Marginal Independence of INI Filtering and Test Statistics

Sepp Hochreiter

¹Institute of Bioinformatics, Johannes Kepler University Linz, Linz, Austria

December 15, 2010

1 Control of Type I Error Rate by I/NI Calls

In the following we show that for permutation invariant test statistics and for the *t*-test statistic T, the I/NI call filter applied to null hypotheses is independent of the statistic. The result is given in Theorem 1 at the end of this section. The theorem guarantees type I error rate control if first filtering by I/NI calls, then using these statistics, and finally applying correction for multiple testing.

To proof this theorem, first we need some results on summarization with Robust Multi-array Average (RMA) for Gaussian noise and for correlated probes in the probe sets. These results are given in the following lemmas.

1.1 RMA Summarization of Gaussian Probes

Robust Multi-array Average (RMA) summarizes a probe set by median polish. After removing sample median (the first RMA step), the sample effects are small and RMA basically computes the median of the probe set.

We assume a probe set with (2m + 1) probes. According to Chu (1955), for (2m + 1) samples drawn from a normal distribution with density $f(x) \sim \mathcal{N}(\xi, \sigma)$ and cumulative distribution function F(x), the distribution of samples' median is

$$p(x) = \frac{(2m+1)!}{m! \, m!} \, \left(F(x) \, (1-F(x))^m \, f(x) \, . \right.$$
(1)

According to Chu (1955), p(x) is asymptotically normal which is is formulated in following lemma.

Lemma 1 For 2m + 1 samples randomly drawn according to a normal distribution $f(x) \sim \mathcal{N}(\xi, \sigma)$, the sample median is asymptotically normal distributed with mean ξ and variance

$$\sigma_m^2 = \frac{1}{4 f^2(\xi) (2m+1)} \,. \tag{2}$$

Proof: This lemma is shown in Chu (1955). **Proof complete.**

In Chu (1955) it is stated that the distribution of the median "tends 'rapidly' to normality." Using the bounds in Chu (1955), for a probe set of 16 probes (a standard Affymetrix probe set), the factor deviating from a normal distribution is between 0.9858317 and 1.023438.

1.2 RMA Summarization of Correlated Gaussian Probes

Now we consider summarization in the case where the probes of a probe set are correlated and driven by a hidden signal stemming from targeting the same mRNA. To introduce correlated probes, we assume a signal ξ_k for sample k, where ξ_k is the intensity of all probes. The probes of a probe set are noisy with Gaussian noise $\mathcal{N}(0, \sigma)$, therefore the median of the probes follows for fixed ξ_k the Gaussian distribution $\mathcal{N}(\xi_k, \sigma_m)$. The signal ξ_k is drawn from a Gaussian signal distribution $\mathcal{N}(\mu_s, \sigma_s)$, where (μ_s, σ_s) determine the signal strength. The probes are now correlated across samples where (μ_s, σ_s) determines the strength of correlation.

Alternatively, we could have introduced correlated probes by a linear scaled signal for each sample which is noisy observed in each probe. This is equivalent to above approach. To see this, let a multiplicative factor ρ_k , which scales the reference signal μ , follow a Gaussian $\mathcal{N}(\mu_r, \sigma_r)$. The new mean values ξ_k follow a Gaussian $\mathcal{N}(\mu \ \mu_r, \mu^2 \ \sigma_r)$ which is equivalent to above approach to introduce correlation by setting $\mu_s = \mu \ \mu_r$ and $\sigma_s = \mu^2 \ \sigma_r$.

Because the signal distribution determines the mean of the median distribution, the distribution of the median is the convolution of two Gaussian distributions $\mathcal{N}(\mu_s, \sigma_s)$ and $\mathcal{N}(0, \sigma_m)$.

Lemma 2 If the correlation signal of probes of a probe set is drawn from a Gaussian distribution $\mathcal{N}(\mu_s, \sigma_s)$ and the noise of the probes is $\mathcal{N}(0, \sigma)$, then the median distribution is

$$\mathcal{N}(\mu_s, \sigma_x) , \qquad (3)$$

where

$$\sigma_x^2 = \sigma_s^2 + \sigma_m^2 = \sigma_s^2 + \frac{1}{4 f_{\mathcal{N}(0,\sigma)}^2(\xi) (2m+1)}$$
(4)
= $\sigma_s^2 + \frac{\pi \sigma^2}{2 (2m+1)}$,

Proof: The lemma follows from Lemma 1 which states that the distribution of the median is $\mathcal{N}(\xi_k, \sigma_m)$ for fixed ξ_k . If ξ_k is drawn according to $\mathcal{N}(\mu_s, \sigma_s)$ then the median distribution is obtained by the convolution of $\mathcal{N}(0, \sigma_m)$ and $\mathcal{N}(\mu_s, \sigma_s)$. The distribution given in the lemma is the result of this convolution.

