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Chapter 1

Introduction

1.1 Machine Learning Introduction

This course is part of the curriculum of the master in computer science (in particular the majors
“Computational Engineering” and “Intelligent Information Systems”) and part of the master in
bioinformatics at the Johannes Kepler University Linz.

Machine learning is currently a major research topic at companies like Google, Microsoft,
Amazon, Facebook, AltaVista, Zalando, and many more. Applications are found in computer
vision (image recognition), speech recognition, recommender systems, analysis of Big Data, in-
formation retrieval. Companies that try to mine the world wide web are offering search engines,
social networks, videos, music, information, or connecting people use machine learning tech-
niques. Machine learning methods are used to classify and label web pages, images, videos, and
sound recordings in web data. They can find specific objects in images and detect a particular mu-
sic style if only given the raw data. Therefore Google, Microsoft, Facebook are highly interested
in machine learning methods. Machine learning methods attracted the interest of companies of-
fering products via the web. These methods are able to identify groups of similar users, to predict
future behavior of customers, and can give recommendation of products in which customers will
be interested based previous costumer data.

Machine learning has major applications in biology and medicine. Modern measurement tech-
niques in both biology and medicine create a huge demand for new machine learning approaches.
One such technique is the measurement of mRNA concentrations with microarrays and sequenc-
ing techniques. The measurement data are first preprocessed, then genes of interest are identified,
and finally predictions made. Further machine learning methods are used to detect alternative
splicing, nucleosome positions, gene regulation, etc. Alongside neural networks the most promi-
nent machine learning techniques relate to support vector machines, kernel approaches, projection
method and probabilistic models like latent variable models. These methods provide noise re-
duction, feature selection, structure extraction, classification / regression, and assist modeling.
In the biomedical context, machine learning algorithms categorize the disease subtype or predict
treatment outcomes based on DNA characteristics, gene expression profiles. Machine learning
approaches classify novel protein sequences into structural or functional classes. For analyzing
data of association studies, machine learning methods extract new dependencies between DNA
markers (SNP - single nucleotide polymorphisms, SNV - single nucleotide variants, CNV - copy
number variations) and diseases (Alzheimer, Parkinson, cancer, multiples sclerosis, schizophrenia
or alcohol dependence).

The machine learning course series comprises:



2 Chapter 1. Introduction

= “Basic Methods of Data Analysis™: this course gives a smooth introduction to machine
learning with examples in R ; it covers summary statistics (mean, variance), data sum-
mary plots (boxplot, violin plot, scatter plot), principal component analysis, independent
component analysis, multidimensional scaling (Kruskal’s or Sammon’s map), locally lin-
ear embedding, Isomap, hierarchical clustering, mixture models, k-means, similarity based
clustering (affinity propagation), biclustering

m “Machine Learning: Supervised Methods™: classification and regression techniques, time
series prediction, kernel methods, support vector machines, neural networks, deep learning,
deep neural and belief networks, ARMA and ARIMA models, recurrent neural networks,
LSTM

m “Machine Learning: Unsupervised Methods”: maximum likelihood estimation, maximum
a posterior estimation, maximum entropy, expectation maximization, principal component
analysis, statistical independence, independent component analysis, factor analysis, mix-
ture models, sparse codes, population codes, kernel PCA, hidden Markov models (factorial
HMMs and input-output HMMs), Markov networks and random fields, clustering, biclus-
tering, restricted Boltzmann machines, auto-associators, unsupervised deep neural networks

m “Theoretical Concepts of Machine Learning”: estimation theory (unbiased and efficient
estimator, Cramer-Rao lower bound, Fisher information matrix), consistent estimator, com-
plexity of model classes (VC-dimension, growth, annealed entropy), bounds on the gen-
eralization error, Vapnik and worst case bounds on the generalization error, optimization
(gradient based methods and convex optimization), Bayes theory (posterior estimation, er-
ror bounds, hyperparameter optimization, evidence framework), theory on linear functions
(statistical tests, intervals, ANOVA, generalized linear functions, mixed models)

In this course the most prominent machine learning techniques are introduced and their math-
ematical basis and derivatives are explained. If the student understands these techniques, then the
student can select the methods which best fit to the problem at hand, the student is able to optimize
the parameter settings for the methods, the student can adapt and improve the machine learning
methods, and the student can develop new machine learning methods.

