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1 Introduction

The fabia package is part of the BioConductor] project. The package allows to extract
biclusters from data sets based on a generative model.

Especially, it has been designed for microarray data sets, but can be used for other
data sets as well.

2 Getting Started: FABIA

First load the fabia package.
R> library(fabia) ##load the fabia package

fabia is stand alone and does not require other packages.

"http://www.bioconductor.org/


http://www.bioconductor.org/

2.1

Quick start

Assume your data is in the file datafile.cvs in a matrix like format then you can try
out the following steps to extract biclusters.

1.

Create a working directory, e.g. c:/fabia/data in windows or /home/myself/fabia/data
in Unix. Move the data file datafile.cvs to that directory, e.g. under Unix cp
datafile.cvs /home/myself/fabia/data/ or drag the file datafile.cvs into

that directory under windows.

. Start R and change to the working directory. Under windows

R> setwd("c:/fabia/data")

and under Unix

R> setwd("/home/myself/fabia/data")

You can also start R in that directory under Unix.
Load the library.

R> library(fabia) ##load the fabia package

. Read the data file “datafile.cvs”

R> X <- read.table("datafile.cvs",header = TRUE, sep = "\t")
Normalize the data

R> X <- X- rowMeans (X)

R> XX <- (1/ncol(X))*tcrossprod (X)

R> dXX <- 1/sqrt(diag(XX)+0.001*as.vector(rep(1,nrow(X))))
R> X <- dXX*X

Select the model based on the data: 4 biclusters; sparseness 0.8; 200 cycles
R> res <- fabias(X,200,0.6,5)

Extract biclusters and plot results

R> rr <- extract_plot(X,res$L,res$z,ti="FABIAS")

Show bicluster 1

R> rr$bic[1,] #$

Show bicluster 2



R> rr$bic[2,] #$
10. Show bicluster 3

R> rr$bic[3,] #$
11. Show bicluster 4

R> rr$bic[4,] #$

The biclusters generated by kmeans for visualization pueposes are in list element
“biclust”. For example, the first bicluster can be obtained by

R> rr$biclust[1,] #$

The functions fabia and fabias were written in C for efficiency and numerical
precision.

2.2 Test on Toy Data Set

In the following we describe how you can test the package fabia on a toy data set that
is generated on-line.

1. generate bicluster data, where biclusters are in block format in order to obtain a
better visualization of the results. 1000 observations, 100 samples, 10 biclusters.

R> dat <- make_fabi_data_blocks(n = 1000,1= 100,p = 10,f1 = 5,
f2 = 5,0f1 = 5,0f2 = 10,sd_noise = 3.0,sd_z_noise = 0.2,
mean_z = 2.0,sd_z = 1.0,sd_1_noise = 0.2,mean_1 = 3.0,sd_1 = 1.0)

2. store the generated data in variables

R> X <- dat[[1]]
R> Y <- dat[[2]]

3. normalize the data

R> X <- X - rowMeans (X)
R> X <- X - rowMeans (X)
R> XX <- tcrossprod(X)

R> dXX <- 1/sqrt(diag(XX))
R> X <- dXX*X

4. perform fabia (sparseness by Laplace prior) to extract biclusters; 200 cycles,
sparseness 0.1 (Laplace), 13 biclusters.

R> resToyl <- fabia(X,200,0.3,1.0,1.0,13)
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5. extract and plot results
R> rToyl <- extract_plot(X,resToyl$L,resToyl1$Z,"FABIA",Y=Y)

6. perform fabias (sparseness by projection) to extract biclusters; 200 cycles, sparse-
ness 0.8 (projection), 13 biclusters.

R> resToy2 <- fabias(X,200,0.8,1.0,13)
7. extract and plot results
R> rToy2 <- extract_plot(X,resToy2$L,resToy2$Z, "FABIAS",Y=Y)

8. perform fabiap (Laplace prior then projection) to extract biclusters; 200 cycles,
sparseness 0.1 (Laplace), 13 biclusters, 0.7 sparseness loading (projection), 0.7
sparseness factors (projection).

R> resToy3 <- fabiap(X,200,0.3,1.0,1.0,13,0.7,0.7)
9. extract and plot results
R> rToy3 <- extract_plot(X,resToy3$L,resToy3$Z,"FABIAP",Y=Y)

10. perform mfsc (sparse matrix factorization), 13 biclusters, 0.7 sparseness loading
(projection), 0.7 sparseness factors (projection).

R> resToy4 <- mfsc(X,13,sL=0.7,sZ=0.7)
11. extract and plot results

R> rToy4 <- extract_plot(X,resToy4$L,resToy4$Z, " "MFSC",Y=Y)

2.3 Demos

The package fabia has some demos which can be demonstrated by fabiaDemo.
1. demol: toy data.
R> fabiaDemo ()

Choose “1” and you get above toy data demonstration.
2. demo2: Microarray data set of [van’t Veer et al.| (2002) on breast cancer.
R> fabiaDemo ()

Choose “2” to extract subclasses in the data set of van’t Veer as biclusters.



3. demo3: Microarray data set of |Su et al.| (2002) on different mammalian.
R> fabiaDemo ()

Choose “3” to check whether the different mouse and human tissue types can be
extracted.

4. demo4: Microarray data set of [Rosenwald et al. (2002)) diffuse large-B-cell lym-
phoma. Hoshida et al.| (2007) divided the data set into three classes
e OxPhos: oxidative phosphorylation
e BCR: B-cell response
e HR: host response

R> fabiaDemo ()

Choose “4” to check whether the different classes can be extracted.

3 Some Details

3.1 C implementation of FABIA

The functions fabia and fabias are implemented in C. It turned out that these imple-
mentations are not only faster but more precise. Especially, we use an efficient Cholesky
decomposition to compute the inverse of positive definite matrices. Some R functions for
computing the inverse like solve were inferior to that implementation.

The interface between R and C is realized by the package Repp Samperi (2006)).

3.2 Extraction of Biclusters

There is no unique method to extract the biclusters. We used thresholds to determine
which observations and which samples participate at a bicluster. However, these thresh-
olds are quite arbitrary.

The sorting and extraction by kmeans is done for visualization but it may fail if
observations and samples are in more than one bicluster. Clustering methods that assign
a data point to only one cluster are not appropriate in such cases.
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Figure 1: Factor analysis model with two factors and four observations.

4 The Underlying Methods

4.1 The Generative Model

We use a factor analysis model with p factors: In contrast to “principal component
analysis” (PCA), factor analysis has the advantage that it is a generative model that
accounts for the independent noise at the observations. Fig.[l|depicts the factor analysis
model with two factors and four observations.

p
:B:ZAZ-ZZ-+€:AZ+€
i=1

e x: observations.

e A: loading matrix.

e A;: loading vector for factor i.
e z: vector of factors.

e 2z;: value of factor 7.

e ¢: additive noise on observations.

In the standard factor analysis model we have

z ~ N(0,I)



and

e ~ N(0,%) .

The observations & and € are from R", the factors z € RP, the factor loading matriz
A € R"*P_ and the noise covariance matrix W is a diagonal matrix from R™*".

The diagonal form of ¥ comes from the assumption that the measurements are taken
independently, thus the noise at the components is mutually independent.

Therefore, the observations components of & are mutually independent if the factors
are known (only the noise is the random component).

We assume that ¥ and z are independent that means that the noise is independent
of the signal strength.

The free parameters of the model are A and W. Exactly these free parameters explain
the variance in the observations @, where A explains the dependent part whereas ¥
explains the independent part of the variance.

The free parameters can be estimated by maximum likelihood |Joreskog| (1967) based
on the Expectation-Maximization (EM) optimization technique Dempster et al.| (1977)).

If a prior probability (a Gaussian) is used for the loading matrix then maximum a
posteriori estimation of the parameters based on an Expectation-Maximization (EM) op-
timization is possible [Hochreiter et al.| (2006); Talloen et al. (2007); Clevert and Hochre-
iter| (2007)).

4.2 Matrix Factorization and Biclusters

Using all samples ;, 1 < j < [ we can write the model for the data in matrix form as:

X =AZ+ 7

This is matriz factorization with additive noise.
Here X and Y are from R™ ! A from R™*?, and Z from RP*!
Essentially the model is the sum of outer products of vectors:

p
=1

Here the A; are from R” and the Z; from R', where Z; is the ith column vector of
matrix Z7 or, equivalently, (Zi)T is the ith row vector of matrix Z.

More exactly would be to write (ZiT)T instead of (ZZ-)T.

Note, that we wrote Z; instead of z; for matrix factorization however for the gener-
ative model we use z; and z to generate sample x; or x. If A; is sparse (having many
zero components) and if Z; is sparse, then component i can be viewed as a bicluster.
Observations that are nonzero and samples that are nonzero are members of bicluster 7.

If the members of the bicluster are consecutively ordered in the observations and
consecutively ordered in the samples (bicluster members are one after the other in the



observations and are one after the other in the samples) then A, (Zi)T is a matrix with
a block of nonzero entries and zero otherwise.
Model assumptions for biclustering:

e sparseness of the factors through a prior on the factors by an component-wise
independent Laplace distribution:

pz) = (%)H e

e sparseness of the loadings

FABIA: Loading prior is independent Laplace

OR
FABIAS: Loading prior has finite support within a l;-norm constraint

p(A;) = ¢ for ||AiL < o
p(AZ) =0 for HAz”l >

Instead of the [;-norm, a sparseness measurement is used which relates the /;-norm
to the [y-norm:

_ \/_ — ZZ:1 ’Azk’ / Zzzl Az?k
vn o — 1

The sparseness is constraint to a certain value for each 7 and A;.

sparseness(A;)

e (aussian independent noise

o = (i) () =

Preprocessing of the data:

PN

Bl

( 1 )l 1 g,
= e
v2rn) /|¥|

e data should be normalized to zero mean because the model requires that

E(x) = E(Az +€) = AE(z) + E(e) = 0



we recommend to normalize the components to variance one in order to make the
signal and noise comparable across components.

The model covariance 1is:

E(x ') = AE(zz")A"T + AE(2)E(e’) + E(2)E(e)AT + E(e€’) =
AAT + diag(o}) = AAT + @

Normalizing the data to variance one for each component gives
T Ak 2 \NT Ak _
Ui + (A") A" =0 + (AF) A" =1

Here the length of the row vector A* is p in contrast to the column vectors A;
which length is n.

Estimated values:

Estimated parameters through maximizing the posterior of the parameters: A and
2
o = Wi

Estimated latent variables, the factors, through posterior on the latent variables:

Z

Estimated noise free data through the parameter posterior and latent variable
posterior: A Z

Estimated biclusters through model assumption: A; (ZZ-)T. Here the large values
indicate the bicluster (in the ideal case the nonzero values would indicate the
bicluster).

The independence of the hidden variables in the second moments can be achieved

through variable transformation. Note, that this is no restriction because a factor anal-
ysis model cannot be uniquely identified with respect to orthogonal transformations,
permutations, and scaling (including change of sign). For one example we have

Az =AAT Az,

where A2 is an invertible matrix.

It

E(zzT) = A

with a symmetric positive definite matrix A then

z ~NO,AAA" + @) .

Whitening leads now to

A = A A2
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Figure 2: Left: the mode of a Laplace (red, solid) vs. a Gaussian (dashed, blue) dis-
tribution. Right: The tails of a Laplace (red, solid) vs. a Gaussian (dashed, blue)
distribution

and
which gives

where

Az = AAY?2 A 125 — A 2.

4.3 Laplace Prior on the Hidden Factors

Laplace prior enforces sparse codes on the factors.

Sparse coding is the representation of items by the strong activation of a relatively
small set of hidden factors while the factors are almost constant if not activated.

A prominent example for sparse coding are the neurons in the human brain

In this application the model assumption is that only few sample show specific pat-
terns in the observations.

Laplace prior is suited for modeling strong activation for few samples while being
otherwise almost constant. Fig. [2] left shows the mode compared to a Gaussian which
shows that the Laplace factors vary less about the mode and the likelihood of the mode
is much larger than neighboring values. Fig.[2right shows the tails where it can be seen
that Laplace has higher likelihood for large values than Gaussian.
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4.4 Model Selection
The likelihood
p@|A) = [p(e]2A0) p() dz

is analytically intractable for Laplacian prior p (z) (for Gaussian priors the integral can
be analytically solved).

