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S1 Introduction

This report gives supplementary information to the manuscript “cn.MOPS: Mixture of Poissons
for Discovering Copy Number Variations in Next Generation Sequencing Data”.

The supplementary information contain

derivative of the algorithm, that is of the update rules of the EM algorithm and of the differ-
ent I/NI calls,

numerical tests of the approximations — especially of the signed I/NI call by the expected
fold change,

test for Poisson distribution with and without normalization of read counts,

parameter settings for the compared CNV detection methods in the experiments,

comparison of the likelihoods for copy number 2 if the true copy number is 3 or 1,

additional experiments,

additional information on the data used in the experiments.

variants of the noise model of cn.MOPS

investigations about the influence of the hyperparameter ε

exemplary DNA locations with CNV calls of different methods

S2 The Mixture of Poissons Model

Summary. To avoid the false discoveries induced by read count variations along the chro-
mosome or across samples, we propose a “Mixture Of PoissonS model for CNV detection”
(cn.MOPS). The cn.MOPS model is not affected by read count variations along the chromosome,
because at each DNA position a local model is constructed. Read count variations across samples
are decomposed by the cn.MOPS model into integer copy numbers and noise by its mixture
components and Poisson distributions, respectively. In contrast to existing methods, cn.MOPS
model’s posterior provides integer copy numbers together with their uncertainty. Model selection
in a Bayesian framework is based on maximizing the posterior given the samples by an expec-
tation maximization (EM) algorithm. The model incorporates the linear dependency between
average read counts in a DNA segment and its copy number. Most importantly, a Dirichlet prior
on the mixture components prefers constant copy number 2 for all samples. The more the data
drives the posterior away from the Dirichlet prior corresponding to copy number two, the more
likely the data is caused by a CNV, and, the higher is the informative/non-informative (I/NI) call.
cn.MOPS detects a CNV in the DNA of an individual as a segment with high I/NI calls. I/NI call
based CNV detection guarantees a low false discovery rate (FDR) because false detections are less
likely for high I/NI calls.

We assume that the genome is partitioned into segments in which reads are counted but which
need not be of constant length throughout the genome. For each of such an segment we build a
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model. We consider the read counts x at a certain segment of the genome, for which we construct
a model across samples. The model incorporates both read count variations due to technical or
biological noise and variations stemming from copy number variations.

S2.1 The Model

In this Subsection we introduce the cn.MOPS model, which models the read counts of the samples
at a certain chromosome segment by copy numbers and noise due to technical or DNA variations.

S2.1.1 The Mixture of Poissons

The cn.MOPS model assumes that the read counts x for a certain copy number i are distributed
across samples according to a Poisson. Assuming different copy numbers across samples, the
cn.MOPS model is a mixture of Poissons:

p(x) =

n∑
i=0

αi P(x; i2λ) . (S1)

In model Eq. (S1) αi are the percentages of samples with copy numbers 0 ≤ i ≤ n and λ is the
mean as well as the variance of read counts for copy number 2, where n is the number of different
copy numbers. For copy number i, the Poisson parameter is i

2λ, by which we assume that the read
counts are linearly related to the number of copies. P is the density of the Poisson distribution:

P(x;β) =
1

x!
e−β βx . (S2)

For notational convenience, we did not distinguish between i = 0 and i ≥ 1 in the above formula.
For copy number i = 0, we assume a Poisson distribution with parameter β = ε

2λ which accounts
for background noise stemming from wrongly or ambiguously mapped reads as well as for sample
contamination by other DNA.

S2.1.2 Estimation of Integer Copy Numbers

The model Eq. (S1) allows for estimating integer copy numbers with fixed model parameters αi
and λ. The prior probability that a read count stems from copy number i is p(i) = αi. The
likelihood that a read count x is produced by the i-th mixture component is p(x | i) = P(x; i2λ).
Then Bayes’ formula can be used to compute the posterior p(i | x), that is, the probability that
read count x stems from the i-th component corresponding to copy number i. We estimate the
copy number by the component that has the largest posterior probability. In Subsection S3.4.3 we
found that 99.383%(± 0.001%) of the integer copy numbers were correctly assigned using our
posterior integer copy number estimate.

S2.1.3 The Poisson assumption is justified after normalization

The latent variable model of cn.MOPS assumes Poisson distributed read counts across samples
for a segment with a constant copy number. This assumption is only justified if sample normal-
ization is applied. Sample normalization corrects the read counts of one sample by the number
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of mappable reads of the sample. We tested segments of constant size (25kbp) for being Pois-
son distributed with and without sample normalization. The data is from the Sanger sequencing
center on HapMap phase 1 individuals (see Subsection S3.5). Without sample normalization the
Poisson assumption was rejected for 92% of the genomic segments. With sample normalization
the rejection rate has dropped to 2%. It is plausible, that two percent of segments were rejected
by the Poisson test, if the occurrence of known CNV regions is considered. Table S1 shows the
contingency table of segments within known CNV regions vs. non-CNV segments and Poisson vs.
non-Poisson segments as determined by a test for Poisson suggested by Brown and Zhao (2002).
Segments that were rejected by the Poisson test with sample normalization coincide significantly
(p-value 2.2e-16) with segments within known CNV regions.

Table S1: Contingency table of segments within known CNV regions vs. non-CNV segments and
Poisson vs. non-Poisson segments. The table gives counts of non-CNV segments (first column)
and segments within known CNV regions (second column) and counts of segments not rejected by
a Poisson test suggested by Brown and Zhao (2002) (first row) and segments rejected by the test
(second row). Fisher’s exact test for coincidence of non-Poisson segments with segments within
known CNV regions is highly significant with a p-value of 2.2e-16. Thus, segments within known
CNV regions coincide with segments which are not Poisson distributed.

Poisson assumption/segments non-CNV within known CNV region sum
not rejected 111,876 145 112,021

rejected 2,573 123 2,697
sum 114,449 268 114,717

S2.2 Model Selection: EM Algorithm

In a Bayes framework for model selection, α and λ are considered as random variables, thus, p(x)
in Eq. (S1) becomes a conditional probability p(x | α, λ), i.e. the likelihood that read count x
has been produced by the model with parameters α and λ. The EM algorithm minimizes an upper
bound on the negative log-posterior of the parameters. The parameter posterior ofα and λ is given
by:

p(α, λ | x) =
p(x | α, λ) p(α) p(λ)∫

p(x | α, λ) p(α) p(λ) dα dλ
, (S3)

where we assumed that the priors on α and λ are independent of each other. This independence is
justified because the copy number distribution α on the samples (determined by the cohort which
is investigated) is independent of the expected read count λ for copy number 2 (determined by
DNA and biotechnological characteristics). We now introduce priors on α and λ. The parameter
posterior p(α, λ | x) should not be confused with the posterior of latent variable p(i | x), the
probability that x has been drawn from the i-th mixture component after having observed x.

S2.2.1 Dirichlet Prior on Alpha

In the cn.MOPS model, the prior p(α) on α should reflect the fact that predominantly locations
with copy number 2 for all samples are present in the data set. Thus, the prior represents the null
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hypothesis that at a location the copy number is the same across samples, i.e. no sample has a
CNV. The Dirichlet prior is well suited to express our prior assumptions on α. The Dirichlet prior
with parameters γ is:

p(α) = D(α1;γ) = b(γ)
n∏
i=0

αγi−1i , (S4)

where α1 is the n-dimensional vector (α1, . . . , αn) while α0 is obtained via α0 = 1 −
∑n

i=1 αi.
Each component αi is distributed according to a beta distribution with mean

mean(αi) =
γi
γs
, (S5)

mode

mode(αi) =
γi − 1

γs − n
, (S6)

and variance

var(αi) =
γi (γs − γi)
γ2s (γs + 1)

, (S7)

where we set

γs =

n∑
i=0

γi . (S8)

To express our prior knowledge that predominantly locations with copy number 2 for all sam-
ples are present, we set γ2 � γi for i 6= 2.

S2.2.2 Uniform Prior on λ

For the prior on λ we use an uniform distribution on a sufficiently large interval (0, 1/t] with left
endpoint 0 and right endpoint 1/t. Thus, the density in (0, 1/t] is

p(λ) = t . (S9)

S2.2.3 Upper Bound on the Negative Log Posterior

According to Eq. (S3), the posterior of the model parameters is

p(α, λ | x) =
p(x | α, λ) p(α) p(λ)∫

p(x | α, λ) p(α) p(λ) dα dλ
(S10)

=
p(x | α, λ) p(α)∫

p(x | α, λ) p(α) dα dλ

=
1

c(x)
p(x | α, λ) p(α) ,

where c(x) is independent of the parameters α and λ.
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Deriving the upper bound. For deriving an upper bound on the log posterior needed by the EM
algorithm, we deduce the following inequality for one sample x by introducing variables α̂i with∑n

i=1 α̂i = 1:

− log p(α, λ | x) = − log (p(x | α, λ) p(α) / c(x)) (S11)

= − log

n∑
i=0

αi P(x;
i

2
λ) − log p(α) + log(c(x))

= − log
n∑
i=0

α̂i
α̂i

αi P(x;
i

2
λ) − log p(α) + log(c(x))

≤ −
n∑
i=0

α̂i log
αi P(x; i2λ)

α̂i
− log p(α) + log(c(x))

= −
n∑
i=0

α̂i log

(
αi P(x;

i

2
λ)

)
− log p(α)

+
n∑
i=0

α̂i log α̂i + log(c(x)) ,

where we applied Jensen’s inequality. Note that c(x) is independent of α and that for

α̂i = p(i | x,α, λ) =
αi P(x; i2λ)

p(x | α, λ)
(S12)

we have in the fifth line of Eq. (S11)

log
αi P(x; i2λ)

α̂i
= log p(x | α, λ) , (S13)

thus the inequality Eq. (S11) becomes an equality.

The data set. We assume that the data set {x1, . . . , xN} of the read counts across the samples is
given, where the read count from the k-th sample is denoted by xk. Model selection and therefore
the EM algorithm is based on these samples. The posterior that xk is drawn from the i-th mixture
component is

αik = p(i | xk,α, λ) =
p(i) p(xk | i,α, λ)

p(xk | α, λ)
=

αi P(xk;
i
2λ)

p(xk | α, λ)
, (S14)

where αi is the prior of being drawn from the i-th mixture component.

S2.2.4 E-step

In analogy to the α̂i in Subsection S2.2.3, we introduce for each xk variables α̂ik with
∑n

i=1 α̂ik =
1 which estimate p(i | α, xk, λ) (see Eq. (S12)), are is formally independent of the parameters α
and λ. For the E-step of the EM algorithm, we estimate the posterior αik by

α̂ik =
αold
i P(xk;

i
2λ

old)

p(xk;αold, λold)
, (S15)
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where for the estimation the actual parameters αold and λold are used instead of the optimal pa-
rameters α and λ in the expression for the posterior in Eq. (S14).

Based on inequality Eq. (S11) but with α̂ik instead of α̂i, we define an upper bound B on the
1
N scaled negative log-posterior as

B = − 1

N

N∑
k=1

n∑
i=0

α̂ik log

(
αi P(x;

i

2
λ)

)
− 1

N
log p(α) (S16)

+
1

N

N∑
k=1

n∑
i=0

α̂ik log α̂ik +
1

N

N∑
k=1

log c(xk) ,

where we summed over all terms depending on xk. Note, that according to Eq. (S12) and Eq. (S13)
an exact estimate in the E-step Eq. (S15) (using the optimal parameters α and λ) make inequality
Eq. (S11) to an equality, thus the upper bound B would be equal to the negative log posterior. For
notational convenience “0

2λ” stands for ε
2λ according to the model defined in Eq. (S1).

