panelcn.MOPS: CNV detection in targeted NGS panel data for clinical diagnostics

Gundula Povysil¹, A. Tzika², J. Vogt², V. Haunschmid¹, L. Messiaen³, J. Zschocke², G. Klambauer¹, S. Hochreiter¹, K. Wimmer² ¹ Institute of Bioinformatics, Johannes Kepler University Linz, Austria, ² Division of Human Genetics, Medical University Innsbruck, Austria, ³ Medical Genomics Laboratory, Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama, USA

Summary

Targeted next-generation-sequencing (NGS) panels have largely replaced Sanger sequencing in clinical diagnostics. Enrichment-based targeted NGS panels allow for the detection of copy-number-variations (CNVs) in addition to single-nucleotide-variants and small insertions/deletions. However, existing computational CNV detection methods have shortcomings regarding accuracy, quality control, incidental findings, and user-friendliness.

To solve these problems we developed panelcn.MOPS, a novel pipeline for detecting CNVs in targeted NGS panel data. Using NGS panel data from 170 samples, we compared panelcn.MOPS with 5 state-of-the-art methods.

We present the first thorough comparison of CNV detection methods for targeted NGS panel data. Most methods achieved comparably high sensitivity and/or specificity, but panelcn.MOPS led the field with a sensitivity and specificity of 100%. panelcn.MOPS reliably detected CNVs ranging in size from 20 nucleotides (only part of a region-of-interest - ROI), to whole genes, which may comprise all ROIs investigated in a given sample. The latter is enabled by analyzing reads from all ROIs of the panel, but presenting results exclusively for user-selected genes, thus, avoiding incidental findings. Additionally, panelcn.MOPS offers quality control criteria not only for samples but also for individual ROIs within a sample which increases the confidence in called CNVs.

Samples								
		Training Set		Test Set		Total		
Copy Numbe	er 2 (normal)	13		110		123		
Multi-Exor	Deletions	5		12		16		
Multi-Exon I	Duplications	2		1		3		
Single-Exo	n Deletions			12		13		
Single-Exon Duplications				2		2		
Whole-Gene Deletions		4		1		5		
Sub	Subtotal		24 138			162		
			Samples ex	cluded fro	om calculat	ions		
Deletions < 1 ROI		1		2		3		
Duplications < 1 ROI			2			2		
De novo Alu Insertions				3	-		3	
Total		25		145		170		
Results: Test Set								
panelcn.MOPS ExomeDepth CoNVaDING VisCap NextGENe SeqNext op						optimal		
TP	91	90	90	91	91	90	91	
TN	7889	8203	7705	7279	8141	7954	8222	
FP	0	19	1	12	19	0	0	
FN	0	1	1	0	0	1	0	
No-Call	333	0	516	931	62	268	0	
Total	8313	8313	8313	8313	8313	8313	8313	
Sensitivity	1.0000	0.9890	0.9890	1.0000	1.0000	0.9890	1.0000	
Specificity	1.0000	0.9977	0.9999	0.9984	0.9977	1.0000	1.0000	
No-Call-Rate	0.0401	0.0000	0.0621	0.1120	0.0075	0.0322	0.0000	
numbers correspond to numbers of ROIs; no-call rate: number of ROIs with low-quality call divided by total number of ROIs								

panelcn.MOPS is freely available both as an R package and as standalone software with an intuitive graphical user interface (GUI). It can therefore readily be used by clinical geneticists without any programming experience or integrated into existing analysis pipelines. Taken together, panelcn.MOPS combines high sensitivity and specificity with user-friendliness rendering it highly suitable for routine clinical diagnostics.

Characteristics of cn.MOPS

Mixture Of PoissonS for discovering Copy Number variations:

- low FDR by local modeling across samples
- model decomposes read count variation into:
 - noise variation (Poisson)
 - copy number variation (mixture components)

Best performance on

- Whole-Genome Sequencing data (1000 Genomes) and
- Whole-Exome Sequencing data (intellectual disability, ASD, ...)

panelcn.MOPS Overview

• extension of cn.MOPS

Results

	panelcn.MOPS	ExomeDepth	CoNVaDING	VisCap	NextGENe	SeqNext
Sensitivity	+++	++	++	+++	+++	++
Specificity	+++	+	++	+	+	+++
No-Call-Rate	+	+++	+	-	++	+
Quality Filter	+++	+	+++	+	+	+++
CNVs < 1 ROI	++	++	+++	+++	*	**
Whole-Gene CNVs	+++	+++	++	+	-	-
Incidental Findings	+++	-	-	_	+	+
Runtime	+++	++	-	+	+	+
GUI	+++	-	-	_	++	+++
Non-Commercial	+++	+++	+++	+++	-	-

