minimum of the over�tting errorA.2.4 Why does search for big D0-boxes work?A.3 How to 
atten the network outputA.4 Why does the Hessian decrease?A.5 E�cient implementation of the algorithmA.5.1 Explicit derivative of equation (1)A.5.2 Fast multiplication by the HessianA.1. THE PROBABILITY DISTRIBUTIONSOutline. To measure over�tting error (in section A.2), we need probability distributions on dataand weights. The targets are partly due to noise (see section 2). The probability of matching theoriginal, noise-free target component of an element in �D (see section 2) depends on the weightsand the input. Using Bayes' rule, we obtain an a posteriori distribution of the weights.Formal details. In what follows, � denotes a weight vector, and �D = f(xp; dp) j p � 1g � D(in section A.2 we will consider the special cases �D = D and �D = D0). In analogy to section 2,we de�ne Eq(�; �D) := 1j �DjP(xp;dp)2 �D k dp� op(�; xp) k2 for �D with �nite cardinality. For �D within�nite cardinality, we de�ne Eq(�; �D) := limn!1Eq(�;Dn), if this limes is �nite and equal forall fDn j n � 1g with limn!1Dn = �D, where jDnj = n and Dn � �D. Otherwise Eq(w; �D) isunde�ned.Let p( �D j �) denote the probability distribution according to which the network makespredicitions2 of �D's output values in the input range of �D, given weights �. We assume Gaussiannoise3 with deviation � on the noise-free targets. With � := 1�2 , we obtain (see [23, 52])p( �D j �) = exp (��Eq(�; �D))Z(�) . (3)Here Z(�) is a normalizing constant. Z(�) = R< exp(��Eq(�; ~D))d ~D, where < is the K-dimensonal vector space of possible data ~D 2 <. Z(�) does not depend on �, due to translationinvariance of the error in <. Z(�) = �q �4��K holds.4Using e.g. gradient descent algorithms, the prior does not coincide with the distribution usedfor weight initialization. The \true" prior pA(�) depends on the nature of the learning algorithmA. pA(�) gives the probability of � after training with A5. From practical experience we inferthat weight initialization does not heavily in
uence the posterior. From Bayes' rule we obtain theposterior weight distribution, given the observations �D:2Following [23, 51], p( �D j �) is just a shorthand expression for p(fdpg j fxpg; �).3Alternatively, instead of assuming Gaussian noise, equation (3) can be obtained by following Levin, Tishbyand Solla [22]. They derive it as the only solution of a functional equation, where � is a constant expressing thesensitivity of p( �D j �) on the error.4It may be useful to de�ne �E(�) := R Eq(�; ~D)p( ~D j �)d ~D = 1Z(�) R Eq(�; ~D) exp(��Eq(�; ~D))d ~D = � 12� �K .�E(�) is a function of the derivative of Z(�) : log �E(�) = K log�� 1K d log Z(�)d� � = �K log(2�). �E(�) is the meansquared error over all possible data when using a �xed �, thus being a measure of the \acceptable error level". SeeLevin et al. [22]. Why should �E(�) be of interest? With an estimate of � we are able to estimate Etol as well.5For instance, MacKay [23] obtains pA(�) equal to a multidimensional Gaussian distribution with mean 0, byadding � k � k2 to his error function. Similar statements can be made about Hinton and van Camp's approach[14]. 15