S2.2.5 M-step: Alpha Optimization

In the M-step, we minimize the upper bound B on the negative log posterior with respect to α
under the constraint that the αi sum to 1. Only terms depending on α are considered:

min
α
− 1

N

N∑
k=1

n∑
i=0

α̂ik logαi −
1

N
log p(α) (S17)

s.t.
n∑
i=0

αi = 1 .

The Lagrangian with Lagrange parameter ρ is

L = − 1

N

N∑
k=1

n∑
i=0

α̂ik logαi −
1

N
log p(α) (S18)

+ ρ

(
n∑
i=0

αi − 1

)

= − 1

N

N∑
k=1

n∑
i=0

α̂ik logαi −
1

N

n∑
i=0

(γi − 1) logαi

+ ρ

(
n∑
i=0

αi − 1

)
.

The solution requires that, the derivative of L with respect to αi is zero:

∂L

∂αi
= − 1

N

N∑
k=1

α̂ik
1

αi
− 1

N

1

αi
(γi − 1) + ρ = 0 . (S19)
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Multiplying this equation by αi gives

− 1

N

N∑
k=1

α̂ik −
1

N
(γi − 1) + ρ αi = 0 . (S20)

Summation over i leads to

1 +
1

N
(γs − n) = ρ . (S21)

Inserting this expression for ρ in Eq. (S20) results in

− 1

N

N∑
k=1

α̂ik −
1

N
(γi − 1) +

(
1 +

1

N
(γs − n)

)
αi = 0 . (S22)

Solving Eq. (S22) for αi gives the update rule for αi:

αnew
i =

α̂i + 1
N (γi − 1)

1 + 1
N (γs − n)

, (S23)

where we used

α̂i =
1

N

N∑
k=1

α̂ik . (S24)

We introduced α̂i which sums up the α̂ik and thereby approximates αi. This approximation is
justified because αi can be decomposed into αik:

αi = p(i) = p(i | α, λ) =

∫
p(i, x | α, λ) dx (S25)

=

∫
p(i | x,α, λ) p(x | α, λ) dx = Ep(x|α,λ)(p(i | x,α, λ))

≈ 1

N

N∑
k=1

p(i | xk,α, λ) =
1

N

N∑
k=1

αik .

S2.2.6 M-Step: Lambda Optimization

In the M-step, B need not only be minimized with respect to α but also with respect to λ (only
terms depending on λ are considered):

min
λ

(
− 1

N

N∑
k=1

n∑
i=0

α̂ik log P(x;
i

2
λ)

)
. (S26)

For the minimum, the derivative of the above objective with respect to λ must be zero. Using

log P(xk;
i

2
λ) = − log(xk!) −

i

2
λ + xk (log(λ) + log(i/2)) , (S27)
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this derivative is

− 1

N

N∑
k=1

n∑
i=0

(
− i

2
+ xk

1

λ

)
α̂ik . (S28)

Multiplying Eq. (S28) by λ and solving it for λ gives the update rule:

λnew =

∑N
k=1

∑n
i=0 xk α̂ik∑N

k=1

∑n
i=0

i
2 α̂ik

=

∑N
k=1 xk∑N

k=1

∑n
i=0

i
2 α̂ik

(S29)

=
1
N

∑N
k=1 xk∑n

i=0 α̂i
i
2

,

where according to the model defined in Eq. (S1) for notational convenience 0
2 stands for ε

2 .

S2.2.7 Update Rules

The update rules of previous subsections can be summarized as follows:

α̂ik =
αold
i P(xk;

i
2λ

old)

p(xk | αold, λold)
, (S30)

αnew
i =

1
N

∑N
k=1 α̂ik + 1

N (γi − 1)

1 + 1
N (γs − n)

, (S31)

λnew =
1
N

∑N
k=1 xk∑n

i=0

(
1
N

i
2

∑N
k=1 α̂ik

) . (S32)

Concerning the EM algorithm the update rule Eq. (S30) is the E-step, the update rule Eq. (S31) is
the M-step for α, and the update rule Eq. (S31) is the M-step for λ.

The update rule Eq. (S31) can be obtained in an alternative way. The Dirichlet distribution is
conjugate to the multinomial distribution, that is the posterior p(α | {α1, . . . ,αk, . . . ,αN}) is
a Dirichlet distribution as is the prior p(α) with αk = p(α | xk). The Dirichlet prior p(α) =
D(α1;γ) with parameters γ leads to the conjugate posterior p(α | {α1, . . . ,αk, . . . ,αN}) with
parameters

γ̂ = γ +
N∑
k=1

αk = γ + N α , (S33)

where we used Eq. (S25). We obtain update rule Eq. (S31) from Eq. (S33) component-wise by
first replacing the unknown values αik by their estimates α̂ik and then computing the posterior’s
mode because we search for the maximum posterior.
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S2.2.8 Parameter Setting for the Dirichlet Prior in the Update Rule Eq. (S31)

We set the parameter γ of the Dirichlet prior D(α1;γ) to γ = (1, 1, 1 + G, 1, 1, ..., 1), where
G > 0 is a hyperparameter that controls the prior’s impact during model selection. Note that
γs − n = I and therefore we obtain the mode m = (0, 0, 1, 0, . . . , 0), since mode(αi) = γi−1

γs−n .
This mode corresponds to our null hypothesis that all samples have copy number 2. The mode is
not affected by the choice of the hyperparameterG, however the variance decreases as we increase
G:

var(αi) =
γi (γs − γi)

γ2s (γs + 1)
, (S34)

The hyperparameter G affects the EM algorithm via the update rule and can serve to keep
percentage of samples having copy number 2 above a threshold. The smaller the variance, the less
likely a deviation from copy number 2. The update rule is

αnew
i =

1
N

∑N
k=1 α̂ik + 1

N (γi − 1)

1 + 1
N (γs − n)

. (S35)

Thus, the estimate for the percentage of samples having copy number 2 cannot fall below G
G+N

for γ = (1, 1, 1 +G, 1, 1, ..., 1) because

αnew
2 ≥

1
N (γ2 − 1)

1 + 1
N (γs − n)

=
G

G + N
. (S36)

In our experiments we ensured that the estimate for the percentage of the samples having copy
number 2 is always greater or equal to 50% by setting G to N (G = N ) which leads to

αnew
2 =

α̂2 + 1

2
≥ 1

2
, (S37)

αnew
i =

α̂i
2

for i 6= 2 . (S38)

S2.2.9 Three Posteriors in Our Framework

In our Bayesian framework we introduced 3 different posterior distributions: (i) in Eq. (S14) the
posterior αik = p(i | xk,α, λ) of the data xk stemming from the i-th component with prior
αi = p(i) — this posterior is defined for fixed model parameters (α, λ); (ii) in Eq. (S3) the
parameter posterior p(α, λ | x) with priors p(α) and p(λ) — this posterior is the objective that
we maximize during model selection; (iii) the posterior p(α | {α1, . . . ,αk, . . . ,αN}) used in
Eq. (S33) with prior p(α) — this posterior is used for the I/NI call (see Subsection S2.3), but
in contrast to (ii) it is not the posterior for the full mixture of Poisson model but only for the
multinomial distribution given by α where the posteriors αik = p(i | xk,α, λ) from (i) serve
as data. At (i) we consider the fixed parameter mixture model which can be combined with the
parameter α multinomial model at (iii) to the full model at (ii) if the posterior on λ analog to the
posterior on α at (iii) is included.
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S2.3 I/NI Call: Information Gain of Posterior over Prior

Based on cn.MOPS’ Bayesian approach to model selection, we define an informative/non-informative
(I/NI) call analogous to the I/NI call obtained for the FARMS algorithm which excelled in summa-
rization and gene filtering for microarray data (Hochreiter et al. 2006; Talloen et al. 2007, 2010).

In contrast to λ, which captures noise variation, α captures variation stemming from CNVs,
therefore, its posterior indicates CNVs in the data. The I/NI call measures the information gain
of the posterior compared to its prior distribution p(α) which represents the null hypothesis that
all samples have copy number 2. Therefore, the I/NI call measures the tendency to reject the null
hypothesis based on the observed data.

The multidimensional distribution and the Dirichlet distribution are conjugate, therefore the
posterior is also a Dirichlet distribution with parameters according to Eq. (S33). The I/NI call
measures the information gain of the Dirichlet posterior p(α | {α1, . . . ,αk, . . . ,αN}) over the
Dirichlet prior p(α) = D(α1;γ). The prior p(α) represents the null hypothesis that all samples
have copy number 2, therefore we set γ = (1, 1, 1 + G, 1, 1, ..., 1) which leads to the mode
m = (0, 0, 1, 0, . . . , 0). The I/NI call is the distance between the prior’s and the posterior’s mode.
We assess how much the prior assumption to see only copy number 2 has changed after having
observed the data. Note, that we do not consider the variance because it is determined by the
hyperparameter G and the number of samples. The difference between the prior’s mode and the
posterior’s mode is component-wise

γi − 1

γs − n
− γi + N αi − 1

γs + N − n
=

N

γs − n + N

(
γi − 1

γs − n
− αi

)
. (S39)

The difference for copy number i is difference between the prior’s mode (γi − 1)/(γs − n) and
the estimate αi of observing copy number i in the data set, where the difference is weighted by a
factor.

If we assume a Poisson distribution for read counts of each copy number, then the read count
distributions for copy numbers > 4 or 0 have less overlap with the copy number 2 read count
distribution than copy number 1, 3, or 4 distributions (see Subsection S3.3.3). Further, the read
count distribution for copy number 1 has less overlap with the copy number 2 read count dis-
tribution than the copy number 3 distribution as shown in Subsection S3.3.3. Summarizing, the
more the copy number differs from 2, the less overlap has its read count distribution with those of
copy number 2. Consequently, the more a read count differs from the average copy number 2 read
count, the more likely a copy number different from copy number 2 is present.

We incorporate this fact of being more sure on read counts belonging to copy numbers which
differ more from 2 into the I/NI call. We weight the difference between the prior’s mode m and
the posterior’s mode per component by its absolute log fold change relative to copy number 2.
Thus components 1 and 4, which half and double the read counts of copy number 2 respectively,
are weighted equally. Withm = (0, 0, 1, 0, . . . , 0), we define the I/NI call as

I/NI(α) =

n∑
i=0

|mi − αi| | log(i/2)| =

n∑
i=0

αi | log(i/2)| . (S40)

The I/NI call is the expected fold change given the data set. For notational convenience, we did
not distinguish between i = 0 and i ≥ 1 in the above formula. “log(0/2)” must be understood as
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log(ε/2) — in accordance with the fact that read counts for copy number 0 are Poisson distributed
with parameter ελ/2. Note that the I/NI call does not depend on the value of α2 but it is a distance
measure for vectors ‖α‖1 = 1 and αi ≥ 0 fromm as shown in the following.

Let α−2 be the vector α where the second component α2 is removed. We define the distance
between two vectors α1

−2 and α2
−2, where from both the second component is removed, as

∥∥L(α1
−2 − α2

−2)
∥∥
1

(S41)

with diagonal matrix L having diagonal elements Lii = | log(i/2)| for i > 0, i 6= 2 and L00 =
| log(ε/2)|. Eq. (S41) is a valid distance measure between vectors α1

−2 with α2
−2 because it is

the 1-norm of the difference of two vectors after component-wise scaling. For ‖α‖1 = 1 and
αi ≥ 0 the component α2 can be computed from components αi, i 6= 2. Therefore Eq. (S41) is
a valid distance measure for ‖α‖1 = 1 with αi ≥ 0 between vectors α1 and α2. It follows that
the I/NI call in Eq. (S40) is a valid distance measure of vectors ‖α‖1 = 1 with αi ≥ 0 from m.
Consequently, I/NI(m) = 0 and I/NI(α) > 0 for α 6= m. The more copy numbers differ from
2, the higher is the I/NI call, where gains and losses are treated on the same level by the absolute
value of the logarithm.