Most importantly, students should learn how to chose appropriate methods from a given pool
of approaches for solving a specific problem. To this end, they must understand and evaluate the
different approaches, know their advantages and disadvantages as well as where to obtain and how
to use them. In a step further, the students should be able to adapt standard algorithms for their own
purposes or to modify those algorithms for particular applications with certain prior knowledge or
problem-specific constraints.

1.2 Course Specific Introduction

In this course the theoretical basics of machine learning methods are taught. To motivate the
maximum likelihood estimator, first concepts from statistics and estimation theory are introduced.
Estimators are characterized by whether they are biased or unbiased, whether they are efficient or
not (relies on Cramer-Rao lower bound and the Fisher information matrix), or whether they are
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consistent or not. The latter is important for machine learning because one wants to known if more
data lead to better results and how many more data items lead to which improvement.

We present basics of the statistical learning theory like the empirical risk minimization. In
the framework of statistical learning theory the complexity of model classes will be defined (VC-
dimension, growth, annealed entropy). These complexity concepts are used to derive bounds on
the generalization error like Vapnik, Chernoff, covering numbers, and other bounds. Using these
bounds, structural risk minimization will be introduced. Further topics are optimization, where
gradient-based and convex optimization is covered. Then the Bayes framework is introduced
which allows to estimate the posterior, derive error bounds for model predictions, optimize hy-
perparameters e.g. by integrating out the posterior or by the evidence framework. The final part
focuses on the theory of linear functions including statistical tests, parameter interval estimation,
and ANOVA models. The linear functions are extended to generalized linear functions and to
mixed models.

We define quality criteria for selected models in order to pin down a goal for model selection,
i.e. learning. In most cases the quality criterion is not computable and we have to find approxima-
tions to it. The definition of the quality criterion first focuses on supervised learning.

For unsupervised learning we introduce maximum likelihood as quality criterion. In this con-
text we introduce concepts like bias and variance, efficient estimator, and the Fisher information
matrix. Next we extend maximum likelihood to supervised learning. Measurement noise deter-
mines the error model which in turn determines the quality criterion of the supervised approach.
Here also classification methods with binary output can be treated.

A central question in machine learning is: Does learning from examples help in the future?
Obviously, learning helps humans to master the environment they live in. But what is the mathe-
matical reason for that? It might be that tasks in the future are unique and nothing from the past
helps to solve them. Future examples may be different from examples we have already seen.

Learning on the training data is called “empirical risk minimization” (ERM) in statistical learn-
ing theory. ERM results that if the complexity is restricted and the dynamics of the environment
does not change, learning helps. “Learning helps” means that with increasing number of training
examples the selected model converges to the best model for all future data. Under mild conditions
the convergence is uniform and even fast, i.e. exponentially. These theoretical theorems found the
idea of learning from data because with finite many training examples a model can be selected
which is close to the optimal model for future data. How close is governed by the number of
training examples, the complexity of the task including noise, the complexity of the model, and
the model class.

To measure the complexity of the model we will introduce the VC-dimension (Vapnik-Chervo-
nenkis). Using model complexity and the model quality on the training set, theoretical bounds on
the generalization error, i.e. the performance on future data, will be derived. From these bounds
the principle of “structural risk minimization” will be derived to optimize the generalization error
through training.

We introduce basic techniques for minimizing the error that is techniques for model selection
for a parameterized model class. On-line methods are treated, i.e. methods which do not require a
training set but attempt at improving the model (selecting a better model) using only one example
at a certain time point.
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Chapter 2

Generalization Error

In this chapter we want to define quality criteria for selected models in order to pin down a goal
for model selection, i.e. learning. In most cases the quality criterion is not computable and we
have to find approximations to it. The definition of the quality criterion first focuses on supervised
learning.

