FLAT MINIMUM SEARCH
FINDS SIMPLE NETS
Technical Report FIKI-200-94

Sepp Hochreiter Jurgen Schmidhuber

hochreit@informatik.tu-muenchen.de schmidhu@informatik.tu-muenchen.de

Fakultat fur Informatik, H2
Technische Universitat Minchen

80290 Miinchen, Germany
December 31, 1994

Abstract

We present a new algorithm for finding low complexity neural networks with high general-
ization capability. The algorithm searches for a “flat” minimum of the error function. A flat
minimum is a large connected region in weight-space where the error remains approximately
constant. An MDL-based argument shows that flat minima correspond to low expected over-
fitting. Although our algorithm requires the computation of second order derivatives, it has
backprop’s order of complexity. Automatically, it effectively prunes units, weights, and input
lines. Various experiments with feedforward and recurrent nets are described. In an applica-
tion to stock market prediction, flat minimum search outperforms (1) conventional backprop,
(2) weight decay, (3) “optimal brain surgeon” / “optimal brain damage”.

1 INTRODUCTION

Our algorithm finds a large region in weight space with the property that each weight vector in
that region leads to similar small error. Such a region is called a “flat minimum” [15]. To get
an intuitive feeling for why a flat minimum is interesting, consider this (see also [50]): a “sharp”
minimum (see figure 2) corresponds to weights which have to be specified with high precision.
A flat minimum (see figure 1) corresponds to weights many of which can be given with low
precision. In the terminology of the theory of minimum description length (MDL [45, 39]), fewer
bits of information are required to describe a flat minimum (corresponding to a “simple” or low
complexity-network). The MDL principle suggests that low network complexity corresponds to
high generalization performance.

Unlike e.g. Hinton and van Camp’s method [14], our algorithm does not depend on the choice
of a “good” prior. It finds a “flat” minimum by searching for weights that minimize both training
error and weight precision. This requires the computation of the Hessian. However, by using
Pearlmutter’s and Mgller’s efficient second order method [35, 26], we obtain conventional back-
prop’s order of computational complexity. Automatically, the method effectively reduces numbers
of units, weights, and input lines, as well as output sensitivity with respect to remaining weights
and units. Unlike e.g. simple weight decay, the method treats/prunes units and weights in different
layers in different reasonable ways.

Outline. Section 2 introduces basic concepts. Section 3 describes the novel algorithm. Excel-
lent experimental generalization results are reported in section 4. Section b mentions relations to
previous work. A detailed theoretical justification of our approach is presented in the appendix.

Figure 1: Ezample of a “flat” minimum. Figure 2: Fzample of a “sharp” minimum.

2 TASK / ARCHITECTURE / BOXES

Generalization task. The task is to approximate an unknown relation D C X x Z between a
set of possible inputs X C RY and a set of possible outputs Z C RX. D is taken to be a function.
A relation D is obtained from D by adding noise to the outputs (see appendix A.1). All training
information is given by a finite relation Dy C D. Dy is called the training set. The pth element of
Dy is denoted by an input/target pair (z,,dp).

Architecture. For simplicity, we will focus on a standard feedforward net (but in the experi-
ments, we will use recurrent nets as well). The net has N input units, K output units, W weights,
and differentiable activation functions. It maps input vectors z, € RN to output vectors op € RE.
The weight from unit j to ¢ is denoted by w;;. The W-dimensional weight vector is denoted by w.

Training error. We use mean squared error E,(w, Dg) = ﬁZ(xp,dp)eDu Il dp —0p |17
where || . || denotes the Euclidian norm, and |.| denotes the cardinality of a set.

Tolerable error. To define a region in weight space with the property that each weight
vector from that region has “similar small error”, we introduce the tolerable error Ey,, a pos-
itive constant. “Small” error is defined as being smaller than Ey,. E (w,Dy) > Eyo implies
“underfitting”.

Boxes. Each weight w satisfying E (w, Do) < Eyor defines an “acceptable minimum”. We are
interested in a large region of connected acceptable minima. Such a region is called a
flat minimum. They are associated with low expected generalization error (see appendix A.2).
To simplify the algorithm for finding a large connected region (see below), we do not consider
maximal connected regions but focus on so-called “bozes” within regions: for each acceptable
minimum w, its box M, in weight space is a WW-dimensional hypercuboid with center w. For
simplicity, each edge of the box is taken to be parallel to one weight axis. Half the length of the
box edge in direction of the axis corresponding to weight w;; is denoted by Aw;;, which is the
maximal (positive) value such that for all pairs (4, j), all positive x;; < Aw;; can be added to or
subtracted from the corresponding w;; simultaneously without violating E,(., Do) < Eio (Aw;;
gives the precision of w;;). My’s bor volume is defined by V(Aw) := 2V Hi,j Awij;, where Aw
denotes the vector with components Aw;;.

3 THE ALGORITHM

Starting with a random initial weight vector, flat minimum search (FMS) finds a w defining
a box M, with maximal box volume V(Aw) and minimal B(w,Do) = —log(z%V(Aw)) =
Zi,j —log Aw;;. Note the relationship to MDL (B is the number of bits required to describe the
weights, see appendix A.3).

In A.3, we derive the following algorithm. We use gradient descent to minimize F(w, Dy) =
E,(w, Do) + AB(w, Dy), where

. 2
1 do* |§j :
B(w,Dy)=- | =W 1 —)? 1 — . 1
(w’ 0) 9 Wogg—i—zj:ogzk:(awij) +Wogzk: Z]:\/W ()
2, 2, 310”'

Here o* is the activation of the kth output unit, € is a constant, and A is a positive variable
ensuring either E (w, Dy) < Eyor or an expected decrease of E, (., Dy) during learning (see [47] for
adjusting A). To minimize B(w, Dg), we have to compute

2k
dB(w, Do) _ 3 0B(w, Do) 070" . w,v (2)

225y OwijOwyy

AWy 90"
ij

kij
See details in appendix A.5.1. It can be shown that by using Pearlmutter’s and Mgller’s efficient
second order method [35, 26], the gradient of B(w, Dy) can be computed in O(W) time (see details
in A.5). Therefore, our algorithm has the same order of computational complexity as
standard backprop.

4 EXPERIMENTAL RESULTS

4.1 EXPERIMENT 1 — noisy classification.

The first experiment is taken from Pearlmutter and Rosenfeld [36]. The task is to decide whether
the z-coordinate of a point in 2-dimensional space exceeds zero (class 1) or doesn’t (class 2). Noisy
training examples are generated as follows: data points are obtained from a Gaussian with zero
mean and stdev 1.0, bounded in the interval [—3.0,3.0]. The data points are misclassified with
probability 0.05. Final input data is obtained by adding a zero mean Gaussian with stdev 0.15 to
the data points. In a test with 2,000,000 data points, it was found that the procedure above leads
to 9.27 per cent misclassified data. No method will misclassify less than 9.27 per cent, due to the
inherent noise in the data. The training set is based on 200 fixed data points (see figure 3). The
test set is based on 120,000 data points.

training set (200 points)
T

=

Y Axis

—a

=

—= —1 1 E

X AxTs

+ + 4+ 1. class OO0 2. class

Figure 3: The 200 input examples of the training set. Crosses represent data points from class 1.
Squares represent data points from class 0.

Backprop FMS Backprop FMS
MSE dto | MSE dto MSE dto | MSE dto
110220 1.35]0.193 0.00 1 6 | 0.219 124 0.187 0.04
210223 1.16]0.189 0.09 || 7 | 0.215 1.14 | 0.187 0.07
310222 137]0.186 0.13 8 | 0.214 1.10 | 0.185 0.01
410213 1.18 | 0.181 0.01 1 9 | 0.218 1.21 | 0.190 0.09
510222 1.241]0.195 0.25 | 10 | 0.214 1.21 | 0.188 0.07

Table 1: 10 comparisons of conventional backprop (BP) and flat minimum search (FMS). The
second row (labeled “MSE”) shows mean squared error on the test set. The third row (“dto”) shows
the difference between the percentage of misclassifications and the optimal percentage (9.27). The
remaining rows provide the analoguous information for FMS, which clearly outperforms backprop.

Results. 10 conventional backprop (BP) nets were tested against 10 equally initialized net-
works trained by flat minimumsearch (FMS). After 1,000 epochs, the weights of our nets essentially
stopped changing (automatic “carly stopping”), while backprop kept changing weights to learn the
outliers in the data set and overfit. In the end, our approach left a single hidden unit & with a
maximal weight of 30.0 or —30.0 from the x-axis input. Unlike with backprop, the other hidden
units were effectively pruned away (outputs near zero). So was the y-axis input (zero weight to
h). Tt can be shown that this corresponds to an “optimal” net with minimal numbers of units and
weights. Table 1 illustrates the superior performance of our approach.

Parameters:

Learning rate: 0.1.

Architecture: (2-20-1).

Number of training epochs: 400,000.
With FMS: Ey, = 0.0001.

See section 4.6 for parameters common to all experiments.

4.2 EXPERIMENT 2 — recurrent nets.

The method works for continually running fully recurrent nets as well. At every time step, a
recurrent net with sigmoid activations in [0, 1] sees an input vector from a stream of randomly
chosen input vectors from the set {(0,0),(0,1),(1,0),(1,1)}. The task is to switch on the first
output unit whenever an input (1,0) had occurred two time steps ago, and to switch on the
second output unit without delay in response to any input (0,1). The task can be solved by a
single hidden unit.

Non-weight-decay-like results. With conventional recurrent net algorithms, after training,
both hidden units were used to store the input vector. Not so with our new approach. We trained
20 networks. All of them learned perfect solutions. Like with weight decay, most weights to the
output decayed to zero. But unlike with weight decay, strong inhibitory connections (-30.0)
switched off one of the hidden units, effectively pruning it away.

Parameters:

Learning rate: 0.1.

Architecture: (2-2-2).

Number of training examples: 1,500.
Eior = 0.0001.

See section 4.6 for parameters common to all experiments.

4.3 EXPERIMENT 3 — stock market prediction (1).

We predict the DAX?! (the German stock market index) using fundamental indicators. Following
Rehkugler and Poddig [38], the net sees the following indicators: (a) German interest rate (“Um-
laufsrendite”), (b) industrial production divided by money supply, (¢) business sentiments (“TFO
Geschiftsklimaindex”). The input (scaled in the interval [-3.4,3.4]) is the difference between data
from the current quarter and last year’s corresponding quarter. The goal is to predict the sign of
next year’s corresponding DAX difference.

The training set consists of 24 data vectors from 1966 to 1972. Positive DAX tendency is
mapped to target 0.8, otherwise the target is -0.8. The test set consists of 68 data vectors from
1973 to 1990. Flat minimum search (FMS) is compared against: (1) Conventional backprop (BP8)
with 8 hidden units, (2) Backprop with 4 hidden units (BP4) (4 hidden units are chosen because
pruning methods favor 4 hidden units, but 3 is not enough), (3) Optimal brain surgeon (OBS
[12]), with a few improvements (see section 4.6), (4) Weight decay (WD) according to [47] (WD
and OBS were chosen because they are well-known and widely used). Three different confidence
measures are used: network output exceeding 0.0 (0.6, 0.9) is interpreted as a prediction of positive
tendency. Network output below 0.0 (-0.6,-0.9) is interpreted as a prediction of negative tendency.
Other outputs don’t count.

