
Rchemcpp: An R package for computing the
similarity of molecules
— Technical Report —

Michael Mahr and Günter Klambauer

Institute of Bioinformatics, Johannes Kepler University, Linz, Austria

March 13, 2013

Institute of Bioinformatics, Johannes Kepler University Linz

Software Manual

Institute of Bioinformatics
Johannes Kepler University Linz
A-4040 Linz, Austria

Tel. +43 732 2468 8880
Fax +43 732 2468 9511

http://www.bioinf.jku.at

2 Contents

Contents

1 Overview 3

2 Design considerations - Wrapping an existing portable C or C++ library into an R-
package 3
2.1 Preinstalled executable . 3
2.2 Configuring and building a source-tree inside an R package during its configuration 3
2.3 Copying all library source-code to ’/src’ . 4
2.4 Creating a custom configuration-script or makefile for a source-tree inside an R

package . 4

3 Linking / Packaging 6

4 R user interface for ’chemcpp’ 6
4.1 .C calls . 6
4.2 Rcpp Modules - function calls . 6
4.3 Rcpp Modules - exposing classes . 6

5 Usage 8

1 Overview 3

1 Overview

Rchemcpp is an R-package which wraps the main functionality of the C++ class-library ’chem-
cpp’. ’chemcpp’ is available under an LGPL 2 license from sourceforge.net. It allows comparing
molecule files against itself or against other molecule files by different algorithms whilst creating
comparison matrices. Rchemcpp wraps this functionality by making it available as R functions.
The R-package is simple to install, since the ’chemcpp’ library is built as part of the package. It
is portable in that it can also be built on Windows-systems by using the ’Rtools’ installable. The
binary Windows-package is automatically built at CRAN and readily available from there.

2 Design considerations - Wrapping an existing portable C or C++
library into an R-package

There are several possibilities of how to wrap a library into an R-package. Some of them are
explained below:

2.1 Pre-installed executable

The simplest way to wrap a software with a command-line interface is to force the user to install
the software on the computer. This might just be as simple as letting the user specify the location of
the software-binary at the R function-call and writing/reading the input/output files to a temporary
directory. Since this is not very simple, flexible, fast or portable, we will not discuss this possibility
further.

2.2 Configuring and building a source-tree inside an R package during its configu-
ration

Running a standard GNU configure-script is theoretically possible, however fails due to some
shortcomings of ’Rtools’, because of it being an incomplete subset of ’cygwin’ executables mixed
with a compiler from ’MinGW’. This means that on Unix, configuring a software inside an R-
package will work fine, however configuring the same software inside an R-package on Win-
dows+’Rtools’ will most likely not work.

E.g. the ’chemcpp’ ’./configure’-script fails, because it requires the ’chmod’ executable, which
’Rtools’ does not include. Also the ’Rtools’ commands do not correctly handle all unix-style paths,
e.g. as needed for writing to the ’/tmp’ directory.

The solution would be to install ’MSYS’ and put the path to the ’Rtools’ ’/gcc’-directory when
the ’MSYS’-installer asks for a ’MinGW’ installation. (e.g. ’C:/Rtools/gcc-4.6.3’) Almost every
standard Unix software compiles marvelously fine this way on Windows. The ’configure’ script
of the R-package can simply invoke ’./configure’ on a subdirectory of the package which contains
an unchanged Unix software library (e.g. ’chemcpp’). Then the file ’makevars’ can invoke ’make’
on the subdirectory to build the software inside the package. Finally the standard R->c interfaces
can be used to make the functionality of the C/C++ libraries available to R. With this constellation,
R-packages can compile most Unix-software inside of them(!)

4 2 Design considerations - Wrapping an existing portable C or C++ library into an R-package

The disadvantage of this attempt is that the ’MSYS’-tools are designed to run inside an
’MSYS’ shell. (not the standard Windows ’cmd’ shell.)

The resulting problems are:

1. The packages cannot be compiled outside the ’MSYS’ shell on Windows.

2. Building packages under the ’MSYS’ shell is not explicitly supported by ’Rtools’. (Many
packages do not build well with R CMD INSTALL that way.)

3. ’R for Windows’ and ’Rtools’ would need to be adjusted to compile packages properly when
run from inside the ’MSYS’ shell.

4. CRAN does not auto-compile packages to Windows-binaries with this constellation (’MSYS’
shell).

Since CRAN has a policy to not host Windows-binaries which have not been built by themselves,
this is the show-stopper.

This means: It is a solution to easily integrate Unix-software into an R-package with Windows-
compatibility. Currently, however, this is not an option if the package is supposed to be made
available via CRAN and the package is intended to support the Windows platform too.