In supervised learning the most widely used quality criteria is the performance on future data.
Performance on future data is in general expressed via the generalization error, the expected error
on future data.

2.1 Model Quality Criteria

Learning in machine learning is equivalent to model selection. A model from a set of possible
models is chosen and will be used to handle future data.

But what is the best model? We need a quality criterion in order to choose a model. The quality
criterion should be such that future data is optimally processed with the model. That would be the
most common criterion.

However in some cases the user is not interested in future data but only wants to visualize
the current data or extract structures from the current data, where these structures are not used for
future data but to analyze the current data. Topics which are related to the later criteria are data
visualization, modeling, data compression. But in many cases the model with best visualization,
best world explanation, or highest compression rate is the model where rules derived on a subset
of the data can be generalized to the whole data set. Here the rest of the data can be interpreted as
future data. Another point of view may be to assume that future data is identical with the training
set. These considerations allow also to treat the later criteria also with the former criteria.

Some machine learning approaches like Kohonen networks don’t possess a quality criterion
as a single scalar value but minimize a potential function. Problem is that different models cannot
be compared. Some ML approaches are known to converge during learning to the model which
really produces the data if the data generating model is in the model class. But these approaches
cannot supply a quality criterion and the quality of the current model is unknown.

The performance on future data will serve as our quality criterion which possesses the advan-
tages of being able to compare models and to know the quality during learning which gives in turn
a hint when to stop learning.
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For supervised data the performance on future data can be measured directly, e.g. for clas-
sification the rate of misclassifications or for regression the distance between model output, the
prediction, and the correct value observed in future.

For unsupervised data the quality criterion is not as obvious. The criterion cannot be broken
down to single examples as in the supervised case but must include all possible data with its
probability for being produced by the data generation process. Typical, quality measures are
the likelihood of the data being produced by the model, the ratio of between and within cluster
distances in case of clustering, the independence of the components after data projection in case
of ICA, the information content of the projected data measured as non-Gaussianity in case of
projection pursuit, expected reconstruction error in case of a subset of PCA components or other
projection methods.

2.2 Introducing the Generalization Error

In this section we define the performance of a model on future data for the supervised case. The
performance of a model on future data is called generalization error. For the supervised case an
error for each example can be defined and then averaged over all possible examples. The error on
one example is called loss but also error. The expected loss is called risk.

2.2.1 Definition of the Generalization Error / Risk

We assume that objects x € X from an object set X’ are represented or described by feature
vectors x € R,

The training set consists of [ objects X = { xzt .. azl} with a characterization ° € R like a
label or an associated value which must be predicted for future objects. For simplicity we assume
that y* is a scalar, the so-called targer. For simplicity we will write z = (x,y)and Z = X xR.

The training data is {z',...,2'} (z' = (x',y’)), where we will later use the matrix of

T T ..
feature vectors X = (ml, .. ,:cl) , the vector of labels y = (yl, ... ,yl) , and the training
data matrix Z = (zl, o2t ) (“ T means the transposed of a matrix and here it makes a column

vector out of a row vector).

In order to compute the performance on the future data we need to know the future data and
need a quality measure for the deviation of the prediction from the true value, i.e. a loss function.

The future data is not known, therefore, we need at least the probability that a certain data
point is observed in the future. The data generation process has a density p (z) at z over its data
space. For finite discrete data p (z) is the probability of the data generating process to produce z.
p (2) is the data probability.