Since wrong predictions lead to loss of money, performance is measured as follows. The sum
of confidently but incorrectly predicted DAX changes i1s subtracted from the sum of confidently
and correctly predicted DAX changes. The result is divided by the sum of absolute DAX changes.
The most profitable network predicts everything confidently and correctly. With two networks
with equal performance, the one making fewer confident predictions is preferrable.

Results. See table 2. Our method outperforms the other methods. Only with con-
fidence measure 0.9, BP4 and BP8 exhibit better performance per prediction, but considerably
fewer predictions are made. Not much money can be made this way. Using FMS, the number
of confindent predictions does not change a lot if the confindence measure is changed. Thus,
predicition quality does not depend strongly on the confindence measure to be chosen in advance.

Table 3 shows upper performance bounds for early stopping methods. They are obtained
by cheating: test set performance is monitored during learning the training set. Column “b” shows
the minimal number of millions of training examples needed to achieve small test set error, column
“e” shows the corresponding maximal number (where test set error starts growing again). The
corresponding interval I tends to be relatively small (only the best result within I is shown). Mean
performance on I approximately equals the performance of WD and FMS based on confidence
measures 0.0/0.6, and is below the performance of WD and FMS based on confidence measure
0.9. The probability of early stopping within I, but without cheating, is small.

TRaw DAX version according to Statistisches Bundesamt (federal office of statistics). Other data are from the
same source (except for business sentiment). Collected by Christian Puritscher, for a diploma thesis in industrial

management at LMU, Munich.

train test removed performance—nr.-pred.
nr. MSE F1 F2 F3 | MSE F1 F2 F3 |w u confidence: 0.0/0.6/0.9
BPS8

1 0.004 0 0 0 1.002 25 25 22 25.74-68 31.38-65 22.59-29
2 0.003 0 0 0 1.002 29 25 23 44.81-68 34.76-62 20.22-23
3 0.003 0 0 0 0.999 30 25 21 47.33-68 30.97-59 21.31-30
4 0.003 0 0 0 0.860 29 22 17 39.26-68 30.92-56 24.97-35
5 0.003 0 0 0 0.886 30 22 18 39.26-68 35.19-56 24.97-35
6 0.003 0 0 0 0.896 29 24 17 29.15-68 35.80-56 23.61-35
7 0.000 0 0 0 0.966 29 24 20 38.78-68 42.61-59 24.02-34
z 0.003 0 0 0 0.945 29 24 20 37.76-68 34.52-59 23.10-32
performance per prediction: 0.56-68 0.59-59 0.73-32
to be continued on next page

continued from previous page
train test removed performance—nr.-pred.
nr. MSE F1 F2 F3 | MSE F1 F2 F3 | w u confidence: 0.0/0.6/0.9
BP4
1 0.004 0 0 0 1.070 31 28 23 42.02-68 35.07-60 17.35-27
2 0.004 0 0 0 1.072 31 28 23 42.02-68 35.07-60 17.35-27
3 0.004 0 0 0 1.069 31 28 23 42.02-68 35.07-60 17.35-27
4 0.004 0 0 0 1.071 31 28 23 42.02-68 35.07-60 17.35-27
5 0.004 0 0 0 1.069 31 28 23 42.02-68 35.07-60 17.35-27
6 0.004 0 0 0 1.065 31 28 24 42.02-68 34.47-61 17.35-27
7 0.131 4 2 0 1.043 35 30 21 42.02-68 34.47-61 17.35-27
z 0.043 1 0 0 1.066 32 28 23 42.02-68 34.90-60 17.35-27
performance per prediction: 0.62-68 0.58-60 0.64-27
OBS
1 0.016 0 0 0 1.081 27 24 21 9 1 45.18-68 32.04-62 32.98-58
2 0.017 0 0 0 1.073 28 24 21 14 3 45.25-68 35.99-57 28.69-55
3 0.386 8 7 0 1.049 28 24 21 16 4 48.89-68 40.53-61 31.72-55
4 0.158 4 2 2 1.154 27 24 23 15 3 44.67-68 35.61-64 8.39-55
5 0.016 0 0 0 1.181 32 28 25 14 3 32.82-68 32.04-61 36.13-52
6 0.016 0 0 0 1.071 29 24 22 14 2 48.14-68 37.01-61 31.19-56
7 0.014 1 0 0 1.009 26 25 22 17 4 27.17-68 36.23-64 15.82-50
z 0.089 2 1 0 1.088 28 25 22 14 3 41.73-68 35.64-61 26.42-54
performance per prediction: 0.61-68 0.58-61 0.49-54
WD
1 0.061 3 0 0 1.123 25 24 24 | 24 5 44.47-68 44.79-66 39.46-60
2 0.080 3 2 0 1.122 25 24 24 | 23 5 44.47-68 44.06-67 38.95-59
3 0.147 6 3 0 1.102 32 26 21 24 6 36.47-68 23.20-57 19.56-49
4 0.142 6 3 0 1.018 30 25 23 | 20 5 46.41-68 39.19-61 30.00-57
5 0.084 3 1 0 1.111 27 25 22 | 22 5 43.65-68 38.41-63 32.19-60
6 0.073 3 1 0 1.126 25 24 24 | 22 5 44.47-68 44.06-67 39.00-60
7 0.088 4 1 0 1.115 25 24 22 | 22 5 44.47-68 45.39-65 38.80-59
z 0.096 4 2 0 1.102 27 25 23 | 22 5 43.49-68 39.87-64 33.99-58
performance per prediction: 0.64-68 0.62-64 0.59-58
FMS
1 0.037 0 0 0 1.179 27 25 24 | 24 4 47.60-68 45.80-65 35.82-62
2 0.053 0 0 0 1.149 26 24 22 | 26 5 47.74-68 35.75-58 36.28-56
3 0.037 0 0 0 1.151 25 24 24 | 23 4 40.89-68 38.54-67 35.58-63
4 0.040 0 0 0 1.146 26 24 23 | 22 3 40.89-68 36.89-65 38.78-63
5 0.037 0 0 0 1.213 25 25 25 | 26 4 47.60-68 47.60-68 45.25-67
6 0.039 0 0 0 1.158 27 25 23 | 20 3 39.70-68 37.39-64 37.39-64
7 0.040 0 0 0 1.140 26 24 23 | 24 4 40.89-68 43.92-65 37.45-61
z 0.040 0 0 0 1.162 26 24 23 | 24 4 43.62-68 40.84-65 38.08-62
performance per prediction: 0.64-68 0.63-65 0.61-62

Table 2: 7 comparisons of conventional backprop (BP4, BP8), optimal brain surgeon (OBS),
weight decay (WD), and flat minimum search (FMS). All nets except BP{ start out with 8 hidden
units. Column “MSE” shows mean squared error, “F17 (“F27,“F3”) indicates number of errors
greater than 0.2 (0.8, 1.4). “F2” indicates number of incorrect predictions (68 at most) using
confindence measure 0.0, “F3” indicates number of incorrect confident predictions using confidence
measure 0.6. The difference between “F1” and 68 is the corresponding number of correct confident
predictions. Column “w” shows the number of pruned weights, column “u” shows the number of
pruned units, the final 3 rows (“0.07, “0.67, “0.97) list pairs of performance (see text) and number
of confident predictions. & denotes the mean of 7 trials. Note that test MSE is insignificant for
performance evaluations (this is due to targets 0.8/-0.8, as opposed to the “real” DAX targets).
With all confidence measures, our method outperforms all other methods.

train test interval [performance—nr.-pred.
nr. | MSE F1 F2 F3 | MSE F1 F2 F3 b e confidence: 0.0/0.6/0.9
ES
1 0.004 0 0 0 0.978 25 23 21 | 11.7 124 | 45.28-68 45.69-60 21.30-27
2 0.006 0 0 0 0.983 26 23 22 | 1.22 1.59 | 45.28-68 43.94-64 20.75-29
3 0.007 0 0 0 1.000 26 24 23 | 1.60 1.97 | 45.25-68 45.52-65 26.74-33
4 0.004 0 0 0 0.930 26 24 19 | 8.11 8.27 | 45.25-68 36.69-61 18.62-26
5 0.006 0 0 0 0.939 27 23 19 | 1.47 1.66 | 46.71-68 47.02-59 20.84-26
6 0.005 0 0 0 0.973 26 24 21 | 0.88 3.73 | 45.25-68 46.71-63 19.54-27
7 0.007 0 0 0 0.993 26 24 22 | 1.03 1.16 | 45.25-68 46.80-64 22.88-29
z 0.007 0 0 0 0.971 26 24 21 45.47-68 44.62-62 21.52-28
performance per prediction: 0.67-68 0.72-62 0.76-28

Table 3: Upper performance bounds for arbitrary early stopping (ES) methods. They are obtained
by cheating by looking at test set performance during learning. All nets start out with 8 hidden
units. Column “MSE” shows mean squared error, “F17 (“F27,“F3”) indicates number of errors
greater than 0.2 (0.8, 1.4). “F2” indicates number of incorrect predictions (68 at most) using
confindence measure 0.0, “F3” indicates number of incorrect confident predictions using confidence
measure 0.6. The difference between “F1” and 68 is the corresponding number of correct confident
predictions. Column “b” shows the minimal number of millions of training examples needed to
achieve small test set error, column “e” shows the corresponding mazimal number (where test set
error starts growing again). The final 3 rows (“0.0”, “0.6”, “0.97) list pairs of performance (see
text) and number of confident predictions. T denotes the mean of 7 trials.

Parameters:

Learning rate: 0.01.

Architecture: (3-8-1), except BP4 with (3-4-1).
Number of training examples: 20,000,000.
Method specific parameters:

e FMS: F;,; = 0.13; AX = 0.001.
e WD: like with FMS, but wy = 0.2.
e OBS: Eio = 0.015 (the same result was obtained with higher Fy, values, e.g. 0.13).

See section 4.6 for parameters common to all experiments.

4.4 EXPERIMENT 4 - stock market prediction (2).

We predict the DAX again, using the basic set-up of the experiment in section 4.3. However, the
following modifications are introduced:

e There are two additional inputs: (d) dividend rate, (c¢) foreign orders in manufacturing
industry.

e Monthly predictions are made. The net input is the difference between the current month’s
data and last month’s data. The goal is to predict the sign of next month’s corresponding

DAX difference.
e There are 228 training examples and 100 test examples.
o The target is the percentage of DAX change scaled in the interval [-1,1] (outliers are ignored).

e Network output exceeding 0.0 (0.6, 0.8) is interpreted as a prediction of positive tendency.
Network output below 0.0 (-0.6, -0.8) is interpreted as a prediction of negative tendency.
Other outputs don’t count.

e Performance of WD and FMS is also tested on networks “spoiled” by conventional backprop

(“WDR” and “FMSR” — the “R” stands for Retraining).

Results are shown in table 4. Average performance of our method almost always
exceeds the ones of weight decay, OBS, and conventional backprop. The only exception
is weight decay with confidence measure 0.6 (but with the other comparisons, flat minimum search
outperforms weight decay). Table 4 also shows superior performance of our approach when it comes
to retraining “spoiled” networks (note that OBS is a retraining method by nature). FMS led to
the best improvements in generalization performance.

