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2 Graph kernels

These kernels are based on sets of molecular fragments. Molecular fragments
can be either walks, i.e. a sequence of atoms connected by bonds, or subtrees,
i.e. directed tree-patterns. A molecule is represented as graph. If we consider
two molecules as graphs X and Y , then the kernel K is:

K(X,Y ) =
∑
p∈P

N(p,X) ·N(p, Y ), (1)

where P is the set of molecular fragments (all possible walks or subtrees,
and the function N(p,X) usually (e.g. for the spectrum kernel 2.2) counts, how
often the pattern p occurs in molecule graph X. The function N(p,X) will be
defined for the different kernel types in the following.

Kernel similarity measures can be normalized to values between 0 and 1.
Usually the following kernel normalization is used

Knorm(X,Y ) =
K(X,Y )√

K(X,X) ·K(Y, Y )
. (2)

2.1 Implementation

Graph kernels are efficiently implemented in Chemcpp(Mahé et al. 2007) or its
R interface Rchemcpp (Mahr et al. 2012).

• sd2gram Implements the marginalized kernel 2.5.

• sd2gramSpectrum Implements the spectrum kernel 2.2, the Tanimoto
kernel 2.3, the MinMax kernel 2.4, the lambda-k kernel 2.7 and the ap-
proximation of the marginalized kernel 2.6.

• sd2gramSubtree Implements the subtree kernel 2.9.

For all these kernels the set of molecular fragments are non-tottering walks
of or up to a certain length n given by the depthMax parameter. With the option
onlyDepthMax=FALSE all molecular fragments up to a length of n atoms/vertices
are in the set P, if onlyDepthMax=TRUE only molecular fragments with n atoms/vertices
are in the set P. For all kernels there is a parameter returnNormalized that
scales the similarity measures to values between 0 and 1.

2.2 The Spectrum Kernel

Here the function N(p,X) counts how often the walk p occurs in the graph X.
The kernel is

K(X,Y ) =
∑
p∈P

N(p,X) ·N(p, Y ), (3)

with

N(p,X) = #{p ∈ X}. (4)

For simplicity we denote a function # that the number of occurences of walk p
in graph X. The normalized version of this kernel is:

Knorm(X,Y ) =
K(X,Y )√

K(X,X) ·K(Y, Y )
(5)
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2.3 The Tanimoto Kernel

Here the function N(p,X) indicates whether walk p occurs in the graph X. The
kernel is

K(X,Y ) =
∑
p∈P

N(p,X) ·N(p, Y ), (6)

with

N(p,X) = 1{p ∈ X}. (7)

For simplicity we denote an indicator function 1 that is one if the walk p occurs in
the graph X and is zero otherwise. What is usually considered as the Tanimoto
kernel (Ralaivola et al. 2005) is the normalized version:

KTanimoto(X,Y ) =
K(X,Y )

K(X,X) +K(Y, Y )−K(X,Y )
. (8)

2.4 The MinMax Kernel

This kernel (Ralaivola et al. 2005) is a variation of the kernel presented above.
Here the function N(p,X) counts how often the walk p occurs in the graph X.

Kmax(X,Y ) =
∑
p∈P

max(N(p,X), N(p, Y )), (9)

Kmin(X,Y ) =
∑
p∈P

min(N(p,X), N(p, Y )) (10)

(11)

with

N(p,X) = #{p ∈ X} (12)

the number of occurences of walk p in the graph X. The MinMax kernel is the
already a normalized version:

Kminmax(X,Y ) =
Kmin(X,Y )

Kmax(X,Y )
. (13)

2.5 The Marginalized Kernel

The marginalized kernel suggested by Kashima et al. (2003, 2004) . Here the
function N(p,X) counts how often the walk p occurs in the graph X and weights
it by the probability that it occurs. The kernel is

K(X,Y ) =
∑
p∈P

N(p,X) ·N(p, Y ), (14)

with

N(p,X) =
∑

h∈H(X )

w(h,X) · 1(h = p), (15)
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where H(X ) is the set of walks of graph X, and w(h,X) is the probability
that the walk h occurs in X. This probability is influenced by the stopping
probability (parameter stopP). The indicator function 1(h = p) is one if the
atoms and bonds of the walk h match the given walk p. The sum in Eq. 14
is a sum over an infinite number of walks. However, the probability of a walk
decreases exponentially with its length, therefore the kernel converges.