The loss function is a function of the target and the model prediction. The model prediction is
given by a function g() and if the models are parameterized by a parameter vector w the model
prediction is a parameterized function g(x;w). Therefore the loss function is L(y, g(x; w)).
Typical loss functions are the quadratic loss L(y, g(z;w)) = (y — g(a;w))? or the zero-one
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loss function
0 for y = g(z;w)

L(y, g(x;w)) = { 1 for y # g(x;w)

2.1

Now we can define the generalization error which is the expected loss on future data, also
called risk R (a functional, i.e. a operator which maps functions to scalars):

R(g(sw)) = E; (L(y, g(z;w))) - (2.2)
The risk for the quadratic loss is called mean squared error.
Riglsw) = [ Lgl@w) p(2) dz @3)

In many cases we assume that y is a function of x, the farget function f(x), which is disturbed
by noise

y = f(x) + €, (2.4)
where € is a noise term drawn from a certain distribution py, (€), thus
pylz) = puly — flz)). (2.5)
Here the probabilities can be rewritten as
p(z) = p(@) ply|z) = p(x) puly — f(2)). (2.6)
Now the risk can be computed as
RigGw) = [ Lina(@iw)) p(@) puly — (@) d= = @)

/ p () / Ly, g(@:w)) paly — f(x)) dy de ,
X R
where
R(g(a;w)) = Ey (L(y, gla:w))) = 2.8)
/R Ly, g(@:w)) puly — f()) dy.

The noise-free case is y = f(x), where p, = ¢ can be viewed as a Dirac delta-distribution:

/Rh(a:)é(ac)da: = h(0) (2.9)
therefore
R(g(z;w)) = L(f(x),g9(w;w)) = Ly, g(w; w)) (2.10)
and eq. (2.3) simplifies to
Rigtw) = [ pl@)L(f(@).glaiw)ia. @1

Because we do not know p (z) the risk cannot be computed; especially we do not know p(y |
x). In practical applications we have to approximate the risk.

To be more precise w = w (Z), i.e. the parameters depend on the training set.
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2.2.2 Empirical Estimation of the Generalization Error

Here we describe some methods how to estimate the risk (generalization error) for a certain model.

2.2.2.1 Test Set

We assume that data points z = (x,y) are iid (independent identical distributed) and, therefore
also L(y, g(x; w)), and E (|L(y, g(x; w))|) < oo.

The risk is an expectation of the loss function:

R(g(;w)) = E; (L(y, g(z; w))) , (2.12)

therefore this expectation can be approximated using the (strong) law of large numbers:

1 l+m ' '
R(g(sw)) ~ — > L(y,g(ahw) , (2.13)
i=l+1
where the set of m elements {2/, ..., 2/"™} is called fest set.

Disadvantage of the test set method is, that the test set cannot be used for learning because w
is selected using the training set and, therefore, L(y, g(x;w)) is not iid for training data points.
Intuitively, if the loss is low for some training data points then we will expect that the loss will
also be low for the following training data points.

2.2.2.2 Cross-Validation

If we have only few data points available we want to use them all for learning and not for estimating
the performance via a test set. But we want to estimate the performance for our final model.

We can divide the available data multiple times into training data and test data and average
over the result. Problem here is that the test data is overlapping and we estimate with dependent
test data points.

To avoid overlapping test data points we divide the training set into n parts (see Fig. 2.1).
Then we make n runs where for the ith run part no. ¢ is used for testing and the remaining parts
for training (see Fig. 2.2). That procedure is called n-fold cross-validation. The cross-validation
risk Ry,_cy(Z) is the cumulative loss over all folds used for testing.

A special case of cross-validation is leave-one-out cross-validation (LOO CV) where n = [
and a fold contains only one element.

The cross-validation risk is a nearly (almost) unbiased estimate for the risk.

Unbiased means that the expected cross-validation error is equal the expected risk, where the
expectation is over training sets with / elements.

We will write Z; := Z as a variable for training sets with [ elements. The j fold of an n-fold
cross-validation is denoted by Z7 or le /n 1O include the number [ /n of elements of the fold. The
n-fold cross-validation risk is

Roo(2) = 250 5 (L(no(ww (202,)))) . e
j=1

= J
zEZl/n
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training set

/\

N
fold

Figure 2.1: Cross-validation: The data set is divided into 5 parts for 5-fold cross-validation —
each part is called fold.