(Hopefully in the far future, R for Windows will have an option to install packages into a
’MinGW’ + ’MSYS’ shell environment. This would allow deprecating the ’Windows-binary-
package’ concept. However this would probably also introduce cross-platform problems between
old and new packages, as well as inconveniences, such as always having unix-style path-names in
the package-environment.)

2.3 Copying all library source-code to ’/src’

If the license of the software allows it, one might copy all source-files into the ’/src’ folder of the
R- package. This will most likely require changes to the code-files, because of the missing source-
code configuration and therefore is a one-way trip: If a future version of the software appears, all
steps need which were done to get it into the ’/src’ directory need to be repeated. This is especially
complicated, if the software source-code consists of cascaded directories which would need to be
arranged to a single directory.

2.4 Creating a custom configuration-script or makefile for a source-tree inside an
R package

Since executing configure-scripts from foreign software does not always work on Windows+’Rtools’,
one can attempt to drop the configure-script and makefile of the software and write a custom one.
The configure-script and makefile are basically rewritten into the ’makevars’ file of the R-package.
Again care must be taken that the script runs under Unix as well as Windows+’Rtools’. The stan-
dard package-skeleton which R generates shows a simple way of how to use the ’config’ and
’config.win’ script to substitute expressions in the ’makevars’ file. (This information is written in
the comments of the ’makevars’ file when generating a package skeleton.)

2 Design considerations - Wrapping an existing portable C or C++ library into an R-package5

The lack of documentation around the possibilities of ’makevars’ in this case is the biggest
problem. The most simple way to overcome this shortcoming is to look at the ’makevars’-file of
existing package, such as the ’Matrix’ package.

Nevertheless this option of integrating ’chemcpp’ was chosen.

Since ’Rtools’ includes a version of ’make’, a makefile was created in the source-subdirectory
of the ’chemcpp’ software source which compiles the sources to a .so or .dll. The Makefile of
’chemcpp’ is invoked by the code in the ’makevars’ file as shown below:

PKG_LIBS = ‘$(R_HOME)/bin/Rscript -e "Rcpp:::LdFlags()"‘ -L./ -lchemcpp
-Wl,-rpath,$(R_PACKAGE_DIR)/libs

PKG_CPPFLAGS = -I./chemcpp/src

all: sublib

sublib:
@(cd chemcpp/src && CFLAGS="$(CFLAGS)" CXXFLAGS="$(CXXFLAGS)"

MkInclude="$(MkInclude)" $(MAKE) all) || exit 1;

’chemcpp’ specific source-code adjustments

It was necessary to adjust the ’chemcpp’ library code in order to make it suitable for using it inside
an R-package:

1. ’chemcpp’ contains a data-directory which is defined as a C preprocessor macro. This macro
is usually set by the user before compiling by editing the master header-file of the software.
Statically patching this directory is not an option, because the location of the binary R pack-
age might change (especially on Windows systems). So the solution was to patch ’chemcpp’
by replacing the preprocessor-macro with a different preprocessor-macro which is a func-
tion call. This function call uses the standard C++ library to read an environment-variable.
This environment-variable is set in R-package ’zzz.R’ before the actual loading of the shared
library takes place.

2. ’chemcpp’ contains a trivial bug which occurs on some compilers. The solution was simply
to add an include-macro at the top of one source-file of ’chemcpp’.

Both modifications, as well as copying the custom Makefile into the ’chemcpp’ source-tree
and stripping ’chemcpp’ from all unneeded files are performed by three small scripts in the
’source_prep’ folder of the R package.

del_chemcpp.sh: deletes the ’src/chemcpp’-directory and the data-files (cleans the R-package
from chemcpp)

prep_chemcpp_1.0.2.sh: downloads ’chemcpp’, patches it and copies the data-files into the
right folders

6 4 R user interface for ’chemcpp’

strip_chemcpp_1.0.2.sh: removes all unnecessary files from ’chemcpp’ which are not re-
quired by the R-package

3 Linking / Packaging

Possibility 2 and 4 create a .so or .dll file which is moved or copied to the ’/src’ directory after the
build. This library is then automatically packaged by R. The compiler-options in the ’makevars’
file have to be adjusted to show the linker where it finds the .so or .dll file. (Just like as linking
with the Rcpp library)

4 R user interface for ’chemcpp’

’chemcpp’ is special in that the source-code of it contains a shared C++ library and a large set of
C++ command-line executables (’tools’) which use this library.

Most users of ’chemcpp’ only use these command-line tools in order to work with ’chemcpp’.
This is why the main focus of the R package was to give the R user access to the funtionality of
these tools. Allowing the R user to use the ’chemcpp’ library directly was only an optional goal.