pA(� j �D) = p( �D j �)pA(�)pA( �D) . (4)pA( �D) := R p( �D j �)pA(�)d� tells us about learning algorithm A's usefulness for predicting �D'soutput values in �D's input range. pA(�) = R pA(� j ~D)pA( ~D)d ~D holds. With problem class Pand �D 2 P , pA( �D) = pP ( �D) de�nes properties of an \optimal" learning algorithm A with respectto P, where pP ( ~D) is the probability of choosing ~D from P .With uniform pP (:), no algorithm can outperform error reducing algorithms (see [51]). Typicalproblem distributions in the real world are not uniform, however { the real world appears to favorsolutions with low algorithmic complexity. See e.g. [40]. See [41] for a universal \self-improving"system which continually attempts to incrementally modify its prior based on experience withprevious problems.A.2. OVERFITTING ERROROutline. In analogy to [46] and [10], we decompose the generalization error into an \over�tting"error and an \under�tting" error. There is no signi�cant under�tting error (corresponding toVapnik's empirical risk) if Eq(w;D0) � Etol. Some thought is required, however, to de�ne the\over�tting" error. We do this in a novel way.Intuition. Since we do not know the relation D, we cannot know p(� j D), the \optimal"posterior weight distribution we would obtain by training the net on D (! \sure thing hypothe-sis"). But, for theoretical purposes, suppose we did know p(� j D). Then we could use p(� j D) toinitialize weights before learning the training set D0. Using the Kullback-Leibler distance [19], wemeasure the information (due to noise) conveyed by D0, but not by D (see �gure 4). In conjunc-tion with the initialization above, this provides the conceptual setting for de�ning an over�ttingerror measure. But, the initialization does not really matter, because it does not heavily in
uencethe posterior (see section A.1).
p(. | D), the D-posterior

p(. | Do), the Do-posterior

positive contributions to the overfitting error

Figure 4: Positive contributions to the over�t-ting error Eo(D;D0). p(. | Do), the Do-posterior

positive contributions to the underfitting error

p(. | D), the D-posterior

Figure 5: Positive contributions to the under-�tting error Eu(D0; D).
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Formal details. We assume a conventional gradient based learning algorithmA adjusting theweights to locally minimize the error. Then pA(�) is uniform and p(� j �D) := pA(� j �D) = p( �D j�). See equation (4). The over�tting error is the Kullback-Leibler distance of the posteriors:Eo(D;D0) = Z p(� j D0) log p(� j D0)p(� j D) d� = Z p(� j D0) logp(D0 j �)d��Z p(� j D0) log p(D j �)d� = ��Z p(� j D0)Eq(�;D)d�� �Eq(D0)� , (5)where �Eq(D0) := R p(� j D0)Eq(�;D0)d� is the mean error after learning D0, and Eo(D;D0) isthe expectation of log p(�jD0)p(�jD) = � log p(� j D) � (� log p(� j D0)) (the expected di�erence of theminimal description [42] of � with respect to D and D0, after learning D0).Now we measure the expected over�tting error relative to Mw (see section 2) by com-puting the expectation of log p(�jD0)p(�jD) in the range Mw:Ero(w) = Ero(D;D0;Mw) = ��ZMw pMw(� j D0)Eq(�;D)d�� �Eq(D0;Mw)� . (6)Here pMw(� j D0) := p(�jD0)RMw p(~�jD0)d~� is the posterior of D0 scaled to obtain a distribution withinMw, and �Eq(D0;Mw) := RMw pMw(� j D0)Eq(�;D0)d� is the mean error in Mw with respect toD0.Clearly, we would like to pick w such that Ero(w) is minimized. How to do that? Actually, wewill minimize an approximation of Ero(w) (sections A.2.3, A.2.4). Towards this purpose, we needto make two additional prior assumptions, which are actually implicit in most previous approaches(which make additional stronger assumptions, see section 5): (1) \Closeness assumption": everyminimumof Eq(:; D0) is \close" to a maximumof p(�jD) (see formal de�nition below). Intuitively,\closeness" ensures that D0 can indeed tell us something about D, such that training on D0 mayindeed reduce the error on D. (2) \Flatness assumption": the peaks of p(�jD)'s maxima are notsharp. This MDL-like assumption holds if not all weights have to be known exactly to modelD. Itensures that there are regions with low error on D. Let us have a closer look at both assumptions.A.2.1. \CLOSENESS" OF D0 TO DIntuition. In analogy to section A.2, equation (5), we measure the under�tting error { theinformation conveyed by D, but not by D0 (note the exchange of D and D0 { see �gure 5). Thisinformation is determined by the D0-error at the most likelihood weight of D. The concept ofunder�tting error allows for de�ning \closeness". Closeness implies that the most likelihood weightof D and the most likelihood weight of D0 are \close" together in weight space.Formal details. The under�tting error isEu(D0; D) = Z p(� j D) log p(� j D)p(� j D0)d� = Z p(� j D) log p(D j �)d��Z p(� j D) log p(D0 j �)d� = � �Z p(� j D)Eq(�;D0)d�� �Eq(D)� . (7)Here the errors are de�ned in analogy to the corresponding de�nitions for the over�tting error, seeequation (5). Let ~w be a most likelihood weight with respect to D. p(� j D) has its peak at (ornear) ~w. Thus, the under�tting error is dominated by Eq( ~w;D0). Let ŵ be a most likelihood weightwith respect to D0, and let UEtol(ŵ) be a connected region around ŵ, such that � 2 UEtol(ŵ)implies Eq(�;D0) < Etol.De�nition: ~w is near ŵ with respect to Etol, i� ~w 2 UEtol(ŵ). D0 is close to D, i� for allmost likelihood weights ŵ of D0, there exists a most likelihood weight ~w of D such that ~w is nearŵ. 17