That means the likelihood, the objective, cannot be given explicitly and EM or
gradient-based methods do not work.

The model selection is performed by a variational approach according to |Girolami
(2001) and [Palmer et al.| (2006]).

The variational likelihood is equipped by and additional parameter &, where the
maximum with respect to this parameter is the true likelihood:

argénaxzﬁaﬂﬁ) = logp(z) .

Using this lower bound on the likelihood we can derive another lower bound on the

likelihood:
log p(x) > log p(z|€) /Q log p(z|§) dz
Q(z) Q(2)
/Q log PP /Q log (za:|£)dz>
/ Q) 1ogp<z,w | s) dz

where we used

p(z.z| &)
MEl = eTag)

We now set for each sample x; like for the standard EM algorithm
Qi(zj) — p(zj | a'fj,AOld,\I’Old) )

Further we have
p(z, x| &) = plx|z)p(z]§).

The variational approach gives

e = (35) I -
|

arg max p(z

g ma (%)pf[qs(@)/v(zi, &) .



where .
o) = exp (- 5 1) VIR

Maximizing the lower bound on the likelihood with respect to & gives

&j = \//p(zi | x;) 2 dz;

For computing fizj we can use

p(z | 2, A,¥) > p(z | x, AP, M) =
plx | z,A %) p(z | &)
(x| 2,A, %) p(z | &M)dz

where we know both the variational p(z | £€°'4) and the Gaussian
plx | 2z, A,¥) = N(Az, D) .

Using
E = diag(§)

the variational prior is the multimodal Gaussian:

(%)p SE) N (z, T) .

The posterior of z is now basically a product of Gaussians for which we can compute
the conditional expectations analytically. The conditional mean is

E(z | ;) = ((Aold)T (\I,old)_l ACH o (E?ld)—l)_l (Aold)T (\I,old)_l x,
and the conditional co-variance is

J

~ -l
E(z 2z | =) = <(A°1d)T (o) PACd 4 (B 1) +E(z | ) E(z; | x;)" .

The update for & is now

¢ = diag <\/E (2 27 | a;j)> .

A and ¥ updates:

13



1. Rectified Gauss prior on loadings. The updates of A and ¥ are as in the Expectation-
Maximization (EM) optimization in Hochreiter et al.  (2006)); Talloen et al.| (2007);
Clevert and Hochreiter| (2007) with above E (z; | @;) and E (2;2] | x;).

!
auss 1 T . new KA
AC = (7;:1:] E(z; | =;)° + diag(¥"") ones(p)” m)

. -1
1 - 5l
(ZZE(zj zjr | x;) + diag(ones(p)) TF :

=1
AGauss for AGauss > 0

AneW — s
0 for A Gauss <0
1 o Iy
: new : new T
diag (P"V) = d1ag<7;w] — A 7; i | oxy) :vj> +
1 new new new new
Sy diog (A7 (un diag (¥7°%) ones(p)” — W3], A*)")

2. Laplace prior on loadings. For the Laplace prior on A we have
! T .
A 7 Yoo Bz | x5) — T o WO sign (A°)
= l .
121 B (2 2] | )

3. Finite support prior on loadings. If the prior on A has finite support the we perform
a projection after each A update.

The projection is done according to Hoyer| (2004): given an /;-norm and an [s-norm
minimize the Euclidean distance to the original vector (currently the ls-norm is
fixed to 1). The projection is a convex quadratic problem which is solved iteratively
where at each iteration at least one component is set to zero.

Instead of the [;-norm following sparseness condition is used:

Vi = S el /3 v
vn o — 1 '

sparseness(v) =

4.5 Extreme Sparse Priors
4.5.1 Extreme sparse prior on loadings

For an extreme sparse prior on the loadings we use the

14



1. generalized Gaussians
p(z) oc exp (— |2)%) ,
where 0 < g < 1.

2. Jeffrey’s prior
1
p(z) o exp(— Infz]) o ﬂ
z
3. 1mproper prior
p(z) o exp (|2]77)

where 0 < (. This distribution may only exist on the interval [¢,a] with 0 <
€ < a. We assume that € is smaller than the smallest absolute A-values observed
in our algorithm except for zero.

The derivatives of the negative “log”-densities are

1. generalized Gaussians
0(—Inp(z _
( ap( )) x B|Z|B 1’
z
where 0 < 6 < 1.

2. Jeffrey’s prior
o(-mp(z) 1

X

0z ||

3. improper prior
J(—1Inp(z 5 _
(12l g
z
where 0 < f3.

Let us denote the negative exponent of |z| in the derivatives by s. All s > 0 are
possible, where s = 0 corresponds to the Laplace prior and larger s represent sparser
priors.

For the M-step of the EM-algorithm on the posterior on the parameters we have to
solve

1

I
1
A E(zjzf]a:j)——gij(zj|wj)T+7a\Illd|A| =0.
i=1

o~ =

l

l

7=1

Without the prior, the solution would be

l T
T 2o ® Bz | xj)

Atmp —
1
12 E(z 2] | =)
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which we use to obtain the update
sign (A"™P) min (abs (A™) |
1
% Zj:l E (zj ij

where we set an overshoot over zero to zero.
In the algorithms s is denoted by spl.

A = AP

Y

% a \IIOId ‘Atmp’*s)
|

fBj)

4.5.2 Extreme sparse prior on factors

For an extreme sparse prior on the factors we use the

1. generalized Gaussians
p(z) o exp (— |2)%) ,
where 0 < g < 1.

2. Jeffrey’s prior
1
p() o exp(— Inz]) o« —

2|
3. @mproper prior
p(z) o exp (|2]77)

where 0 < (. This distribution may only exist on the interval [¢,a] with 0 <
€ < a. We assume that € is smaller than the smallest absolute A-values observed
in our algorithm except for zero.

We want to represent the priors through a convex variational form. According to
Palmer et al.| (2006) we have to show that

g(z) = — Inp(v/2)

is increasing and concave for z > 0.
The first and second order derivatives of g are

1. generalized Gaussians with g = 2°/2

dg(z) _ s 8/2 — 1
5 2]z| >0,

Pglz) B
022 2
where 0 < 3 < 1.

(1 = B/2) 217272 <0

16



2. Jeffrey’s prior g = % In|z|

TR
2
639522) - _%# <0
3. improper prior with ¢ = — 2~ #/2
TaE) — Dt ) ot <o

where 0 < (.

This shows that for these priors the g is increasing and concave for z > 0 which
allows us to to represent the priors through a convex variational form.
According to [Palmer et al. (2006) the update for the variational parameter & is

99 (..
& = 2 %(dlagE (2 ij | z;)) .
This gives following updates
1. generalized Gaussians with g = 2°/2
. B/2 — 1
& — B ding (B(z | =) ",
where 0 < 3 < 1.
2. Jeffrey’s prior g = % In|z|
. -1
§ = diag (B (2 2 | =)
3. improper prior with g = — 2~ B2
. —-B8/2 — 1
& = Bding (E(z =] | @)
where 0 < f3.

If the negative exponent of E (zj ij | iL‘j) in the update is denoted by s then we

cover all s > 1/2. The smallest s = 1/2 (8 = 1) represents the Laplace prior and
s > 1/2 leads to sparser priors.

For the update of the variational variable we have
& x (diagE (2 ZJT | mj)fs> .

In the algorithms s is denoted by spz.

17



4.6 Informative Biclusters
4.6.1 Information of the Latent Variables on Observations

We will measure the information in biclusters through the mutual information between
z and «x, that is how much information about @ is contained in z.

This idea is the basis of the I/NI calls in [Talloen et al.| (2007)).

The entropy of a multivariate Gaussian

x ~ N(uX) (1)
with density

1
ex
(22 |32

) = p(-ge-w' =t @w) @

18

HV (1, 3)) = (V7 =) - (3)
The mutual information is defined as
I(x;z) = H(x) — H(z | 2) . (4)
In our model we have
x; ~ N0, ¥ + A 5; AT (5)
and
x|z ~ N(Az, ¥). (6)

Thus, the mutual information is
I(xj;2;) = H(z;) — H(z; [ 2;) = (7)
In (\/(27re)” T+ A E AT]> - m( 27 e ym) -

n|(T + A 5 A") o' =

In|I, + A ;A" 7| =

In|I, + AT ¥ 'AE| =

NN N~ -

In|I, + §; AT ¥ A

I

18



where we applied the “Sylvester’s theorem for determinants” which is special case of the
generalization of the “matrix determinant lemma” (http://en.wikipedia.org/wiki/
Matrix_determinant_lemma):

A+ UV =|I + VI A7 U| |A] . (8)
Above formula can also be obtained from

l(zj;2;) = H(z;) — H(zj | z;) = (9)

In ( (27 e)n 15j|) — In <\/(2 T e

In|g; (AT¥ A+ 5| =

J

(AT &1 A + Efl)l‘) =

N~ DN~

In|I, + E; AT &' A .

Independence of the factors (up to the second moment) results in a diagonal matrix
of the co-variance of z. Diagonal E; allows following expansion

p
AB; A" = > 5 A AT (10)
=1
1
[(z;;2;) = 5 |l + A E AT O = (11)

In|I, + ¥7' A B; AT| =

p
In In + \I’_l ZEJZ Az AZT
=1
p—1

In(L, + &' ) T AA] + B E, A A

Zjp
i=1
1
In <

p—1 -1
1+ Z;, AT O (In + WY E A Af) A, —
=1

1
1n<

p—1 -1
1 + 5, A;;F (‘I’ + ZEji A; A?) A, ;

i=1

p—1
I, + ') = A AT

i=1

p—1
I, + ') = A AT

i=1
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where we again used the the generalization of the “matrix determinant lemma” with

p—1

i=1
The last formula can be interpreted from information theory as
Wxj; 2z;) = H(x;) — H(x;|z) = (13)
H(z;) — H(z; | z;0) + H(z; | z;1) — H(z; | 25) =

Iz 250) + Uxy 25 | 20)

with
1 & -
I(z;;2) = 3 In|1+ Z; A (\If + Z Zir Ay AZ) A, (14)
t=1:t#£1
and
[(z;; ~ Iulr xIrlp:AAT
(25525 | 250) = 5 il + Zgjt ¢ Ay (15)
t=1:t#1
Now inductively we obtain
1 p i—1 -1
I(z;;2;) = éizlln 1+ =5 AT <\I: + ;Eﬁ A, AtT) A | . (16)
The last formula can be interpreted from information theory as
Wzj;z;) = U 250,) + Uwgs 2| 250) = (17)
Wwj; i) + W@ss 250 [ 200) + W@®ss 25 | 25005 2502) + o0 +
s 250, | 2jias Zjins - -+ Zjipa) -

The mutual information between X and Z is the sum of the mutual informations
between x; and z;. This follows from the independence of x; and the independence of
z;j across j and the fact that the entropy is additive for independent variables:

l
(X;Z) = %  In|I, + AT AT (18)

j=1
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4.6.2 Information of One Latent Variable on Observations

Now we can consider the case if one factor z; is removed from the final model. This
corresponds to setting

and therefore the explained covariance
=i Ay AT (20)
is lost.
We have

z; | (z;\ zi) ~ N (A z

0., ¥ + ;A A]) (21)

Zji

The information of this factor in the context of the other factors can now be accessed
by

W@y 20 | (25 \ 250)) = H(z; | (z5\ 251)) — H(w; [ 2) = (22)
In (\/(27re)" T+ = A Aﬂ) - ln< 27 e)n |x11|) -

In|[(¥ + Z; A A]) 71 =

In|I, + Z; Ay AJO | =

In (]_ + Eji A;T\I’_IAZ) .

N RN DN~

The mutual information between X and z° is the sum of the mutual informations
between x; and zj. This follows from the independence of x; and the independence of
zj; and the fact the entropy is additive for independent variables:

(X2 | (Z\ %) = (1 + = AT A . (23)

l
=1

DO | —

J

4.7 Extracting Biclusters
After the model is selected the biclusters should be extracted. A bicluster is given by
Ai (ZZ)T )

but not all A;, with k£ not beloning to the bicluster are zero. The same for z;; with j
not beloning to the bicluster.

