Introduction to \textit{apcluster}

Ulrich Bodenhofer

\textit{bodenhofer@bioinf.jku.at}
Outline

1. Introduction to affinity propagation (AP) clustering

2. The apcluster package, its algorithms, and visualization tools

3. Live apcluster demonstration

4. Question and Answer period
Affinity Propagation (AP) Clustering

- Affinity propagation (AP) is an emerging new clustering technique with increasing importance in many fields (in particular, bioinformatics).
- AP uses *pairwise similarities* as inputs and iteratively determines clusters along with samples that are representative for the clusters, so-called *exemplars*.
- AP is based on an iterative message passing scheme in which samples compete for becoming exemplars.
Affinity Propagation: What’s Special About It?

- Efficiently finds approximate exemplars (to find an optimal solution is actually NP-hard).
- Deterministic, initialization-independent algorithm with very simple update rules (can be viewed as max-sum algorithm in a factor graph).
- Published in Science:
Affinity Propagation: Message Matrices

Responsibility matrix R: $R(i, k)$ is sent from i to k and corresponds to the accumulated evidence for how well-suited k is to serve as the exemplar for i (taking into account other possible exemplars for i).

Availability matrix A: $A(i, k)$ is sent from k to i and corresponds to the accumulated evidence for how appropriate it is for i to choose k as its exemplar (taking into account other points that would choose k as exemplar).
Message Passing / Update Rules

Repeatedly perform the following updates \((A \text{ is initialized with zeros)}):\)

- For \(i, k \in \{1, \ldots, l\}\):
 \[
 R(i, k) \leftarrow S(i, k) - \max_{k' \neq k} \left(A(i, k') + S(i, k') \right)
 \]

- For \(i, k \in \{1, \ldots, l\}\) s.t. \(i \neq k\):
 \[
 A(i, k) \leftarrow \min \left(0, R(k, k) + \sum_{j \notin \{i, k\}} \max (0, R(j, k)) \right)
 \]

- For \(k \in \{1, \ldots, l\}\):
 \[
 A(k, k) \leftarrow \sum_{j \neq k} \max (0, R(j, k))
 \]

The "self-similarities" \(S(k, k)\) are called input preferences. They determine the individual tendencies of samples to become exemplars.
How Exemplars Emerge: An Example

R

A

$R + A$
Function `apcluster()`

```r
apcluster(s, x, p, q, ...)
```

- `s` ... quadratic similarity matrix or similarity measure (function)
- `x` ... data (vector or list; only if `s` was a function)
- `p` ... input preference (per sample or one value for all)
- `q` ... sets input preference to quantile of similarities ($q \in [0, 1]$)

The function returns an `APResult` object that contains the clustering result.
Affinity Propagation: Pro’s & Con’s

+ Exemplars are real samples, no hypothetical averages.
+ Only pairwise similarities necessary; the similarity measures
 not even need to satisfy symmetry or the triangle inequality
 (applicable to all sorts of kernels and correlation measures).
+ Algorithm (almost) deterministic, not sensitive to initialization.
+ Number of clusters need not be pre-specified.
 – Adjustment of input preference parameter can be tricky.
 – Quadratic similarity matrices required: does not scale to large
data sets.
The *apcluster* package further offers:

- **Function** `preferenceRange(s)` computes input preference bounds for given similarity matrix `s`:
 - Lower bound: 1–2 clusters
 - Upper bound: as many clusters as samples

- **Function** `apclusterK()` performs an inverse search for an input preference that facilitates a desired number of clusters `K`.

- **Function** `aggExCluster()` performs agglomerative clustering on top of AP clustering and allows for specifying cut levels with a desired number of clusters.
So How to Scale AP to Large Datasets
Then?
So How to Scale AP to Large Datasets
Then?

Sub-sampling?
So How to Scale AP to Large Datasets
Then?

Sub-sampling?
So How to Scale AP to Large Datasets
Then?

Sub-sampling?

Massive loss of information!
So How to Scale AP to Large Datasets

Then?

Reduce column objects . . .
So How to Scale AP to Large Datasets

Then?

Reduce column objects ...
So How to Scale AP to Large Datasets

Then?