A.2.2. \FLATNESS" OF DIntuition. D has a \
at" error surface or a \
at" posterior if (1): at least one weight is not neededto generate D, or (2): there exists a big box with respect to D, such that all weight vectors withinthe box yield about the same error as the most likelihood weight vector of D (which yields minimalerror). Hence, there exists a \good" weight vector which can be described with low precision (andfew bits).Formal details. Let UEq( ~w;D)+�( ~w) be a connected region around ~w, where � 2 UEq( ~w;D)+�( ~w)implies Eq(�;D) < Eq( ~w;D) + �, where � is a positive constant near zero.De�nition. D is 
at, if (1) there exists a �w 2 UEq( ~w;D)+�( ~w), such that there exists atleast one wij, such that for all c with abs(c) below maximal weight value the following holds:�w + ceij 2 UEq( ~w;D)+�( ~w), where eij is the unit vector in the direction corresponding to i; j.Or, D is 
at, if (2) V ( �� ~w) � 0 (i.e. ~w = �w) or, otherwise, there exists �w 2 UEq( ~w;D)+�( ~w)such that V ( �� �w) � V ( �� ~w). Here V ( ��w) := maxf2W Qi;j �ij j 8�uv : 0 � �uv � �uv �maximal weight value : w +Puv ��uveuv 2 UEq( ~w;D)+�( ~w)g. V ( ��w) is the volume of the boxGw. Note the similarity to the de�nition of Mw and V (�w) in section 2: within UEtol(ŵ), Mwis the biggest box with center w, given D0. Within UEq( ~w;D)+�( ~w), Gw is the biggest box withcenter w, given D. Note: (1) implies (2). Therefore, in what follows we focus on (2).A.2.3. APPROXIMATION AND MINIMUM OF EroMw is de�ned to have maximal box volume within UEtol(ŵ). Within the box, the error Eq(�;D0)is close to Etol. Having found a very 
at box (see 
atness-condition 2 in A.3), we may assumethat pMw(� j D0) = 1V (�w) , i.e. pMw is uniform. Now we can approximate Ero:Ero(w) � �  RMw Eq(�;D)d�V (�w) � Etol! . (8)1� , the variance of the target noise, and the tolerable error are �xed parameters of the relativeover�tting error. This error is determined by RMw Eq(�;D)d�V (�w) =: mean(Eq(�;D);Mw), which isapproximately the mean value of Eq(�;D) within a 
at box. Due to 
atness, there exists at leastone �w such that mean(Eq(�;D); G �w) � Eq( ~w;D). Due to ~w being the most likelihood weight ofD, mean(Eq(�;D); Gw) � Eq( ~w;D) for every weight w.We would like to �nd some �w such that the over�tting error is (nearly) minimal both at �w andon G �w. Near ~w, the vector �w de�nes the biggest box G �w, given D. Since only D0 is available,direct search for G �w is not possible { all we can do is to look for a big Mw . The problem is: notevery w de�ning a big Mw de�nes a big Gw as well. To see this, suppose D contains a subsetcontaining no elements of D0. The next section shows how to deal with this problem.A.2.4. WHY DOES SEARCH FOR BIG D0-BOXES WORK?Outline. If Etol is small enough (this implies \enough" closeness), we do have a chance to �nd a�w de�ning a big G �w. Since 
atness implies the existence of a big D-box, this subsection justi�esour search for big D0-boxes by showing that a big D-box implies a big D0-box. Is it possibleto end up with a \wrong" big D0-box (one that is not implied by a big D-box)? Not if there isenough \closeness", as will be seen below.Formal details. Let's suppose there exists a �w 2 UEtol(ŵ), such that V (� �w) > V (� �w) forall �w (see A.2.2. on 
atness), but mean(Eq(�;D);M �w)� Eq( ~w;D). Then �w cannot de�ne a bigG �w ( �w de�nes a \wrong" D0-box). Now assume that the inner product of rwV (�w)jw=ŵ and thevector pointing to the center of the biggest D0-box close to ŵ is always positive. Then we cannotend up with a �w as above. Due to 
atness, network outputs are about equal on G �w. From thiswe infer (*): mean(Eq(�;D0);M �w) � Eq( ~w;D0), because of Eq( �w;D0) � Eq( �w;D0).The validity of our \enough closeness assumption" is equivalent to the validity of the assump-tion that Etol does go towards Eq(ŵ;D0). The latter implies Eq( ~w;D0) ! Eq(ŵ;D0) (due to18