Like table 3, table 5 shows upper performance bounds for early stopping methods. Again,
they are obtained by cheating: test set performance is monitored during learning the training
set. Columns “b” and “e¢” are analoguous to those in table 3. Mean performance on interval I
approximately equals the performance of WD and FMS based on confidence measures 0.0/0.8,
and exceeds the performance of all investigated methods based on confidence measure 0.6. Recall
that the probability of early stopping within I, but without cheating, is small.

train test removed performance—nr.-pred.
nr. MSE F1 F2 F3 | MSE F1 F2 F3 | w u confidence: 0.0/0.6/0.8
BP
1 0.170 154 37 12 | 0.613 81 30 31 38.51-100 21.79-43 11.46-13
2 0.183 142 42 18 | 0.430 78 25 20 55.10-100 19.29-28 10.42-12
3 0.186 150 48 16 | 0.580 73 35 31 20.69-100 16.60-22 15.51-13
4 0.176 135 37 16 | 0.459 83 26 22 57.33-100 14.40-21 6.19-8
5 0.180 148 45 13 | 0.600 80 36 27 24.43-100 20.77-34 8.50-13
6 0.184 156 40 12 | 0.558 84 33 29 39.05-100 27.88-30 2.71-7
7 0.187 152 44 14 | 0.529 81 29 30 49.16-100 25.19-25 2.19-4
8 0.173 140 37 12 | 0.552 74 27 31 41.27-100 13.18-24 8.97-10
9 0.189 150 41 13 | 0.528 78 29 28 42.50-100 16.04-33 18.05-18
10 0.186 143 41 16 | 0.503 82 30 25 48.06-100 11.42-27 9.30-11
z 0.181 147 41 14 | 0.535 79 30 27 41.61-100 18.67-29 9.33-11
performance per prediction: 0.42-100 0.65-29 0.85-11
OBS
1 0.217 158 40 16 | 0.515 80 29 32 | 18 2 39.09-100 19.89-38 9.91-10
2 0.213 164 39 14 | 0.491 79 30 32 | 17 2 40.88-100 22.72-25 10.72-11
3 0.245 170 51 22 | 0.463 81 29 26 | 12 0 50.78-100 13.93-18 10.68-8
4 0.215 162 41 17 | 0.525 76 31 31 | 15 1 32.20-100 21.61-27 13.82-14
5 0.212 165 42 14 | 0.498 83 34 28 | 14 1 34.50-100 17.18-25 10.84-7
6 0.235 162 50 24 | 0.503 79 29 28 | 13 0 40.55-100 14.31-25 8.23-8
7 0.217 154 43 18 | 0.525 84 29 28 | 17 2 43.60-100 10.99-26 4.55-8
8 0.213 162 45 15 | 0.497 84 33 27 | 14 1 36.58-100 17.83-24 4.57-6
9 0.213 160 39 15 | 0.498 81 28 28 | 18 2 40.36-100 21.52-28 8.52-7
10 0.212 167 41 19 | 0.500 83 30 25 | 13 1 45.72-100 20.39-26 8.23-10
z 0.219 162 43 17 | 0.502 81 30 29 | 15 1 40.43-100 18.04-26 9.01-9
performance per prediction: 0.40-100 0.68-26 1.01-9
WDR

1 0.169 155 35 12 | 0.626 80 33 31 0 0 34.52-100 21.90-44 16.44-15
2 0.181 145 42 18 | 0.446 77 25 20 0 0 55.10-100 19.19-28 10.56-12
3 0.185 150 48 17 | 0.584 73 34 32 0 0 24.58-100 15.45-23 14.33-12
4 0.175 137 37 15 | 0.451 82 23 21 0 0 62.54-100 17.14-23 6.33-9
5 0.179 146 45 13 | 0.612 80 36 26 0 0 23.70-100 20.33-34 9.48-11
6 0.183 156 39 13 | 0.544 82 31 29 0 0 36.16-100 28.25-32 5.95-7
7 0.186 152 43 14 | 0.524 83 30 28 0 0 50.37-100 25.42-25 2.19-4
8 0.171 138 36 13 | 0.560 76 30 32 0 0 39.28-100 13.64-23 8.97-10

to be continued on next page

continued from previous page

train test removed performance—nr.-pred.
nr. MSE F1 F2 F3 | MSE F1 F2 F3 | w u confidence: 0.0/0.6/0.8
9 0.189 150 44 14 | 0.529 78 32 28 0 0 39.59-100 18.91-33 17.53-19
10 0.186 142 41 15 | 0.504 85 32 27 0 0 45.88-100 13.72-29 7.79-10
z 0.180 147 41 14 | 0.538 80 31 27 0 0 41.17-100 19.39-29 9.95-11
performance per prediction: 0.41-100 0.66-29 0.91-11
FMSR
1 0.168 154 35 11 | 0.627 80 32 32 0 0 36.14-100 23.79-40 16.44-15
2 0.180 146 42 18 | 0.449 76 26 21 0 0 53.86-100 19.19-28 10.56-12
3 0.185 148 48 16 | 0.583 74 34 32 0 0 24.58-100 15.45-23 15.51-13
4 0.174 136 36 15 | 0.447 81 22 21 0 0 64.07-100 19.24-24 8.15-10
5 0.179 143 44 13 | 0.611 80 35 26 0 0 23.70-100 22.74-33 9.48-11
6 0.182 156 39 13 | 0.546 81 32 29 0 0 34.52-100 26.77-31 5.95-7
7 0.185 151 43 14 | 0.525 82 29 28 0 0 50.53-100 27.71-25 2.19-4
8 0.170 138 36 13 | 0.559 77 29 32 0 0 40.69-100 12.83-24 8.97-10
9 0.188 156 40 14 | 0.535 76 31 29 0 0 39.92-100 24.30-34 17.09-18
10 0.186 143 40 15 | 0.542 84 32 27 0 0 47.34-100 11.37-27 7.79-10
z 0.180 147 40 14 | 0.542 79 29 28 0 0 41.57-100 20.34-29 10.21-11
performance per prediction: 0.42-100 0.70-29 0.93-11
WD
1 0.235 159 54 23 | 0.435 &0 29 25 | 18 3 37.04-100 18.51-13 1.06-1
2 0.235 158 54 23 | 0.429 &1 27 25 | 18 3 43.43-100 18.98-13 1.06-1
3 0.235 159 55 23 | 0.435 82 28 24 | 18 3 44.47-100 18.51-13 1.96-2
4 0.235 164 55 25 | 0.454 79 27 24 | 13 2 54.04-100 12.61-17 0.51-1
5 0.235 158 54 23 | 0.438 82 29 25 | 18 3 36.50-100 18.51-13 1.96-2
6 0.235 158 48 24 | 0.464 89 28 32 | 18 3 50.53-100 20.77-11 0.90-1
7 0.235 164 56 26 | 0.512 83 32 28 | 14 2 35.60-100 15.27-17 9.01-6
8 0.235 166 54 24 | 0.471 81 33 24 | 18 3 32.03-100 20.12-14 7.65-4
9 0.235 158 54 23 | 0.442 78 29 26 | 18 3 36.81-100 17.88-12 1.06-1
10 0.235 158 54 23 | 0.440 80 30 26 | 18 3 37.04-100 17.88-12 1.06-1
z 0.235 160 54 24 | 0.452 82 29 26 | 17 3 40.75-100 17.90-12 2.62-2
performance per prediction: 0.41-100 1.32-12 1.31-2
FMS
1 0.236 156 47 21 | 0.464 78 27 26 | 18 3 54.11-100 17.51-13 10.84-6
2 0.223 167 51 22 | 0.466 79 30 26 | 18 3 48.73-100 18.20-15 4.52-4
3 0.237 150 49 21 | 0.490 75 27 24 | 17 3 49.77-100 16.09-16 14.35-7
4 0.253 166 57 24 | 0.461 83 30 29 | 24 4 44.26-100 18.40-11 9.38-5
5 0.245 170 47 20 | 0.501 83 29 25 | 18 3 39.49-100 17.58-11 0.71-1
6 0.247 164 58 25 | 0.486 81 30 27 | 24 4 31.12-100 24.00-16 16.33-10
7 0.237 161 53 24 | 0.478 81 31 27 | 18 3 36.04-100 12.14-10 0.82-1
8 0.252 166 57 24 | 0.459 84 29 28 | 21 4 45.38-100 17.83-12 1.38-1
9 0.235 163 56 24 | 0.453 82 29 24 | 18 3 43.81-100 16.61-14 1.06-1
10 0.235 158 44 23 | 0.462 82 27 26 | 18 3 51.26-100 17.62-13 0.43-1
z 0.240 162 52 23 | 0472 81 29 26 | 19 3 44.40-100 17.60-13 5.98-4
performance per prediction: 0.44-100 1.24-13 1.62-4

Table 4: 10 comparisons of conventional backprop (BP), optimal brain surgeon (OBS), weight
decay after spoiling the net with BP (WDR), flat minimum search after spoiling the net with BP
(FMSR), weight decay (WD), flat minimum search (FMS). All nets start out with 8 hidden units.
Column “MSE” shows mean squared error, “F17 (“F2”,“F3”) indicates number of errors greater
than 0.2 (0.8, 1.4). Column “w” shows the number of pruned weights, column “u” shows the
number of pruned units. The final 3 rows (“0.0”, “0.6”, “0.87) list pairs of performance (see text)
and number of confident predictions. & denotes the mean of 10 trials. In one case (confidence
measure 0.6), weight decay does slightly better than FMS. But in all other cases, flat minimum
search outperforms all other methods, including WD.

train test interval [performance—nr.-pred.
nr. | MSE F1 F2 F3 | MSE F1 F2 F3 b e confidence: 0.0/0.6/0.8
ES
1 0.209 159 54 17 | 0.487 77 29 26 0.96 10.4 | 42.77-100 22.87-22 12.99-8
2 0.206 153 50 17 | 0.405 74 25 20 1.12 1.24 | 56.12-100 22.52-19 9.86-8
3 0.209 154 47 21 0.530 74 29 33 1.20 1.32 | 42.93-100 19.95-24 14.33-9
4 0.198 149 46 19 | 0.436 76 24 25 1.52 2.24 | 61.71-100 11.67-17 9.36-9
5 0.227 160 55 20 | 0.467 77 28 25 0.52 0.80 | 48.38-100 20.41-19 9.03-7
6 0.234 163 54 20 | 0.444 77 28 24 | 0.44 0.72 | 43.85-100 22.06-19 10.44-5
7 0.222 157 55 19 | 0.425 78 24 23 0.60 0.96 | 60.75-100 25.13-21 4.51-4
8 0.233 160 58 19 | 0.460 79 28 24 | 0.44 0.64 | 43.23-100 24-08-18 1.38-1
9 0.236 158 58 21 0.430 83 26 24 | 0.36 0.48 | 50.83-100 14.88-13 2.44-2
10 0.232 162 58 20 | 0.441 80 28 25 0.36 0.52 | 44.66-100 15.99-19 2.44-2
z 0.221 158 54 19 | 0.453 78 27 25 49.52-100 19.95-19 7.68-5.5
performance per prediction: 0.50-100 1.04-19 1.40-5.5

Table 5: Upper performance bounds for arbitrary early stopping (ES) methods. They are obtained
by cheating by looking at test set performance during learning. All nets start out with 8 hidden
units. Column “MSE” shows mean squared error, “F17 (“F27,“F3”) indicates number of errors
greater than 0.2 (0.8, 1.4). Column “b” shows the minimal number of millions of training examples
needed to achieve small test set error, column “e” shows the corresponding mazimal number (where
test set error starts growing again). The final 3 rows (“0.07, “0.6”, “0.87) list pairs of performance
(see text) and number of confident predictions. & denotes the mean of 10 trials.