Reduce column objects . . .

but keep all row objects
Leveraged Affinity Propagation

- Start with a small, but reasonable, sub-sample of columns (potential exemplars).
- Iteratively repeat AP on such sub-samples, keeping the exemplars of the previous iteration. Messages are exchanged between the row objects (all) and the potential exemplars/column objects (sub-sample).
- No need to calculate the whole similarity matrix in advance. Instead, only the similarities with the sub-samples need to be computed.
Function `apclusterL()`

`apclusterL(s, x, frac, sweeps, p, q, ...)`

- `s` ... similarity measure (function)
- `x` ... data (vector or list)
- `frac` ... fraction of samples to be considered in each iteration
- `sweeps` ... number of iterations
- `p, q` ... analogous to `apcluster()`

The function returns an `APResult` object that contains the clustering result.
Functions for Visualizing Results

- \texttt{plot(x)} with \texttt{x} being an \texttt{APResult} object: performance graphs for assessing convergence
- \texttt{plot(x)} with \texttt{x} being an \texttt{AggExResult} object: dendrogram of agglomerative clustering
- \texttt{plot(x, y)} with \texttt{x} being an \texttt{APResult} object and \texttt{y} being original data: plot data along with cluster structure
- \texttt{heatmap(x)} with \texttt{x} being an \texttt{APResult} or \texttt{AggExResult} object: plot heatmap (dendrograms and color coding of clusters switchable)
Similarity Measures

The `apcluster` package provides the following similarity measures:

- `negDistMat()`: negative distances (resp. power thereof), interface analogous to `dist()`
- `expSimMat()`: generalization of Gauss/Laplace similarity (RBF/Laplace kernel)
- `linSimMat()`: Łukasiewicz similarity, interface analogous to `dist()`
- `corSimMat()`: correlation, interface analogous to `cor()`

All functions in the `apcluster` package can also be used with custom-made similarity measures.
Similarity Measures: Examples
(similarity of \((x, y)\) and \((0, 0)\))

```r
negDistMat(r=2, method="euclidean")
```

```r
negDistMat(r=1, method="manhattan")
```
Similarity Measures: Examples

[similarity of \((x, y)\) and \((0, 0)\)]

\[
\text{expSimMat}(r=2, w=1, \text{method}=\text{"euclidean"})
\]

\[
\text{expSimMat}(r=1, w=1, \text{method}=\text{"manhattan"})
\]
Similarity Measures: Examples

[similarity of \((x, y)\) and \((0, 0)\)]

\[
\begin{align*}
\text{negDistMat}(r=2, \text{method}=&\text{"euclidean"}) \\
\text{negDistMat}(r=1, \text{method}=&\text{"manhattan"})
\end{align*}
\]

\[
\begin{align*}
\text{expSimMat}(r=2, w=1, \text{method}=&\text{"euclidean"}) \\
\text{expSimMat}(r=1, w=1, \text{method}=&\text{"manhattan"})
\end{align*}
\]

\[
\begin{align*}
\text{linSimMat}(w=1, \text{method}=&\text{"euclidean"}) \\
\text{linSimMat}(w=1, \text{method}=&\text{"maximum"})
\end{align*}
\]
Example:
Two Clusters of Coiled Coil Sequences

(a)
(b)

Webinar “Introduction to apcluster”, June 13, 2013
Example: AP Clustering of Chemical Compounds
Example: Leveraged Affinity Propagation
And Now ...
And Now . . .

... let's see apcluster at work!
Further Information

- Paper about package:

- Package homepages:
 http://www.bioinf.jku.at/software/apcluster/
 http://cran.r-project.org/web/packages/apcluster/index.html
Acknowledgments

Package co-authors:

- Andreas Kothmeier
- Johannes Palme
Acknowledgments

Package co-authors:
- Andreas Kothmeier
- Johannes Palme

Co-workers in related applications and projects:
- Sepp Hochreiter
- Günter Klambauer
- Andreas Mayr
Acknowledgments

Package co-authors:

- Andreas Kothmeier
- Johannes Palme

Co-workers in related applications and projects:

- Sepp Hochreiter
- Günter Klambauer
- Andreas Mayr

For the invitation to and organization of this webinar:

- Ray DiGiacomo, Jr., and the Orange County R User Group