There are several ways to interface with C/C++ code from R:

4.1 .C calls

This is the most basic possibility of how to interface with C. Since ’chemcpp’ is C++ and heavily
uses classes, it would have been necessary to write wrapper- functions in c which entirely encap-
sulate the functionality of the tools. Since the tools directly parse the command-line, they would
need to be rewritten (also in c), so that they can be called from R via ’.Call’. Since the original
executables write the output to a file for further processing, this output part would need to be
rewritten to pass back the matrices to R. This nevertheless would have been a very good option,
however this would also have meant that the user cannot use the functionality of the ’chemcpp’
library directly.

4.2 Rcpp Modules - function calls

Rcpp Modules allow the programmer to avoid ’glue code’ by specifying prototypes of c functions
that are to be called from R in a special format. This makes implementation a bit cleaner, however
does not give the user of the R-package an advantage over the ’.Call’ version.

4.3 Rcpp Modules - exposing classes

The second possibility of Rcpp Modules is to specify prototypes of entire C++ classes for export-
ing them to R. This allows the user to instantiate C++ objects from inside R via the ’new’ operator.
Unfortunately this is not possible for every C++ class: If the class contains functions which re-
turn a C+ + pointer, then Rcpp Modules does not know how it should deal with it. It is however
possible to write a wrapper around a C++ function to make this possible:

4 R user interface for ’chemcpp’ 7

void setComparisonSetCopy(SEXP s)
{

delete comparisonSet;
std::string rtypename("Rcpp_Rmoleculeset");
Rcpp::S4 s4obj(s);
if (!s4obj.is(rtypename.c_str())) {

Rf_error((std::string("object is not of type ")+rtypename).c_str());
}
Rcpp::Environment env(s4obj);
Rcpp::XPtr<Rmoleculeset> xptr(env.get(".pointer"));
Rmoleculeset *o = static_cast<Rmoleculeset*> (R_ExternalPtrAddr(xptr));

//Note: It could already be assigned here,
// however it is cloned to avoid scope/garbage-coll. issues
//MoleculeSet::setComparisonSet(o);

//invoke copy-constructor to clone object
MoleculeSet::setComparisonSet(new Rmoleculeset(o));

}

SEXP getComparisonSetPointer()
{

//do NOT mark as finalizable!
Rcpp::XPtr<Rmoleculeset> xp((Rmoleculeset*)comparisonSet, false);
Rcpp::Function maker =

Rcpp::Environment::Rcpp_namespace()["cpp_object_maker"];
return maker (typeid(Rmoleculeset).name() , xp);

}

This however should only be done with utmost care: If an R program which uses this function
stores a pointer to a C++ object which in the meantime has been deleted by C++, accessing it
in R will lead to unpredictable results or segmentation faults. This brings C++ paradigms to R
programs which force the user to consider such situations. This should be avoided.

All this made it necessary to derive C++ classes from the original ’chemcpp’ classes. The
functions in the derived classes overload or wrap the original functions. They are then exposed as
member functions to R via Rcpp Modules.

In order to avoid introducing C++ paradigms, wrapper-functions which take references to
objects as arguments were changed so that they duplicate the object before storing it into a member
variable. Functions which return a pointer to an object were renamed in order to make it obvious
that the function returns a pointer which might not be valid for long.

The tools which are most likely to be invoked by the user were reimplemented in R. These
functions use the Rcpp Modules classes of Rchemcpp to access the functionality of the ’chemcpp’
library behind. If the user requires it, he/she however can access the functionality of the ’chemcpp’
directly from R. Please note however that only a small portion of the functionality of the ’chemcpp’

8 5 Usage

library was wrapped yet, such as the functions which are required by the five comparison-tools,
as well as the functions which are necessary for creating a molecule from a vector of atoms and a
matrix of bonds.

5 Usage

The package can be installed from CRAN by issuing the following commands from inside an R
session:

install.packages("Rchemcpp")
library("Rchemcpp")

Please refer to the documentation inside the package for information on its functionality. The
functionality that most users want to use are the five functions for generating kernel matrices which
have their name starting with ’sd2gram’.

	Overview
	Design considerations - Wrapping an existing portable C or C++ library into an R-package
	Preinstalled executable
	Configuring and building a source-tree inside an R package during its configuration
	Copying all library source-code to '/src'
	Creating a custom configuration-script or makefile for a source-tree inside an R package

	Linking / Packaging
	R user interface for 'chemcpp'
	.C calls
	Rcpp Modules - function calls
	Rcpp Modules - exposing classes

	Usage