Parameters:

Learning rate: 0.01.

Architecture: (5-8-1).

Number of training examples: 20,000,000.
Method specific parameters:

o FMS: Eiop = 0.235; AX = 0.0001; if Eayverage < Eior then A is set to 0.001.
e WD: like with FMS, but wy = 0.2.
e FMSR: like with FMS, but F;,; = 0.15; number of retraining examples: 5,000,000.

WDR: like with FMSR, but wg = 0.2.
e OBS: F;,; = 0.235.

See section 4.6 for parameters common to all experiments.

4.5 EXPERIMENT 5 — stock market prediction (3).

This time, we predict the DAX using weekly technical (as opposed to fundamental) indicators.
The data (DAX values and 35 technical indicators) was provided by Bayerische Vereinsbank.

To analyze the data, we computed: (1) The pairwise correlation coefficients of the 35 technical
indicators. (2) The maximal pairwise correlation coefficients of all indicators and all linear combi-
nations of two indicators. This analysis reveiled that only 4 indicators are not highly correlated.
For such reasons, our nets see only the 8 most recent DAX-changes and the following technical
indicators: (a) the DAX value, (b) change of 24-week relative strength index (“RSI”) — the relation
of increasing tendency to decreasing tendency, (c) “b week statistic”, (d) “MACD” (smoothened
difference of exponentially weighted 6 week and 24 week DAX).

The final network input is obtained by scaling the values (a-d) and the 8 most recent DAX-
changes in [—2,2]. The training set consists of 320 data points (July 1985 to August 1991). The
targets are the actual DAX changes scaled in [—1,1].

10

The following methods are applied to the training set: (1) Conventional backprop (BP), (2)
weight decay (WD) according to [47], (3) flat minimum search (FMS). The resulting nets are
evaluated on a test set consisting of 100 data points (August 1991 to July 1993).

Like in section 4.3, three different confidence measures are used: network output exceeding 0.0
(0.2, 0.4) is interpreted as a prediction of positive tendency. Network output below 0.0 (-0.2, -0.4)
is interpreted as a prediction of negative tendency. Other outputs don’t count. Performance is
measured like in section 4.3.
Results. Table 6 shows the results. Again,

our method outperforms the other methods.

train test rem. performance—nr.-pred.
MSE F1 F2 F3 F4 | MSE F1 F2 F3 F4 | w u confidence: 0.0/0.2/0.4

BP
1 0.15 21 121 19 13 1.10 44 85 54 21 5.65-100 4.86-96 8.60-91
2 0.14 23 136 13 12 1.03 44 85 51 26 11.07-100 12.32-93 8.46-85
3 0.14 27 132 18 15 0.96 39 82 47 14 12.66-100 14.12-89 15.59-86
4 0.10 24 102 13 13 1.19 47 84 59 24 5.86-100 5.75-94 4.64-92
5 0.13 22 119 16 12 1.07 48 88 52 24 13.75-100 12.35-94 11.13-92
6 0.13 34 134 17 21 1.21 52 87 60 21 -16.7-100 -13.9-92 -13.2-84
7 0.12 20 131 14 12 1.08 48 87 53 21 9.67-100 12.06-92 10.16-88
8 0.13 24 116 19 16 0.90 37 81 44 16 28.45-100 28.67-92 28.13-89
9 0.13 16 116 15 10 1.22 53 90 63 28 -11.0-100 -14.0-94 -5.00-88
10 0.12 23 108 12 16 1.00 44 82 50 21 21.53-100 20.12-95 21.00-93
z 0.13 23 122 16 14 1.08 46 85 53 22 8.08-100 8.23-93 8.95-89

performance per prediction: 0.081-100 0.088-93 0.101-89
WD1
1 0.51 148 275 125 85 | 0.330 43 68 24 22 | 109 8 | 18.69-100 0.0-0 0.0-0
2 0.51 149 275 124 86 | 0.330 39 71 23 20 | 110 8 | 25.60-100 0.0-0 0.0-0
3 0.51 148 276 124 85 | 0.342 48 70 23 22 | 109 8 | -6.88-100 0.0-0 0.0-0
4 0.51 145 276 126 84 | 0.339 48 70 24 21 | 111 8 4.97-100 0.0-0 0.0-0
5 0.51 147 275 125 85 | 0.331 39 71 23 20 | 111 8 | 23.44-100 0.0-0 0.0-0
6 0.51 147 275 124 85 | 0.343 48 70 23 22 | 110 8 | -6.88-100 0.0-0 0.0-0
7 0.51 146 276 126 84 | 0.330 38 71 23 21 | 110 8 | 26.84-100 0.0-0 0.0-0
8 0.51 145 276 127 84 | 0.337 47 69 23 22 | 110 8 | -3.28-100 0.0-0 0.0-0
9 0.51 146 275 125 85 | 0.330 38 70 24 22 | 110 8 | 25.84-100 0.0-0 0.0-0
10 0.51 150 275 124 87 | 0.332 44 68 24 22 | 110 8 | 21.40-100 0.0-0 0.0-0
z 0.51 147 275 125 85 | 0.334 43 70 23 21 | 110 8 | 12.97-100 0.0-0 0.0-0

performance per prediction: 0.130-100 0.0-0 0.0-0
WD2
1 0.34 84 215 60 46 | 0.425 44 74 26 20 64 3 | 22.04-100 13.08-53 9.01-25
2 0.34 106 230 61 63 | 0.422 50 81 25 24 75 3 1.75-100 3.95-42 4.70-21
3 0.34 75 239 57 43 | 0.453 47 83 27 26 76 3 5.67-100 5.53-52 8.97-33
4 0.34 89 231 61 36 | 0.410 45 79 21 18 69 3 5.64-100 6.60-53 5.97-17
5 0.34 86 232 50 47 | 0.409 46 77 23 23 773 5.61-100 10.93-70 14.59-21
6 0.34 89 244 66 50 | 0.527 46 79 29 19 67 3 5.26-100 -7.20-62 -1.18-35
7 0.34 84 230 60 48 | 0.401 44 74 24 22 80 3 9.75-100 3.56-44 0.53-24
8 0.34 86 242 62 59 | 0.481 40 75 21 21 72 3 5.79-100 7.63-69 -14.0-28
9 0.34 90 234 51 47 | 0.463 47 76 25 26 68 2 | 12.32-100 20.61-70 0.23-32
10 0.34 93 234 68 53 | 0.362 46 72 20 23 67 3 | 15.98-100 19.98-36 9.90-18
z 0.34 88 233 60 49 | 0.435 46 77 24 22 72 3 8.98-100 8.47-55 3.88-25

performance per prediction: 0.090-100 0.154-55 0.153-25
FMS1
1 0.38 111 231 87 60 | 0.391 44 76 25 22 | 103 7 | 18.82-100 5.97-23 7.46-19
2 0.45 127 258 96 73 | 0.349 45 81 24 22 | 102 7 | 23.26-100 5.14-20 8.55-18
3 0.47 126 276 109 77 | 0.356 45 79 16 23 | 103 7 | 26.11-100 9.42-13 9.42-13

to be continued on next page

11

continued from previous page
train test rem. performance—nr.-pred.
MSE F1 F2 F3 F4 | MSE F1 F2 F3 F4 | w u confidence: 0.0/0.2/0.4

4 0.48 126 276 109 71 | 0.339 43 79 23 18 103 7 | 26.46-100 9.68-13 8.59-12
5 0.46 122 274 108 75 | 0.344 42 78 24 22 103 7 | 27.49-100 8.43-13 4.86-11
6 0.48 129 270 116 76 | 0.343 46 76 24 22 103 7 | 18.09-100 6.64-6 6.64-6
7 0.47 124 274 108 76 | 0.352 43 77 24 22 103 7 | 24.53-100 8.82-12 4.96-9
8 0.48 126 276 109 71 | 0.330 44 79 22 20 103 7 | 26.46-100 9.68-13 8.59-12
9 0.48 129 273 114 77 | 0.340 46 76 24 22 103 7 | 18.09-100 5.60-7 5.60-7
10 0.47 121 274 101 65 | 0.340 43 78 26 20 103 7 | 29.72-100 11.42-27 10.91-24
z 0.46 124 268 106 72 | 0.348 44 78 23 21 103 7 | 21.26-100 8.08-15 6.70-13

performance per prediction: 0.213-100 0.550-15 0.511-13
FMS2
1 0.34 105 218 64 65 | 0.400 40 73 19 21 52 4 | 14.60-100 13.61-39 5.56-11
2 0.34 103 223 65 59 | 0.362 39 71 20 20 52 4 | 18.88-100 14.55-33 5.91-9
3 0.34 94 222 64 58 | 0.421 36 75 22 16 51 4 | 20.54-100 11.15-40 3.83-12
4 0.34 97 228 65 53 | 0.370 42 79 20 19 52 4 | 22.07-100 23.44-32 7.50-10
5 0.34 89 243 59 49 | 0.631 54 82 36 25 52 4 2.02-100 -7.08-68 -3.77-43
6 0.34 102 219 64 58 | 0.359 39 70 19 20 52 4 | 20.08-100 17.40-36 8.80-11
7 0.34 98 227 64 54 | 0.368 42 77 19 19 52 4 | 22.07-100 26.38-33 7.50-10
8 0.34 90 231 57 53 | 0.605 48 85 38 23 52 4 3.71-100 -14.8-55 -12.8-41
9 0.34 98 228 65 54 | 0.371 42 78 19 19 52 4 | 22.07-100 23.44-32 7.50-10
10 0.34 95 217 73 54 | 0.410 46 75 27 21 52 4 9.75-100 1.49-13 0.59-12
z 0.34 97 226 64 56 | 0.430 43 76 24 20 52 4 | 15.58-100 10.95-38 3.06-17

performance per prediction: 0.156-100 0.287-38 0.181-17

Table 6: 10 comparisons of conventional backprop (BP), optimal brain surgeon (OBS), weight
decay (WD), flat minimum search (FMS). All nets start out with 9 hidden units. Column “MSE”
shows mean squared error, “F1” indicates number of tendency errors, “F2” (“F3”) indicates
number of errors greater than 0.2 (0.8), “F4” indicates number of tendency errors for changes

from increasing DAX tendency to decreasing DAX tendency (or vice versa). Column “w” shows
((u77

the number of pruned weights, column

shows the number of pruned units, the final 3 rows

(€0.07, “0.27, “0.4”) list pairs of performance (see text) and number of confident predictions. &
denotes the mean of 10 trials. With all confidence measures, our method outperforms

BP and WD.

Parameters:

Learning rate: 0.01.
Architecture: (12-9-1).
Training time: 10,000,000 examples.

Method specific parameters:

e FMS1: Fip; = 0.34; AX = 0.003.

o FMS2: like with FMSI, but AX = 0.0005. If Eaverage < Eior then A is set to 0.001.

e WDI1: like with FMS1, but wy = 0.2.

e WD2: like with FMS2, but wy = 0.2.

See section 4.6 for parameters common to all experiments.

12

4.6 DETAILS / PARAMETERS

With exception of the experiment in section 4.2, all units are sigmoid in the range of [—1.0, 1.0].
Weights are constrained to [—30, 30] and initialized in [-0.1,0.1]. The latter ensures high first order
derivatives in the beginning of the learning phase. WD is set up to hardly punish weights below
wg = 0.2, Eaverage 1 the average error on the training set, approximated using exponential decay:
Eaverage — YFaverage + (1 — 7)Ey(w, Dy), where v = 0.85. All nets with the same number (see
tables 1 - 6) start with the same weight initialization.