Using Eq. (S25), the I/NI call can be decomposed into contributions from each sample k:

I/NI(α) =
n∑
i=0

αi | log(i/2)| =
n∑
i=0

1

N

N∑
k=1

αik | log(i/2)| (S42)

=
1

N

N∑
k=1

n∑
i=0

αik | log(i/2)| =
1

N

N∑
k=1

I/NI(αk) ,

where αk = (α1k, . . . , αik, . . . , αnk). The individual I/NI call of sample k is I/NI(αk) =∑n
i=0 αik | log(i/2)| which is the contribution of sample k to the I/NI call and the expected copy

number fold change of sample k.

S2.4 Segmentation and CNV Call

S2.4.1 Segmentation

CNVs are detected by segmenting the chromosomes of individuals based on their individual I/NI
calls, where genomic adjacent I/NI calls that show the same copy numbers are joined. Note,
however, that the individual I/NI call defined Eq. (S42) does not allow for distinguishing losses
and gains with the same fold change.
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The signed individual I/NI call. To avoid joining losses and gains, we define the signed indi-
vidual I/NI call as the expected log fold change:

sI/NI(αk) =
n∑
i=0

αik log(i/2) (S43)

≈ sgn

(
n∑
i=0

αik log(i/2)

)
n∑
i=0

αik | log(i/2)|

= sgn

(
n∑
i=0

αik log(i/2)

)
I/NI(αk)

The absolute value of the signed I/NI call |sI/NI(αk)| is not exactly the individual I/NI call
I/NI(αk), but the two values are always very close. They are close because for one sample
the summands with largest αik are either ≥ 0 or ≤ 0, that is the model assumes for one sample
at one location either a loss (i/2 ≤ 1) or a gain (i/2 ≥ 1) if deviating from the prior of constant
copy number 2.

Numerical investigation of the difference between sI/NI and expected log fold change. We
investigated the numerical difference between the signed I/NI call and the expected log fold
change, that is the quality of the approximation in Eq. (S43). Based on data from the Sanger
sequencing center on HapMap phase 1 individuals, we calculated the difference of these values
for more than 2 million data points and found that the median difference was zero, the third quar-
tile was 6.2e − 17, the maximum was 1.4e − 02. Note, that for copy number 3 sI/NI values are
in the range of 0.6 ≈ log(3/2) and for copy number 1 in the range of −1 = log2(1/2), therefore,
the difference between the signed I/NI call and the expected log fold change is negligible.

Segmentation algorithm. The circular binary segmentation algorithm (DNAcopy; Venkatra-
man and Olshen 2007) is applied to sI/NI(αk) along the chromosome. DNAcopy joins consecu-
tive segments with large or small expected fold changes to a candidate segment. Note, that other
segmentation algorithms led to similar results as DNAcopy on the experimental data. The seg-
ments obtained by the segmentation algorithm are candidate segments as they show a variation
along the chromosome indicated by the signed individual I/NI call.

S2.4.2 CNV Call of cn.MOPS

A candidate segment is called a CNV if the median of the signed individual I/NI call sI/NI(αk)
over the segment is at least 0.6 for gains and at most −1 for losses. Thus, also a variation across
samples is needed to call a CNV. The CNV call combines two calls: (1) an I/NI call across samples
and (2) a segment call along the chromosome. Only if consecutive segments obtain an I/NI call,
they are joined by the segmentation algorithm (see second bar and third sample in Fig. S1). This
idea of calling a CNV by two calls, where one call is supplied by a model across samples, has
already led to improvements of CNV detection based on DNA microarray data via the cn.FARMS
method (Clevert et al. 2011).
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call +

I/NI

call +

I/NI

call −

I/NI

call +

I/NI

call −

I/NI

Figure S1: Illustration of the basic concept of cn.MOPS: a CNV call incorporates the detection
of variation across samples (I/NI call) and the detection of variation along a chromosome (seg-
mentation). Curves depict read counts along one chromosome for five samples. I/NI calls (green)
detect variation across samples (green vertical boxes). A CNV (red box) is called, if consecutive
segments have high I/NI calls. Blue boxes mark segments that a segmentation algorithm of class
(a) would combine into a CNV. First vertical bar (from the left) and first sample: the I/NI call indi-
cates variation across samples (“I/NI call +”). However, too few adjacent segments show high I/NI
calls. Second bar and third sample: The I/NI call indicates variation across samples (“I/NI call
+”) and sufficient adjacent segments show high I/NI calls, which leads to a CNV call (red box).
Third bar: the read counts drop consistently, thus would be detected by a segmentation algorithm
of class (a) methods (blue boxes). However, the samples’ read counts do not vary, which does not
lead to an I/NI call (“I/NI call -”). A CNV is not detected, which is correct as the copy number
does not vary across samples. Fourth bar and samples no. two and four: I/NI call indicates varia-
tion across samples (“I/NI call +”). As in the first bar, too few adjacent segments show high I/NI
calls. Fifth bar and second sample: a segmentation algorithm of class (a) methods would combine
adjacent read counts that are consistently small (blue box) into a CNV. However, the read counts
are within the variation of the constant copy number at this location. Therefore the I/NI call does
not indicate variation across samples (“I/NI call -”).
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S2.5 Noise Model Variants

In the following, we introduce some variants of cn.MOPS with different noise assumptions. These
variants have in common that not only copy number 0, but also other copy number regions may
have additional reads stemming from wrong mappings or sample contamination.

The main problem of these noise assumptions is that only an increase of read counts by noise
is modeled, but no decrease. For copy number 0, this is correct, but it is hard to justify for other
copy number regions. To allow negative ε, that is, a loss of reads, leads to numerical problems
at copy number 0 regions. This is the main reason why we included a noise term only for copy
number 0 in cn.MOPS.

In the following two subsections, we consider two variants of cn.MOPS with alternative noise
models. In a third subsection, we investigate another variant of cn.MOPS where the noise level
ε is considered as a parameter which is optimized by the EM algorithm. As it will turn out later,
the main problem of this approach is that the increased model complexity potentially leads to
overfitting.

S2.5.1 Variant (a): Additive Poisson Noise for Each Segment

First, we introduce a variant where, in each segment, additional reads are modeled via additive
Poisson-distributed reads with parameter ε.

The objective Eq. (S26) for optimizing the average read count λ now becomes:

min
λ

− 1

N

N∑
k=1

n∑
i=0

α̂ik log P(x;
i

2
λ +

ε

2
) . (S44)

Using

log P(xk ;
i

2
λ +

ε

2
) = − log(xk!) −

i

2
λ − ε

2
+ xk (log(

i

2
λ +

ε

2
)) , (S45)

the derivative of the objective is

− 1

N

N∑
k=1

n∑
i=0

(
− i

2
+ xk

i
2

i
2 λ + ε

2

)
α̂ik . (S46)

Setting this derivative to zero and solving the resulting equation with respect to λ leads to the
following alternative update rule:

λnew =
1
N

∑N
k=1 xk −

ε
2∑n

i=0 α̂i
i
2

. (S47)

We will refer to this approach as Variant (a) in the following. Recall that the λ update rule of
cn.MOPS is

λnew =
1
N

∑N
k=1 xk∑n

i=0 α̂i
i
2

=
1
N

∑N
k=1 xk∑n

i=1 α̂i
i
2 + α̂0

ε
2

. (S48)
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S2.5.2 Variant (b): Additive Poisson Noise Scales with Average Read Count

Secondly, we introduce a variant where, in each segment, the additional noise reads scale with the
average number of reads in this segment.

The objective Eq. (S26) for optimizing the average read count λ now becomes:

min
λ

− 1

N

N∑
k=1

n∑
i=0

α̂ik log P(x ;
(i + ε)

2
λ) . (S49)

Using

log P(xk ;
(i + ε)

2
λ) = − log(xk!) −

(i + ε)

2
λ + xk (log(λ) + log(

i + ε

2
)) , (S50)

the derivative of the objective is

− 1

N

N∑
k=1

n∑
i=0

(
− i + ε

2
+ xk

1

λ

)
α̂ik . (S51)

We will refer to this approach as Variant (b) in the following. Setting this derivative to zero and
solving the resulting equation with respect to λ leads to the following alternative update rule:

λnew =
1
N

∑N
k=1 xk∑n

i=1 α̂i
i
2 + ε

2

. (S52)

S2.5.3 Variant (c): Poisson Noise Level as Model Parameter

As a third variant, we consider the noise level ε as a model parameter which is adjusted by the EM
algorithm.

The objective for optimizing ε can be derived analogously to Eq. (S26), where the terms con-
taining ε are:

min
ε

− 1

N

N∑
k=1

α̂0k log P(x ;
ε

2
λ) . (S53)

Using

log P(xk ;
ε

2
λ) = − log(xk!) −

ε

2
λ + xk (log(λ) + log(

ε

2
)) , (S54)

the derivative of the objective is

− 1

N

N∑
k=1

α̂0k

(
− 1

2
λ +

xk
ε

)
(S55)

We will refer to this approach as Variant (c) in the following. Setting this derivative to zero and
solving the resulting equation with respect to ε leads to the following update rule for ε:

εnew =
2 1
N

∑N
k=1 α̂0k xk

λ 1
N

∑N
k=1 α̂0k

. (S56)



20 S2 The Mixture of Poissons Model

The problem with variant (c) is that the model complexity increases by introducing a second
parameter; therefore, it is prone to overfitting.

In experiments (see below), we observed that ε codes for the average read counts of copy
number 2 for data with large copy numbers, while the copy number 2 component is used for large
copy numbers. In this case, the model can model the large fold changes in the data, although the
assignment of integer copy numbers can be incorrect.

These two drawbacks of adjusting the noise via a model parameter are the main reasons why
we decided to consider ε as a hyperparameter in the cn.MOPS model.

S2.5.4 cn.MOPS Variants Tested on Simulated Data

First, we compared cn.MOPS with variants (a)–(c) on the simulated data used in the experiments
described in Section “Simulated Data with Constructed CNVs” of the main manuscript. Table S2
shows the results. The low performance of variant (c) is caused by overfitting via an overly com-
plex model class. Variant (b) performs best for gains, while cn.MOPS performs best for losses.
The differences, however, are only marginal.

Table S2: Performance of cn.MOPS and variants on simulated data. “PR AUC” gives the area
under the precision-recall curve. “Recall” reports the recall at a precision of 0.95. Variant (b) per-
forms best for gains and cn.MOPS performs best for losses, but the differences are only marginal.

Gains Losses
Variant PR AUC Recall PR AUC Recall
cn.MOPS 0.935 0.883 0.963 0.961
(a) additive ε 0.931 0.860 0.961 0.959
(b) additive scaled ε 0.941 0.889 0.962 0.959
(c) ε as parameter 0.904 0.821 0.938 0.933

S2.5.5 cn.MOPS Variants Tested on Real Sequencing Data with Implanted CNVs from the
X Chromosome

Next, we compared cn.MOPS with variants (a)–(c) on the data used in the experiments described
in Section “Real Sequencing Data with Implanted CNVs from the X Chromosome” of the main
manuscript. Table S3 shows the results. The low performance of variant (c) is again caused by
overfitting as in the previous experiment. Variant (b) performs worse in this experiment, while
cn.MOPS performs generally best.
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Table S3: Performance of cn.MOPS and variants on real sequencing data with implanted CNVs
from the X chromosome. “PR AUC” gives the area under the precision-recall curve. “Recall”
reports the recall at a precision of 0.95. For gains, Variant (b) performs best in terms of PR AUC,
but only marginally. For losses and in terms of recall for gains, cn.MOPS performs best.