Proof complete.

Introducing correlations in other way would not change the results but the convolution for non-Gaussian signal distributions might be more complicated.

1.3 Independence of I/NI Filter and Test Statistic for Null Hypotheses

The Informative/NonInformative (I/NI, Talloen *et al.*, 2007) call tries to access the noise part σ^2 of the overall variance by $var(z \mid \boldsymbol{x})$. Thus, the amount of signal σ_s in the probe set is estimated.

More specifically, according to Talloen *et al.* (2007) the I/NI call is

$$\operatorname{var}(z \mid \boldsymbol{x}) = \left(\frac{(2m+1)\sigma_s^2}{\sigma^2} + 1\right)^{-1} < 0.5, \quad (5)$$

where $\frac{\sigma_s^2}{\sigma^2}$ is the signal-to-noise ratio.

Probe sets containing a signal and probe sets not containing a signal, are both normal distributed. However, probes sets with a signal have larger variance because the signal variance σ_s is added to the variance of the median according to Lemma 2.

We use the notation in Bourgon *et al.* (2010) and define permutation invariance for sample size n.

Definition 1 A test statistic U^{II} is permutation invariant if for fixed $\mathbf{Y}_i \in \mathbb{R}^n$, $i \in \mathcal{H}_0$, and Π drawn uniformly from S_n (the set of all permutations on *n* elements), the distribution of the test statistic $U^{II}(\mathbf{Y}_i)$ is equal to the distribution of $U^{II}(\Pi(\mathbf{Y}_i))$.

Now we can formulate our main theorem that for permutation invariant test statistics and for the *t*-test statistic T, the I/NI call filter applied to null hypotheses is independent of the statistic. The theorem guarantees type I error rate control if applying correction for multiple testing.

Theorem 1 For permutation invariant test statistics like the Wilcoxon rank sum statistic and for t-test statistic T, the I/NI call filter applied to null hypotheses is independent of the statistic.

Proof: First we note that the I/NI call for one probe set does not dependent on another probe set as the models are independently selected for each probe set.

A) Permutation invariant test statistics:

For permutation invariant test statistics the statement follows directly from the permutation invariance of the I/NI call filter. The I/NI call is permutation invariant because the I/NI call model selection objective, the *a posteriori* of the parameters, is independent of the permutation of the samples. Further, the implementation of the algorithm uses only the data covariance matrix Hochreiter *et al.* (2006) which is independent of permutations of the samples.

All assumptions on the filter of the the proposition "Marginal Independence: Permutation Invariance" in Bourgon *et al.* (2010) are fulfilled. The independence between the I/NI call filter and permutation invariant test statistics is shown.

B) *t*-test statistic T:

As pointed out by Bourgon *et al.* (2010) in their supplementary, the test statistics T for the *t*-test is invariant to scaling and shifting of the mean. If the noise level σ is equal for each probe set, then I/NI call is equivalent to variance filtering because only the signal variance σ_s determines the overall variance. The more interesting case is where signal and noise differ at each probe set, thus variance filtering and I/NI calls yield different results.

For probe set *i* the signal is drawn from a Gaussian distribution $\mathcal{N}(\mu_{si}, \sigma_{si})$. According to Lemma 2 the RMA summarized data follows the Gaussian $\mathcal{N}(\mu_{si}, \sigma_{xi})$, where $\sigma_{xi} =$

 $\sqrt{\sigma_{si}^2 + \frac{\pi \sigma_i^2}{2 (2m+1)}}$). Let us assume that the signal strength and the noise level $(\mu_{si}, \sigma_{si}, \sigma_i)$ is drawn from some distribution

 $P_{(\mu_{si},\sigma_{si},\sigma_i)}$. The data Y_i can be generated by first drawing n samples from a standard normal distribution giving $X_i \in \mathbb{R}^n$, where $P_{X_i} \equiv \mathcal{N}(\mathbf{0}, I_n)$ with $\mathbf{0}$ as the *n*-dimensional zero vector and I_n as the *n*-dimensional identity matrix. Then X_i is scaled by $\sigma_{xi} = \sqrt{\sigma_{xi}^2 + \frac{\pi \sigma_i^2}{2 (2m+1)}}$ and shifted component-wise by μ_{si} . The shifting and scaling values are drawn from $P_{(\mu_{si},\sigma_{si},\sigma_i)}$ which is independent from P_{X_i} .