FMS details. To control B(w, Dy)’s influence during learning, its gradient is normalized and
multiplied by the length of E,(w, Dy)’s gradient (same for weight decay, see below). A is computed
like in [47] and initialized with 0. Absolute values of first order derivatives are replaced by 1072°
if below this value. We ought to judge a weight w;; as being pruned if §w;; (see equation (11)
in appendix A.3) exceeds the length of the weight range. However, the unknown scaling factor e
(see equations (9) and (11) in appendix A.3) is required to compute §w;;. Therefore, we judge a
weight w;; as being pruned if, with arbitrary ¢, 6w;; is much bigger than the corresponding é’s of
the other weights (typically, there are clearly separable classes of weights with high and low §’s).

If all weights to and from a particular unit are very close to zero, the unit is lost: due to tiny
derivatives, the weights will never again increase significantly. Sometimes, it is necessary to bring
lost units back into the game. For this purpose, every n;,;: time steps (typically, ns,,; = 500,000),
all weights w;; with 0 < w;; < 0.01 are randomly re-initialized in [0.005, 0.01]; all weights w;; with
0 > w;; > —0.01 are randomly initialized in [—0.01, —0.005], and A is set to 0.

wfj/wg

Weight decay details. We used the weight decay term in [47]: D(w, wg) = Zi]’ T Tag

Like with FMS, D(w, wo)’s gradient was normalized and multiplied by the length of E,(w, Dy)’s
gradient. A was adjusted like with FMS. Lost units were brought back like with FMS.

Modifications of OBS. Typically, most weights exceed 1.0 after training. Therefore, higher
order terms of dw in the Taylor expansion of the error function do not vanish. Hence, OBS is
not fully theoretically justified. Still, we used OBS to delete high weights, assuming that higher
order derivatives are small if second order derivatives are. To obtain reasonable performance, we
modified the original OBS procedure (notation following Hassibi and Stork [12]):

2
o To detect the weight that deserves deletion, we use both L, = ﬁ (the original value
aq
used by Hassibi et al.) and T, := —%wq + %gjvEg wg. Here H denotes the Hessian and

H~1 its approximate inverse. We delete the weight causing minimal training set error (after
tentative deletion).

e Like with OBD [20], to prevent numerical errors due to small eigenvalues of H, we do: if
Ly < 0.0001 or T, < 0.0001 or || I — H='H ||> 10.0 (bad approximation of H~!), we only
delete the weight detected in the previous step — the other weights remain the same. Here
[| . || denotes the sum of the absolute values of all components of a matrix.

o If OBS’ adjustment of the remaining weights leads to at least one absolute weight change
exceeding 5.0, then dw is scaled such that the maximal absolute weight change is 5.0. This
leads to better performance (also due to small eigenvalues).

o If Foverage > Eior after weight deletion, then the net is retrained until either Eoverage < Etor
or the number of training examples exceeds 800,000. Practical experience indicates that the
choice of Fy,; hardly influences the result.

e OBS is stopped if Eaverage > Eior after retraining. The most recent weight deletion is
countermanded.

13

5 RELATION TO PREVIOUS WORK

Most previous algorithms for finding low complexity networks with high generalization capability
are based on more prior assumptions than our approach (see appendix A.2). They can be broadly
classified into two categories (see [40], however, for an exception):

(1) Assumptions about the prior weight distribution. Hinton and van Camp [14] and
Williams [49] assume that pushing the posterior distribution (after learning) close to the prior
leads to “good” generalization (see more details below). Weight decay (e.g. [11, 18]) can be
derived e.g. from Gaussian or Laplace priors. Nowlan and Hinton [34] assume that networks with
many similar weights generated by Gaussian mixtures are “better” a priori. MacKay’s priors [23]
are implicit in additional penalty terms, which embody the assumptions made.

(2) Prior assumptions about how theoretical results on early stopping and network
complexity carry over to practical applications. Such assumptions are implicit in methods
based on validation sets [30, 43, 7, 13], e.g. “generalized cross validation” [6, 9], “final prediction
error” [1], “generalized prediction error” [29, 28]. See also Holden [16], Wang et al. [46], Amari
and Murata [2], and Vapnik’s “structural risk minimization” [10, 44].

Constructive algorithms / pruning algorithms. Other architecture selection methods
are less flexible in the sense that they can be used only either before or after weight adjustments.
Examples are “sequential network construction” [8, 3, 27], input pruning [28, 37], unit pruning
[48, 31, 21], weight pruning, e.g. “optimal brain damage” (OBD [20]), “optimal brain surgeon”
(OBS [12]).

Hinton and van Camp [14]. They minimize the sum of two terms: the first is conventional
error plus variance, the other is the distance [p(a | Dy)log %da between posterior p(« | Dg)

and prior p(«). The problem is to choose a “good” prior. In contrast to their approach, our
approach does not require a “good” prior given in advance. Furthermore, Hinton and van Camp
have to compute variances of weights and unit activations, which (in general) cannot be done using
linear approximation. Intuitively speaking, their weight variances are related to our Aw;;. Our
approach, however, does justify linear approximation, as seen in appendix A.4.

Wolpert [50]. His (purely theoretical) analysis suggests an interesting different additional error
term (taking into account local flatness in all directions): the logarithm of the Jacobi determinant
of a functional from weight space to the space of possible nets. This term 1s small if the net output
(based on the current weight vector) is locally flat in weight space (if many weights lead to the
same net function in the space of possible net functions). Tt is not clear, however, how to derive
a practical algorithm (e.g. a pruning algorithm) from this.

Murray and Edwards [32]. They obtain additional error terms consisting of weight squares
and second order derivatives. Unlike our approach, theirs ezplicitly prefers weights near zero. In
addition, their approach appears to require much more computation time (due to second order
derivatives in the error term).

14

APPENDIX - THEORETICAL JUSTIFICATION

Contents:

A.1 The probability distributions

A.2 Overfitting error
A 2.1 “Closeness” of Dy to D
A.2.2 “Flatness” of D
A .2.3 Approximation and minimum of the overfitting error
A.2.4 Why does search for big Dy-boxes work?

A.3 How to flatten the network output

A.4 Why does the Hessian decrease?

A5 Efficient implementation of the algorithm
A.5.1 Explicit derivative of equation (1)
A.5.2 Fast multiplication by the Hessian

A.1. THE PROBABILITY DISTRIBUTIONS

Outline. To measure overfitting error (in section A.2), we need probability distributions on data
and weights. The targets are partly due to noise (see section 2). The probability of matching the
original, noise-free target component of an element in D (see section 2) depends on the weights
and the input. Using Bayes’ rule, we obtain an a posterior: distribution of the weights.

Formal details. In what follows, o denotes a weight vector, and D = {(zp,dp) |p>1}C D
(in section A.2 we will consider the special cases D=Dand D= Dy). In analogy to section 2,
we define Ey(«, D) = ﬁ Z(xp,dp)ef) | dp — o0p(cx,) ||* for D with finite cardinality. For D with
infinite cardinality, we define F,(«, D) = limy, oo Eq(ar, Dy), if this limes is finite and equal for
all {D, | n > 1} with lim,_.o, D,, = D, where |D,,| = n and D,, C D. Otherwise Eq(w,D) 1s
undefined.

Let p(D | @) denote the probability distribution according to which the network makes
predicitions® of D’s output values in the input range of D, given weights a. We assume Gaussian
noise? with deviation o on the noise-free targets. With 8 := 01—2, we obtain (see [23, 52])

exp (—fE, (o, D))
Z0))

Here Z(f) is a normalizing constant. Z(8) = [eXp(—ﬁEq(a,D))dD, where R is the K-

dimensonal vector space of possible data D € R. Z(3) does not depend on «, due to translation

K
invariance of the error in . Z(4) = (4 /%) holds.*

Using e.g. gradient descent algorithms, the prior does not coincide with the distribution used
for weight initialization. The “true” prior pa(«) depends on the nature of the learning algorithm
A. pa(a) gives the probability of « after training with A®. From practical experience we infer
that weight initialization does not heavily influence the posterior. From Bayes’ rule we obtain the
posterior weight distribution, given the observations D:

p(D | a)=

2Following [23, 51], p(D | @) is just a shorthand expression for p({dy} | {zp},).

3 Alternatively, instead of assuming Gaussian noise, equation (3) can be obtained by following Levin, Tishby
and Solla [22]. They derive it as the only solution of a functional equation, where 3 is a constant expressing the
sensitivity of p(b | &) on the error.

4Tt may be useful to define E(3) := qu(oz,D)p(D | oz)dD = ﬁ qu(oz,D) exp(—ﬁEq(a,D))dD = (%)K

E(B) is a function of the derivative of Z(8) : log E(8) = K log (—%%ﬂ) = —Klog(28). E(B) is the mean
squared error over all possible data when using a fixed 3, thus being a measure of the “acceptable error level”. See
Levin et al. [22]. Why should E(3) be of interest? With an estimate of 3 we are able to estimate E;,; as well.

SFor instance, MacKay [23] obtains p4(a) equal to a multidimensional Gaussian distribution with mean 0, by
adding A || o [|? to his error function. Similar statements can be made about Hinton and van Camp’s approach
[14].

15

pafa| D) = ML) ()
pa(D)
pA(D) = fp(D | @)pa(a)da tells us about learning algorithm A’s usefulness for predicting D’s
output values in D’s input range. pale) = [pala | D)pA(D)dD holds. With problem class P
and D € P, pA(D) = pP(D) defines properties of an “optimal” learning algorithm A with respect
to P, where pP(D) is the probability of choosing D from P.

With uniform pp(.), no algorithm can outperform error reducing algorithms (see [51]). Typical
problem distributions in the real world are not uniform, however — the real world appears to favor
solutions with low algorithmic complexity. See e.g. [40]. See [41] for a universal “self-improving”
system which continually attempts to incrementally modify its prior based on experience with
previous problems.

A.2. OVERFITTING ERROR

Outline. In analogy to [46] and [10], we decompose the generalization error into an “overfitting”
error and an “underfitting” error. There is no significant underfitting error (corresponding to
Vapnik’s empirical risk) if Ey(w, Do) < Eyo. Some thought is required, however, to define the
“overfitting” error. We do this in a novel way.

Intuition. Since we do not know the relation D, we cannot know p(« | D), the “optimal”
posterior weight distribution we would obtain by training the net on D (— “sure thing hypothe-
sis”). But, for theoretical purposes, suppose we did know p(« | D). Then we could use p(a | D) to
initialize weights before learning the training set Dy. Using the Kullback-Leibler distance [19], we
measure the information (due to noise) conveyed by Dy, but not by D (see figure 4). In conjunc-
tion with the initialization above, this provides the conceptual setting for defining an overfitting
error measure. But, the initialization does not really matter, because it does not heavily influence
the posterior (see section A.1).

[positive contributions to the overfitting error [positive contributions to the underfitting error

.| Do), the Do-posterior
__P(.1Do) po p(. | D), the D-posterior

p(. | D), the D-posterior

p(. | Do), the Do-posterior

Figure 4: Positive contributions to the overfit- Figure b: Positive coniributions to the under-
ting error B,(D, Dy). fitting error Ey(Dyg, D).