Gains Losses
Variant PR AUC Recall PR AUC Recall
cn.MOPS 0.703 0.652 0.888 0.878
(a) additive ε 0.705 0.640 0.886 0.876
(b) additive scaled ε 0.712 0.544 0.844 0.831
(c) ε as parameter 0.680 0.590 0.864 0.853

S2.5.6 Conclusion

In summary, other variants of cn.MOPS show inferior performance. For variants (a) and (b) with
additive noise for all copy numbers, only additional reads are explained, but potentially missing
reads are not modeled. The value of λ is therefore systematically underestimated, which leads to
a decrease in performance. Variant (c) considers ε as a model parameter and thus uses a model of
higher complexity, which leads to overfitting and, consequently, to a decrease in performance. We
conclude that cn.MOPS is the best choice compared to the variants considered here.
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Figure S2: Definitions for the evaluation of copy number detection methods. A genome is split
into equally sized evaluation segments of length shorter than the shortest CNV. Top panel: Know-
ing the true CNV regions (green), the evaluation segments are labeled as class 1 (CNV segment)
or class -1 (non-CNV segment). Middle panel: A CNV detection method classifies each evalua-
tion segment into CNV segments (blue, class 1) and non-CNV segments (class -1). Bottom panel:
In the first line, positives (known CNV regions) are divided into true positives (TP, green) and
false negatives (FN, red). In the second line, negatives (no overlap with known CNV regions) are
divided into true negatives (TN, green) and false positives (FP, red). Segments partly overlapping
with known or predicted CNV regions are not considered (“na”).

S3 Experiments

S3.1 Evaluation of CNV Detection Results

In order to compare methods which detect copy number variations in next generation sequencing
data, we need an evaluation criterion. We assume that the true CNVs are known and to be redis-
covered. Each chromosome is split into equally large evaluation segments the size of which is
chosen to accommodate the shortest known CNV. An evaluation segment is called a true positive
(TP) if it is entirely contained both in a true CNV and in a detected CNV segment. It is called
a false negative (FN) if it is entirely contained in a true CNV but does not overlap with any pre-
dicted CNV segment. An evaluation segment is called a false positive (FP) if it is entirely detected
as a CNV segment but does not overlap with any true CNV. Finally, it is called a true negative
(TN) if it overlaps neither with a true CNV nor with a detected CNV segment. These definitions
imply that all evaluation segments that partly overlap with true CNVs or detected CNV segments
remain ignored, as the copy numbers in these segments are ambiguous. Figure S2 illustrates the
definitions of the four categories of evaluation segments. The two measures we employ hereafter
are recall

(
#TP/(#TP + #FN)

)
and precision

(
#TP/(#TP + #FP)

)
. Note that precision is

one minus the false discovery rate, in which we are especially interested. A CNV calling threshold
governs the trade-off between recall and precision or, in other words, the trade-off between FNs
and FPs, because more detected CNVs lead to more FPs but fewer FNs, and vice versa. To assess
the performance of methods at different CNV calling thresholds, we use precision-recall curves.
Precision-recall curves are independent of the number of TNs, which makes them an ideal tool for
our evaluation, as the majority of samples are negatives (non-CNVs).

We also considered using “receiver-operator characteristic (ROC) curves” or the Matthews
correlation coefficient as evaluating criterion for the performance of different methods. However,
we decided to use the area under the precision recall curve as evaluation criterion because it is
independent of the number of true negatives. Our data sets contain many negatives (segments with
constant copy number 2) and most methods classify the majority of them correctly which leads to
a large number of true negatives. By using precision-recall curves we avoid that methods which
tend to classify most segments as negatives, that are methods with a low discovery power (low
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recall), systematically obtain higher performance values.

S3.2 Compared CNV Detection Methods

We compared following methods:

1. cn.MOPS our new model and pipeline,

2. MOFDOC according to the variant described in (Alkan et al. 2009),

3. EWT (Yoon et al. 2009) event-wise testing,

4. JointSLM (Magi et al. 2011),

5. CNV-Seq (Xie and Tammi 2009),

6. FREEC (Boeva et al. 2011).

For a fair comparison, the parameters of the methods were optimized on simulated data sets
similar to the one we used in our first experiment in Section S3.3.

S3.2.1 cn.MOPS

For cn.MOPS model we initialized the parameter λ by the median read count of the segment
across samples λ̄. ε from Eq. (S1) is set to ε = 0.05, which is our estimate for the percentage of
wrongly mapped reads. We set n = 8 which leads to nine possible copy numbers 0 ≤ i ≤ 8.
The parameter α should be initialized close to the location of the prior’s mode (0, 0, 1, 0, . . . , 0),
which are the optimal parameters if all samples have copy number 2. However, initializing α by
(0, 0, 1, 0, . . . , 0) would clamp all α̂ik and αnew

i to zero according to Eq. (S31) and Eq. (S32).
Therefore we initialized α by α = (0.05, 0.05, 0.6, 0.05, . . . , 0.05).

S3.2.2 Class (a) Methods: MOFDOC, EWT , and JointSLM

The methods MOFDOC (“model free depth of coverage”) according to Alkan et al. (2009), EWT
(“event-wise testing”) according to Yoon et al. (2009), and JointSLM (Magi et al. 2011) are all
based on detecting deviations of read counts from an average read count which can be measured
by z-scores or log z-scores, i.e. the multiple in standard deviations the read count differs from the
mean.

MOFDOC: We implemented MOFDOC using the CNV calling criterion from Alkan et al. (2009).
A CNV region is called if a out of b consecutive segments show a read count with a z-score beyond
a threshold (abnormal large or small read counts) to call a segment (default a = 6 and b = 7). We
generalized this “a-b-smoother” to a smoothing algorithm, that is not only able to smooth logical,
but also real values stemming from CNV calls (see Section S3.5 and Fig. S5), which improved
MOFDOC’s results.

All parameters are optimized on artificial test data sets similar to one used in Section S3.3,
which resulted in following parameter settings:

a=4
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b=4

GCcorrection=TRUE

The parameter WL was set to 25000/2500/500 for the low coverage, medium coverage and high
coverage data set, respectively.

EWT: We reimplemented EWT as described in Yoon et al. (2009) but improved the GC correction
by using all samples for estimating the GC effect. Further we restricted the parameter “event
size” to an upper bound maximumEventSize and a lower bound minimumEventSize. “event
size” is a parameter that prevents EWT from testing too short CNVs. We generalized EWT to
variable segment sizes like 10kbp, 25kbp and 50kbp that are apt for low coverage CNV detection.
Our modifications of EWT improved its results. EWT adjusts a threshold on the p-values of
joined segments (called “false positive rate”) assuming independent Gaussian read counts per
segment. This threshold governs the number of detections. To compute the precision-recall curve
we considered all possible thresholds of the log “false positive rate”. All parameters are optimized
on artificial test data sets similar to one used in Section S3.3, which resulted in following parameter
settings:

minimumEventSize = 4

maximumEventSize = 8

GCcorrection = TRUE

The parameter WL was set to 25000/2500/500 for the low, medium and high coverage data set,
respectively.

JointSLM: We applied the R -package (version 0.1) to 25kbp/2500bp/500bp (low/medium/high
coverage) segments, for which the GC content was computed. In contrast to the original imple-
mentation, we did not round the scores per segment to integer copy numbers to allow for thresh-
olding and to compute the area under precision-recall curve. All parameters are optimized on
artificial test data sets similar to one used in Section S3.3, which resulted in following parameter
settings:

omega = 0.1

eta = 1e-06

K0 = 20

baseCopy = 2

S3.2.3 Class (b) Methods: SeqSeg, CNV-Seq, and FREEC

The methods SeqSeg (Chiang et al. 2008), CNV-Seq (Xie and Tammi 2009), and FREEC
(Boeva et al. 2011) require a reference genome for copy number detection. Most of these methods
are designed for and applied to studies with tumor samples and matched normal samples, which
are often blood cells of the same individual. For CNV detection, matched normals are in general
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not available. Therefore, reference read counts per segment are build as the median of read counts
over all samples. Additionally, the median is more robust than using a matched sample, because
both the reference and the analyzed genome are subject to random read count variations (note, the
read count variation is not estimated across samples). For the method SeqSeg, which requires
read positions on the genome, we generated a reference genome in the following way: we pooled
the read positions of all samples and then sorted them according to their genomic position. We
then used the median of n (number of samples) consecutive reads as read position for the reference
genome.

SeqSeg: We did not include SeqSeg (Chiang et al. 2008) in the comparisons because we were
not able to find suitable parameters, not even after an extensive search. The problem was that Se-
qSeg either did not detect any breakpoints or the thresholds for the p-values were not determined.
However, the performance of SeqSeg can be estimated via CNV-Seq which is very similar to
SeqSeg.

CNASeg: We also omitted CNAseg (Ivakhno et al. 2010) from the comparison, as its developers
state that this method is specifically tailored to CNA detection in tumor samples.

CNV-Seq: We used the authors’ implementation1, where the median of the samples’ read counts
served as reference read count. All parameters are optimized on artificial test data sets similar to
one used in Section S3.3, which resulted in following parameter settings:

pValue = 0.001

log2Threshold = 0.6

All other parameters were set to their default values. The parameter windowLength was set to
25000/2500/500 for the low, medium and high coverage data set, respectively.

FREEC: We used Version 3.22, where analogously to CNV-Seq, the median of the samples’ read
counts was used as reference. For computing the precision-recall curves, all possible thresholds
for the returned median ratio per segment are used. All parameters are optimized on artificial test
data sets similar to one used in Section S3.3, which resulted in following parameter settings:

breakPointThreshold = -0.001

ploidy = 2

minCNAlength = 4

step = 10000

mode = reference

All other parameters were set to their default values. The parameter windowwas set to 25000/2500/500
for the low, medium and high coverage data set, respectively.

1http://tiger.dbs.nus.edu.sg/cnv-seq/ (version as of 2010/07/16)
2http://bioinfo-out.curie.fr/projects/freec/ (version as of 2011/04/04)

http://tiger.dbs.nus.edu.sg/cnv-seq/
http://bioinfo-out.curie.fr/projects/freec/


26 S3 Experiments

S3.3 Simulated Sequencing Data with Constructed CNVs

We constructed 100 artificial benchmark data sets. We assume an artificial genome to consist of a
single chromosome of 125Mbps length which is divided into 5,000 segments of length 25kbp. We
created 40 samples by sampling read counts for all segments and all samples according to a Poisson
process. The overall number of evaluation segments was, therefore, 40× 5, 000 = 200, 000.

S3.3.1 Distribution of CNV Types and Copy Numbers for Data Generation

We determined characteristics of CNV regions and how copy numbers are distributed from the
HapMap individuals (The International HapMap 3 Consortium 2010). CNVs of different individ-
uals cluster at certain regions of the DNA, the “CNV regions”, of which many contain only losses
or only gains. CNV regions can be divided into 3 types: CNV regions of the type “loss region”
contain only losses, of type “gain region” contain only gains, and of type “mixed region” contain
both losses and gains. As depicted in Fig. S3, the CNV region type “loss region” was observed in
80%, “gain region” in 15%, and “mixed region” in 5%.
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Figure S3: Histogram of CNV region types “loss region”, “gain region”, and “mixed region”
according to The International HapMap 3 Consortium (2010).