closeness relative to Etol). Now let us assume Eq( �w;D0) > Eq(ŵ;D0) (this holds if jD0j > W ).This implies that V (� �w) decreases if Etol decreases. From (*) (see last paragraph) we deduce thatV (� �w) does not decrease. Hence, V (� �w) < V (� �w) for at least one �w. Alas, we can �nd a �w bya gradient based method for searching big box volumes, provided there is enough closeness (Etolis small enough). Now we see: maximizing V (�w) (thus minimizing Ero) is equivalent toa search for acceptable minima with \
at" network output (the error depends on theoutput only). The next subsection shows how to �nd networks with 
at output.A.3. HOW TO FLATTEN THE NETWORK OUTPUTOutline. To �nd nets with 
at outputs, two conditions will be de�ned to specify B(w;D0) (seesection 3). The �rst condition ensures 
atness. The second condition enforces \equal 
atness" inall weight space directions, and can be justi�ed using an MDL-based argument. In both cases,linear approximations will be made (to be justi�ed in A.4).Formal details. We are looking for weights (causing tolerable error) that can be perturbedwithout causing signi�cant output changes. Perturbing the weights w by �w (with components�wij), we obtain ED(w; �w) :=Pk(ok(w+ �w)�ok(w))2, where ok(w) expresses ok's dependenceon w (in what follows, however, w often will be suppressed for convenience). Linear approximation(justi�ed in A.4) gives us \Flatness Condition 1":ED(w; �w) � EDl(�w) :=Xk (Xi;j @ok@wij �wij)2 � EDl;max(�w) :=Xk (Xi;j j @ok@wij jj�wijj)2 � �, (9)where � > 0 de�nes tolerable output changes within a box and is small enough to allow forlinear approximation (it does not appear in B(w;D0)'s gradient, see section 3). EDl is the linearapproximation of ED, and EDl;max is maxfEDl(w; �v)j8ij : �vij = ��wijg. Flatness condition 1is a \robustness condition" (or \fault tolerance condition", or \perturbation tolerance condition"{ see e.g. [25, 32, 33, 24, 4, 17, 5]).The validity of approximation (8) depends on how 
at box Mw is. Many Mw satisfy 
atnesscondition 1. To select a particular, very 
at Mw, the following \Flatness Condition 2" uses updegrees of freedom left by equation (9):8i; j; u; v : (�wij)2Xk ( @ok@wij )2 = (�wuv)2Xk ( @ok@wuv )2 . (10)Flatness condition 2 enforces equal \directed errors"EDij(w; �wij) =Pk(ok(wij + �wij)� ok(wij))2 �Pk( @ok@wij �wij)2, where ok(wij) has the obviousmeaning. Linear approximation is justi�ed by the choice of � in equation (9).How to derive the algorithm from 
atness conditions 1 and 2. We �rst solve equation(10) for j�wijj = j�wuvjvuutPk� @ok@wuv �2Pk� @ok@wij �2 (�xing u; v for all i; j). Then we insert j�wijj into equation(9) (replacing the second \�" in (9) by \="). This gives us an equation for the j�wijj (whichdepend on w, but this is notationally suppressed):j�wijj = p�qPk( @ok@wij )2vuuutPk0@Pi;j j @ok@wij jqPk( @ok@wij )21A2 . (11)The j�wijj approximate the �wij from section 2. The box Mw is approximated by AMw,the box with center w and edge length 2�wij. Mw's volume V (�w) is approximated by AMw 'sbox volume V (�w) := 2W Qij j�wijj. Thus, ~B(w;D0) (see section 3) can be approximated by19