For the null hypothesis $i \in \mathcal{H}_0$, we assume that both distributions $P_{\mathbf{X}_i}$ and $P_{(\mu_{si},\sigma_{si},\sigma_i)}$ are independent of the conditions C.

For showing the independence of filtering U^I and test statistic U^{II} , we are interested in the probability of the event $\{U_i^I \in \mathcal{A}, U_i^{II} \in \mathcal{B}\}$. Here we define $U_i^I(\mathbf{Y}) = \operatorname{var}(z \mid \mathbf{x})(\mathbf{Y})$ with $\mathcal{A} = \{u \mid u < 0.5\}$ and $U_i^{II}(\mathbf{Y}) = T(\mathbf{Y}, \mathbf{C})$ for t-test statistic T, conditions C, and $\mathcal{B} = \{u \mid u > \theta\}$. Let $\delta_{\mathcal{A}}$ and $\delta_{\mathcal{B}}$ be indicator functions for \mathcal{A} and \mathcal{B} .

We consider a probe set Y_i for which $i \in \mathcal{H}_0$ (a true null hypothesis).

$$P(U_i^I \in \mathcal{A}, U_i^{II} \in \mathcal{B})$$

$$= \int \delta_{\mathcal{A}} (U^I(\mathbf{Y}_i)) \, \delta_{\mathcal{B}} (U^{II}(\mathbf{Y}_i)) \, dP_{\mathbf{Y}_i}$$

$$= \int \int \delta_{\mathcal{A}} (U^I(\mu_{si} \, \mathbf{1} + \mathbf{X}_i \, \sigma_{xi}))$$

$$\delta_{\mathcal{B}} (U^{II}(\mu_{si} \, \mathbf{1} + \mathbf{X}_i \, \sigma_{xi})) \, dP_{\mathbf{X}_i} \, dP_{(\mu_{si}, \sigma_{si}, \sigma_i)}$$

$$= \int \int \delta_{\mathcal{A}} (U^I(\sigma_{si}, \sigma_i) \, \delta_{\mathcal{B}} (U^{II}(\mathbf{X}_i) \, dP_{\mathbf{X}_i} \, dP_{(\mu_{si}, \sigma_{si}, \sigma_i)}$$

$$= \int \delta_{\mathcal{A}} (U^I(\sigma_{si}, \sigma_i) \, dP_{(\mu_{si}, \sigma_{si}, \sigma_i)} \, \int \delta_{\mathcal{B}} (U^{II}(\mathbf{X}_i)) \, dP_{\mathbf{X}_i}$$

$$= P(U_i^I \in \mathcal{A}) \, P(U_i^{II} \in \mathcal{B}) ,$$
(6)

where

$$\sigma_{xi} = \sqrt{\sigma_{si}^2 + \frac{\pi \, \sigma_i^2}{2 \, (2m+1)}}) \tag{7}$$

and 1 is the vector of ones with length n. The equality of the 3rd/4th line to the 5th line is obtained by the shift and scale invariance of U^{II} and the fact that U^{I} depends only on σ_{si} and σ_{i} .

Proof complete.

Note, that for equal noise level σ on each probe set, the I/NI call is equivalent to variance filtering. Also for a low noise level relative to the signal, I/NI call is similar to variance filtering.

References

- Bourgon, R., Gentleman, R., and Huber, W. (2010). Independent filtering increases detection power for high-throughput experiment. *Proc Natl Acad Sci U S A*, **107**(2), 9546–9551.
- Chu, J. T. (1955). On the distribution of the sample median. Ann. Math. Statist., 26(1), 112–116.

Hochreiter, S., Clevert, D.-A., and Obermayer, K. (2006). A new summa-

rization method for Affymetrix probe level data. *Bioinformatics*, 22(8), 943–949.

Talloen, W., Clevert, D.-A., Hochreiter, S., Amaratunga, D., Bijnens, L., Kass, S., and Göhlmann, H. W. H. (2007). I/NI-calls for the exclusion of noninformative genes: a highly effective feature filtering tool for microarray data. *Bioinformatics*, 23(21), 2897–2902.