AL

evaluation training

4\‘

/

training

AL

training evaluation

Figure 2.2: Cross-validation: For 5-fold cross-validation there are 5 iterations and in each iteration
a different fold is omitted and the remaining folds form the training set. After training the model
is tested on the omitted fold. The cumulative error on all folds is the cross-validation error.
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where w; is the model selected when removing the jth fold and

Rocv(Z) = % 3 (L (y,g(m;wj (Zl\le/n»)) (2.15)

J
zeZl/n

is the risk for the jth fold.

The statement that the “cross-validation estimate for the risk is almost unbiased” (Luntz and
Brailovsky) means

Bz yym (R(9 (5w (Zia1ym)))) = Bz (Ro-ev (Z1)) - (2.16)

The generalization error on training size [ without one fold [ /n, namely [ — [/n =[(1 — 1/n)
can be estimated by cross-validation on training data of size [ by n-fold cross-validation. For large
[ the training size [ or [(1—1/n) should lead similar results, that is the estimate is almost unbiased.

The following two equations will prove eq. (2.16).

The left hand side of eq. (2.16) can be rewritten as

Bz 1ym (B9 (w (Zia-1/m)))) = (2.17)
EZ1(171/n)UZ (L (y7g (w3w (Zl(l—l/n))))) =

n
EZl(l—l/n)EZl/n T Z (L (y,g(:B;’w(Zl(l_l/n)))))
zEZl/n

The second equations stems from the fact that the data points are iid, therefore E, (f(2z)) =
k ; k ‘
LY B (f(2) = Bz, (X0 1(2).
The right hand side of eq. (2.16) can be rewritten as
Ez (Rn-ov (Z1)) = (2.18)
1 n

Bz |- Y Z (L(y,g(m;wj (ZZ\sz/n>)>> =

I/n
kS (1o (e (20 2,))) | -
J=1 (@y)€z],

n
EZl(lﬂ/n)EZz/n T Z (L (y7g (az;'w (Zl(lfl/")))))
(mfy)ezl/n

The first equality comes from the fact that sum and integral are interchangeable. Therefore it does
not matter whether first the data is drawn and then the different folds are treated or the data is drawn
again for treating each fold. The second equality comes from the fact that E (Zl] /n) =E (Zl /n).

Therefore both sides of eq. (2.16) are equal.
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The term “almost” addresses the fact that the estimation is made with /(1 — 1/n) training data
using the risk and with [ training data using n-fold cross-validation.

However the cross-validation estimate has high variance. The high variance stems from the
fact that the training data is overlapping. Also test and training data are overlapping. Intuitively
speaking, if data points are drawn which make the task very complicated, then these data points
appear in many training sets and at least in one test set. These data points strongly increase the
estimate of the risk. The opposite is true for data points which make learning more easy. That
means single data points may strongly influence the estimate of the risk.

2.3 Minimal Risk for a Gaussian Classification Task

We will show an example for the optimal risk for a classification task.

We assume that we have a binary classification task where class y = 1 data points come from
a Gaussian and class y = —1 data points come from a different Gaussian.

Class y = 1 data points are drawn according to
pEly=1) < N(p1,%1) (2.19)
and Class y = —1 according to
p@ly=-1) oc N(p—1,31) (2.20)

where the Gaussian N (p, X) has density

1 1 T <1

p(z) = R E exp (—2 (x—p)” = (w—u)) : (2.21)
x is the d-dimensional feature vector, p is the mean vector, X is the d X d-dimensional covariance
matrix.

As depicted in Fig. 2.3, the linear transformation A leads to the Gaussian N (ATp,, ATY A).
All projections P of a Gaussian are Gaussian. A certain transformation A4,, = >~1/2 (“whiten-
ing”) leads to a Gaussian with the identity matrix as covariance matrix. On the other hand each
Gaussian with covariance matrix 3 can be obtained from a Gaussian with covariance matrix I by
the linear transformation 3'/2.

Affine transformation (translation and linear transformation) allow to interpret all Gaussians
as stemming from a Gaussian with zero mean and the identity as covariance matrix.