16

Formal details. We assume a conventional gradient based learning algorithm A adjusting the
weights to locally minimize the error. Then p(«) is uniform and p(« | D) := pa(a | D) = p(D |
«). See equation (4). The overfitting error is the Kullback-Leibler distance of the posteriors:

Eq (D, Dy) = /p(a | Do)log%

[vt 1 Doyogup | ardo = 1 [o) Do)y, DY~ B3) (5)

where Eq(Do) := [p(a | Dy)Ey(a, Dy)dar is the mean error after learning Dy, and E,(D, Dy) is
the expectation of log % = —logp(a | D) — (—logp(a | Dg)) (the expected difference of the
minimal description [42] of & with respect to D and Dy, after learning Dp).

Now we measure the expected overfitting error relative to M, (see section 2) by com-

puting the expectation of log %&ll—%”)l in the range M,,:

do = /p(a | Do)logp(Dg | a)dex —

Ero(w) = Evo(D, Do, My) = 3 (/ par, (o | Do)Ey(a, D)do — Ey(Dy, Mw)) . (6)

p(a|Do)

, P(@lDo)da
M,,, and Eq(Do, My) = wa P, (@ | Do)Ey(r, Dp)der is the mean error in M,, with respect to
Dy.

Clearly, we would like to pick w such that E,,(w) is minimized. How to do that? Actually, we
will minimize an approximation of E,,(w) (sections A.2.3, A.2.4). Towards this purpose, we need
to make two additional prior assumptions, which are actually implicit in most previous approaches
(which make additional stronger assumptions, see section 5): (1) “Closeness assumption”: every
minimumof E,(., Dy) is “close” to a maximum of p(«| D) (see formal definition below). Intuitively,
“closeness” ensures that Dy can indeed tell us something about D, such that training on Dy may
indeed reduce the error on D. (2} “Flatness assumption”: the peaks of p(«|D)’s maxima are not
sharp. This MDL-like assumption holds if not all weights have to be known exactly to model D. Tt
ensures that there are regions with low error on D. Let us have a closer look at both assumptions.

Here par, (o | Do) = T is the posterior of Dy scaled to obtain a distribution within
M

A.2.1. “CLOSENESS” OF Dy, TO D

Intuition. In analogy to section A.2, equation (5), we measure the underfitting error — the
information conveyed by D, but not by Dy (note the exchange of D and Dy — see figure 5). This
information is determined by the Dy-error at the most likelihood weight of D. The concept of
underfitting error allows for defining “closeness”. Closeness implies that the most likelihood weight
of D and the most likelihood weight of Dy are “close” together in weight space.

Formal details. The underfitting error is

ple | D)
p(a | Do)

[vte 1 Dytog Do Lo = 5 [| D)y, Doyt~ EyfD))

Eu(Dy, D) = /p(a | D)log doa = /p(a | D)logp(D | t)dex —

Here the errors are defined in analogy to the corresponding definitions for the overfitting error, see
equation (5). Let @ be a most likelihood weight with respect to D. p(« | D) has its peak at (or
near) w. Thus, the underfitting error is dominated by E, (w0, Dyp). Let @ be a most likelihood weight
with respect to Dyp, and let Ug,,,(w) be a connected region around), such that o € Ug,,, (W)
implies Ey(e, Do) < Etor.

Definition: @ is near w with respect to Fyy, iff @ € Ug,,,(w). Dy is close to D, iff for all
most likelithood weights w of Dy, there exists a most likelihood weight w of D such that w is near

w.

17

A.2.2. “FLATNESS” OF D

Intuition. D has a “flat” error surface or a “flat” posterior if (1): at least one weight is not needed
to generate D, or (2): there exists a big box with respect to D, such that all weight vectors within
the box yield about the same error as the most likelihood weight vector of D (which yields minimal
error). Hence, there exists a “good” weight vector which can be described with low precision (and
few bits).

Formal details. Let Ug,_ (s p)4,(@) be a connected region around @, where o € Ug, (s p)4,(%0)
implies E (e, D) < Eg(@w, D) + p, where p is a positive constant near zero.

Definition. D is flat, if (1) there exists a w € Ug, (s p)4,(W), such that there exists at
least one w;;, such that for all ¢ with abs(c) below maximal weight value the following holds:
W+ ceij € Up, (w,p)+p(W), where e;; is the unit vector in the direction corresponding to i, j.

Or, D is flat, if (2) V(Aw) > 0 (i.e. @ = w) or, otherwise, there exists w € Ug, (s p)4,(10)
such that V(Aw) > V(Aﬁ;) Here V(Aw) = maz{2V Hi,j Tij | Yhuw 0 0 < Kuy < Tuw <
maximal weight value : w + 3" Fruweww € Up,(s,0)4+,(W)} V(Aw) i1s the volume of the box
(. Note the similarity to the definition of M,, and V(Aw) in section 2: within Ug,,, (%), M,
is the biggest box with center w, given Do. Within Ug, (4,0)4,(W), Gy is the biggest box with
center w, given D. Note: (1) implies (2). Therefore, in what follows we focus on (2).

A.2.3. APPROXIMATION AND MINIMUM OF £,

M, is defined to have maximal box volume within Ug,,, (). Within the box, the error E,(«, Dy)
is close to Fyp. Having found a very flat box (see flatness-condition 2 in A.3), we may assume
that par, (o | Do) = m, i.e. par, is uniform. Now we can approximate E,,:

FEy(a, D)da
Ero(w) = f3 (% - Etol) . (8)

%, the variance of the target noise, and the tolerable error are fixed parameters of the relative

s, Bale,D)da o
— Vaw) mean(FE,(a, D), My,), which is

approximately the mean value of E,(«, D) within a flat box. Due to flatness, there exists at least
one w such that mean(E, (o, D), Gg) = E (w0, D). Due to @ being the most likelihood weight of
D, mean(Ey(«, D), Gy) > E4(w, D) for every weight w.

We would like to find some w such that the overfitting error is (nearly) minimal both at w and
on Gg. Near w, the vector w defines the biggest box Gy, given D. Since only Dy is available,
direct search for GG is not possible — all we can do is to look for a big M,,. The problem is: not
every w defining a big M,, defines a big G, as well. To see this, suppose D contains a subset
containing no elements of Dy. The next section shows how to deal with this problem.

overfitting error. This error is determined by

A.2.4. WHY DOES SEARCH FOR BIG D,-BOXES WORK?

Outline. If F;y is small enough (this implies “enough” closeness), we do have a chance to find a
w defining a big G. Since flatness implies the existence of a big D-box, this subsection justifies
our search for big Dg-boxes by showing that a big D-box implies a big Dg-box. Is it possible
to end up with a “wrong” big Dy-box (one that is not implied by a big D-box)? Not if there is
enough “closeness” | as will be seen below.

Formal details. Let’s suppose there exists a @ € Ug, (W), such that V(A®) > V(Aw) for
all @ (see A.2.2. on flatness), but mean(E,(«, D), My) > E,(10, D). Then @ cannot define a big
Gy (W defines a “wrong” Dy-box). Now assume that the inner product of Vi, V(Aw)|y=¢ and the
vector pointing to the center of the biggest Dy-box close to w is always positive. Then we cannot
end up with a w as above. Due to flatness, network outputs are about equal on Gz. From this
we infer (*): mean(E(«, Do), Mg) = Eq (@, D), because of E (w, Dy) ~ Ey(w, Dy).

The validity of our “enough closeness assumption” is equivalent to the validity of the assump-
tion that E;, does go towards E,(w, Dy). The latter implies E (@, Do) — E4(w, Dg) (due to

18

closeness relative to Eyo). Now let us assume E (w, Dy) > E,(w, Dg) (this holds if |Dg| > W).
This implies that V(Aw®) decreases if Fy,; decreases. From (*) (see last paragraph) we deduce that
V(Aw) does not decrease. Hence, V(A®) < V(Aw) for at least one w. Alas, we can find a w by
a gradient based method for searching big box volumes, provided there is enough closeness (EFiy
is small enough). Now we see: maximizing V(Aw) (thus minimizing F,,) is equivalent to
a search for acceptable minima with “flat” network output (the error depends on the
output only). The next subsection shows how to find networks with flat output.

A.3. HOW TO FLATTEN THE NETWORK OUTPUT

Outline. To find nets with flat outputs, two conditions will be defined to specify B(w, Dy) (see
section 3). The first condition ensures flatness. The second condition enforces “equal flatness” in
all weight space directions, and can be justified using an MDL-based argument. In both cases,
linear approximations will be made (to be justified in A.4).

Formal details. We are looking for weights (causing tolerable error) that can be perturbed
without causing significant output changes. Perturbing the weights w by §w (with components
Swjj), we obtain ED(w,éw) := 3", (of (w+6w) — of (w))?, where of (w) expresses o*’s dependence
on w (in what follows, however, w often will be suppressed for convenience). Linear approximation
(justified in A.4) gives us “Flatness Condition 1”:

Aok Aok
ED(w, dw) ~ EDy(Sw) == (Waw”f < EDpmar(8w) 1= (3 |W||5wij|)2 <e (9)
Eodg oY ki *

where € > 0 defines tolerable output changes within a box and is small enough to allow for
linear approximation (it does not appear in B(w, Dy)’s gradient, see section 3). ED; is the linear
approximation of ED, and EDj mae 18 maz{ED;(w, év)|¥;; : bv;; = £6w;; }. Flatness condition 1
is a “robustness condition” (or “fault tolerance condition”, or “perturbation tolerance condition”
—see e.g. [25, 32, 33, 24, 4, 17, 5]).

The validity of approximation (8) depends on how flat box M, is. Many M,, satisfy flatness
condition 1. To select a particular, very flat M,,, the following “Flatness Condition 2” uses up
degrees of freedom left by equation (9):

do)2 _ (&qu)z Z(do

Vi, j,u, v (dwig)? Z()2 (10)

ow
k uv

awi]'

Flatness condition 2 enforces equal “directed errors”
ED;;(w, bw;;) = Zk(ok(wlj + bw;j) — ok(wlj))2 ~ Zk(%éw”)z, where ok(wzj) has the obvious
meaning. Linear approximation is justified by the choice of € in equation (9).

How to derive the algorithm from flatness conditions 1 and 2. We first solve equation

(9) (replacing the second “<” in (9) by “="). This gives us an equation for the |éw;;| (which
depend on w, but this is notationally suppressed):

(10) for |w;;| = |6wy|

(fixing u, v for all ¢, j). Then we insert |fw;;| into equation

NG

(11)

|6w;j| =

| 22k |
dw,;

SN | | Sy e —
R ST

The |6w;;| approximate the Aw;; from section 2. The box M, is approximated by AM,,
the box with center w and edge length 26w;;. M, ’s volume V(Aw) is approximated by AM,,’s

box volume V (éw) := 2% Hlj |6w;;]. Thus, B(w,Do) (see section 3) can be approximated by

19

B(w, Dy) := —log 5wV (bw) = >_ij — log|ow;;|. This immediately leads to the algorithm given
by equation (1).

How can this approximation be justified? The learning process itself enforces its validity
(see A.4). Initially, the conditions above are valid only in a very small environment of an
“initial” acceptable minimum. But during search for new acceptable minima with more associated
box volume, the corresponding environments are enlarged. The next section will prove this for
feedforward nets (experiments indicate that this appears to be true for recurrent nets as well).