We implanted 20 CNV regions into each of these benchmark chromosomes. The CNV re-
gions’ lengths were chosen randomly from the interval 75–200kbp, which is the range of accurate
detection for the given coverage according to Xie and Tammi (2009). The 20 starting points of the
CNV regions are randomly chosen along the chromosome. After having determined the 20 CNV
regions, we have to decide how CNVs are implanted into the single samples. According to the
HapMap individuals, we assign CNV region types such that 80% are “loss region” (contain only
losses), 15% “gain region” (contain only gains), and 5% “mixed region” (contain both losses and
gains). Then the actual copy number for each sample is drawn according to the copy numbers ob-
served for HapMap individuals (The International HapMap 3 Consortium 2010): For a loss region,
a sample has probabilities of 0.8, 0.15, and 0.05 of having copy numbers 2, 1, and 0, respectively.
For a gain region, a sample has probabilities of 0.85, 0.08, 0.06, and 0.01 of having copy numbers
2, 3, 4 and 5, respectively. For a mixed region, a sample has probabilities 0.04, 0.16, 0.67, 0.11,
and 0.02 of having copy numbers 0, 1, 2, 3 and 4, respectively. Of the 200,000 evaluation seg-
ments, on average 101(±56) are gains and 612 (±104) are losses. The CNVs’ lengths range from
75,006bp to 199,848bp with an average of 136,921bp.



S3 Experiments 27

0 1 2

CN histogram for type "loss region"

copy number

re
la

ti
v
e

 f
re

q
u

e
n

c
y

0
.0

0
.2

0
.4

0
.6

0
.8

2 3 4 5

CN histogram for type "gain region"

copy number

re
la

ti
v
e

 f
re

q
u

e
n

c
y

0
.0

0
.2

0
.4

0
.6

0
.8

0 1 2 3 4 5

copy number

re
la

ti
v
e

 f
re

q
u

e
n

c
y

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

CN histogram for type "mixed region"

Figure S4: Histograms of integer copy numbers for CNV region types “loss region”, “gain region”,
and “mixed region” according to The International HapMap 3 Consortium (2010).
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S3.3.2 Results

Table S4 reports the performance of the compared copy number detection methods separately for
gains and losses. As evaluation measures, we use the area under the precision-recall curve and the
recall for an FDR fixed to 0.05.

Table S4: Performance of the compared copy number detection methods on the artificial bench-
mark data set. “PR AUC” gives the average area under the precision-recall curve of 100 exper-
iments. The second column “p-value” reports the p-value of a Wilcoxon signed-rank test (over
the 100 experiments) with null hypothesis that cn.MOPS and another method have the same area
under the curve. “Recall” reports the recall at a precision of 0.95, that is, an FDR of 0.05. The last
column “p-value” gives the p-value of an analogous Wilcoxon test for the recall with an FDR of
0.05. cn.MOPS had significantly higher performance than all other methods.

Gains
PR AUC p-value Recall p-value

cn.MOPS 0.94 — 0.88 —
MOFDOC 0.81 1.14e-13 0.76 9.75e-12
EWT 0.79 5.95e-14 0.74 1.34e-12
JointSLM 0.25 4.23e-18 0.22 2.80e-17
CNV-Seq 0.35 4.23e-18 0.35 3.98e-17
FREEC 0.65 1.95e-17 0.53 3.42e-14

Losses
PR AUC p-value Recall p-value

cn.MOPS 0.96 — 0.96 —
MOFDOC 0.92 3.50e-17 0.90 9.22e-17
EWT 0.91 3.20e-18 0.90 8.44e-17
JointSLM 0.34 1.98e-18 0.28 1.98e-18
CNV-Seq 0.81 1.98e-18 0.81 3.84e-17
FREEC 0.73 1.98e-18 0.72 3.32e-17

S3.3.3 Different Performance on Gains and Losses

Table S4 shows that all methods perform better at detecting losses. The superior performance
at losses can be explained by the fact that copy number 3 can be more likely be confused with
copy number 2 than copy number 1. We show that under a Poisson assumption, a typical read for
copy number 2, that is λ, is more likely to come from copy number 3 than from copy number 1.
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Assuming λ > 0, we obtain:
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where P(x;β) is the Poisson distribution with parameter β evaluated at x. The inequality shows
that the average read count λ for copy number 2 has higher probability to be drawn from a copy
number 3 than from a copy number 1 distribution.

S3.4 Real Sequencing Data with Implanted CNVs From the X Chromosome

In contrast to the previous benchmark for which the read counts were simulated, we now consider
real reads stemming from sequencing of a single male HapMap individual (NA20755). This man’s
genome was sequenced 17 times by the Solexa Genome Analyzer II at the Sanger Sequencing
Center (see Table S5). These 17 samples ensure a constant copy number, as they stem from the
same individual. The reads were mapped by Bowtie (Langmead et al. 2009) for paired reads. We
allowed for two mismatches. The numbers of reads range from 12,069,758 to 18,810,212 of which
between 10,419,510 and 16,041,464 could be mapped, which corresponds to coverages between
0.13 and 0.21.

We created 110 benchmark data sets by choosing each human chromosome 1–22 five times,
where in each chromosome data set 20 random CNV regions were implanted. The lengths of these
implanted CNV regions were chosen to be 75kbp, 100kbp, 150kbp and 200kbp (5 each), and for
each of the regions a random segment on the X chromosome was selected which supplied reads
for the region. CNV region types and individual copy numbers were determined according to the
same procedure and distributions as described in Subsection S3.3 except that we only consider
CNV copy numbers 1 and 3, since they are most difficult to distinguish from copy number 2. We
chose 80% of the CNV regions as loss regions, 15% as gain regions, and 5% as mixed regions. For
a loss region, a sample has probabilities 0.8 and 0.2 of having copy number 2 and 1, respectively,
for a gain region, 0.85 and 0.15 of having copy numbers 2 and 3, respectively, and for a mixed
region, 0.2, 0.67, and 0.13 of having copy numbers 1, 2, and 3, respectively. Finally, the read
counts of the 17 samples are computed in the following way: outside CNVs, for constant copy
numbers, the original reads counts are used; within CNVs we added as many read counts as there
are copies from the corresponding segment on the X chromosome, where read counts are obtained
from the considered sample and other random samples.

The CNV detection results were evaluated as described in Subsection S3.1. The number of
evaluation segments ranges from around 32,000 for chromosome 21 to around 168,000 for chro-
mosome 1. On average, 0.1% of the evaluation segments are gains and 0.4% are losses.
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S3.4.1 Data and Mapping

The sequencing reads of the male sample NA20755 were obtained from the 1000 genomes project
(The 1000 Genomes Project Consortium 2010) web page (http://www.1000genomes.org). TableS5
lists the unique names of the sequencing read files. We applied the Bowtie software (Langmead
et al. 2009) to map the reads against the human reference genome 18 (build 36). The Bowtie
parameters were set as follows:

-q =⇒ Input files are fastq files.

-v 2 =⇒ Two mismatches are allowed.

-M 1 =⇒ M-alignment mode. Reports at most one valid alignment. If more than one best
mapping position is available then the read is randomly assigned to one of them.

--best =⇒ The alignment is the best matching position.

--sam =⇒ Output format is SAM.

Table S5 further lists the number of sequenced reads, the number of mapped reads, the number
of used reads, and the ratio of mapped reads.

Mapping reads to only unique positions by Bowtie parameter -m 1 leads to many segments
with low read counts as the histogram in Fig. S14 in Subsection S4.1 shows. Compared to the
histogram in Fig. S13 in Subsection S4.1 for non-uniquely mapped reads, we observe a shift of
the density toward lower read counts (left) because some segments systematically loose reads due
to ambiguous mappings. Because there are too many low read counts, class (a) methods like
MOFDOC, EWT, and JointSLM are not suited for this kind of read mapping. However, methods
based on ratios perform well on data from unique position mapping, since they use reference read
counts which have similar read counts as the samples for the same copy number. cn.MOPS is
also suited to handle data from unique position mapping as it builds a local model, which regards
read count characteristics.

S3.4.2 Results

Table S6 reports the performance of the compared copy number detection methods separately for
gains and losses. As before, we use area under the precision-recall curve and the recall for an FDR
fixed to 0.05.

S3.4.3 Estimation of Integer Copy Numbers

For this experiment we were able to evaluated the model’s performance of assigning an integer
copy number to each sample in each genomic location. Evaluation segments that contained a
CNV breakpoint were excluded from the further analysis since they have no unique copy number.
Inside CNVs 92.293% (± 0.026%) and on the whole genome, including constant copy number
two, 99.383%(± 0.001%) of the integer copy numbers were correctly assigned.

http://www.1000genomes.org
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Table S5: Summary of the sequencing data for the implanted CNVs benchmark data set. Col-
umn “individual” reports the ID number of the HapMap sample. Column “base name” shows
the base name of the files containing the sequence reads. Mate 1 has the filename “base
name_1.filt.fastq.gz” and mate 2 “base name_2.filt.fastq.gz”. The following columns “sequenced
reads”, “mapped reads” and “used reads” report the number of totally sequenced reads, the number
of reads that were mapped to the reference genome, and the number of reads used for the analysis
(after removing potential PCR duplicates). The last column “ratio mapped” gives the proportion
of mapped reads to sequenced reads.

sequenced mapped used ratio
individual base name reads reads reads mapped

1 NA20755 ERR003683 17,303,620 14,890,416 14,846,540 0.86
2 NA20755 ERR003775 16,453,240 14,017,334 13,974,864 0.85
3 NA20755 ERR003776 17,471,474 15,051,916 14,998,386 0.86
4 NA20755 ERR003777 18,275,368 15,763,846 15,702,220 0.86
5 NA20755 ERR003778 18,651,270 15,892,764 15,831,810 0.85
6 NA20755 ERR003779 18,566,172 15,881,196 15,816,916 0.86
7 NA20755 ERR003780 18,611,728 15,840,592 15,774,308 0.85
8 NA20755 ERR003781 17,713,468 14,974,160 14,918,680 0.85
9 NA20755 ERR003782 17,649,380 15,039,086 14,995,282 0.85
10 NA20755 ERR003783 18,810,212 16,041,464 15,991,994 0.85
11 NA20755 ERR003784 18,650,906 16,020,806 15,971,248 0.86
12 NA20755 ERR003785 16,960,214 14,052,008 14,012,730 0.83
13 NA20755 ERR003786 14,799,104 11,741,258 11,711,502 0.79
14 NA20755 ERR003787 12,888,982 10,419,510 10,395,492 0.81
15 NA20755 ERR003855 15,003,086 13,131,902 13,067,934 0.88
16 NA20755 ERR003867 17,359,258 15,090,776 15,044,648 0.87
17 NA20755 ERR003878 12,069,758 10,652,836 10,603,636 0.88

S3.5 Rediscovering of Known CNVs in HapMap Sequencing Data

Finally, we compare how well the methods are able to rediscover known CNVs of HapMap indi-
viduals whose DNA was sequenced by the Solexa Genome Analyzer II at the Sanger Sequencing
Center. We focused on 18 individuals for each of which the reads were produced on one lane (one
sequencing run contains 7 lanes). The reads were mapped by Bowtie (Langmead et al. 2009) for
paired reads, again allowing three mismatches. The numbers of reads range from 12,442,124 to
31,977,690 of which 7,498,420 to 22,217,020 could be mapped, leading to a coverage between
0.20 and 0.60 (see Supplement for details on read mapping and the number of reads).

The CNVs of these 18 individuals have been determined previously using microarrays (The
International HapMap 3 Consortium 2010) which we consider as the true CNVs in the following.
These true CNVs were detected by the Affymetrix Human SNP array 6.0 and reconfirmed with the
Illumina Human1M-single beadchip. After filtering for CNVs larger than 75kbp, we obtained 170
CNVs, of which 66 are gains and 104 are losses, with lengths ranging from 76kbp to 457kbp. The
CNV detection results are evaluated as described in Subsection S3.1 with evaluation segments of
length 25kbp. In total, we have 2,064,906 evaluation segments of which 450 are labeled as losses
as they lie within one of the 104 loss CNVs and 469 are labeled as gains as they lie within one of
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Table S6: Performance of the compared copy number detection methods on real sequencing data
with implanted CNVs from the X chromosome. “PR AUC” gives the average area under the
precision-recall curve of 100 experiments. The second column “p-value” reports the p-value of
a Wilcoxon signed-rank test (over the 100 experiments) with null hypothesis that cn.MOPS and
another method have the same area under the curve. “Recall” reports the recall at a precision
of 0.95, that is, an FDR of 0.05. The last column “p-value” gives the p-value of an analogous
Wilcoxon test for the recall with an FDR of 0.05. cn.MOPS significantly outperformed all other
methods.