At a certain point x in the feature space the probability p(x,y = 1) of observing a point from
class y = 1 is the probability p(y = 1) of choosing class y = 1 multiplied by the Gaussian density
forclass y = 1

ple,y=1) = plxly=1)ply=1). (2.22)

Fig. 2.4 shows a two-dimensional classification task where the data for each class are drawn
from a Gaussian (black: class 1, red: class -1). The discriminant functions are are two hyperbolas
forming the optimal decision boundaries.
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© NA' 1)
A
AA/
NA'wA'SA)
0 Xg

Figure 2.3: Linear transformations of the Gaussian N (p, X). The linear transformation A leads
to the Gaussian N (ATM, ATY A). All projections P of a Gaussian are Gaussian. A certain
transformation A,, (“whitening”) leads to a Gaussian with the identity matrix as covariance matrix.
Copyright (©) 2001 John Wiley & Sons, Inc.

0.3 plx|lw;)P(w,)

0.2

0.1

decision
boundary

Figure 2.4: A two-dimensional classification task where the data for each class are drawn from
a Gaussian (black: class 1, red: class -1). The optimal decision boundaries are two hyperbolas.
Herew; = y=1andwy = y = —1. In the gray regions p(y = 1 | ) > p(y = —1 | ) holds
and in the red regions the opposite holds. Copyright (©) 2001 John Wiley & Sons, Inc.
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The probability of observing a point at & not depending on the class is

p(x) = plx,y=1) + plx,y = -1). (2.23)
Here the variable y is “integrated out”.

The probability of observing a point from class y = 1 at « is

(x|ly=1)ply=1)

p
ply=1|x) = . (2.24)
w=tle) ple)
This formula is obtained by applying the Bayes rule.
We define the regions of class 1 as
X = {z|g(x) >0} (2.25)
and regions of class -1 as
X1 =A{z]g(x) <0}. (2.26)
and the loss function as
_ [0 for yg(z;w)>0
Linaaw) = { ] o Vo)) 2
The risk of eq. (2.3) is for the zero-one loss
R(g(;w)) = / p(x,y=-1) de + / p(x,y=1) de = (2.28)
X1 X—l

[ rw=-t1@ @ e+ [ py=112) pa)de =

Xl X—l

/{p(yz—ll-’v) for g($)>0}p(a))dw.
X

ply=1[=z) for g(x) <0

In the last equation it obvious how the risk can be minimized by choosing the smaller value of
p(y=—1|x)andp(y = 1| ). Therefore, the risk is minimal if

, >0 for ply=1|x) > ply=—-1]|x)
9(z; ){<0 for p(y=—1|z) >ply=1|x) (2.29)

The minimal risk is
fomin = / min{p (z,y = —1) ,p(z,y = 1)} de = (2.30)
X

[ mintp s =-112).p =11 2)} pla) da.
X

Because at each point either class y = 1 or class y = —1 will be misclassified we classify the
point as belonging to the class with higher probability. This is demonstrated in Fig. 2.5 where at
each position z either the red or the black line determines the probability of misclassification. The
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Pw,]x)

Figure 2.5: Posterior densities p(y = 1 | ) and p(y = —1 | =) as a function of x. If using the
optimal discriminant function the gray region is the integral eq. (2.28) and gives the probability of
misclassifying a data point. Modified figure with copyright ©) 2001 John Wiley & Sons, Inc.

Pxlw)P(w;)
w; b W
) reducible
. error
: - X
R, xg X* R,
[Py dx [P, ax
R, R,

Figure 2.6: x* is a non-optimal decision point because for some regions the posterior y = 1 is
above the posterior y = —1 but data is classified as y = —1. The misclassification rate is given by
the filled region. However the misclassification mass in the red triangle can be saved if using as
decision point zg. Copyright (¢) 2001 John Wiley & Sons, Inc.
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ratio of misclassification is given by integrating along the curve according to eq. (2.28). The min-
imal integration value is obtained if one chooses the lower curve as misclassification probability
that is classifying the point as belonging to the class of the upper curve.