MDL-based justification of flatness condition 2. Let us assume a sender wants to send
a description of some box center w to a receiver who knows the inputs but not the targets.
The MDL principle suggests that the sender wants to minimize w’s expected description length.
Let EDpean(w, Dg) denote the mean value of D on the box. Expected description length is
approximated by EDpean(w, Do) + B(w, Dy). One way of seeing this is to apply Hinton and
van Camp’s “bits back” argument [14] to a uniform prior (EDpeqn corresponds to Hinton and
vanCamp’s output variance). However, we prefer to use a different argument: we encode each
weight w;; of the box center w by a bitstring according to the following procedure (Aw;; is given):

(0) Define a variable interval I;; C R.

(1) Make I;; equal to the interval constraining possible weight values.

(2) While Iij Q: [wi]' — Awi]', wy; + Awi]']Z

Divide I;; into 2 equally-sized disjunct intervals [; and Is.

If w;; € I then I;; «— I; write ‘17,

If w;; € I then I;; < Iy; write ‘0.
The final set {I;;} corresponds to a “bit-box” within our box. This “bit-box” contains M,,’s center
w and is described by a bitstring of length B(w, Dy) + ¢, where the constant ¢ is independent of
the box My, . From ED(w,wy, —w) (wp is the center of the “bit-box”) and the bitstring describing
the “bit-box”, the receiver can compute w as follows: he chooses an initialization weight vector
within the “bit-box” and uses gradient descent to decrease B(wq, Do) until ED(wy, we — wp) =
ED(w, wy — w), where w, in the bit-box denotes the receiver’s current approximation of w (wy is
constantly updated by the receiver). This is like “FMS without targets” — recall that the receiver
knows the inputs x, of D)y. Since w corresponds to the weight vector with the highest degree of
local flatness within the “bit-box”, the receiver will find the correct w.

ED(w,wy —w) is described by a Gaussian distribution with mean zero. Hence, the description
length of ED(w,w, — w) is ED(w,wy — w). wy, the center of the “bit-box”, cannot be known
before training. However, we do know the ezpected description length of the box center, which
is EDpean + B(w,Do) + k (k is a constant independent of w). Let us approximate FDpeqn:
EDi mean(w, 6w) == m fAMw EDi(w,év)dbv =

e N 2 e N 2
k2§ T (00 S (85) T ey 0) = $ 5, 00 50 (85)

Among those w that lead to equal B(w, Dy) (the negative logarithm of the box volume plus
Wlog?2), we want to find those with minimal description length. Using Lagrange multiplicators,
it can be shown that ED; .4, is minimal under the condition B(w, Dy) = constant iff
flatness condition 2 holds. To conclude: with given box volume, we need flatness condition 2
to minimize the expected description length of the box center.

Comments. Flatness condition 2 influences the algorithm as follows: (1) The algorithm
prefers to increase the dw;;’s of weights which currently are not important to generate the target
output. (2) The algorithm enforces equal sensitivity of all output units with respect to the weights.
Hence, if certain hidden units help to compute targets only for a subset of the output units, then
the sensitivity of the remaining output units with respect to these hidden units will be reduced:
the algorithm tends to group hidden units according to their relevance for groups of output units.
Flatness condition 2 is essential: flatness condition 1 by itself corresponds to nothing more but
first order derivative reduction (ordinary sensitivity reduction).

Automatically, the algorithm treats units and weights in different layers differently, and takes
the nature of the activation functions into account.

20

A.4. WHY DOES THE HESSIAN DECREASE?

Outline. This section shows that second order derivatives of the output function vanish during
flat minimum search. This justifies the linear approximations in A.3 and approximation (8) of F,,
in A.3.

Intuition. We show that the algorithm tends to suppress the following values: (1) unit
activations, (2) first order activation derivatives, (3) the sum of all contributions of an arbitary
unit activation to the net output. Since weights, inputs, activation functions, and their first and
second order derivatives are bounded, the entries in the Hessian decrease where the corresponding
|6w;;]| increase.

Formal details. For simplicity, in what follows we use the same activation function f for all
units. We consider a strictly layered feedforward network with K output units and g layers. We
obtain

oy y ¥ fori=1
— = m 12
6102']' f (Sl) Zm wlm% for ¢ 75 l ’ ()

where y* denotes the activation of the a-th unit, and s; = Y wp,y™.

The last term of equation (1) (the “regulator”) expresses output sensitivity (to be minimized)
with respect to simultaneous perturbations of all weights. “Regulation” is done by equalizing the
sensitivity of the output units with respect to the weights. The “regulator” does not influence the
same particular units or weights for each training example. It may be ignored for the purposes of
this section. Of course, the same holds for the first (constant) term in (1). We are left with the
second term. With (12) we obtain:

do*
ZZ]:log Zk:(a;ij)2 =

2 Z (fan—in of unit k’) log |f/(5k)| 4+
unit k in the g th layer
2 Z (fan-out of unit j)log |y]| +

unit j in the (g—1)th layer

Z (fan-in of unit j) log Z (f/(Sk)wkj)2 +

unit j in the (g—1)th layer k
2 Z (fan-in of unit j)log|f'(s;)| +
unit j in the (g—1)th layer
2 Z (fan-out of unit j)log |y]| +

unit j in the (g—2)th layer

Z (fan-in of unit j) logz (f/(sk) Zf/(é?l)wklwlj) +

unit j in the (g—2)th layer k
2 Z (fan-in of unit j)log|f'(s;)| +
unit j in the (g—2)th layer
2 Z (fan-out of unit j)log |y]| +

unit j in the (g—3)th layer
2
/ / ayl2
N | Z log > | F(s6) Y f/(s1,)wn, thbm (13)
¢,§, where unit ¢ in a layer <(g—2) k 1 s

Let us have a closer look at this equation. We observe:
(1) Activations of units decrease in proportion to their fan-outs.
(2) First order derivatives of the activation functions decrease in proportion to their fan-ins.

21

(3) A term of the form)", (f’(sk) le F(s1))wri, 212 ZIT f’(slr)wlT_llTwlrj)z expresses the
sum of unit j’s squared contributions to the net output. Here r ranges over {0,1,... g — 2}, and
unit j is in the (¢ — 1 — r)th layer (for the special case r = 0, we get), (f’(sk)wkj)z). These
terms also decrease in proportion to unit j’s fan-in. Analogously, equation (13) can be extended
to the case of additional layers.

Comment. Let us assume that f/(s;) = 0 and f(s;) = 0 is “difficult to achieve” (can be
achieved only by fine-tuning all weights on connections to unit j). Instead of minimizing |f(s;)]
or |f'(s;)| by adjusting the net input of unit j (this requires fine-tuning of many weights), our
algorithm prefers pushing weights wy; on connections to output units towards zero (other weights
are less affected). On the other hand, if f'(s;) = 0 and f(s;) = 0 is not “difficult to achieve”,
then, unlike weight decay, our algorithm does not necessarily prefer weights close to
zero. Instead, it prefers (possibly very strong) weights which push f(s;) or f/(s;) towards zero
(e.g. with sigmoid units active in [0,1]: strong inhibitory weights are preferred; with Gaussian
units: high absolute weight values are preferred). See the experiment in section 4.2.

How does this influence the Hessian? The entries in the Hessian corresponding to output

oF can be written as follows:

9rok f(sp) 8oF doF , 9%y Oy - Oy
6wij6wuv - (f’(sk))z 6102']' 6wuv + f (Sk) Zl:wklﬁwijﬁwuv + 6Zk 6wuv + 6Uk 6102']' ’ (14)

where & is the Kronecker-Delta. Searching for big boxes, we run into regions of acceptable minima
with o*’s close to target (section 2). Thus, by scaling the targets, %i_k))% can be bounded.
Therefore, the first term in equation (14) decreases during learning.

According to the analysis above, the first order derivatives in the second term of (14) are
pushed towards zero. So are the wy; of the sum in the second term of (14).

The only remaining expressions of interest are second order derivatives of units in layer (¢ —1).

The —2%_ are bounded if (a) the weights, (b) the activation functions, (¢) their first and second

QW ;0Wayw
order derivatives, and (d) the inputs are bounded. This is indeed the case, as will be shown for
networks with one or two hidden layers:
Case 1: For unit [in a single hidden layer (¢ = 3), we obtain

azyl
6102']' 8wuv

| | = 18ubw (s y*| < C1 (15)

where 3/, y¥ are the components of an input vector zp, and C is a positive constant.
Case 2: For unit [in the third layer of a net with 2 hidden layers (¢ = 4), we obtain

0%y S _
|m| = [f"(s)(wiy’ + day’ J(wiay® + bury”) +
P (s0) (wibia " (50)y7 "+ Birbug J ()8 + burbia /' (50)7) | < Caz (16)

where C'5 is a positive constant. Analoguously, the boundedness of second order derivatives can
be shown for additional hidden layers.

Conclusion: As desired, our algorithm makes the H
|6wyy | increase.

k

{5 uy decrease where |6w;;| or

22

A.5. EFFICIENT IMPLEMENTATION OF THE ALGORITHM

Outline. We first explicitly compute the derivatives of (1). Then we show how to use Pearlmutter
and Mgller’s algorithm [26, 35] to speed up the computation of second order terms (A.5.2).

A.5.1 EXPLICIT DERIVATIVE OF EQUATION (1)
The derivative of the right-hand side of (1) is

8B (w,Dy) Y, A g
w,Do) __ Z k Bw,; 8w, Owny
- J

D Wan i ST () +
mOwi;
| 8ok | 82,k (22™ y2_ 8ok do™ _ 82,™
Z Z Bw;; Z Fw, 0wy § :m dw;; Bw,; m Owyj Bw,; 0wy
k i 3
7 (60"‘)2 1,7 (Z (gom,)2)2
§ :m dw,; m oW
W ; (17)
122

Z Z, o Owi
k 7 /Zm(gfﬂ—’;)Q

To compute (2), we need

60

aB(w DD) _

lgoml . 2 aom aao
Wir slon(2™ wij Qw4
Lo\ 2 («/2 (827) i (Zm(m)2)2

S

where 6 is the Kronecker-Delta. Using the nabla operator and (18), we can compress (17):

Vuy B(w, Do) = > HYV opx B(w, Dy)) (19)
3 wij

where H* is the Hessian of the output o*. Since the sums over [, 7 in (18) need to be computed
only once (the results are reusable for all Z,j), V oo B(w, Dg) can be computed in O(W) time.

The product of the Hessian and a vector can be computed in O(W) time (see next section). With
constant number of output units, the computational complexity of our algorithm is O(W).

A.5.2. FAST MULTIPLICATION BY THE HESSIAN

Pearlmutter and Mgller compute the product of a vector and the Hessian of the error in O(W)
time [26, 35]. Using Pearlmutter’s notation, we do the same with the Hessian of the output. An
operator R is defined as follows:

Ry{o()) = gl +19) lizo (20)

The Hessian of the kth output o® of a feedforward net is computed in 3 successive passes:
1. First backward pass (y' = o*):

oy 1 for i =1
o {z wy g fomu}’ =y

23

oyt ., oy

b5 = fi(si)a_yi ; (22)
oyt oy
8wﬂ =Y 65]' ’ (23)

2. First forward pass:

: 0B(w, Dy)
Ris) = Yy Ry} + 220D) (21)
7 Nourr)

i 0 for 3 input

my'} = {R{sz}fl’(sz) otherwise } ' (25)
3. Second backward pass (y' = o*):
oyt 0 for 4 in layers not below '
Riz=1}= 1 1 ;e ’ 26
{3yZ } > (wjiR{gTyj} + %%j) for ¢ in layers below it (26)
ayl o 63/1 11 6:‘/]

R{ﬁ_si = fi(sl)R{a_yi} + R{si}f; (SZ)a—yi ; (27)

3311 g 6311 i 6311
R{aTji —yR{a—Sj}-i-R{y }8_5]» : (28)

The elements of the vector H*(V ,x B(w, Dy)) are R{%}; see equation (19). Using the
Bw, ; Jr

technique in [35], recurrent networks can be dealt with as well.