Therefore biclusters are selected by choosing absolute values A;; above a threshold
thresL and abolute values z;; above a threshold thresZ.
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4.7.1 One Bicluster for Each Factor

For each factor Z; only one bicluster is extracted. The bicluster has a specific observation
pattern (e.g. each sample as a gene expression pattern) so that the negative pattern does
not belong to the bicluster. To decide whether the positive or the negative pattern is
extracted we compare the sum of absolute values of the factor above the threshold to
the sum of absolute values of the factor below the negative threshold:

l

E Zij

j=1: z;;>thresZ

and
!

- E Zij -
j=1: z;j<—thresZ

The j contributing to the larger value are considered to belong to the bicluster.

Of course, the opposite bicluster (the negative observation pattern) can also be ex-
tracted. This makes sense if bimodal conditions are present where the positive obser-
vation pattern is indicative for one condition and the negative observation pattern is
indicative for the other condition.

4.7.2 Normalizing the Factors

Because

AZ = A \/diag (Z 2Z7) <\/diag (Z ZT)>1 z

we can define

~

A = A/diag(Z ZT)

and

7 - (\/W)_lz.

This scaling normalizes the moments of the factors to 1.
Now the threshold thresZ can be determined more appropriate. We choose thresZ =
0.5 in our experiments which would mean that 30% of the samples can belong to a

bicluster if we assume a Gaussian distribution (0.5 (1 + erf <073>) However the Gaussian

assumption is not true because Z is assumed to be Laplace or even sparser.
For the Laplace distribution with variance 1, we obtain 1 — % exp(—v/2/2) ~ 0.75.
The value thresZ = 0.5 corresponds to 25% of the samples can belong to a bicluster.
For the improper distribution spz = 1.0 that we used in the the experiments, the
percentage of samples which belong to a bicluster are smaller for thresZ = 0.5.

22



4.7.3 Estimating the Threshold thresL

We cannot normalize A for determining thresL because it would interfer with the nor-
malization of Z.

Even if the components of the observations @ are normalized we cannot estimate
thresL because biclusters may overlap. Overlapping biclusters might have small indi-
vidual contributions which sum up to explain the observations.

The straightforward approach would be to extract in bicluster ¢ those Z;; and f\ik
which are above their standard deviation in bicluster i:

Zij geq 0z, = 1 = thresZ

and

Aik > oy, = thresL; .
This assumes that thresZ is one, but if thresZ is given and not equal 1 then we can

correct that by
0K, thresL;

Ay > = :
* = thresZ thresZ
However we would not regard the contribution of a bicluster compared to other
biclusters. Therefore we set thresL to the standard deviation o4 divided by thresZ:

~

1 Z(p,n) <A~ >2
pn (ivk):(lvl) ik

o
thresL = —2— = 24
res thresZ thresZ (24)
To estimate the average contribution of biclusters, we compute the second moment
vlz of a the bicluster contribution Ay, 2;; = Ay 245
. 2
viz = B ((Ak z]> ) - (25)
(plin)
1 N2
plnuZ <Aikzij> -
(4,5,k)=(1,1,1)
(p,n) !
1 ~\2 1 N2
LS () e
pn . ,
(i.k)=(1,1) Jj=1
(p:n) 9

e ()

(i,k)=(1,1)

Therefore we have

thres. = )
res thresZ
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Note, the average contribution v/vlz includes elements close to zero that do not belong
to any bicluster. Therefore v/vlz underestimates the contribution of a bicluster because
the non-bicluster elements should not count.

On the other hand both A;; and z;; are assumed to stem from sparse distributions
which favour large values which might dominate the second moment. In this case v/vlz
overestimates the contribution of a bicluster because large values dominate.

In summary, above estimate for thresL is a trade-off between underestimate due to
sparseness and overestimate due to large values.

A Methods and Functions

A.1 extract_plot
Extraction of Biclusters and Plotting of the Results.

1. Usage: extract_plot(X,L,Z,thresZ=0.5,ti,thresL=NULL,Y=NULL,x11b=TRUE)
2. Arguments:

e X: original data matrix.
e L: loading, left matrix.
e 7: factor, right matrix.

thresZ: threshold for sample belonging to bicluster (default 0.5).

thresL: threshold for loading belonging to bicluster (estimated if not given).
ti: plot title.

e Y: alternative: noise free data matrix.

e x11b: screen output or not.
3. Return Values:

e bic: extracted biclusters.

e numn: indexes for the extracted biclusters.

e biclust: clusters of kmeans clustering.

e pmZ: permutation matrix of z from kmeans clustering.
e pmL: permutation matrix of L from kmeans clustering.
e nl: normalized loadings (left matrix).

e nZ normalized factors (right matrix).

e Xord: sorted original matrix according to kmeans on Z and kmeans on L.
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4. Produced Plots:

Y: noise free data (if available)

o X: data

e L7: reconstructed data

o LZ-X: error

e abs(Z): absolute factors

e abs(L): absolute loadings

e abs(nL): absolute loadings normalized
e abs(nZ): absolute factors normalized
e nZ*pmZ: factors sorted

e pmL*nL: loadings sorted

e pmL*L*Z*pmZ: reconstructed matrix sorted

e pmL*X*pmZ: original matrix sorted

Essentially the model is the sum of outer products of vectors. The number of sum-
mands p is the number of biclusters.

X =AZ+ 7

p
X =) A(2Z)+7
=1

The hidden dimension p is used for kmeans clustering of A; and Z,.

The A; and Z; are used to extract the bicluster ¢, where a threshold determines
which observations and which samples belong the the bicluster.

The method produces a couple of plots given below.

In above plots the matrix A and the matrix Z are sorted. For sorting first kmeans
is on the p dimensional space is performed and then the vectors which belong to the
same cluster are put together in the sorting. This sorting is made for visualization but
in general it is not possible to visualize all biclusters as blocks if they overlap.

In bic the biclusters are extracted according to the largest absolute values of the
component %, i.e. the largest values of A; and the largest values of Z;. The factors Z;
are normalized to variance 1.

The components of bic are bixv, bixn, biypv, biypn, biynv, and biynn. bixv
gives the values of the observations that have absolute values above a threshold. They
are sorted and bixn gives their names (e.g. gene names). biypv gives the values of
the samples that have values above a threshold. They are sorted and biypn gives their

25



names (e.g. sample names). biynv gives the values of the samples that have values
below this threshold. They are sorted and biynn gives their names (e.g. sample names).

That means the samples are divided into two groups where one group shows large
positive values and the other group has negative values with large absolute values. That
means a observation pattern can be switched on or switched off relative to the average
value.

numn gives the indexes of bic with components: numnl = bix ,numn2 = biyp, and
numn3 = biyn.

The kmeans clusters are given by biclust with components biclustx (the clustered
observations) and biclusty (the clustered samples).

Implementation in R .

EXAMPLE:

dat <- make_fabi_data_blocks(n = 100,1= 50,p 3,f1 = 5,f2 =5,
ofl = 5,0f2 = 10,sd_noise = 3.0,sd_z_noise 0.2,mean_z = 2.0,
sd_z = 1.0,sd_1_noise = 0.2,mean_1 = 3.0,sd_1 = 1.0)

X <- dat[[1]]

Y <- dat[[2]]

X <- X- rowMeans (X)

XX <- (1/ncol(X))*tcrossprod(X)

dXX <- 1/sqrt(diag(XX)+0.001*as.vector (rep(1,nrow(X))))
X <- dXX*X

resEx <- fabia(X,20,0.3,1.0,1.0,3)
rEx <- extract_plot(X,resEx$L,resEx$Z,ti="FABIA",Y=Y,x11b=FALSE)

rEx$bic[1,]
rEx$bic[2,]
rEx$bic([3,]
rEx$biclust[1,]
rEx$biclust[2,]
rEx$biclust[3,]
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dat <- make_fabi_data_blocks(n = 1000,1= 100,p = 10,f1 = 5,f2 = 5,
of1 = 5,0f2 = 10,sd_noise = 3.0,8d_z_noise = 0.2,mean_z = 2.0,
sd_z = 1.0,sd_1_noise = 0.2,mean_1 = 3.0,sd_1 = 1.0)

<- dat[[1]]

<- dat[[2]]

<- X- rowMeans (X)

XX <- (1/ncol(X))*tcrossprod(X)

dXX <- 1/sqrt(diag(XX)+0.001*as.vector (rep(1,nrow(X))))
X <- dXX*X

e~ De

resToy <- fabia(X,200,0.4,1.0,1.0,13)

rToy <- extract_plot(X,resToy$L,resToy$Z,ti="FABIA",Y=Y)

data(Breast_A)

X <- as.matrix(XBreast)

X <- X- rowMeans (X)

XX <- (1/ncol(X))*tcrossprod (X)

dXX <- 1/sqrt(diag(XX)+0.001*as.vector (rep(1,nrow(X))))
X <- dXX*X

resBreast <- fabia(X,200,0.1,1.0,1.0,5)

rBreast <- extract_plot(X,resBreast$L,resBreast$Z,ti="FABIA Breast cancer (Veer)")

#sorting of predefined labels
CBreast/*J/,rBreast$pmZ
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A.2 extract_bic

Extraction of Biclusters.
1. Usage: extract_bic(L,Z,thresL=0.02,thresZ=1.0,lapla=NULL,Psi=NULL)
2. Arguments:

e L: loading, left matrix.

e 7: factor, right matrix.

thresZ: threshold for sample belonging to bicluster (default 0.5).

thresL: threshold for loading belonging to bicluster (if not given it is esti-
mated).

lapla: inverse variance of the variational approximation for each sample and
each factor.

e Psi: noise variance vector for observations where independent noise is asumed.
3. Return Values:

e bic: extracted biclusters.

e numn: indexes for the extracted biclusters.

e bicopp: extracted opposite biclusters.

e numnopp: indexes for the extracted opposite biclusters.
e avini: average over j of the variance Z; given x;.

e ini: for each j the variance Z; given x;.

Essentially the model is the sum of outer products of vectors. The number of sum-
mands p is the number of biclusters.

X =AZ+ 7

p
X =>AN(2Z)+ 7
=1

Y is the Gaussian noise with a diagonal covariance matrix which entries are given
by Psi.

The Z is locally approximated by a Gaussian with inverse variance given by lapla.

Using these values we can computer for each j the variance Z; given x;. Here

CBjZAZj‘l‘Gj

This variance can be used to determine the information content of a bicluster.
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The A; and Z; are used to extract the bicluster ¢, where a threshold determines
which observations and which samples belong the the bicluster.

In bic the biclusters are extracted according to the largest absolute values of the
component %, i.e. the largest values of A; and the largest values of Z;. The factors Z;
are normalized to variance 1.

The components of bic are binp, bixv, bixn, biypv, and biypn.

binp give the size of the bicluster: number observations and number samples. bixv
gives the values of the extracted observations that have absolute values above a threshold.
They are sorted. bixn gives the extracted observation names (e.g. gene names). biypv
gives the values of the extracted samples that have absolute values above a threshold.
They are sorted. biypn gives the names of the extracted samples (e.g. sample names).

In bicopp the opposite cluster to the biclusters are give. Opposite means that the
negative pattern is present.

The components of opposite clusters bicopp are binn, bixv, bixn, biypnv, and
biynn.

binp give the size of the opposite bicluster: number observations and number sam-
ples. bixv gives the values of the extracted observations that have absolute values above
a threshold. They are sorted. bixn gives the extracted observation names (e.g. gene
names). biynv gives the values of the opposite extracted samples that have absolute val-
ues above a threshold. They are sorted. biynn gives the names of the opposite extracted
samples (e.g. sample names).

That means the samples are divided into two groups where one group shows large
positive values and the other group has negative values with large absolute values. That
means a observation pattern can be switched on or switched off relative to the average
value.

numn gives the indexes of bic with components: numng = bix and numnp = biypn.

numn gives the indexes of bicopp with components: numng = bix and numnn = biynn.

Implementation in R .