- adapted read counting
- 2 quality controls for samples
- 2 quality controls for ROIs
- selection of best control samples
- improved normalization
- increased sensitivity
- no segmentation
- binning option for large ROIs
- filter for displaying copy numbers (CNs) only for genes of interest
- **boxplots** of normalized read counts (RCs) for visual inspection

Read Counting	
Quality Control 1	for <i>n</i> test samples
Control Sample Selection	for each test sample separately
Normalization	
Quality Control 2	
CN Detection	for each ROI separately
CNVDetectionResult	
	only for genes of interest

panelcn.MOPS Details

Read counting: all reads that overlap respective window (ROI) counted

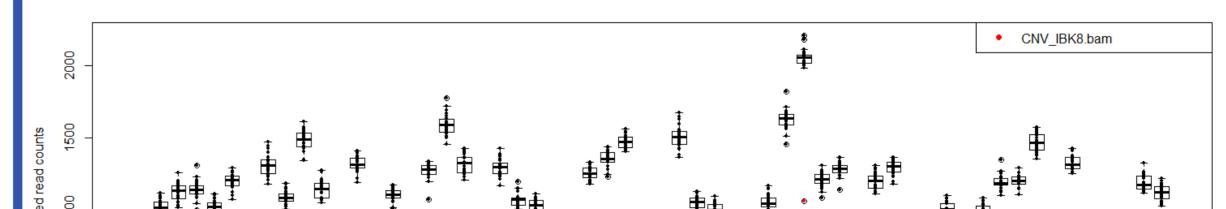
Quality control:

ROIs with low median RC across all samples excluded

** all detected by variant calling routine of SeqNext

Graphical User Interface

CNV Detective powered by panelcn.r


CNV Detec

Add Test Sa

Genes of Inter

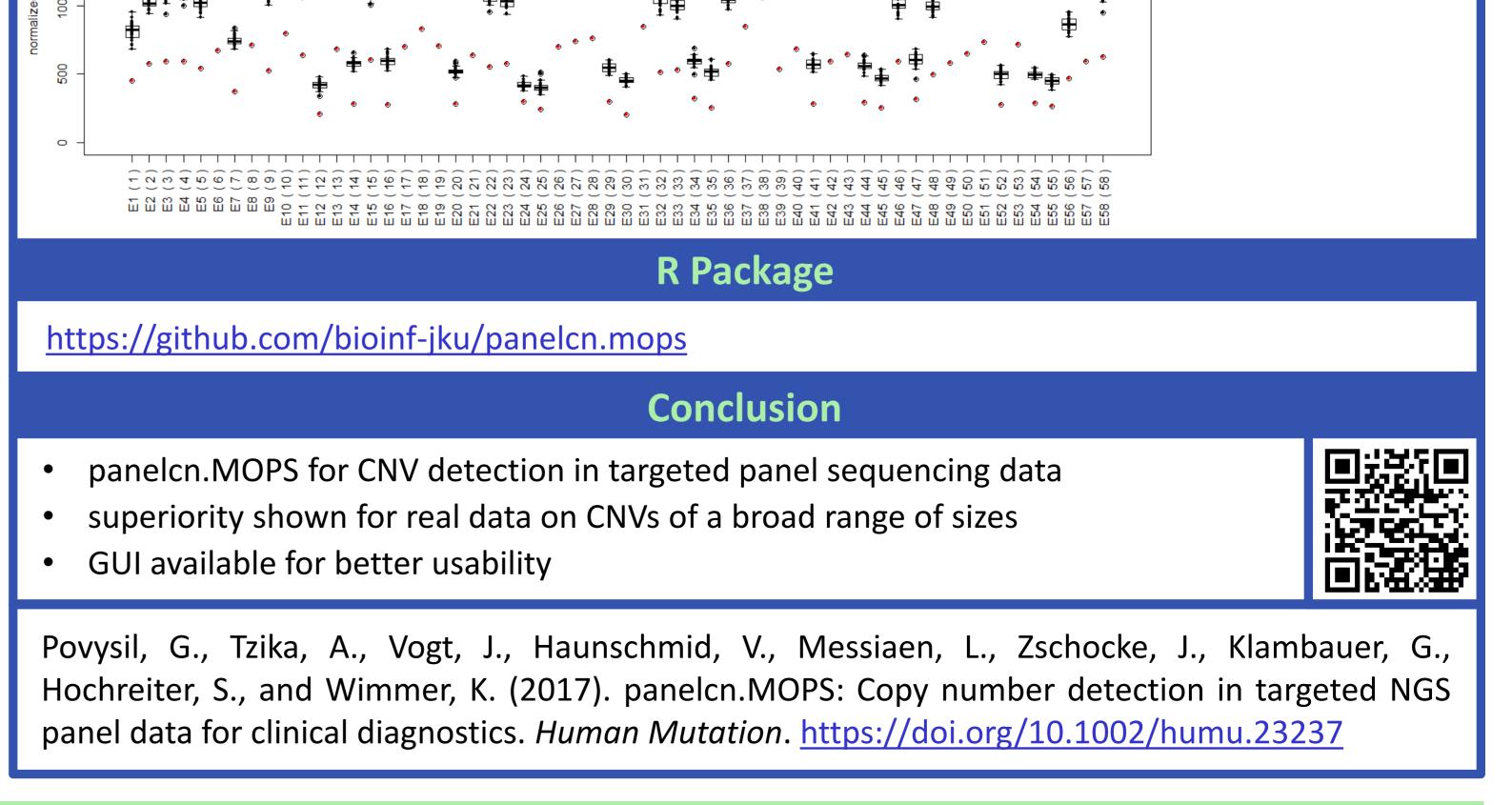
- standalone app
- based on R shiny
- simple installer for Windows
- quality control for samples and ROIs
- option for building up control base
- reports only CNs for genes of interest
- results exportable as .csv
- read count plots for genes of interest
- option for binning (larger) ROIs