B(w;D0) := � log 12W V (�w) = Pi;j � log j�wijj. This immediately leads to the algorithm givenby equation (1).How can this approximation be justi�ed? The learning process itself enforces its validity(see A.4). Initially, the conditions above are valid only in a very small environment of an\initial" acceptable minimum. But during search for new acceptable minimawith more associatedbox volume, the corresponding environments are enlarged. The next section will prove this forfeedforward nets (experiments indicate that this appears to be true for recurrent nets as well).MDL-based justi�cation of 
atness condition 2. Let us assume a sender wants to senda description of some box center w to a receiver who knows the inputs but not the targets.The MDL principle suggests that the sender wants to minimize w's expected description length.Let EDmean(w;D0) denote the mean value of ED on the box. Expected description length isapproximated by EDmean(w;D0) + B(w;D0). One way of seeing this is to apply Hinton andvan Camp's \bits back" argument [14] to a uniform prior (EDmean corresponds to Hinton andvanCamp's output variance). However, we prefer to use a di�erent argument: we encode eachweight wij of the box center w by a bitstring according to the following procedure (�wij is given):(0) De�ne a variable interval Iij � R.(1) Make Iij equal to the interval constraining possible weight values.(2) While Iij 6� [wij ��wij; wij +�wij]:Divide Iij into 2 equally-sized disjunct intervals I1 and I2.If wij 2 I1 then Iij  I1; write `1'.If wij 2 I2 then Iij  I2; write `0'.The �nal set fIijg corresponds to a \bit-box" within our box. This \bit-box" containsMw's centerw and is described by a bitstring of length ~B(w;D0) + c, where the constant c is independent ofthe box Mw . From ED(w;wb�w) (wb is the center of the \bit-box") and the bitstring describingthe \bit-box", the receiver can compute w as follows: he chooses an initialization weight vectorwithin the \bit-box" and uses gradient descent to decrease B(wa; D0) until ED(wb; wa � wb) =ED(w;wb�w), where wa in the bit-box denotes the receiver's current approximation of w (wa isconstantly updated by the receiver). This is like \FMS without targets" { recall that the receiverknows the inputs xp of D0. Since w corresponds to the weight vector with the highest degree oflocal 
atness within the \bit-box", the receiver will �nd the correct w.ED(w;wb�w) is described by a Gaussian distribution with mean zero. Hence, the descriptionlength of ED(w;wb � w) is ED(w;wb � w). wb, the center of the \bit-box", cannot be knownbefore training. However, we do know the expected description length of the box center, whichis EDmean + ~B(w;D0) + k (k is a constant independent of w). Let us approximate EDmean:EDl;mean(w; �w) := 1V (�w) RAMw EDl(w; �v)d�v =1V (�w)2W 13Pi;j �(�wij)3Pk � @ok@wij �2Qu;vwith u;v 6=i;j �wuv� = 13Pi;j (�wij)2Pk � @ok@wij �2.Among those w that lead to equal B(w;D0) (the negative logarithm of the box volume plusW log 2), we want to �nd those with minimal description length. Using Lagrange multiplicators,it can be shown that EDl;mean is minimal under the condition B(w;D0) = constant i�
atness condition 2 holds. To conclude: with given box volume, we need 
atness condition 2to minimize the expected description length of the box center.Comments. Flatness condition 2 in
uences the algorithm as follows: (1) The algorithmprefers to increase the �wij's of weights which currently are not important to generate the targetoutput. (2) The algorithm enforces equal sensitivity of all output units with respect to the weights.Hence, if certain hidden units help to compute targets only for a subset of the output units, thenthe sensitivity of the remaining output units with respect to these hidden units will be reduced:the algorithm tends to group hidden units according to their relevance for groups of output units.Flatness condition 2 is essential: 
atness condition 1 by itself corresponds to nothing more but�rst order derivative reduction (ordinary sensitivity reduction).Automatically, the algorithm treats units and weights in di�erent layers di�erently, and takesthe nature of the activation functions into account.20