EXAMPLE:

dat <- make_fabi_data_blocks(n = 100,1= 50,p 3,f1 = 5,f2 = 5,
of1 = 5,0f2 = 10,sd_noise = 3.0,sd_z_noise 0.2,mean_z = 2.0,
sd_z = 1.0,sd_1_noise = 0.2,mean_1 = 3.0,sd_1 = 1.0)

X <- dat[[1]]
Y <- dat[[2]]
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X <- X - rowMeans (X)
XX <- tcrossprod(X)

dXX <- 1/sqrt(diag(XX))
X <- dXX*X

reskEx <- fabia(X,20,0.1,1.0,1.0,3)
rEx <- extract_bic(resEx$L,resEx$Z,lapla=resEx$lapla,Psi=resEx$Psi)

rEx$bic[1,] #$
rEx$bic[2,] #$
rEx$bic[3,] #$

dat <- make_fabi_data_blocks(n = 1000,1= 100,p = 10,f1 = 5,f2 = 5,
ofl = 5,0f2 = 10,sd_noise = 3.0,sd_z_noise = 0.2,mean_z = 2.0,
sd_z = 1.0,sd_1_noise = 0.2,mean_1 = 3.0,sd_1 = 1.0)

<- dat[[1]]

<- dat[[2]]

<- X- rowMeans (X)

XX <- (1/ncol(X))*tcrossprod(X)

dXX <- 1/sqrt(diag(XX)+0.001*as.vector (rep(1,nrow(X))))
X <- dXX*X

bq < B

resToy <- fabia(X,200,0.4,1.0,1.0,13)

rToy <- extract_bic(resToy$L,resToy$Z,lapla=resToy$lapla,Psi=resToy$Psi)
rToy$avini #$

rToy$bic[1,] #$

rToy$bic[2,] #$
rToy$bic[3,] #$
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# DEMO2

data(Breast_A)

X <- as.matrix(XBreast)

X <- X- rowMeans (X)

XX <= (1/ncol(X))*tcrossprod (X)

dXX <- 1/sqrt(diag(XX)+0.001*as.vector(rep(1,nrow(X))))
X <- dXX*X

resBreast <- fabia(X,200,0.1,1.0,1.0,5)
rBreast <- extract_bic(resBreast$L,resBreast$Z,lapla=resBreast$lapla,Psi=resBreast$Ps
rBreast$avini #$

rBreast$bic[1,] #$
rBreast$bic[2,] #$
rBreast$bic[3,] #$

A.3 fabi

Factor Analysis for Bicluster Acquisition: Laplace Prior (FABI).
R implementation of fabia, therefore it is slow.

1. Usage: fabi(X,cyc,alpha,spl,spz,p)
2. Arguments:

e X: the data matrix.

e cyc: number of cycles to run.

alpha: sparseness loadings (0.1 - 1.0).

spl: sparseness prior loadings (0.5 - 4.0).
e spz: sparseness factors (0.5 - 4.0).

e p: number of hidden factor = number of biclusters.
3. Return Values:

e L7Z: Estimated Noise Free Data: A Z

e [: Loadings: A
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e 7/: Factors: Z
e Psi: Noise variance: ¥

e lapla: Variational parameter

Biclusters are found by sparse factor analysis where both the factors and the loadings
are sparse.

Essentially the model is the sum of outer products of sparse vectors. The number of
summands p is the number of biclusters.

X =AZ+ 7

p
X =>AN(Z)+7T
=1

If the nonzero components of the sparse vectors are grouped together then the outer
product results in a matrix with a nonzero block and zeros elsewhere.
For a single data vector a« that is

p
m:ZAizijLe:Asze
i=1

The model assumptions are:
Factor Prior is Independent Laplace:

p(z) = (%)piﬁeﬁ'zi'

Loading Prior is Independent Laplace:

Noise: Gaussian independent

o G

k=1

El V]

N

Data Mean:

=0

E(x) = E(Az + €) = AE(z) + E(e)

Therefore the data should be normalized to zero mean.
Data Covariance:
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E(x z7) = AE(zz")AT + AE(2)E(e") + E(2)E(e)AT + E(e€’) =
AAT + diag(o})

Normalizing the data to variance one for each component gives
2 T Ak _
or + (A*) A" =1

Here the length of A* is p. We recommend to normalize the components to variance one
in order to make the signal and noise comparable across components.

Estimated Parameters: A and oy,

Estimated Latent Variables: Z

Estimated Noise Free Data: A Z

Estimated Biclusters: A; (Z;)" Larges values give the bicluster (ideal the nonzero
values).

The model selection is performed by a variational approach according to |Girolami
(2001) and [Palmer et al.| (2006]).

We included a prior on the parameters and minimize a lower bound on the posterior
of the parameters given the data. The update of the loadings includes an additive term
which pushes the loadings toward zero (Gaussian prior leads to an multiplicative factor).

The code is implemented in R , therefore it is slow.

EXAMPLE:

dat <- make_fabi_data_blocks(n = 100,1= 50,p = 3,f1 = 5,f2 = 5,
of1 = 5,0f2 = 10,sd_noise = 3.0,s8d_z_noise 0.2,mean_z = 2.0,
sd_z = 1.0,sd_1_noise = 0.2,mean_1 = 3.0,sd_1 = 1.0)

X <- dat[[1]]

Y <- dat[[2]]

X <- X- rowMeans (X)

XX <= (1/ncol(X))*tcrossprod (X)

dXX <- 1/sqrt(diag(XX)+0.001*as.vector(rep(1,nrow(X))))
X <- dXX*X

reskEx <- fabi(X,10,0.3,1.0,1.0,3)

33



dat <- make_fabi_data_blocks(n = 1000,1= 100,p = 10,f1 = 5,f2 = 5,
of1 = 5,0f2 = 10,sd_noise = 3.0,sd_z_noise = 0.2,mean_z = 2.0,
sd_z = 1.0,sd_1_noise = 0.2,mean_1 = 3.0,sd_1 = 1.0)

X <- dat[[1]]

Y <- dat[[2]]

X <- X- rowMeans (X)

XX <- (1/ncol(X))*tcrossprod (X)

dXX <- 1/sqrt(diag(XX)+0.001*as.vector(rep(1,nrow(X))))
X <- dXX*X

resToy <- fabi(X,200,0.4,1.0,1.0,13)

rToy <- extract_plot(X,resToy$L,resToy$Z,ti="FABI",6Y=Y)

data(Breast_A)

X <- as.matrix(XBreast)

X <- X- rowMeans (X)

XX <- (1/ncol(X))*tcrossprod(X)

dXX <- 1/sqrt(diag(XX)+0.001*as.vector (rep(1,nrow(X))))
X <- dXX*X

resBreast <- fabi(X,200,0.1,1.0,1.0,5)

rBreast <- extract_plot(X,resBreast$L,resBreast$Z,ti="FABI Breast cancer (Veer)")

#sorting of predefined labels
CBreast/*J,rBreast$pmZ
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data(Multi_A)

X <- as.matrix(XMulti)

X <- X- rowMeans (X)

XX <- (1/ncol(X))*tcrossprod (X)

dXX <- 1/sqrt(diag(XX)+0.001*as.vector(rep(1,nrow(X))))

X <- dXX*X

resMulti <- fabi(X,200,0.1,1.0,1.0,5)

rMulti <- extract_plot(X,resMulti$L,resMulti$Z,ti="FABI Multiple tissues(Su)")

#sorting of predefined labels
CMultiz*jrMulti$pmZ

data(DLBCL_B)

X <- as.matrix(XDLBCL)

X <- X- rowMeans (X)

XX <- (1/ncol(X))*tcrossprod (X)

dXX <- 1/sqrt(diag(XX)+0.001*as.vector (rep(1,nrow(X))))
X <- dXX*X

resDLBCL <- fabi(X,200,0.1,1.0,1.0,5)

rDLBCL <- extract_plot(X,resDLBCL$L,resDLBCL$Z,ti="FABI Lymphoma (Rosenwald)")

#sorting of predefined labels
CDLBCL}*7rDLBCL$pmZ
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A.4 fabia

Factor Analysis for Bicluster Acquisition: Laplace Prior (FABIA).
C implementation of fabia.

1. Usage: fabia(X,cyc,alpha,spl,spz,p)
2. Arguments:

e X: the data matrix.

e cyc: number of cycles to run.

alpha: sparseness loadings (0.1 - 1.0).
e spl: sparseness prior loadings (0.5 - 4.0).
e spz: sparseness factors (0.5 - 4.0).

e p: number of hidden factor = number of biclusters.

3. Return values:
o [7: Estimated Noise Free Data: A Z
e [: Loadings: A
e 7: Factors: Z
e Psi: Noise variance: ¥

e lapla: Variational parameter

Biclusters are found by sparse factor analysis where both the factors and the loadings
are sparse.

Essentially the model is the sum of outer products of sparse vectors. The number of
summands p is the number of biclusters.

X =AZ+ 7

p
X =>AN(2Z)+ 7
=1

If the nonzero components of the sparse vectors are grouped together then the outer
product results in a matrix with a nonzero block and zeros elsewhere.
For a single data vector @ that is

p
m:ZAizi—i—e:Az—i—e
i=1

The model assumptions are:
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Factor Prior is Independent Laplace:

p(z) = (%)pﬁeﬁ'zi'

Loading Prior is Independent Laplace:

p(Ai) = (%)nﬁe‘ V2 |8y

Noise: Gaussian independent

Data Mean:

E(x) = E(Az +€) = AE(z) + E(e) = 0

Therefore the data should be normalized to zero mean.
Data Covariance:

E(x ') = AE(zz")AT + AE(2)E(e’) + E(2)E(e)A" + E(e €') =
AAT + diag(o})

Normalizing the data to variance one for each component gives

Here the length of A* is p. We recommend to normalize the components to variance one
in order to make the signal and noise comparable across components.

Estimated Parameters: A and oy,

Estimated Latent Variables: Z

Estimated Noise Free Data: A Z

Estimated Biclusters: A; (Zi)T Larges values give the bicluster (ideal the nonzero
values).

The model selection is performed by a variational approach according to |Girolami
(2001) and [Palmer et al.| (2006]).

We included a prior on the parameters and minimize a lower bound on the posterior
of the parameters given the data. The update of the loadings includes an additive term
which pushes the loadings toward zero (Gaussian prior leads to an multiplicative factor).

The code is implemented in C using the Rcpp package.

EXAMPLE:
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dat <- make_fabi_data_blocks(n = 100,1= 50,p = 3,f1 = 5,f2 = 5,
of1 = 5,0f2 = 10,sd_noise = 3.0,sd_z_noise 0.2,mean_z = 2.0,
sd_z = 1.0,sd_1_noise = 0.2,mean_1 = 3.0,sd_1 = 1.0)

<- dat[[1]]

<- dat[[2]]

<- X- rowMeans (X)

XX <- (1/ncol(X))*tcrossprod(X)

dXX <- 1/sqrt(diag(XX)+0.001*as.vector (rep(1,nrow(X))))
X <- dXX*X

e~ De

resEx <- fabia(X,50,0.3,1.0,1.0,3)

dat <- make_fabi_data_blocks(n = 1000,1= 100,p = 10,f1 = 5,f2 = 5,
ofl1 = 5,0f2 = 10,sd_noise = 3.0,sd_z_noise 0.2,mean_z = 2.0,
sd_z = 1.0,sd_1_noise = 0.2,mean_1 = 3.0,sd_1 = 1.0)

n s

X <- dat[[1]]

Y <- dat[[2]]

X <- X- rowMeans (X)

XX <- (1/ncol(X))*tcrossprod(X)

dXX <- 1/sqrt(diag(XX)+0.001*as.vector (rep(1,nrow(X))))
X <- dXX*X

resToy <- fabia(X,200,0.4,1.0,1.0,13)

rToy <- extract_plot(X,resToy$L,resToy$Z,ti="FABIA",6Y=Y)
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# DEMO2

data(Breast_A)

X <- as.matrix(XBreast)

X <- X- rowMeans (X)

XX <= (1/ncol(X))*tcrossprod (X)

dXX <- 1/sqrt(diag(XX)+0.001*as.vector(rep(1,nrow(X))))
X <- dXX*X

resBreast <- fabia(X,200,0.1,1.0,1.0,5)

rBreast <- extract_plot(X,resBreast$L,resBreast$Z,"FABIA Breast cancer(Veer)")

#sorting of predefined labels
CBreasty,*),rBreast$pmZ

data(Multi_A)

X <- as.matrix(XMulti)

X <- X- rowMeans (X)

XX <- (1/ncol(X))*tcrossprod(X)

dXX <- 1/sqrt(diag(XX)+0.001*as.vector (rep(1,nrow(X))))

X <- dXX*X

resMulti <- fabia(X,200,0.1,1.0,1.0,5)

rMulti <- extract_plot(X,resMulti$L,resMulti$Z,ti="FABIA Multiple tissues(Su)")

#sorting of predefined labels
CMultiz*jrMulti$pmZ

data(DLBCL_B)
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X <- as.matrix(XDLBCL)

X <- X- rowMeans (X)

XX <- (1/ncol(X))*tcrossprod (X)

dXX <- 1/sqrt(diag(XX)+0.001*as.vector (rep(1,nrow(X))))
X <- dXX*X

resDLBCL <- fabia(X,200,0.1,1.0,1.0,5)
rDLBCL <- extract_plot(X,resDLBCL$L,resDLBCL$Z,ti="FABIA Lymphoma(Rosenwald)")

#sorting of predefined labels
CDLBCL7*7rDLBCL$pmZ

A.5 fabiaVersion
Display version info for package and for FABIA.