Gains
PR AUC p-value Recall p-value

cn.MOPS 0.70 — 0.65 —
MOFDOC 0.20 1.12e-17 0.10 2.31e-17
EWT 0.22 1.95e-16 0.13 8.70e-17
JointSLM 0.06 1.94e-19 0.03 7.00e-18
CNV-Seq 0.13 1.74e-19 0.13 5.75e-18
FREEC 0.49 1.22e-12 0.30 4.41e-15

Losses
PR AUC p-value Recall p-value

cn.MOPS 0.89 — 0.88 —
MOFDOC 0.57 3.78e-15 0.21 2.48e-18
EWT 0.62 1.77e-12 0.34 2.02e-17
JointSLM 0.17 4.43e-20 0.08 4.43e-20
CNV-Seq 0.50 4.43e-20 0.50 4.43e-20
FREEC 0.52 7.05e-17 0.36 4.56e-20

the 66 gain CNVs.

S3.5.1 Data and Mapping

The sequence reads of 18 different HapMap samples were obtained from the 1000 genomes project
(The 1000 Genomes Project Consortium 2010) web page (http://www.1000genomes.org). Ta-
ble S7 lists the unique names of the sequence read files. We used the Bowtie software (Langmead
et al. 2009) to map the reads against the human reference genome 18 (build 36). The Bowtie
parameters were set as follows:

-q =⇒ Input files are fastq files.

-v 3 =⇒ Three mismatches are allowed.

-M 1 =⇒ M-alignment mode. Reports at most one valid alignment. If more than one best
mapping position is available then the read is randomly assigned to one of them.

--best =⇒ The alignment is the best matching position.

--sam =⇒ Output format is SAM.

http://www.1000genomes.org
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Table S7 further lists the number of sequenced reads, the number of mapped reads, the number
of used reads, and the ratio of mapped reads.

Table S7: Summary of the sequencing data for the HapMap CNV reconfirmation benchmark data
set. Column “individual” reports the ID number of the HapMap sample. Column “base name”
displays the base name of the files containing the sequence reads. Mate 1 has the filename “base
name_1.filt.fastq.gz” and mate 2 “base name_2.filt.fastq.gz”. The following columns “sequenced
reads”, “mapped reads” and “used reads” report the number of totally sequenced reads, the number
of reads that were mapped to the reference genome, and the number of reads used for the analysis
(after removing potential PCR duplicates). The last column “ratio mapped” gives the proportion
of mapped reads to sequenced reads.

sequenced mapped used ratio
individual base name reads reads reads mapped

1 NA11832 SRR023299 31,977,690 22,217,020 22,056,918 0.69
2 NA11920 SRR024102 24,558,838 16,315,660 16,177,166 0.66
3 NA12003 SRR020472 19,089,406 15,043,846 14,956,114 0.79
4 NA12045 SRR020475 22,117,122 15,081,430 15,023,326 0.68
5 NA12154 SRR023306 17,922,674 14,292,494 14,236,294 0.80
6 NA07051 SRR023301 12,442,124 7,498,420 7,472,714 0.60
7 NA07347 SRR029852 26,281,042 10,691,556 10,649,784 0.41
8 NA11831 SRR027529 25,276,660 19,211,670 19,067,842 0.76
9 NA18486 SRR027528 20,145,972 11,397,190 11,367,976 0.57
10 NA18499 SRR011011 24,605,896 16,997,702 16,839,102 0.69
11 NA18510 SRR024103 25,813,190 18,631,922 18,541,544 0.72
12 NA18516 SRR020479 22,861,892 17,427,526 17,398,112 0.76
13 NA18519 SRR018113 17,574,956 10,444,800 10,420,156 0.59
14 NA18871 SRR020470 19,613,172 15,084,744 15,022,780 0.77
15 NA18959 SRR023789 27,674,990 9,137,412 9,123,166 0.33
16 NA18960 SRR029849 16,607,250 9,384,384 9,245,626 0.57
17 NA18964 SRR022591 23,445,028 18,035,194 17,979,096 0.77
18 NA19102 SRR023300 25,236,608 18,016,936 17,987,502 0.71

S3.5.2 Results

Table S8 shows the performance of the six compared methods in rediscovering known CNVs for
the 18 HapMap individuals, where the average area under the precision-recall curve is used as
evaluation criterion. All methods perform better at detecting losses as already seen in previous
experiments. cn.MOPS yields a significantly higher performance than its competitors both in
terms of the AUC as well as in terms of the recall for FDR set to 0.05, except that FREEC
performs equally well for gains.
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Table S8: Performance of the compared copy number detection methods on HapMap individ-
uals, where known CNVs should be rediscovered. “PR AUC” gives the average area under the
precision-recall curve of 18 samples. “p-value” reports the p-value of a Wilcoxon signed-rank test
(over the 18 samples) with null hypothesis that cn.MOPS and another method have the same area
under the curve. “Recall” reports the recall at a precision of 0.95, that is, an FDR of 0.05. The
last column “p-value” gives the p-value of an analogous Wilcoxon test for the recall with an FDR
of 0.05. cn.MOPS could most reliably reconfirm known CNVs. Only for gains, FREEC and
cn.MOPS have similar performance, whereas cn.MOPS has significantly higher performance
than its competitors at losses.

Gains
PR AUC p-value Recall p-value

cn.MOPS 0.35 — 0.24 —
MOFDOC 0.13 1.17e-03 0.06 1.95e-03
EWT 0.16 5.34e-04 0.10 1.86e-02
JointSLM 0.08 3.81e-05 0.05 7.81e-03
CNV-Seq 0.22 1.74e-02 0.21 3.61e-01
FREEC 0.35 8.68e-01 0.17 2.38e-01

Losses
PR AUC p-value Recall p-value

cn.MOPS 0.53 — 0.45 —
MOFDOC 0.40 2.67e-04 0.33 3.42e-03
EWT 0.36 7.63e-06 0.23 6.10e-05
JointSLM 0.15 3.81e-06 0.06 1.53e-05
CNV-Seq 0.32 7.63e-05 0.27 3.66e-04
FREEC 0.42 2.37e-03 0.26 1.01e-03
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S3.5.3 Evaluation based on a different criterion

In an additional assessment we determine how many known CNVs are rediscovered in NGS data,
but now we do not regard the precision of the detection in terms of CNV length and position. In
previous experiments we used evaluation segments and assessed not only whether known CNVs
are rediscovered but also how precisely. However, array techniques were not able to precisely
determine the known CNVs’ breakpoints, thus the ground truth is not reliable concerning length
and position of known CNVs.

We are interested in the recall, the true positive rate
(
#TP/(#TP + #FN)

)
, where the

positives are the 170 known CNVs (66 gains and 104 losses). As we do not regard CNV length
and position, we redefine true positives: a known CNV is a true positive of a method’s result if
at least one of its detected CNVs overlaps with a known CNV. A method should not be able to
improve its performance by calling more CNVs, because the increased recall comes at the cost
of more false positives and hence a reduced precision

(
#TP/(#TP + #FP)

)
. To trade true

positives off against false positives, we limit the number of detections
(
#TP + #FP

)
for each

method. As detections we select the 66 top ranked gain segments and the 104 top ranked loss
segments in accordance with the known CNVs. Note that there is bias toward methods that detect
longer segments, because they are more likely to overlap with known CNVs (we avoided this bias
with the precision-recall curves used above).

Table S9 shows the recall results without regarding the precision in terms of CNV length and
position. cn.MOPS had significantly (McNemar’s test) larger recall values.

Table S9: Recall of known copy number regions by detection methods on HapMap individu-
als without regarding the precision in terms of CNV length and position. “recall” is the recall
(true positive rate) and “p-value” gives the p-values of McNemar’s test which indicates whether
cn.MOPS has a larger recall than its competitors. Recall values in boldface indicate methods that
have significantly larger recall than all other methods. cn.MOPS has significantly larger recall
values than other methods.

Gains Losses
Recall p-value Recall p-value

cn.MOPS 0.58 — 0.75 —
MOFDOC 0.00 1.95e-09 0.26 2.53e-12
EWT 0.12 1.19e-07 0.16 1.56e-14
JointSLM 0.00 1.95e-09 0.18 4.32e-14
CNV-Seq 0.45 1.33e-02 0.68 1.46e-01
FREEC 0.08 2.54e-08 0.51 1.59e-06

S3.5.4 CNV Calls of Different Methods

So far we have considered CNV detection as a classification task whose goal was to detect CNVs
in individual samples. Next we assess the quality of the CNV calling across HapMap samples for
detecting CNV regions. In contrast to the previous task, we consider a CNV call for a genomic
segment across samples but not individual CNV calls. The task is to classify the 114,717 evalu-
ation segments from Subsection S3.1 into segments within a CNV region or non-CNV segments.
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The CNV calls have to be defined depending on the method. For cn.MOPS we can readily use
the I/NI call. The hyperparameter G of cn.MOPS model was set to 100 ·N . For class (a) meth-
ods, namely MOFDOC, EWT, and JointSLM, we use the mean of the z-score on the evaluation
segment. For the class (b) methods, CNV-Seq and FREEC, we use the mean log-ratios of the
evaluation segments. Log-ratios per segment were computed as the log of the read count divided
by the segment’s median read count. Note, that the calls shown in the following plots are not the
final calls, since all methods suggest a segmentation algorithm that joins initial segments to larger
segments for the final CNV call.

Fig. S5 visualizes the results of this task by whole genome CNV calling plots along all eval-
uation segments. cn.MOPS separates segments within true CNV regions (indicated by red dots)
from normal segments (blue dots) better than the other methods. Furthermore, cn.MOPS has
lower FDRs for different calling thresholds, as can be seen from the lower variance of the blue
dots at the bottom. cn.MOPS’s superior performance at CNV calling across samples is the reason
that cn.MOPS has outperformed the other methods in previous experiments.

In Fig. S6 the CNV call is based on variances. For cn.MOPS the variance of the individual
I/NI call is used. For both the z-score and the log-ratio based CNV calls their variances are
used. Also for the variance-based criterion cn.MOPS separates segments within true CNV regions
better from non-CNV segments than the other methods.

Finally, in Fig. S7 the CNV call is based on maximal values across samples. For cn.MOPS
the maximum of the individual I/NI call is used. For both the z-score and the log-ratio based
CNV calls their maxima are used. Also for this maximum criterion cn.MOPS separates segments
within true CNV regions better from non-CNV segments than the other methods.

The superiority of the I/NI call over z-score or log-ratio based methods can not only be de-
duced from the visualizations in Fig. S5, Fig. S6, and Fig. S7 but also from the area under the
precision-recall curve (PR AUC). We compared the performance of the mean, variance and maxi-
mum of the I/NI call, z-scores and log-ratios. Table S10 reports the area under the precision-recall
curve of different methods, where the task was to classify a genomic segment into segments within
CNV regions or non-CNV segments. The classification thresholds were the mean, variance and
maximum of the individual I/NI call, z-scores and log-ratios. Note that there was no segmentation
algorithm applied.

Table S10: Performance of different approaches for CNV calling. The task was to classify ge-
nomic segments into segments within CNV regions and non-CNV segments. The mean, variance
and maximum of the individual I/NI call, z-scores and log-ratios served as classification criteria
and allowed to compute the area under the precision-recall curve (PR AUC). cn.MOPS outper-
formed the other methods in all three CNV calling approaches.