A.4. WHY DOES THE HESSIAN DECREASE?Outline. This section shows that second order derivatives of the output function vanish during
at minimum search. This justi�es the linear approximations in A.3 and approximation (8) of Eroin A.3.Intuition. We show that the algorithm tends to suppress the following values: (1) unitactivations, (2) �rst order activation derivatives, (3) the sum of all contributions of an arbitaryunit activation to the net output. Since weights, inputs, activation functions, and their �rst andsecond order derivatives are bounded, the entries in the Hessian decrease where the correspondingj�wijj increase.Formal details. For simplicity, in what follows we use the same activation function f for allunits. We consider a strictly layered feedforward network with K output units and g layers. Weobtain @yl@wij = f 0(sl)( yjPmwlm @ymwij for i = lfor i 6= l) , (12)where ya denotes the activation of the a-th unit, and sl =Pmwlmym .The last term of equation (1) (the \regulator") expresses output sensitivity (to be minimized)with respect to simultaneous perturbations of all weights. \Regulation" is done by equalizing thesensitivity of the output units with respect to the weights. The \regulator" does not in
uence thesame particular units or weights for each training example. It may be ignored for the purposes ofthis section. Of course, the same holds for the �rst (constant) term in (1). We are left with thesecond term. With (12) we obtain: Xi;j logXk ( @ok@wij )2 =2 Xunit k in the g th layer(fan-in of unit k) log jf 0(sk)j+2 Xunit j in the (g�1)th layer(fan-out of unit j) log jyj j+Xunit j in the (g�1)th layer(fan-in of unit j) logXk (f 0(sk)wkj)2 +2 Xunit j in the (g�1)th layer(fan-in of unit j) log jf 0(sj)j+2 Xunit j in the (g�2)th layer(fan-out of unit j) log jyj j+Xunit j in the (g�2)th layer(fan-in of unit j) logXk  f 0(sk)Xl f 0(sl)wklwlj!2 +2 Xunit j in the (g�2)th layer(fan-in of unit j) log jf 0(sj)j+2 Xunit j in the (g�3)th layer(fan-out of unit j) log jyj j+Xi,j, where unit i in a layer <(g�2) logXk  f 0(sk)Xl1 f 0(sl1 )wkl1Xl2 wl1l2 @yl2@wij!2 (13)Let us have a closer look at this equation. We observe:(1) Activations of units decrease in proportion to their fan-outs.(2) First order derivatives of the activation functions decrease in proportion to their fan-ins.21