1. Usage: fabiaVersion()

EXAMPLE:

fabiaVersion()

A.6 fabiap
Factor Analysis for Bicluster Acquisition: Post-Projection (FABIAP).

1. Usage: fabiap(X,cyc,alpha,spl,spz,p,sL,sZ)
2. Arguments:

e X: the data matrix.

e cyc: number of cycles to run.

e alpha: sparseness loadings (0.1 - 1.0).

e spl: sparseness prior loadings (0.5 - 4.0).

e spz: sparseness factors (0.5 - 4.0).

e p: number of hidden factor = number of biclusters.

e sL: final sparseness loadings.
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e sZ: final sparseness factors.
3. Return Values:

e L7Z: Estimated Noise Free Data: A Z
L: Loadings: A
e 7: Factors: Z

Psi: Noise variance: ¥

lapla: Variational parameter
Biclusters are found by sparse factor analysis where both the factors and the loadings
are sparse. Post-processing by projecting the final results to a given sparseness criterion.
Essentially the model is the sum of outer products of sparse vectors. The number of

summands p is the number of biclusters.

X =AZ+ 7

p
i=1

If the nonzero components of the sparse vectors are grouped together then the outer
product results in a matrix with a nonzero block and zeros elsewhere.
For a single data vector a that is

P
m:ZAiZi‘i‘E:AZ‘i‘G
=1

The model assumptions are:
Factor Prior is Independent Laplace:

(z) = (%)H v

Loading Prior is Independent Laplace:

w - (&)

J

e V2 10l

n
=1

Noise: Gaussian independent

v = (4 )l LS
V2T ooy Ok
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Data Mean:

E(x) = E(Az + €) = AE(z) + E(e) = 0

Therefore the data should be normalized to zero mean.
Data Covariance:

E(x ') = AE(zz")AT + AE(2)E(e") + E(2)E(e)A" + E(e €') =
AAT + diag(o})

Normalizing the data to variance one for each component gives
2 T Ak _
o + (A" A" =1

Here the length of A* is p. We recommend to normalize the components to variance one
in order to make the signal and noise comparable across components.

Estimated Parameters: A and oy,

Estimated Latent Variables: Z

Estimated Noise Free Data: A Z

Estimated Biclusters: A; (Z;)" Larges values give the bicluster (ideal the nonzero
values).

The model selection is performed by a variational approach according to |Girolami
(2001) and [Palmer et al.| (2006]).

We included a prior on the parameters and minimize a lower bound on the posterior
of the parameters given the data. The update of the loadings includes an additive term
which pushes the loadings toward zero (Gaussian prior leads to an multiplicative factor).

Post-processing: The final results of the loadings and the factors are projected to a
sparse vector according to Hoyer, 2004: given an [;-norm and an [y-norm minimize the
Euclidean distance to the original vector (currently the ly-norm is fixed to 1). The pro-
jection is a convex quadratic problem which is solved iteratively where at each iteration
at least one component is set to zero. Instead of the [;-norm a sparseness measurement
is used which relates the /;-norm to the ls-norm:

The code is implemented in C using the Repp package. The projection is implemented
inR .

EXAMPLE:
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dat <- make_fabi_data_blocks(n = 100,1= 50,p 3,f1 = 5,f2 =5,
of1 = 5,0f2 = 10,sd_noise = 3.0,s8d_z_noise 0.2,mean_z = 2.0,
sd_z = 1.0,sd_1_noise = 0.2,mean_1 = 3.0,sd_1 = 1.0)

<- dat[[1]]

<- dat[[2]]

<- X- rowMeans (X)

XX <= (1/ncol(X))*tcrossprod (X)

dXX <- 1/sqrt(diag(XX)+0.001*as.vector(rep(1,nrow(X))))
X <- dXX*X

e < B

reskx <- fabiap(X,50,0.3,1.0,1.0,3,0.7,0.7)

dat <- make_fabi_data_blocks(n = 1000,1= 100,p = 10,f1 = 5,f2 = 5,
ofl = 5,0f2 = 10,sd_noise = 3.0,sd_z_noise = 0.2,mean_z = 2.0,
sd_z = 1.0,sd_1_noise = 0.2,mean_1 = 3.0,sd_1 = 1.0)

<- dat[[1]]

<- dat[[2]]

<- X- rowMeans (X)

XX <- (1/ncol(X))*tcrossprod(X)

dXX <- 1/sqrt(diag(XX)+0.001*as.vector (rep(1,nrow(X))))
X <- dXX*X

bq < B

resToy <- fabiap(X,200,0.4,1.0,1.0,13,0.7,0.7)

rToy <- extract_plot(X,resToy$L,resToy$Z,ti="FABIAP",6Y=Y)

data(Breast_A)

X <- as.matrix(XBreast)
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X <- X- rowMeans (X)

XX <- (1/ncol(X))*tcrossprod(X)

dXX <- 1/sqrt(diag(XX)+0.001*as.vector (rep(1,nrow(X))))
X <- dXX*X

resBreast <- fabiap(X,200,0.1,1.0,1.0,5,0.5,0.3)

rBreast <- extract_plot(X,resBreast$L,resBreast$Z,ti="FABIAP Breast cancer(Veer)")

#sorting of predefined labels
CBreast/*J,rBreast$pmZ

data(Multi_A)

X <- as.matrix(XMulti)

X <- X- rowMeans (X)

XX <= (1/ncol(X))*tcrossprod (X)

dXX <- 1/sqrt(diag(XX)+0.001*as.vector (rep(1,nrow(X))))

X <- dXX*X

resMulti <- fabiap(X,200,0.1,1.0,1.0,5,0.5,0.3)

rMulti <- extract_plot(X,resMulti$L,resMulti$Z,ti="FABIAP Multiple tissues(Su)")

#sorting of predefined labels
CMultiz*jrMulti$pmZ

data (DLBCL_B)
X <- as.matrix(XDLBCL)

X <- X- rowMeans (X)
XX <- (1/ncol(X))*tcrossprod (X)
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dXX <- 1/sqrt(diag(XX)+0.001*as.vector (rep(1,nrow(X))))
X <- dXX*X

resDLBCL <- fabiap(X,200,0.1,1.0,1.0,5,0.5,0.3)
rDLBCL <- extract_plot(X,resDLBCL$L,resDLBCL$Z,ti="FABIAP Lymphoma(Rosenwald)")

#sorting of predefined labels
CDLBCL7*7rDLBCL$pmZ

A.7 fabias

Factor Analysis for Bicluster Acquisition: Sparseness Projection (FABIAS).
C implementation of fabias.

1. Usage: fabias(X,cyc,alpha,spz,p)
2. Arguments:

e X: the data matrix.

e cyc: number of cycles to run.

e alpha: sparseness loadings via projection (0.1 - 0.9).
e spz: sparseness factors (0.5 - 4.0).

e p: number of hidden factor = number of biclusters.
3. Return Values:
LZ: Estimated Noise Free Data: A Z
L: Loadings: A
Z: Factors: Z

Psi: Noise variance: ¥

lapla: Variational parameter

Biclusters are found by sparse factor analysis where both the factors and the loadings
are sparse.

Essentially the model is the sum of outer products of sparse vectors. The number of
summands p is the number of biclusters.

X =AZ+ 7
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p
X =) A(2Z)+ 7
=1

If the nonzero components of the sparse vectors are grouped together then the outer
product results in a matrix with a nonzero block and zeros elsewhere.
For a single data vector @ that is

p
w:ZAizi+e:Az—l—€
i=1

The model assumptions are:
Factor Prior is Independent Laplace:

1\’ £
p(z) = (\ﬁ) geﬁ'zi'
Loading Prior has Finite Support:
p(A;) = ¢ for [[AfL < K

p(A;)) = 0 for [[Ailli > k

Noise: Gaussian independent

Data Mean:

E(x) = E(Az +€) = AE(z) + E(e) = 0

Therefore the data should be normalized to zero mean.
Data Covariance:

E(x ') = AE(zz")AT + AE(2)E(e’) + E(2)E(e)A" + E(e €') =
AAT + diag(o})
Normalizing the data to variance one for each component gives
o + (AM)TAF =1

Here the length of A* is p. We recommend to normalize the components to variance one
in order to make the signal and noise comparable across components.
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Estimated Parameters: A and oy

Estimated Latent Variables: Z

Estimated Noise Free Data: A Z

Estimated Biclusters: A; (Z;)" Larges values give the bicluster (ideal the nonzero
values).

The model selection is performed by a variational approach according to |Girolami
(2001) and [Palmer et al.| (2006]).

The prior has finite support, therefore after each update of the loadings they are
projected to the finite support. The projection is done according to Hoyer (2004):
given an [;-norm and an ls-norm minimize the Euclidean distance to the original vector
(currently the ly-norm is fixed to 1). The projection is a convex quadratic problem
which is solved iteratively where at each iteration at least one component is set to zero.
Instead of the [;-norm a sparseness measurement is used which relates the [;-norm to
the ls-norm:

V= YAl YA

The code is implemented in C using the Rcepp package.

sparseness(A;)

EXAMPLE:

dat <- make_fabi_data_blocks(n = 1000,1= 100,p = 10,f1 = 5,f2 = 5,
ofl = 5,0f2 = 10,sd_noise = 3.0,sd_z_noise = 0.2,mean_z = 2.0,
sd_z = 1.0,sd_1_noise = 0.2,mean_1 = 3.0,sd_1 = 1.0)

X <- dat[[1]]

Y <- dat[[2]]

X <- X- rowMeans (X)

XX <- (1/ncol(X))*tcrossprod (X)

dXX <- 1/sqrt(diag(XX)+0.001*as.vector (rep(1,nrow(X))))
X <- dXX*X

resToy <- fabias(X,200,0.8,1.0,13)

rToy <- extract_plot(X,resToy$L,resToy$Z, "FABIAS",Y=Y)
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data(Breast_A)

X <- as.matrix(XBreast)

X <- X- rowMeans (X)

XX <- (1/ncol(X))*tcrossprod (X)

dXX <- 1/sqrt(diag(XX)+0.001*as.vector(rep(1,nrow(X))))
X <- dXX*X

resBreast <- fabias(X,300,0.6,1.0,3)

rBreast <- extract_plot(X,resBreast$L,resBreast$Z, "FABIAS Breast cancer(Veer)")

#sorting of predefined labels
CBreast/*J,rBreast$pmZ

data(Multi_A)

X <- as.matrix(XMulti)

X <- X- rowMeans (X)

XX <- (1/ncol(X))*tcrossprod (X)

dXX <- 1/sqrt(diag(XX)+0.001*as.vector (rep(1,nrow(X))))

X <- dXX*X

resMulti <- fabias(X,200,0.8,1.0,4)

rMulti <- extract_plot(X,resMulti$L,resMulti$Z,"FABIAS Multiple tissues(Su)")
#sorting of predefined labels

CMultij*jrMulti$pmZ

# DEM0O4
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data(DLBCL_B)

X <- as.matrix(XDLBCL)

X <- X- rowMeans (X)

XX <= (1/ncol(X))*tcrossprod (X)

dXX <- 1/sqrt(diag(XX)+0.001*as.vector(rep(1,nrow(X))))
X <- dXX*X

resDLBCL <- fabias(X,200,0.8,1.0,3)
rDLBCL <- extract_plot(X,resDLBCL$L,resDLBCL$Z,"FABIAS Lymphoma(Rosenwald)")

#sorting of predefined labels
CDLBCL7*%rDLBCL$pmZ

A.8 fabiasp

Factor Analysis for Bicluster Acquisition: Sparseness Projection (FABIASP).
R implementation of fabias, therefore it is slow.