PR AUC
mean variance maximum

individual I/NI call 0.18 0.21 0.21
z-Score 0.02 0.03 0.03
log-ratio 0.14 0.14 0.13
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Figure S5: Whole genome CNV calling plots that visualize the performance of cn.MOPS, MOF-
DOC, EWT, JointSLM , CNV-Seq, and FREEC in rediscovering known CNVs of HapMap
individuals. The plots visualize CNV calling values (vertical axis) along chromosomes 1–22 of
the human genome without segmentation. The first panel shows the I/NI call of cn.MOPS. The
second panel provides mean z-scores used by MOFDOC, EWT, JointSLM, while the last panel
depicts mean log-ratios used by CNV-Seq and FREEC. We called the largest 0.5% of the CNV
calling values (blue dots) and scaled them to maximum one. Darker shades of blue indicate a
high density of calling values. True CNV regions are displayed as light red bars, and the corre-
sponding CNV calls are indicated by red dots. Segments without calling values (white segments)
correspond to assembly gaps in the reference genome. A perfect calling method would call all seg-
ments in true CNV regions (red dots) at maximum 1 and would call others (blue dots) at minimum
0. Arrows indicate segments in true CNV regions that are called by one method group, but not
by the other method groups. cn.MOPS separates segments in true CNV regions from non-CNV
segments better than the other methods, as indicated by the lower variance of I/NI values (see blue
area at the bottom of the first panel). The better separation by cn.MOPS results in lower FDRs
than those of other methods, regardless of the calling thresholds.

S3.6 High Coverage Real World Data Set

This subsection supplies additional information on the data used in the experiments described in
Section “High Coverage Real World Data Set” of the main manuscript. The sequencing files were
downloaded on October 25, 2011, from the 1000 Genomes Project Web page.3 Table S11 provides
information on filenames, mapped and used reads of the data.

3http://www.1000genomes.org

http://www.1000genomes.org
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Figure S6: Whole genome CNV calling plots that visualize the performance of cn.MOPS, MOF-
DOC, EWT, JointSLM , CNV-Seq, and FREEC in rediscovering known CNVs of HapMap
individuals. The plots visualize CNV calling values (vertical axis) along chromosomes 1–22 of
the human genome without segmentation. The first panel shows the variance of the signed I/NI
call of cn.MOPS. The second panel provides variance of the z-scores used by MOFDOC, EWT,
JointSLM, while the last panel depicts variance of the log-ratios used by CNV-Seq and FREEC.
We called the largest 0.5% of the CNV calling values (blue dots) and scaled them to maximum one.
Darker shades of blue indicate a high density of calling values. True CNV regions are displayed
as light red bars, and the corresponding CNV calls are indicated by red dots. Segments without
calling values (white segments) correspond to assembly gaps in the reference genome. A perfect
calling method would call all segments in true CNV regions (red dots) at maximum 1 and would
call others (blue dots) at minimum 0. Arrows indicate segments in true CNV regions that are called
by one method group, but not by the other method groups. cn.MOPS separates segments in true
CNV regions from non-CNV segments better than the other methods, as indicated by the lower
variance of I/NI values (see blue area at the bottom of the first panel). The better separation by
cn.MOPS results in lower FDRs than those of other methods, regardless of the calling thresholds.

Table S11: Information on the high coverage data set from the 1000 Genomes Project. Column
“individual” provides the individual’s identifier, “mapped reads” the number of mapped reads,
“used reads” the number of reads that were used, and “filename” the reads’ file name. The numbers
in the second and third column differ because the sequence library files contain both single and
paired end reads.

individual mapped reads used reads filename
NA12878 258,212,016 178,971,764 NA12878.chrom1.ILLUMINA.bwa.CEU.high_coverage.20100311.bam
NA12891 190,462,551 120,566,718 NA12891.chrom1.ILLUMINA.bwa.CEU.high_coverage.20100517.bam
NA12892 165,437,943 86,444,082 NA12892.chrom1.ILLUMINA.bwa.CEU.high_coverage.20100517.bam
NA19238 127,491,937 72,871,012 NA19238.chrom1.ILLUMINA.bwa.YRI.high_coverage.20100311.bam
NA19239 173,589,216 123,354,710 NA19239.chrom1.ILLUMINA.bwa.YRI.high_coverage.20100311.bam
NA19240 216,431,838 173,422,058 NA19240.chrom1.ILLUMINA.bwa.YRI.high_coverage.20100311.bam
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Figure S7: Whole genome CNV calling plots that visualize the performance of cn.MOPS, MOF-
DOC, EWT, JointSLM , CNV-Seq, and FREEC in rediscovering known CNVs of HapMap
individuals. The plots visualize CNV calling values (vertical axis) along chromosomes 1–22 of
the human genome without segmentation. The first panel shows the maximum of the absolute
value of the signed I/NI call of cn.MOPS. The second panel provides maximum absolute value
of the z-scores used by MOFDOC, EWT, JointSLM, while the last panel depicts maximum of
the absolute value of the log-ratios used by CNV-Seq and FREEC. We called the largest 0.5%
of the CNV calling values (blue dots) and scaled them to maximum one. Darker shades of blue
indicate a high density of calling values. True CNV regions are displayed as light red bars, and
the corresponding CNV calls are indicated by red dots. Segments without calling values (white
segments) correspond to assembly gaps in the reference genome. A perfect calling method would
call all segments in true CNV regions (red dots) at maximum 1 and would call others (blue dots) at
minimum 0. Arrows indicate segments in true CNV regions that are called by one method group,
but not by the other method groups. The discrete nature of the cn.MOPS model which is caused
by calls of copy number 0, 1, 3 or larger is revealed in this plot. cn.MOPS separates segments
in true CNV regions from non-CNV segments better than the other methods, as indicated by the
lower variance of I/NI values (see blue area at the bottom of the first panel). The better separa-
tion by cn.MOPS results in lower FDRs than those of other methods, regardless of the calling
thresholds.

S3.7 Medium Coverage Data Set

In an additional experiment, we investigated the performance of cn.MOPS for medium coverage
data. The data set consists of 58 samples of the 1000 Genomes Project that were sequenced at
coverages ranging from 2.5X to 8X. Table S13 provides information on filenames, mapped and
used reads of the data.

Fixing a segment length of 2,500bp resulted in 25,211 segments on chromosome 20. The
International HapMap 3 Consortium identified two CNVs of type “loss” and 21 of type “gain” after
filtering for CNVs longer than 10kbp The International HapMap 3 Consortium (2010). This 10kbp
range is the limit for accurate detection for the given coverage according to Xie and Tammi Xie
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and Tammi (2009). The final data set consisted of 1,462,238 evaluation segments of which 18 are
losses and 294 are gains.

We decided to analyze gains only, as there were too few losses for a reliable evaluation. Ta-
ble S12 presents the results. The recall is low since a lot of newly detected CNVs are ranked
higher than the confirmed CNVs. Note, however, that the newly detected CNVs highly overlap
between CNVSeq, FREEC and cn.MOPS. CNV-Seq and cn.MOPS performed best for gains.
The resulting copy number table is available as a separate file (Supplementary Table S17).

Table S12: Performance of the compared copy number detection methods on the medium coverage
data (gains only). “PR AUC” gives the area under the precision-recall curve. “Recall” reports the
recall at a precision of 0.95. cn.MOPS and CNV-Seq perform equally well in terms of PR AUC,
while cn.MOPS performs best in terms of recall. The performance, however, is generally low.

PR AUC Recall
cn.MOPS 0.48 0.07
MOFDOC 0.00 0.00
EWT 0.00 0.00
JointSLM 0.00 0.00
CNV-Seq 0.48 0.03
FREEC 0.41 0.00

S3.8 Influence of the Hyperparameter ε on cn.MOPS Results

Using two data sets, we investigated the influence of the choice of ε on the performance of
cn.MOPS.

S3.8.1 Influence of the Hyperparameter ε tested on Simulated Data

The first data set again consists of the simulated data described in Section “Simulated Data with
Constructed CNVs” of the main manuscript. Noisy reads for copy number 0 were generated via a
Poisson distribution with parameter ε = 0.05. Table S14 shows results obtained by cn.MOPS for
different choices of ε. Different ε values only lead to minor changes of the performance, thus the
cn.MOPS results are robust against the choice of the hyperparameter ε.
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Table S14: Performance of cn.MOPS on simulated data with different choices of the hyperpa-
rameter ε. Different ε values only lead to minor changes of the performance, thus the cn.MOPS
results are robust against the choice of the hyperparameter ε.

Gains Losses
ε PR AUC Recall PR AUC Recall
0.00001 0.94 0.89 0.96 0.96
0.001 0.94 0.89 0.98 0.97
0.01 0.94 0.89 0.97 0.97
0.02 0.94 0.89 0.97 0.97
0.05 0.94 0.88 0.96 0.96
0.1 0.93 0.88 0.96 0.95
0.2 0.93 0.87 0.96 0.95

S3.8.2 Influence of the Hyperparameter ε tested on Real Sequencing Data with Implanted
CNVs

As a second benchmark, we use the data set described in section “Real Sequencing Data with
Implanted CNVs from the X Chromosome” of the main manuscript. Table S15 shows results
obtained by cn.MOPS for different choices of ε. In this case, the performance does not even
depend on ε which can be explained easily by the fact that there are no copy number 0 segments
in this data set. So we again confirmed that the results of cn.MOPS are robust against the choice
of the hyperparameter ε.

Table S15: Performance of cn.MOPS on real world benchmarking data with different choices of
the hyperparameter ε. In this case, ε does not influence the results of cn.MOPS at all.

Gains Losses
ε PR AUC Recall PR AUC Recall
0.001 0.70 0.65 0.89 0.88
0.01 0.70 0.65 0.89 0.88
0.02 0.70 0.65 0.89 0.88
0.05 0.70 0.65 0.89 0.88
0.1 0.70 0.65 0.89 0.88
0.2 0.70 0.65 0.89 0.88

S3.9 Number of Samples vs. Performance for cn.MOPS

In order to study the influence of the number of samples on the performance of cn.MOPS, we
again generated simulated data as described in the section S3.3, but with varying numbers of
samples. Table S16 shows the performance of cn.MOPS for different numbers of samples. At
least 6 samples seem to be necessary to ensure sufficient performance for detecting gains, while
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losses are also detected with fewer samples. For sample numbers larger than 15, the performance
saturates.
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Table S13: Overview of the medium coverage data set. Col-
umn “individual” gives the identifier (the file names are
[identifier].chrom20.ILLUMINA.bwa.CEU.low_coverage.20101123.bam), “mapped
reads” the number of mapped reads contained in the BAM file, and “used reads” the number of
reads that were used. Mapped and used reads differ because the sequence library files contained
both single and paired end reads.