2.6 The Marginalized Kernel Approximation

This is an approximation of the marginalized kernel (Kashima et al. 2003, 2004)
presented above, but the set of walks here is finite, since the length of the walks
is bounded by n. Here the function N(p,X) counts how often the walk p occurs
in the graph X and weights it by the probability that it occurs. The kernel is

K(X,Y ) =
∑
p∈P

N(p,X) ·N(p, Y ), (16)

with

N(p,X) =
∑

h∈H(X )

w(h,X) · 1(h = p), (17)

where H(X ) is the set of walks of graph X, and w(h,X) is the probability
that the walk h occurs in X. This probability is influenced by the stopping
probability (parameter stopP). The indicator function 1(h = p) is one if the
atoms and bonds of the walk h match the given walk p.

Because the length of the walks is limited by the parameter n, this is only
an approximation of the marginalized kernel. Note that because of the random
walk process, the probabilities of the walkds exponentially decrease with their
lengths. Long walks are barely taken into account in the marginalized kernel
formulation. The normalized version of this kernel is:

Knorm(X,Y ) =
K(X,Y )√

K(X,X) ·K(Y, Y )
(18)

2.7 The Lambda-k Kernel

Here the function N(p,X) counts how often the walk p occurs in the graph X
and weights it by a function of the length of the walk. he kernel is

K(X,Y ) =
∑
p∈P

N(p,X) ·N(p, Y ), (19)

with

N(p,X) = λ|p| ·#{p ∈ X}. (20)

For simplicity we denote a function # that the number of occurences of walk p
in graph X. For λ = 1 this kernel corresponds exactly to the spectrum kernel.
For λ > 1 the influence of longer walks is higher, and for λ < 1 the similarity
measure is more influenced by shorter walks. The normalized version of this
kernel is:

Knorm(X,Y ) =
K(X,Y )√

K(X,X) ·K(Y, Y )
(21)
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Figure 1: An example for a product graph. Figure taken from Vert (2007).

2.8 Efficiency of walk kernels

A walk of a graph X = (V,E) with vertices V and edges E is a sequence
v1, . . . , vn ∈ V such that (vi, vi+1) ∈ E for i = 1, . . . , n−1. This implementation
mostly uses non-tottering walks, that is walks with vi 6= vi+2 or provides an
option to remove tottering walks. We denote Hn(X) the set of walks of graph
X with length n. The computation of these kernels is very efficient, since there
is a bijection between the pairs of walks p ∈ Hn(X) and q ∈ Hn(Y ) with the
same label sequences and the walks on the product graph r ∈ Hn(X × Y ).
Therefore we only have to count the walks with length n on the product graph
of X and Y.

The product graph between two labeled graphs X = (VX , EX) and Y =
(VY , EY ) is defined as the graph Z = (VX×Y , EX×Y ) with

VX×Y = {(v1, v2) ∈ VX ×XY : l(vx) = l(vy)} (22)

EX×Y = {((v1, v2), (v′1, v
′
2)) ∈ VX ×XY : (v1, v

′
1) ∈ X and (v2, v

′
2) ∈ Y }, (23)

where l(v) denotes the label of the vertex v. For a graphical explanation of
the definition of the producte graph, see Fig. 2.8.

2.9 The Subtree Kernel

This graph kernel is based on the detection of common subtrees: the so-called
tree-pattern graph kernels, originally introduced in (Ramon and Gärtner 2003),
and revisited in (Mahé et al. 2006). For more details on the kernel definitions
please refer to (Mahé et al. 2006). The size of the trees can either be bounded
by the size of the tree (number of atoms) or the number of branches. Both trees
of a given length and up to a given length can be used for the calculation of the
kernel.

3 The Pharmacophore Kernel

The pharmacophore kernel is based on the 3D structure of molecules (Mahé
et al. 2006). The kernels are based on the comparison of the three-point phar-
macophores present in the 3D structures of molecules, a set of molecular features
known to be particularly relevant for virtual screening applications. There is
a computationally demanding exact implementation of these kernels, as well as
fast approximations related to the classical fingerprint-based approaches.

5



3.1 Implementation

The pharmacophore kernel and its approximation is efficiently implemented in
Chemcpp(Mahé et al. 2007) or its R interface Rchemcpp(Mahr et al. 2012).

• sd2gram3Dpharma Implements the exact pharmacophore kernel.

• sd2gram3Dspectrum Implements some approximations of the pharma-
cophore kernel.
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