1. Usage: fabiasp(X,cyc,alpha,spz,p)
2. Arguments:

e X: the data matrix.

cyc: number of cycles to run.

alpha: sparseness loadings via projection (0.1 - 0.9).
e spz: sparseness factors (0.5 - 4.0).

e p: number of hidden factor = number of biclusters.
3. Return Values:
LZ: Estimated Noise Free Data: A Z
L: Loadings: A
Z: Factors: Z

Psi: Noise variance: ¥
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e lapla: Variational parameter

Biclusters are found by sparse factor analysis where both the factors and the loadings
are sparse.

Essentially the model is the sum of outer products of sparse vectors. The number of
summands p is the number of biclusters.

X =AZ+ 7

p
X =>AN(2Z)+ 7
i=1
If the nonzero components of the sparse vectors are grouped together then the outer

product results in a matrix with a nonzero block and zeros elsewhere.
For a single data vector & that is

p
m:ZAiziqLe:Az—ke
i=1

The model assumptions are:
Factor Prior is Independent Laplace:

o= (&)

)

e V2 |z

p
=1
Loading Prior has Finite Support:

p(A;) = ¢ for ||Alf < Kk

p(A;)) = 0 for [[Ailli > k

Noise: Gaussian independent

Data Mean:

E(x) = E(Az +€) = AE(z) + E(e) = 0

Therefore the data should be normalized to zero mean.
Data Covariance:

E(x ') = AE(zz")AT + AE(2)E(e’) + E(2)E(e)A" + E(e €') =
AAT 4+ diag(c})

20



Normalizing the data to variance one for each component gives
2 NT Ak
or + (A*) A" =1

Here the length of A* is p. We recommend to normalize the components to variance one
in order to make the signal and noise comparable across components.

Estimated Parameters: A and oy,

Estimated Latent Variables: Z

Estimated Noise Free Data: A Z

Estimated Biclusters: A; (Z;)" Larges values give the bicluster (ideal the nonzero
values).

The model selection is performed by a variational approach according to |Girolami
(2001) and [Palmer et al.| (2006]).

The prior has finite support, therefore after each update of the loadings they are
projected to the finite support. The projection is done according to [Hoyer (2004):
given an [;-norm and an ls-norm minimize the Euclidean distance to the original vector
(currently the ly-norm is fixed to 1). The projection is a convex quadratic problem
which is solved iteratively where at each iteration at least one component is set to zero.
Instead of the [;-norm a sparseness measurement is used which relates the [;-norm to
the ls-norm:

. \/ﬁ - 27;:1 |Aij| / Z?:l Azzj

sparseness(A;) =

The code is implemented in R , therefore it is slow.

EXAMPLE:

dat <- make_fabi_data_blocks(n = 100,1= 50,p = 3,f1 = 5,f2 = 5,
of1 = 5,0f2 = 10,sd_noise = 3.0,sd_z_noise = 0.2,mean_z = 2.0,
sd_z = 1.0,sd_1_noise = 0.2,mean_1 = 3.0,sd_1 = 1.0)

X <- dat[[1]]

Y <- dat[[2]]

X <- X- rowMeans (X)

XX <- (1/ncol(X))*tcrossprod (X)

dXX <- 1/sqrt(diag(XX)+0.001*as.vector(rep(1,nrow(X))))
X <- dXX*X

o1



reskEx <- fabiasp(X,50,0.8,1.0,3)

\dontrun{

dat <- make_fabi_data_blocks(n = 1000,1= 100,p = 10,f1 = 5,f2 = 5,
of1 = 5,0f2 = 10,sd_noise = 3.0,8d_z_noise = 0.2,mean_z = 2.0,
sd_z = 1.0,sd_1_noise = 0.2,mean_1 = 3.0,sd_1 = 1.0)

X <- dat[[1]]

Y <- dat[[2]]

X <- X- rowMeans (X)

XX <- (1/ncol(X))*tcrossprod(X)

dXX <- 1/sqrt(diag(XX)+0.001*as.vector (rep(1,nrow(X))))
X <- dXX*X

resToy <- fabiasp(X,200,0.6,1.0,13)

rToy <- extract_plot(X,resToy$L,resToy$Z,"ti=FABIASP",6Y=Y)

data(Breast_A)

X <- as.matrix(XBreast)

X <- X- rowMeans (X)

XX <- (1/ncol(X))*tcrossprod (X)

dXX <- 1/sqrt(diag(XX)+0.001*as.vector(rep(1,nrow(X))))
X <- dXX*X

resBreast <- fabiasp(X,200,0.4,1.0,5)

rBreast <- extract_plot(X,resBreast$L,resBreast$Z,ti="FABIASP Breast cancer (Veer)")
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#sorting of predefined labels
CBreast/*J,rBreast$pmZ

data(Multi_A)

X <- as.matrix(XMulti)

X <- X- rowMeans (X)

XX <- (1/ncol(X))*tcrossprod (X)

dXX <- 1/sqrt(diag(XX)+0.001*as.vector(rep(1,nrow(X))))

X <- dXX*X

resMulti <- fabiasp(X,200,0.4,1.0,5)

rMulti <- extract_plot(X,resMulti$L,resMulti$Z,"ti=FABIASP Multiple tissues(Su)")

#sorting of predefined labels
CMultiz*jrMulti$pmZ

data(DLBCL_B)

X <- as.matrix(XDLBCL)

X <- X- rowMeans (X)

XX <- (1/ncol(X))*tcrossprod(X)

dXX <- 1/sqrt(diag(XX)+0.001*as.vector (rep(1,nrow(X))))
X <- dXX*X

resDLBCL <- fabiasp(X,200,0.6,1.0,5)

rDLBCL <- extract_plot(X,resDLBCL$L,resDLBCL$Z,ti="FABIASP Lymphoma(Rosenwald)")
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#sorting of predefined labels
CDLBCL/*7rDLBCL$pmZ

A.9 make_fabi_data

Generation of bicluster data.

1. Usage: make_fabi_data(n,l,p,f1,f2,0f1,0f2,sd_noise,sd_z_noise, mean_z,sd_z,sd_l_noi
2. Arguments:

e n. number of observations.

e |: number of samples.

e p: number of biclusters.

e fl: [/ f1 max. additional samples are active in a bicluster.

e f2: n/f2 max. additional observations that form a pattern in a bicluster.
e ofl: minimal active samples in a bicluster.

e of2: menial observations that form a pattern in a bicluster.

e sd_noise: Gaussian zero mean noise std on data matrix.

e sd_z noise: Gaussian zero mean noise std for deactivated hidden factors.
e mean_z: Gaussian mean for activated factors.

e sd_z: Gaussian std for activated factors.

e sd_l noise: Gaussian zero mean noise std if no observation patterns are present.
e mean_l: Gaussian mean for observation patterns.

e sd_l: Gaussian std for observation patterns.
3. Return values:

e X: the noisy data X from R™*!.
e Y: the noise free data Y from R™*!.
e 7C: list where ith element gives samples beloning to ith bicluster.

e LC: list where ith element gives observations beloning to ith bicluster.
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Essentially the data generation model is the sum of outer products of sparse vectors.
The number of summands p is the number of biclusters.

X =AZ+ 7

Y = AZ

p
i=1

Here the A; are from R", the Z; from R', and both X and Y are from R™*/.

Sequentially A; are generated using n, £f2, of2, sd_1_noise, mean_1, sd_1. of2
gives the minimal observations participating in a bicluster to which between 0 and n/f2
observations are added, where the number is uniformly chosen. sd_1_noise gives the
noise of observations not participating in the bicluster. mean_1 and sd_1 determines the
Gaussian from which the values are drawn for the observations that participate in the
bicluster. The sign of the mean is randomly chosen for each component.

Sequentially Z; are generated using 1, 1, of1, sd_z_noise, mean_z, sd_z. of1 gives
the minimal samples participating in a bicluster to which between 0 and [/f1 samples
are added, where the number is uniformly chosen. sd_z_noise gives the noise of samples
not participating in the bicluster. mean_z and sd_z determines the Gaussian from which
the values are drawn for the samples that participate in the bicluster.

Y is the overall Gaussian zero mean noise generated by sd_noise.

Implementation in R .

EXAMPLE:

dat <- make_fabi_data(n = 1000,1= 100,p = 10,f1 = 5,f2 = 5,
of1 = 5,0f2 = 10,sd_noise = 3.0,sd_z_noise = 0.2,mean_z = 2.0,
sd_z = 1.0,sd_1_noise = 0.2,mean_1 = 3.0,sd_1 = 1.0)

X <- dat[[1]]
Y <- dat[[2]]

myImagePlot (Y)

x110)
myImagePlot (X)
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A.10 make_fabi_data_pos

Generation of bicluster data.
1. Usage: make_fabi_data_pos(n,l,p,f1,f2,0f1,0f2,sd_noise,sd_z_noise, mean_z,sd_z,sd_l
2. Arguments:

e n. number of observations.

e |: number of samples.

e p: number of biclusters.

e f1: [/f1 max. additional samples are active in a bicluster.

e f2: n/f2 max. additional observations that form a pattern in a bicluster.
e ofl: minimal active samples in a bicluster.

e of2: menial observations that form a pattern in a bicluster.

e sd_noise: Gaussian zero mean noise std on data matrix.

e sd_z noise: Gaussian zero mean noise std for deactivated hidden factors.
e mean_z: Gaussian mean for activated factors.

e sd_z: Gaussian std for activated factors.

e sd_l noise: Gaussian zero mean noise std if no observation patterns are present.
e mean_l: Gaussian mean for observation patterns.

e sd_l: Gaussian std for observation patterns.
3. Return values:

e X: the noisy data X from R™/.
e Y: the noise free data Y from R™*.
e 7C: list where ith element gives samples beloning to ith bicluster.

e LC: list where ith element gives observations beloning to ith bicluster.

Essentially the data generation model is the sum of outer products of sparse vectors.
The number of summands p is the number of biclusters.

X =AZ+ 7

Y = AZ



Here the A; are from R"”, the Z; from R', and both X and Y are from R™*!.

Sequentially A; are generated using n, £2, of2, sd_1_noise, mean_1, sd_1. of2
gives the minimal observations participating in a bicluster to which between 0 and n/f2
observations are added, where the number is uniformly chosen. sd_1_noise gives the
noise of observations not participating in the bicluster. mean_1 and sd_1 determines the
Gaussian from which the values are drawn for the observations that participate in the
bicluster. "POS”: The sign of the mean is fixed.

Sequentially Z; are generated using 1, 1, of1, sd_z_noise, mean_z, sd_z. of1 gives
the minimal samples participating in a bicluster to which between 0 and [/ f1 samples
are added, where the number is uniformly chosen. sd_z_noise gives the noise of samples
not participating in the bicluster. mean_z and sd_z determines the Gaussian from which
the values are drawn for the samples that participate in the bicluster.

Y is the overall Gaussian zero mean noise generated by sd_noise.

Implementation in R .

EXAMPLE:

dat <- make_fabi_data_pos(n 1000,1= 100,p = 10,f1 = 5,f2 = 5,
of1 = 5,0f2 = 10,sd_noise 3.0,sd_z_noise = 0.2,mean_z = 2.0,
sd_z = 1.0,sd_1_noise = 0.2,mean_1 = 3.0,sd_1 = 1.0)

X <- dat[[1]]
Y <- dat[[2]]

myImagePlot (Y)
x11(0)
myImagePlot (X)

A.11 make_fabi_data_blocks

Generation of bicluster data with bicluster blocks.

1. Usage: make_fabi_data_blocks(n,l,p,f1,f2,0f1,0f2,sd_noise,sd_z_noise,
mean_z,sd_z,sd_1l_noise,mean_1,sd_1)

2. Arguments:

e 1n: number of observations.
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l: number of samples.

e p: number of biclusters.

e fl: [/ f1 max. additional samples are active in a bicluster.

e 2: n/f2 max. additional observations that form a pattern in a bicluster.
e ofl: minimal active samples in a bicluster.

e of2: minimal observations that form a pattern in a bicluster.

e sd_noise: Gaussian zero mean noise std on data matrix.

e sd_z noise: Gaussian zero mean noise std for deactivated hidden factors.
e mean_z: Gaussian mean for activated factors.

e sd_z: Gaussian std for activated factors.

e sd_l noise: Gaussian zero mean noise std if no observation patterns are present.
e mean_l: Gaussian mean for observation patterns.

e sd_l: Gaussian std for observation patterns.
3. Return Values:

e X: the noisy data X from R™*/.
e Y: the noise free data Y from R™*!.
e 7C: list where ith element gives samples beloning to ith bicluster.

e LC: list where ith element gives observations beloning to ith bicluster.