individual mapped reads used reads individual mapped reads used reads
NA06984 6,964,852 5,684,482 NA11993 5,981,863 5,162,066
NA06986 8,039,090 6,883,008 NA11994 4,098,534 3,782,234
NA06989 4,091,782 3,268,000 NA11995 3,757,432 3,416,176
NA06994 4,874,326 4,520,672 NA12003 3,474,069 3,180,788
NA07000 8,645,550 8,086,286 NA12004 5,908,548 4,956,778
NA07037 4,139,953 3,385,920 NA12006 6,922,378 5,092,864
NA07048 10,981,715 8,253,422 NA12043 6,060,516 5,164,746
NA07051 4,964,792 4,337,588 NA12044 5,395,490 4,863,338
NA07056 6,155,442 5,194,792 NA12045 7,799,642 6,532,574
NA07346 6,100,820 4,857,210 NA12046 4,193,666 4,042,864
NA07347 7,261,061 6,804,926 NA12058 3,392,356 3,269,980
NA07357 10,972,910 10,244,264 NA1214 4,214,321 3,899,976
NA10847 5,766,593 4,709,486 NA12154 6,558,385 5,993,336
NA10851 6,302,624 4,650,842 NA12155 11,425,911 10,337,646
NA11829 6,942,857 5,142,718 NA12249 5,607,636 4,764,802
NA11830 4,812,141 4,137,246 NA12272 5,277,117 4,954,532
NA11831 5,337,376 4,737,914 NA12273 4,904,914 4,168,754
NA11843 4,695,305 4,098,448 NA12275 5,248,711 3,861,836
NA11892 4,711,946 4,240,890 NA12282 5,843,315 4,318,018
NA11893 6,593,431 5,118,210 NA12283 6,361,286 5,411,708
NA11894 6,341,119 3,997,266 NA12286 3,616,759 3,314,524
NA11918 6,346,989 5,514,434 NA12287 5,880,103 4,890,098
NA11919 8,961,941 8,327,522 NA12340 4,029,639 3,543,810
NA11920 4,243,883 3,905,198 NA12341 6,851,344 3,569,532
NA11930 6,415,281 5,654,630 NA12342 7,817,761 4,174,086
NA11931 5,243,455 4,030,984 NA12347 5,184,621 4,591,614
NA11932 4,303,807 3,959,018 NA12348 6,175,829 5,053,302
NA11933 11,876,139 7,682,740 NA12383 5,182,815 4,307,720
NA11992 4,517,788 4,141,492 NA12399 9,099,699 5,821,360
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Table S16: Number of samples vs. performance for cn.MOPS. At least 6 samples seem to be
necessary to ensure sufficient performance for detecting gains, while losses are also detected with
fewer samples. For sample numbers larger than 15, the performance saturates.

Gains Losses
samples PR AUC Recall PR AUC Recall
3 0.38 0.08 0.69 0.53
4 0.59 0.21 0.78 0.66
6 0.74 0.35 0.87 0.76
8 0.85 0.48 0.92 0.84
15 0.90 0.72 0.95 0.94
25 0.93 0.84 0.96 0.96
40 0.94 0.88 0.96 0.96
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S3.10 Exemplary DNA Locations With CNV Calls

In this subsection, we exemplify CNV calls of different methods. Each compared method sup-
plies a CNV call value (signed I/NI call, z-scores, or log-ratios) at each evaluation segment. We
visualize these CNV calls for different methods at exemplary DNA locations.

S3.10.1 CNV Calls at Exemplary DNA Locations With CNVs

First we visualize CNV calls at exemplary DNA locations with CNVs that were previously found
and confirmed by the International HapMap 3 Consortium The International HapMap 3 Consor-
tium (2010). Figures S8, S9, and S10 show CNV calls along with GC-corrected read counts. Each
line represents the read counts or CNV calls of a sample across consecutive genomic segments,
where green lines indicate losses and red lines indicate gains. For cn.MOPS, the mean signed
I/NI call per segment is plotted; for MOFDOC, the return values of the segmentation algorithm
are plotted; for EWT, the scaled and signed (positive for gains, negative for losses) log-p-values
(transformed z-scores) are plotted; for FREEC and CNV-Seq, the log-ratios per segment are
plotted; for JointSLM, the median normalized read counts per segment are plotted. Note that
even if methods use the same approach (z-scores or log-ratios), the calling values can be different,
because of the different segmentation algorithms they apply.

Figure S8 shows a CNV region that is detected by all methods. Figure S9 shows a CNV
region in which only one sample has a deletion that is detected by all methods except JointSLM.
The reason for this is that JointSLM only detects variations that appear consistently in the majority
of samples. Figure S10 shows a CNV region only detected by cn.MOPS, MOFDOC, and EWT.
Note that MOFDOC and EWT would have a high false discovery rate if the detection threshold
was chosen low enough to detect the gain. To conclude, the figures show that cn.MOPS produces
the most robust and reliable CNV calls.

S3.10.2 CNV Calls at Exemplary DNA Locations Without CNVs

Next, we visualize CNV calls at exemplary DNA locations in which no CNVs have been reported.
Figures S11 and S12 again show read counts and CNV calls as in previous figures (see description
above). In contrast to previous figures, line colors now represent individual samples.

Figure S11 shows that the class (a) methods MOFDOC, EWT, and JointSLM falsely detect
a CNV at this genomic region. The detection is caused by technical or genomic biases in the
center of the region shown, in which read counts are consistently larger. FREEC and CNV-Seq
are based on ratios, where the bias is removed by normalization using a reference read count.
Therefore, they correctly do not detect a CNV. cn.MOPS does not detect a CNV either at this
region because the variation across the samples is too low.

The class (b) methods FREEC and CNV-Seq are prone to false detections in regions of low
coverage, which is exemplified by Figure S12. cn.MOPS avoids the low coverage problem by
fitting a Poisson distribution across samples.
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Figure S8: Copy number call plot for CNV region HM3_CNP_463. Top middle: read counts
of each sample around the CNV region (vertical lines); middle left: cn.MOPS’ mean signed
I/NI call.; middle: MOFDOC’s smoothed z-scores; middle right: EWT’s scaled and signed log-
p-values (transformed z-scores); lower left: JointSLM’s median normalized read count; lower
middle: CNV-Seq’s median log-ratio; lower right: FREEC’s median log-ratio. Each line rep-
resents read counts or CNV calls of a sample across consecutive genomic segments; green lines
indicate a loss and red lines a gain. All methods detected this loss region.
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Figure S9: Copy number call plot for CNV region HM3_CNP_494. Top middle: read counts
of each sample around the CNV region (vertical lines); middle left: cn.MOPS’ mean signed
I/NI call.; middle: MOFDOC’s smoothed z-scores; middle right: EWT’s scaled and signed log-
p-values (transformed z-scores); lower left: JointSLM’s median normalized read count; lower
middle: CNV-Seq’s median log-ratio; lower right: FREEC’s median log-ratio. Each line rep-
resents read counts or CNV calls of a sample across consecutive genomic segments; green lines
indicate a loss and red lines a gain. JointSLM did not detect the CNV segment, as it is only able
to detect only variations that appear consistently in the majority of samples.
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Figure S10: Copy number call plot for CNV region HM3_CNP_618. Top middle: read counts
of each sample around the CNV region (vertical lines); middle left: cn.MOPS’ mean signed
I/NI call.; middle: MOFDOC’s smoothed z-scores; middle right: EWT’s scaled and signed log-
p-values (transformed z-scores); lower left: JointSLM’s median normalized read count; lower
middle: CNV-Seq’s median log-ratio; lower right: FREEC’s median log-ratio. Each line rep-
resents read counts or CNV calls of a sample across consecutive genomic segments; green lines
indicate a loss and red lines a gain. Only cn.MOPS and maybe MOFDOC detect this gain in one
sample. Note that MOFDOC would have a high false discovery rate if the detection threshold was
chosen low enough to detect the gain.
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Figure S11: Copy number call plot for the region 56.81Mbp–58.01Mbp on chromosome 6 of the
human reference genome 18 (build 36). Different colors represent different samples. Top mid-
dle: read counts of each sample around the CNV region (vertical lines); middle left: cn.MOPS’
mean signed I/NI call.; middle: MOFDOC’s smoothed z-scores; middle right: EWT’s scaled
and signed log-p-values (transformed z-scores); lower left: JointSLM’s median normalized read
count; lower middle: CNV-Seq’s median log-ratio; lower right: FREEC’s median log-ratio. The
class (a) methods MOFDOC, EWT, and JointSLM falsely detect a CNV in this genomic region.
cn.MOPS and the class (b) methods FREEC and CNV-Seq do not detect a CNV in this region.
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Figure S12: Copy number call plot for the region 28.91Mbp–9.95Mbp on chromosome 6 of the
human reference genome 18 (build 36). Different colors represent different samples. Top middle:
read counts of each sample around the CNV region (vertical lines); middle left: cn.MOPS’ mean
signed I/NI call.; middle: MOFDOC’s smoothed z-scores; middle right: EWT’s scaled and signed
log-p-values (transformed z-scores); lower left: JointSLM’s median normalized read count; lower
middle: CNV-Seq’s median log-ratio; lower right: FREEC’s median log-ratio. The class (b)
methods FREEC and CNV-Seq falsely detect CNVs in this CNV-free region. cn.MOPS avoids
the low coverage problem by fitting a Poisson distribution across samples.
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S4 Additional Information

This section is divided into two subsections. The first subsection investigates the read count dis-
tribution along a chromosome. The second subsection gives information on how read counts are
summarized in a data structure for further processing by CNV detection methods.

S4.1 Distribution of Read Counts Along the Chromosome

The distribution of read counts of equally sized segments along the chromosome is not Poisson
distributed even upon GC correction (Dohm et al. 2008). We confirmed the result in (Dohm et al.
2008).

We found that for segments with a length of 10kbp, 25kbp and 50kbp, the GC corrected read
counts have a variance-to-mean ratio larger than 1. For example, on data from the Sanger sequenc-
ing center on HapMap phase 1 individuals for segments of 25kbp the variance-to-mean ratio of
GC corrected reads was 2.11, after removing sequencing gaps and outliers along the chromosome
(read counts larger than two times the median read count). Note, that outliers would even increase
the ratio. This ratio larger than 1 contradicts the assumption of a Poisson distribution which would
lead to a ratio of 1. Actually, the read counts approximately follow a Gaussian distribution.

The histogram in Fig. S13 for non-uniquely read mapping (see Subsection S3.4.1) shows that
the GC corrected read counts are not Poisson distributed. Thus, effects other than the GC bias lead
to different average read counts at different genomic segments. The biases cannot be avoided by
different mapping strategies like mapping only unique positions (see Subsection S3.4.1) as shown
in Fig. S14. Compared to the histogram in Fig. S13, we observe a shift of the density toward lower
read counts (left) in the histogram in Fig. S14, because some segments systematically loose reads
due to ambiguous mapping.

S4.2 Data Structure of Read Counts

Next generation sequencing (NGS) data for copy number detection or estimation is in most cases
represented as a read count matrix Z ∈ NL×N , where the genome is partitioned into L segments
of not necessarily equal length for N samples. Therefore zlk ∈ N represents the number of reads
of sample k that are mapped to the l-th segment. Note, that in previous sections we considered
only one segment l with read counts xk = zlk. Copy number detection methods applied to such a
read count matrix Z are often called “depth of coverage”-based methods. zk is the k-th column
of Z, which is the read count vector of sample k. zl is l-th row of the read count matrix, which
is the vector containing read counts for the l-th genomic segment for all samples k with 1 ≤
k ≤ N . Note, that here we see a substantial novel approach of the cn.MOPS model which uses
zl = (zl1, . . . , zlk, . . . , zlN ) = (x1, . . . , xk, . . . , xN ) for modeling across samples, while other
methods use zk to find variations along the chromosome. Fig. S1 depicts entries of the matrix Z
by connected by lines and shows modeling along the chromosome and modeling across samples
(vertical green boxes).
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Figure S13: Histogram for non-uniquely mapped reads of GC corrected read counts from 18
HapMap samples sequenced at the Sanger sequencing center (see Subsection S3.5). Reads are
mapped to a random position if more than one best matching position is available.
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Figure S14: Histogram for uniquely mapped reads (see Subsection S3.4.1) of the GC corrected
read counts from 18 HapMap samples sequenced at the Sanger sequencing center (see Subsec-
tion S3.5). Reads with multiple maps to the genome are not regarded. Compared to the histogram
in Fig. S13, we observe a shift of the density toward lower read counts (left) because some seg-
ments systematically lose reads due to ambiguous mapping.
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