References

(1]
(2]

(3]
[4]

H. Akaike. Statistical predictor identification. Ann. Inst. Statist. Math., 22:203-217, 1970.

S. Amari and N. Murata. Statistical theory of learning curves under entropic loss criterion. Neural
Computation, 5(1):140-153, 1993.

T. Ash. Dynamic node creation in backpropagation neural networks. Connection Science, 1(4):365—
375, 1989.

C. Bishop. Curvature-driven smoothing in backpropagation neural networks. In Proceedings of the

International Joint Conference on Neural Networks IJCNN-90, volume 2, pages 749-752. Lawrence
Erlbaum, Hillsdale, N.J., 1990.

M. J. Carter, F. J. Rudolph, and A. J. Nucci. Operational fault tolerance of CMAC networks. In
D. S. Touretzky, editor, Advances in Neural Information Processing Systems 2, pages 340-347. San
Mateo, CA: Morgan Kaufmann, 1990.

P. Craven and G. Wahba. Smoothing noisy data with spline functions: Estimating the correct degree
of smoothing by the method of generalized cross-validation. Numer. Math., 31:377-403, 1979.

R. L. Eubank. Spline smoothing and nonparametric regression. In S. Farlow, editor, Self-Organizing

Methods in Modeling. Marcel Dekker, New York, 1988.

S. E. Fahlman and C. Lebiere. The cascade-correlation learning algorithm. In D. S. Touretzky,
editor, Advances in Neural Information Processing Systems 2, pages 525-532. San Mateo, CA: Morgan
Kaufmann, 1990.

G. Golub, H. Heath, and G. Wahba. Generalized cross-validation as a method for choosing a good
ridge parameter. Technometrics, 21:215-224, 1979.

24

[10]

[11]

[12]

[13]
[14]
[15]
[16]
[17]

[18]

[22]
[23]
[24]
[25]

[26]

[27]

[28]

[29]

[30]

I. Guyon, V. Vapnik, B. Boser, L. Bottou, and S. A. Solla. Structural risk minimization for char-
acter recognition. In J. E. Moody, S. J. Hanson, and R. P. Lippman, editors, Advances in Neural
Information Processing Systems 4, pages 471-479. San Mateo, CA: Morgan Kaufmann, 1992.

S. J. Hanson and L. Y. Pratt. Comparing biases for minimal network construction with back-
propagation. In D. S. Touretzky, editor, Advances in Neural Information Processing Systems 1,
pages 177-185. San Mateo, CA: Morgan Kaufmann, 1989.

B. Hassibi and D. G. Stork. Second order derivatives for network pruning: Optimal brain surgeon.
In J. D. Cowan S. J. Hanson and C. L. Giles, editors, Advances in Neural Information Processing
Systems 5, pages 164-171. San Mateo, CA: Morgan Kaufmann, 1993.

T. J. Hastie and R. J. Tibshirani. Generalized additive models. Monographs on Statisics and Applied
Probability, 43, 1990.

G. E. Hinton and D. van Camp. Keeping neural networks simple. In Proceedings of the International
Conference on Artificial Neural Networks, Amsterdam, pages 11-18. Springer, 1993.

S. Hochreiter and J. Schmidhuber. Simplifying nets by discovering flat minima. In Advances in Neural
Information Processing Systems 7. San Mateo, CA: Morgan Kaufmann, 1995. To appear.

S. B. Holden. On the Theory of Generalization and Self-Structuring in Linearly Weighted Connec-
tionist Networks. PhD thesis, Cambridge University, Engineering Department, 1994.

P. Kerlirzin and F. Vallet. Robustness in multilayer perceptrons. Neural Computation, 5(1):473-482,
1993.

A. Krogh and J. A. Hertz. A simple weight decay can improve generalization. In J. E. Moody, S. J.
Hanson, and R. P. Lippman, editors, Advances in Neural Information Processing Systems 4, pages
950-957. San Mateo, CA: Morgan Kaufmann, 1992.

S. Kullback. Statistics and Information Theory. J. Wiley and Sons, New York, 1959.

Y. LeCun, J. S. Denker, and S. A. Solla. Optimal brain damage. In D. S. Touretzky, editor, Advances
in Neural Information Processing Systems 2, pages 598—605. San Mateo, CA: Morgan Kaufmann,
1990.

A. U. Levin, T. K. Leen, and J. E. Moody. Fast pruning using principal components. In J. D. Cowan,
G. Tesauro, and J. Alspector, editors, Advances in Neural Information Processing Systems 6, pages
35-42. Morgan Kaufmann, San Mateo, CA, 1994.

E. Levin, N. Tishby, and S. Solla. A statistical approach to learning and generalization in layered
neural networks. Proceedings of the IEEE, 78(10):1568-1574, 1990.

D. J. C. MacKay. A practical Bayesian framework for backprop networks. Neural Computation,
4:448-472, 1992.

K. Matsuoka. Noise injection into inputs in back-propagation learning. [EFFEE Transactions on Sys-
tems, Man, and Cybernetics, 22(3):436-440, 1992.

A. A. Minai and R. D. Willilams. Perturbation response in feedforward networks. Newural Networks,
7(5):783-796, 1994.

M. F. Mgller. Exact calculation of the product of the Hessian matrix of feed-forward network error
functions and a vector in O(N) time. Technical Report PB-432, Computer Science Department,
Aarhus University, Denmark, 1993.

J. E. Moody. Fast learning in multi-resolution hierarchies. In D. S. Touretzky, editor, Advances in
Neural Information Processing Systems 1. San Mateo, CA: Morgan Kaufmann, 1989.

J. E. Moody. The effective number of parameters: An analysis of generalization and regularization in
nonlinear learning systems. In J. E. Moody, S. J. Hanson, and R. P. Lippman, editors, Advances in
Neural Information Processing Systems 4, pages 847-854. San Mateo, CA: Morgan Kaufmann, 1992.

J. E. Moody and J. Utans. Architecture selection strategies for neural networks: Application to
corporate bond rating prediction. In A. N. Refenes, editor, Neural Networks in the Capital Markets.
John Wiley & Sons, 1994.

F. Mosteller and J. W. Tukey. Data analysis, including statistics. In G. Lindzey and E. Aronson,
editors, Handbook of Social Psychology, Vol. 2. Addison-Wesley, 1968.

25

[31]

[32]

[41]
[42]
[43]

[44]

[45]

[46]

[48]
[49]

[50]

[51]

[52]

M. C. Mozer and P. Smolensky. Skeletonization: A technique for trimming the fat from a network via
relevance assessment. In D. S. Touretzky, editor, Advances in Neural Information Processing Systems
1, pages 107-115. San Mateo, CA: Morgan Kaufmann, 1989.

A.F. Murray and P. J. Edwards. Synaptic weight noise during MLP learning enhances fault-tolerance,
generalisation and learning trajectory. In J. D. Cowan S. J. Hanson and C. L. Giles, editors, Advances
in Neural Information Processing Systems 5, pages 491-498. San Mateo, CA: Morgan Kaufmann,
1993.

C. Neti, M. H. Schneider, and E. D. Young. Maximally fault tolerant neural networks. In IEEFE
Transactions on Neural Networks, volume 3, pages 14-23, 1992.

S. J. Nowlan and G. E. Hinton. Simplifying neural networks by soft weight sharing. Neural Compu-
tation, 4:173-193, 1992.

B. A. Pearlmutter. Fast exact multiplication by the Hessian. Neural Computation, 1994.

B. A. Pearlmutter and R. Rosenfeld. Chaitin-Kolmogorov complexity and generalization in neural
networks. In R. P. Lippmann, J. E. Moody, and D. S. Touretzky, editors, Advances in Neural
Information Processing Systems 3, pages 925-931. San Mateo, CA: Morgan Kaufmann, 1991.

A. N. Refenes, G. Francis, and A. D. Zapranis. Stock performance modeling using neural networks:
A comparative study with regression models. Neural Networks, 1994.

H. Rehkugler and T. Poddig. Statistische Methoden versus Kiunstliche Neuronale Netzwerke zur
Aktienkursprognose. Technical Report 73, University Bamberg, Fakultat Sozial- und Wirtschaftswis-
senschaften, 1990.

J. Rissanen. Modeling by shortest data description. Automatica, 14:465-471, 1978.

J. H. Schmidhuber. Discovering problem solutions with low Kolmogorov complexity and high gen-
eralization capability. Technical Report FKI-194-94, Fakultat fir Informatik, Technische Universitat
Minchen, 1994.

J. H. Schmidhuber. On learning how to learn learning strategies. Technical Report FKI-198-94,
Fakultat fur Informatik, Technische Universitat Minchen, November 1994.

C. E. Shannon. A mathematical theory of communication (parts I and II). Bell System Technical
Journal, XXVII:379-423, 1948.

M. Stone. Cross-validatory choice and assessment of statistical predictions. Roy. Stat. Soc., 36:111—
147, 1974.

V. Vapnik. Principles of risk minimization for learning theory. In J. E. Moody, S. J. Hanson, and
R. P. Lippman, editors, Advances in Neural Information Processing Systems 4, pages 831-838. San
Mateo, CA: Morgan Kaufmann, 1992.

C. S. Wallace and D. M. Boulton. An information theoretic measure for classification. Computer
Journal, 11(2):185-194, 1968.

C. Wang, S. S. Venkatesh, and J. S. Judd. Optimal stopping and effective machine complexity in
learning. In J. D. Cowan, G. Tesauro, and J. Alspector, editors, Advances in Neural Information
Processing Systems 6, pages 303-310. Morgan Kaufmann, San Mateo, CA, 1994.

A. S. Weigend, D. E. Rumelhart, and B. A. Huberman. Generalization by weight-elimination with
application to forecasting. In R. P. Lippmann, J. E. Moody, and D. S. Touretzky, editors, Advances
in Neural Information Processing Systems 3, pages 875—-882. San Mateo, CA: Morgan Kaufmann,
1991.

H. White. Learning in artificial neural networks: A statistical perspective. Neural Computation,
1(4):425-464, 1989.

P. M. Williams. Bayesian regularisation and pruning using a Laplace prior. Technical report, School
of Cognitive and Computing Sciences, University of Sussex, Falmer, Brighton, 1994.

D. H. Wolpert. Bayesian backpropagation over i-o functions rather than weights. In J. D. Cowan,
G. Tesauro, and J. Alspector, editors, Advances in Neural Information Processing Systems 6, pages
200-207. San Mateo, CA: Morgan Kaufmann, 1994.

D. H. Wolpert. The relationship between PAC, the statistical physics framework, the Bayesian
framework, and the VC framework. Technical Report SFI-TR-03-123, Santa Fe Institute, NM 87501,
1994.

R. S. Zemel. A minimum description length framework for unsupervised learning. PhD thesis, Uni-
versity of Toronto, 1993.

26