Bicluster data is generated for visualization because the biclusters are now in block
format. That means observations and samples that belong to a bicluster are consecutive.
This allows visual inspection because the use can identify blocks and whether they have
been found or reconstructed.

Essentially the data generation model is the sum of outer products of sparse vectors.
The number of summands p is the number of biclusters.

X =AZ+ 7

Y = AZ

p
X =>AN(2Z)+7T
i=1
Here the A; are from R"”, the Z; from R', and both X and Y are from R™*!.
Sequentially A; are generated using n, £f2, of2, sd_1_noise, mean_1, sd_1. of2

gives the minimal observations participating in a bicluster to which between 0 and n/f2
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observations are added, where the number is uniformly chosen. sd_1_noise gives the
noise of observations not participating in the bicluster. mean_1 and sd_1 determines the
Gaussian from which the values are drawn for the observations that participate in the
bicluster. The sign of the mean is randomly chosen for each component.

Sequentially Z; are generated using 1, £1, of1, sd_z_noise, mean_z, sd_z. of1 gives
the minimal samples participating in a bicluster to which between 0 and [/f1 samples
are added, where the number is uniformly chosen. sd_z_noise gives the noise of samples
not participating in the bicluster. mean_z and sd_z determines the Gaussian from which
the values are drawn for the samples that participate in the bicluster.

Y is the overall Gaussian zero mean noise generated by sd_noise.

Implementation in R .

EXAMPLE:

dat <- make_fabi_data_blocks(n = 1000,1= 100,p = 10,f1 = 5,f2 = 5,
of1 = 5,0f2 = 10,sd_noise = 3.0,sd_z_noise = 0.2,mean_z = 2.0,
sd_z = 1.0,sd_1_noise = 0.2,mean_1 = 3.0,sd_1 = 1.0)

Y <- dat[[1]]
X <- dat[[2]]

myImagePlot (Y)
x110)
myImagePlot (X)

A.12 make_fabi_data_blocks_pos

Generation of bicluster data with bicluster blocks.

1. Usage: make_fabi_data_blocks_pos(n,l,p,f1,f2,0f1,0f2,sd_noise,sd_z_noise,
mean_z,sd_z,sd_1l_noise,mean_1,sd_1)

2. Arguments:

e 1n: number of observations.
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l: number of samples.

e p: number of biclusters.

e fl: [/ f1 max. additional samples are active in a bicluster.

e 2: n/f2 max. additional observations that form a pattern in a bicluster.
e ofl: minimal active samples in a bicluster.

e of2: minimal observations that form a pattern in a bicluster.

e sd_noise: Gaussian zero mean noise std on data matrix.

e sd_z noise: Gaussian zero mean noise std for deactivated hidden factors.
e mean_z: Gaussian mean for activated factors.

e sd_z: Gaussian std for activated factors.

e sd_l noise: Gaussian zero mean noise std if no observation patterns are present.
e mean_l: Gaussian mean for observation patterns.

e sd_l: Gaussian std for observation patterns.
3. Return Values:

e X: the noisy data X from R™*/.
e Y: the noise free data Y from R™*!.
e 7C: list where ith element gives samples beloning to ith bicluster.

e LC: list where ith element gives observations beloning to ith bicluster.

Bicluster data is generated for visualization because the biclusters are now in block
format. That means observations and samples that belong to a bicluster are consecutive.
This allows visual inspection because the use can identify blocks and whether they have
been found or reconstructed.

Essentially the data generation model is the sum of outer products of sparse vectors.
The number of summands p is the number of biclusters.

X =AZ+ 7

Y = AZ

p
X =>AN(2Z)+7T
i=1
Here the A; are from R"”, the Z; from R', and both X and Y are from R™*!.
Sequentially A; are generated using n, £f2, of2, sd_1_noise, mean_1, sd_1. of2

gives the minimal observations participating in a bicluster to which between 0 and n/f2
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observations are added, where the number is uniformly chosen. sd_1_noise gives the
noise of observations not participating in the bicluster. mean_1 and sd_1 determines the
Gaussian from which the values are drawn for the observations that participate in the
bicluster. "POS”: The sign of the mean is fixed.

Sequentially Z; are generated using 1, £1, of1, sd_z_noise, mean_z, sd_z. of1 gives
the minimal samples participating in a bicluster to which between 0 and [/f1 samples
are added, where the number is uniformly chosen. sd_z_noise gives the noise of samples
not participating in the bicluster. mean_z and sd_z determines the Gaussian from which
the values are drawn for the samples that participate in the bicluster.

Y is the overall Gaussian zero mean noise generated by sd_noise.

Implementation in R .

EXAMPLE:

dat <- make_fabi_data_blocks_pos(n = 1000,1= 100,p = 10,f1 = 5,f2 = 5,
of1 = 5,0f2 = 10,sd_noise = 3.0,sd_z_noise = 0.2,mean_z = 2.0,
sd_z = 1.0,sd_1_noise = 0.2,mean_1 = 3.0,sd_1 = 1.0)

Y <- dat[[1]]
X <- dat[[2]]

myImagePlot (Y)
x110)
myImagePlot (X)

A.13 mfsc

Sparse Matrix Factorization for bicluster analysis (MFSC).
1. Usage: mfsc(X,p,sL,sZ,cyc=100)
2. Arguments:

e X: the data matrix.

e p: number of hidden factor = number of biclusters.
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e sL: sparseness loadings.
e sZ: sparseness factors.

e cyc: maximal number of iterations.
3. Return Values:

o [: Left matrix: A
e 7Z: Right matrix: Z

Biclusters are found by sparse matrix factorization where both factors are sparse.
Essentially the model is the sum of outer products of sparse vectors. The number of
summands p is the number of biclusters.

X =AZ

X = iAi (Z)"
=1

No noise assumption: In contrast to factor analysis there is no noise assumption.

If the nonzero components of the sparse vectors are grouped together then the outer
product results in a matrix with a nonzero block and zeros elsewhere.

For a single data vector & that is

r = iAzzz = Az
i=1

Estimated Parameters: A and Z

Estimated Biclusters: A; (Z;)" Larges values give the bicluster (ideal the nonzero
values).

The model selection is performed by a constraint optimization according to [Hoyer
(2004). The Euclidean distance (the Frobenius norm) is minimized subject to sparseness
constraints:

min | X — A Z]|;
subject to ||[A|% = 1
subject to [|All;, = k¢
subject to || Z||7 = 1
subject to || Z|, = kz

Model selection is done by gradient descent on the Euclidean objective and there-
after projection of single vectors of A and single vectors of Z to fulfill the sparseness
constraints.
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The projection minimize the Euclidean distance to the original vector given an [;-
norm and an [y-norm.

The projection is a convex quadratic problem which is solved iteratively where at
each iteration at least one component is set to zero. Instead of the [;-norm a sparseness
measurement is used which relates the /;-norm to the ls-norm:

V= AL YT A
- vn — 1

sparseness(A;)

The code is implemented in R .

EXAMPLE:

dat <- make_fabi_data_blocks(n = 100,1= 50,p 3,f1 = 5,f2 = 5,
of1 = 5,0f2 = 10,sd_noise = 3.0,sd_z_noise 0.2,mean_z = 2.0,
sd_z = 1.0,sd_1_noise = 0.2,mean_1 = 3.0,sd_1 = 1.0)

X <- dat[[1]]

Y <- dat[[2]]

X <- abs(X)

XX <- tcrossprod(X)
dXX <- 1/sqrt(diag(XX))
X <- dXX*X

resEx <- nmfsc(as.matrix(abs(X)),3,0.7,0.7)

dat <- make_fabi_data_blocks(n = 1000,1= 100,p = 10,f1 = 5,f2 = 5,
of1 = 5,0f2 = 10,sd_noise = 3.0,8d_z_noise = 0.2,mean_z = 2.0,
sd_z = 1.0,sd_1_noise = 0.2,mean_1 = 3.0,sd_1 = 1.0)

X <- dat[[1]]
Y <- dat[[2]]
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X <- abs(X)

XX <- tcrossprod(X)
dXX <- 1/sqrt(diag(XX))
X <- dXX*X

resToy <- nmfsc(as.matrix(abs(X)),8,0.7,0.7)

rToy <- extract_plot(X,resToy$L,resToy$Z,ti="NMFSC",Y=Y)

A.14 mylmagePlot

Plotting of a matrix.

1. Usage: myImagePlot(x,xLabels=NULL, yLabels=NULL, zlim=NULL, title=NULL)
2. Arguments:

e x: the matrix.

xLabels: vector of strings to label the rows (default "rownames(x)”).

yLabels: vector of strings to label the columns (default “colnames(x)”).

zlim: vector containing a low and high value to use for the color scale.

title: title of the plot.

Plotting a table of numbers as an image using R .
The color scale is based on the highest and lowest values in the matrix.
Program has been obtained by http://www.phaget4.org/R/myImagePlot.R

EXAMPLE:

dat <- make_fabi_data_blocks(n = 1000,1= 100,p = 10,f1 = 5,f2 = 5,
ofl = 5,0f2 = 10,sd_noise = 3.0,sd_z_noise 0.2,mean_z = 2.0,
sd_z = 1.0,sd_1_noise = 0.2,mean_1 = 3.0,sd_1 = 1.0)

n s

X <- dat[[1]]
Y <- dat[[2]]
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X <- X- rowMeans (X)

XX <- (1/ncol(X))*tcrossprod(X)

dXX <- 1/sqrt(diag(XX)+0.001*as.vector (rep(1,nrow(X))))
X <- dXX*X

myImagePlot (X)

A.15 PlotBicluster

Plots a bicluster.

1. Usage: PlotBicluster(x,samples,observations,xLabels=NULL, yLabels=NULL,
z1im=NULL, title=NULL,x11b=TRUE)

2. Arguments:

e x: data matrix with columns as samples and rows as observations.
e samples: samples beloning to the bicluster.
e observations: observations beloning to the bicluster.

e xLabels: vector of strings to label the columns where "samples” are a subset
(default "colnames(x)”).

e yLabels: vector of strings to label the rows where "observations” are a subset
(default "rownames(x)”).

e zlim: vector containing a low and high value to use for the color scale.
e title: title of the plot.

e x11b: screen output or not.

Plots a bicluster.

Plotl: The data matrix is sorted such that the bicluster appear at the upper left
corner.

The bicluster is marked by a rectangle.

Plot2: Only the bicluster is presented.

Implementation in R .
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dat <- make_fabi_data_blocks(n = 100,1= 50,p 3,f1 = 5,f2 =5,
of1 = 5,0f2 = 10,sd_noise = 3.0,s8d_z_noise 0.2,mean_z = 2.0,
sd_z = 1.0,sd_1_noise = 0.2,mean_1 = 3.0,sd_1 = 1.0)

X <- dat[[1]]

Y <- dat[[2]]

X <- X- rowMeans (X)

XX <= (1/ncol(X))*tcrossprod (X)

dXX <- 1/sqrt(diag(XX)+0.001*as.vector(rep(1,nrow(X))))
X <- dXX*X

reskx <- fabia(X,20,0.1,1.0,1.0,3)

rEx <- extract_bic(resEx$L,resEx$Z,lapla=resEx$lapla,Psi=resEx$Psi)

PlotBicluster(X,unlist (rEx$bic[1,5]),unlist (rEx$bic[1,3]),x11b=FALSE)

dat <- make_fabi_data_blocks(n = 1000,1= 100,p = 10,f1 = 5,f2 = 5,
of1 = 5,0f2 = 10,sd_noise = 3.0,sd_z_noise = 0.2,mean_z = 2.0,
sd_z = 1.0,sd_1_noise = 0.2,mean_1 = 3.0,s8d_1 = 1.0)

X <- dat[[1]]

Y <- dat[[2]]

X <- X- rowMeans (X)

XX <- (1/ncol(X))*tcrossprod (X)

dXX <- 1/sqrt(diag(XX)+0.001*as.vector (rep(1,nrow(X))))
X <- dXX*X

resToy <- fabia(X,200,0.4,1.0,1.0,13)

rToy <- extract_bic(resToy$L,resToy$Z,lapla=resToy$lapla,Psi=resToy$Psi)

PlotBicluster (X,unlist (rToy$bic[1,5]),unlist (rToy$bic[1,3]))
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data (Breast_A)

X <- as.matrix(XBreast)

X <- X- rowMeans (X)

XX <- (1/ncol(X))*tcrossprod (X)

dXX <- 1/sqrt(diag(XX)+0.001*as.vector(rep(1,nrow(X))))
X <- dXX*X

resBreast <- fabia(X,200,0.1,1.0,1.0,5)
rBreast <- extract_bic(resBreast$L,resBreast$Z,lapla=resBreast$lapla,Psi=resBreast$Ps

PlotBicluster(X,unlist (rBreast$bic[1,5]) ,unlist (rBreast$bic[1,3]))

A.16 nmfdiv

Non-negative Matrix Factorization with Kullaback-Leibler divergence as objective.
1. Usage: nmfdiv(X,p,cyc=100)
2. Arguments:

e X: the data matrix.
e p: number of hidden factor.

e cyc: maximal number of iterations.
3. Return Values:

e L: Left matrix: A
e 7Z: Right matrix: Z



Estimated Parameters: A and Z
The model selection is performed according to |Lee and Seung (1999} 2001)).

objective:
Ay
ij K
update:
L — LAijzl Zji Vie | (A Z),
> i1 Zji
!
7. _ 7 21 Lie Vir / (A Z)jk
ji = Ziji ]
Zk:l Li
or in matrix notation with “x” and “/” as element-wise operators:

A=Ax((X/(AZ)tZ)) / rowSums(Z)
Z = Zx(t(A) (X /(A Z))) / colSums(A)

The code is implemented in R .