(3) A term of the formPk �f 0(sk)Pl1 f 0(sl1 )wkl1Pl2 :::Plr f 0(slr )wlr�1lrwlrj�2 expresses thesum of unit j's squared contributions to the net output. Here r ranges over f0; 1; : : :; g � 2g, andunit j is in the (g � 1 � r)th layer (for the special case r = 0, we get Pk (f 0(sk)wkj)2). Theseterms also decrease in proportion to unit j's fan-in. Analogously, equation (13) can be extendedto the case of additional layers.Comment. Let us assume that f 0(sj) = 0 and f(sj) = 0 is \di�cult to achieve" (can beachieved only by �ne-tuning all weights on connections to unit j). Instead of minimizing jf(sj )jor jf 0(sj)j by adjusting the net input of unit j (this requires �ne-tuning of many weights), ouralgorithm prefers pushing weights wkl on connections to output units towards zero (other weightsare less a�ected). On the other hand, if f 0(sj) = 0 and f(sj ) = 0 is not \di�cult to achieve",then, unlike weight decay, our algorithm does not necessarily prefer weights close tozero. Instead, it prefers (possibly very strong) weights which push f(sj ) or f 0(sj ) towards zero(e.g. with sigmoid units active in [0,1]: strong inhibitory weights are preferred; with Gaussianunits: high absolute weight values are preferred). See the experiment in section 4.2.How does this in
uence the Hessian? The entries in the Hessian corresponding to outputok can be written as follows:@2ok@wij@wuv = f 00(sk)(f 0(sk))2 @ok@wij @ok@wuv + f 0(sk) Xl wkl @2yl@wij@wuv + ��ik @yj@wuv + ��uk @yv@wij! , (14)where �� is the Kronecker-Delta. Searching for big boxes, we run into regions of acceptable minimawith ok's close to target (section 2). Thus, by scaling the targets, f 00(sk)(f 0(sk))2 can be bounded.Therefore, the �rst term in equation (14) decreases during learning.According to the analysis above, the �rst order derivatives in the second term of (14) arepushed towards zero. So are the wkl of the sum in the second term of (14).The only remaining expressions of interest are second order derivatives of units in layer (g�1).The @2yl@wij@wuv are bounded if (a) the weights, (b) the activation functions, (c) their �rst and secondorder derivatives, and (d) the inputs are bounded. This is indeed the case, as will be shown fornetworks with one or two hidden layers:Case 1: For unit l in a single hidden layer (g = 3), we obtainj @2yl@wij@wuv j = j��li��luf 00(sl)yjyvj < C1 , (15)where yj ; yv are the components of an input vector xp, and C1 is a positive constant.Case 2: For unit l in the third layer of a net with 2 hidden layers (g = 4), we obtainj @2yl@wij@wuv j = jf 00(sl)(wliyj + ��ilyj)(wluyv + ��ulyv) +f 0(sl) �wli��iuf 00(si)yjyv + ��il��ujf 0(sj)yv + ��ul��ivf 0(sv)yj� j < C2 , (16)where C2 is a positive constant. Analoguously, the boundedness of second order derivatives canbe shown for additional hidden layers.Conclusion: As desired, our algorithm makes the Hkij;uv decrease where j�wijj orj�wuvj increase. 22



A.5. EFFICIENT IMPLEMENTATION OF THE ALGORITHMOutline. We �rst explicitly compute the derivatives of (1). Then we show how to use Pearlmutterand M�ller's algorithm [26, 35] to speed up the computation of second order terms (A.5.2).A.5.1 EXPLICIT DERIVATIVE OF EQUATION (1)The derivative of the right-hand side of (1) is:@B(w;D0)@wuv =Pi;j Pk @ok@wij @2ok@wij@wuvPm( @om@wij )2 +WPk0@Pi;j j @ok@wij jqPm( @om@wij )2 Pi;j sign( @ok@wij ) @2ok@wij@wuvPm( @om@wij )2� @ok@wij Pm @om@wij @2om@wij@wuv(Pm( @om@wij )2) 32 !1APk0@Pi;j j @ok@wij jqPm( @om@wij )21A2 .(17)To compute (2), we need @B(w;D0)@( @ok@wij ) = @ok@wijPm( @om@wij )2+WPm Pl;r� j @om@wlr jpP �m( @o �m@wlr )2�sign( @om@wij ) ��mkP �m( @o �m@wij )2� @om@wij @ok@wij(P �m( @o �m@wij )2) 32 !Pm�Pl;r j @om@wlr jpP �m( @o �m@wlr )2�2 , (18)where �� is the Kronecker-Delta. Using the nabla operator and (18), we can compress (17):ruvB(w;D0) =Xk Hk(r @ok@wij B(w;D0)) , (19)where Hk is the Hessian of the output ok. Since the sums over l; r in (18) need to be computedonly once (the results are reusable for all i; j), r @ok@wij B(w;D0) can be computed in O(W ) time.The product of the Hessian and a vector can be computed in O(W ) time (see next section). Withconstant number of output units, the computational complexity of our algorithm is O(W ).A.5.2. FAST MULTIPLICATION BY THE HESSIANPearlmutter and M�ller compute the product of a vector and the Hessian of the error in O(W )time [26, 35]. Using Pearlmutter's notation, we do the same with the Hessian of the output. Anoperator R is de�ned as follows: Ryfg(x)g � @@tg(x+ ty) jt=0 . (20)The Hessian of the kth output ok of a feedforward net is computed in 3 successive passes:1. First backward pass (yl = ok):@yl@yi = ( 1Pj wji @yl@sj for i = lfor i 6= l) , (21)23
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