ve powered	by panelcn.mops					
	Samples Show Control Base	Create Control Base Results	Plot Edit BED File App	settings		
se	Show CN2			Export as CS	V	
	Show 25 • entries			Search:		
	Sample 🍦 Chr 🔶 Gene	Exon	Start End 👙	RC medRC 👙	RC.norm medRC.norm 🤅	lowQual 🔶 CN 🖕
es	SAMPLE1.bam 11 ATM	ATM.E52.chr11.108202575.108202795	108202575 108202795	637 616	484 473	CN2
	SAMPLE1.bam 11 ATM	ATM.E53.chr11.108203458.108203658	108203458 108203658	566 506	430 413	CN2
	SAMPLE1.bam 11 ATM	ATM.E54.chr11.108204582.108204726	108204582 108204726	643 545	489 450	CN2
-	SAMPLE1.bam 11 ATM	ATM.E55.chr11.108205665.108205867	108205665 108205867	821 778	624 665	CN2
Selected	SAMPLE1.bam 11 ATM	ATM.E56.chr11.108206541.108206719	108206541 108206719	524 524	398 421	CN2
ATM	SAMPLE1.bam 11 ATM	ATM.E57.chr11.108213918.108214129	108213918 108214129	814 680	619 572	CN2
	SAMPLE1.bam 11 ATM	ATM.E58.chr11.108216439.108216666	108216439 108216666	969 855	736 702	CN2
	SAMPLE1.bam 11 ATM	ATM.E59.chr11.108217975.108218123	108217975 108218123	375 310	285 276	CN2
	SAMPLE1.bam 11 ATM	ATM.E60.chr11.108224462.108224638	108224462 108224638	828 773	629 629	CN2
-	SAMPLE1.bam 11 ATM	ATM.E61.chr11.108225507.108225632	108225507 108225632	701 596	533 533	CN2
	SAMPLE1.bam 11 ATM	ATM.E62.chr11.108235778.108235976	108235778 108235976	1373 839	1043 707	CN3
	SAMPLE1.bam 11 ATM	ATM.E63.chr11.108236021.108236266	108236021 108236266	1727 1179	1312 934	CN3
	Showing 51 to 62 of 62 entries			Previous	1 2 3 Next	

NF1

- ROIs with high variation of RCs across all samples marked as "low quality"
- samples with low median RC across all ROIs excluded from controls, warning for test samples
- samples with high variation in ratios between normalized RCs of sample compared to median across all samples excluded from controls, warning for test samples

Control sample selection: control samples with high correlation of RCs to the RCs of the test sample, ROIs of gene(s) of interest for specific test sample excluded for calculating correlation


Competing Methods

ExomeDepth (Plagnol et al. 2012) CoNVaDING (Johansson et al. 2016) VisCap (Pugh et al. 2016) NextGENe (Softgenetics): commercial tool with GUI SeqNext (JSI medical systems): commercial tool with GUI

Data Generation

• TruSight[®] Cancer Panel

- 94 genes associated with cancer predisposition (e.g.: NF1/2, BRCA1/2, APC, MSH2/6, MLH1, PMS2)
- Illumina MiSeq[®] \rightarrow 300 cycles with paired end reads