EXAMPLE:

dat <- make_fabi_data_blocks(n = 100,1= 50,p = 3,f1 = 5,f2 = 5,
of1 = 5,0f2 = 10,sd_noise = 3.0,sd_z_noise 0.2,mean_z = 2.0,
sd_z = 1.0,sd_1_noise = 0.2,mean_1 = 3.0,sd_1 = 1.0)

X <- dat[[1]]

Y <- dat[[2]]

X <- abs(X)

XX <- tcrossprod(X)
dXX <- 1/sqrt(diag(XX))
X <- dXX*X

resEx <- nmfdiv(as.matrix(abs(X)),3)
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dat <- make_fabi_data_blocks(n = 1000,1= 100,p = 10,f1 = 5,f2 = 5,
ofl = 5,0f2 = 10,sd_noise = 3.0,sd_z_noise = 0.2,mean_z = 2.0,
sd_z = 1.0,sd_1_noise = 0.2,mean_1 = 3.0,sd_1 = 1.0)

X <- dat[[1]]

Y <- dat[[2]]

X <- abs(X)

XX <- tcrossprod(X)
dXX <- 1/sqrt(diag(XX))
X <- dXX*X

resToy <- nmfdiv(as.matrix(abs(X)),8)

rToy <- extract_plot(X,resToy$L,resToy$Z,ti="NMFDIV",6Y=Y)

A.17 nmfeu

Non-negative Matrix Factorization with Euclidean distance as objective.
1. Usage: nmfeu(X,p,cyc=100)
2. Arguments:

e X: the data matrix.
e p: number of hidden factor.

e cyc: maximal number of iterations.
3. Return Values:

e L: Left matrix: A
e 7Z: Right matrix: Z



Estimated Parameters: A and Z
The model selection is performed according to Lee and Seung (2001); Paatero and
Tapper| (1997).

objective:
|A - B|l3 = ) (4; — By)?
]
update:
(X z7)
7. = 7. J?

Jt

g (AZ 2z7),

or in matrix notation with “«” and “/” as element-wise operators:
Z = Zx(t(A)X)/ (t(A)AZ)
A= Ax(X1t(2)/(AZHZ))

The code is implemented in R .

EXAMPLE:

dat <- make_fabi_data_blocks(n = 100,1= 50,p = 3,f1 = 5,f2 = 5,
of1 = 5,0f2 = 10,sd_noise = 3.0,sd_z_noise 0.2,mean_z = 2.0,
sd_z = 1.0,sd_1_noise = 0.2,mean_1 = 3.0,sd_1 = 1.0)

X <- dat[[1]]

Y <- dat[[2]]

X <- abs(X)

XX <- tcrossprod(X)
dXX <- 1/sqrt(diag(XX))
X <- dXX*X

resEx <- nmfeu(as.matrix(abs(X)),3)
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dat <- make_fabi_data_blocks(n = 1000,1= 100,p = 10,f1 = 5,f2 = 5,
ofl = 5,0f2 = 10,sd_noise = 3.0,sd_z_noise = 0.2,mean_z = 2.0,
sd_z = 1.0,sd_1_noise = 0.2,mean_1 = 3.0,sd_1 = 1.0)

X <- dat[[1]]

Y <- dat[[2]]

X <- abs(X)

XX <- tcrossprod(X)
dXX <- 1/sqrt(diag(XX))
X <- dXX*X

resToy <- nmfeu(as.matrix(abs(X)),8)

rToy <- extract_plot(X,resToy$L,resToy$Z,ti="NMFEU",Y=Y)

A.18 nmfsc

Non-negative Sparse Matrix Factorization with sparseness constraints.

1. Usage: nmfsc(X,p,sL,sZ,cyc=100)
2. Arguments:

e X: the data matrix.

e p: number of hidden factor = number of biclusters.
e sL: sparseness loadings.

e sZ: sparseness factors.

e cyc: maximal number of iterations.
3. Return Values:

e L: Left matrix: A
e 7Z: Right matrix: Z
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Essentially the model is the sum of outer products of sparse vectors.

X =AZ

i=1

If the nonzero components of the sparse vectors are grouped together then the outer
product results in a matrix with a nonzero block and zeros elsewhere.
For a single data vector & that is

i=1

Estimated Parameters: A and Z

Estimated Biclusters: A; (Z;)" Larges values give the bicluster (ideal the nonzero
values).

The model selection is performed by a constraint optimization according to [Hoyer
(2004). The Euclidean distance (the Frobenius norm) is minimized subject to sparseness
and non-negativity constraints:

. 2
min |l — A Z]|

subject to ||[A||% = 1
subject to [|All; = kg
subject to A > 0
subject to || Z||3 = 1
subject to || Z||, = kz
subject to Z > 0

Model selection is done by gradient descent on the Fuclidean objective and thereafter
projection of single vectors of A and single vectors of Z to fulfill the sparseness and non-
negativity constraints.

The projection minimize the Euclidean distance to the original vector given an [;-
norm and an ls-norm and enforcing non-negativity.

The projection is a convex quadratic problem which is solved iteratively where at
each iteration at least one component is set to zero. Instead of the [;-norm a sparseness
measurement is used which relates the [;-norm to the ly-norm:

. \/_ - Z?:l |Aij| / Z?:l Az?j
= \/ﬁ —

sparseness(A;)
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The code is implemented in R .

EXAMPLE

dat <- make_fabi_data_blocks(n = 100,1= 50,p = 3,f1 = 5,f2 = 5,
of1 = 5,0f2 = 10,sd_noise = 3.0,sd_z_noise 0.2,mean_z = 2.0,
sd_z = 1.0,sd_1_noise = 0.2,mean_1 = 3.0,sd_1 = 1.0)

X <- dat[[1]]

Y <- dat[[2]]

X <- abs(X)

XX <- tcrossprod(X)

dXX <- 1/sqrt(diag(XX))
X <- dXX*X

resEx <- nmfsc(as.matrix(abs(X)),3,0.7,0.7)

dat <- make_fabi_data_blocks(n = 1000,1= 100,p = 10,f1 = 5,f2 = 5,
of1 = 5,0f2 = 10,sd_noise = 3.0,8d_z_noise = 0.2,mean_z = 2.0,
sd_z = 1.0,sd_1_noise = 0.2,mean_1 = 3.0,sd_1 = 1.0)

X <- dat[[1]]

Y <- dat[[2]]

X <- abs(X)

XX <- tcrossprod(X)

dXX <- 1/sqrt(diag(XX))
X <- dXX*X

resToy <- nmfsc(as.matrix(abs(X)),8,0.7,0.7)
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rToy <- extract_plot(X,resToy$L,resToy$Z,ti="NMFSC",Y=Y)

A.19 nprojfunc

Projection of a vector to a sparse non-negative vector with given sparseness and given
{5-norm.

1. Usage: nprojfunc(s, k1, k2)
2. Arguments:

e s: data vector.
e k1: sparseness, [ norm constraint.

e k2: [, norm constraint.
3. Return Values:

e Vv: non-negative sparse projected vector.

The projection minimize the Euclidean distance to the original vector given an [;-
norm and an l,-norm and enforcing non-negativity.

The projection is a convex quadratic problem which is solved iteratively where at
each iteration at least one component is set to zero.

In the applications, instead of the /;-norm a sparseness measurement is used which
relates the [;-norm to the l>-norm:

_Vn = Yl XY
- =

sparseness(v)

The code is implemented in R .

EXAMPLE:

size <- 30
sparseness <- 0.7

s <- as.vector(rnorm(size))
sp <- sqrt(1.0*size)-(sqrt(1.0*size)-1.0)*sparseness
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ss <- nprojfunc(s,kl=sp,k2=1)

SS

A.20 projfunc

Projection of a vector to a sparse vector with given sparseness and given [o-norm.

1. Usage: projfunc(s, k1, k2)
2. Arguments:

e s: data vector.
e kl: sparseness, [; norm constraint.

e k2: /5 norm constraint.
3. Return Values:

e v: sparse projected vector.

The projection is done according to Hoyer| (2004): given an /;-norm and an ly-norm
minimize the Euclidean distance to the original vector. The projection is a convex
quadratic problem which is solved iteratively where at each iteration at least one com-
ponent is set to zero.

In the applications, instead of the [;-norm a sparseness measurement is used which
relates the [;-norm to the l,-norm:

_ V= Yyl ) Yy
- =

sparseness(v)

The code is implemented in R .

EXAMPLE:

size <- 30
sparseness <- 0.7
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s <- as.vector(rnorm(size))
sp <- sqrt(1.0#*size)-(sqrt(1.0*size)-1.0)*sparseness

ss <- projfunc(s,kl=sp,k2=1)

SS

B Data Sets

B.1 Breast_A

Microarray data set of van’t Veer breast cancer.

Microarray data from Broad Institute “Cancer Program Data Sets” which was pro-
duced by van’t Veer et al. (2002) (http://www.broadinstitute.org/cgi-bin/cancer/
datasets.cgi) Array S54 was removed because it is an outlier.

Goal was to find a gene signature to predict the outcome of a cancer therapy that is
to predict whether metastasis will occur. A 70 gene signature has been discovered.

Here we want to find subclasses in the data set.

Hoshida et al. (2007) found 3 subclasses and verified that 50/61 cases from class 1
and 2 were ER positive and only in 3/36 from class 3.

XBreast is the data set with 97 samples and 1213 genes, CBreast give the three
subclasses from [Hoshida et al.| (2007).

B.2 DLBCL_B

Microarray data set of Rosenwald diffuse large-B-cell lymphoma.

Microarray data from Broad Institute “Cancer Program Data Sets” which was pro-
duced by|Rosenwald et al.| (2002) (http://www.broadinstitute.org/cgi-bin/cancer/
datasets.cgi)

Goal was to predict the survival after chemotherapy

Hoshida et al.| (2007) divided the data set into three classes:

e OxPhos: oxidative phosphorylation
e BCR: B-cell response
e HR: host response

We want to identify these subclasses.

The data has 180 samples and 661 probe sets (genes).

XDLBCL is the data set with 180 samples and 661 genes, CDLBCL give the three sub-
classes from Hoshida et al.| (2007)).
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B.3 Multi_A

Microarray data set of Su on different mammalian tissue types.

Microarray data from Broad Institute “Cancer Program Data Sets” which was pro-
duced by Su et al.|(2002) (http://www.broadinstitute.org/cgi-bin/cancer/dataset
cgi))

Gene expression from human and mouse samples across a diverse array of tissues,
organs, and cell lines have been profiled. The goal was to have a reference for the normal
mammalian transcriptome.

Here we want to identify the subclasses which correspond to the tissue types.

The data has 102 samples and 5565 probe sets (genes).

XMulti is the data set with 102 samples and 5565 genes, CMulti give the four sub-
classes corresponding to the tissue types.
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