For a linear classifier there is in one dimension only a point z, the decision point, where values
larger than z are classified to one class and values smaller than x are classified into the other class.
The optimal decision point minimizes the misclassification rate. Fig. 2.6 shows such an example.

We call function g a discriminant function if it has a positive value at  and the corresponding
data point is classified as belonging to the positive class and vice versa. Such functions are also
called classification functions. The class estimation y(x) (" indicates estimation), i.e. the classifier
is

g(x) = signg(x) . (2.31)
A discriminant function which minimizes the future risk is

gx) = ply=1[z) — ply=—-1]z) = (2.32)
p(lx)(P(aS|y=1)p(y:1) —p(m‘y:_l)p(y:_l))7

where only the difference in the last brackets matters because p(x) > 0. Note, that the optimal
discriminant function is not unique because the difference of strict monotone mappings of p(y =

1] x)and p(y = —1 | x) keep the sign of discriminant function and lead to the same classification
rule.

Using this fact we take the logarithm to obtain a more convenient discriminant function which
also minimizes the future risk:

gz) = lnply=1|z) — lnply=-1|z) = (2.33)
mPEly=0 . py=1
p(z|y=-1) p(y=-1)
For our Gaussian case we obtain
1 _ d
g(x) = =5 (@— )" B (@ —m) - Fn2r - (2.34)
1
3 In|¥4] + Inp(y=1) +
1 S d 1
5 (x—po1) X(x—p_1) + §ln27r t 3 In|¥_;| — Inp(y=-1) =
1 _ 1
— 5 (@= )" =@ — ) — 5 n[Z] + Inp(y=1) +
1 _ 1
@ p ) S ) g WS ] — dply = 1) =

1
—or (B - D) e+ 2t (B - Bhpa) -

1 _ 1 _ 1 1
B pis +3 pLE e - 5 ] + 5 InfEqf +

Inply=1) — Inp(y = -1) =

1
—Q:cTA:c + wle +b.
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p(x|w;)
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Figure 2.7: Two classes with covariance matrix ¥ = 21 each in one (top left), two (top right),
and three (bottom) dimensions. The optimal boundary is a hyperplane. Copyright (©) 2001 John

Wiley & Sons, Inc.

The function g(x) = 0 defines the class boundaries which are hyper-quadrics (hyper-ellipses or

hyper-hyperbolas).

If the covariance matrices of both classes are equal, 334 Y_1 = X, then the discriminant

function is
(2.35)

gl@) = "= (m — poa) +
pl 2 sy — pfS T+ Inply =1) — lnp(y = —1)

wle + b.
0 is a hyperplane in the d-dimensional space. See examples for

The boundary function g(x)
d=1,d=2,and d = 3 in Fig. 2.7.
For the general case, where 3y # 3 _; the boundary functions can be hyperplanes, hyper-

ellipsoids, hyper-paraboloids etc. Examples for the 2-dim. case are given in Fig. 2.8.
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Figure 2.8: Two classes with arbitrary Gaussian covariance lead to boundary functions which are
hyperplanes, hyper-ellipsoids, hyperparaboloids etc. Copyright () 2001 John Wiley & Sons, Inc.
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Chapter 3

Maximum Likelihood

In this chapter, we introduce maximum likelihood as quality criterion for unsupervised methods.
In this context we introduce concepts like bias and variance, efficient estimator, and the Fisher
information matrix.

So far we only considered the supervised task, where we have a label y which should be
predicted correctly for future data. We were able to define the loss via the distance between the
predicted value and the true value.

For unsupervised tasks defining a loss function and a risk is not as straight forward as in
supervised learning.

3.1 Loss for Unsupervised Learning

3.1.1 Projection Methods

Unsupervised tasks include projection of the data into another space in order to fulfill desired
requirements. Fig. 3.1 depicts a projection model.

For example with “Principal Component Analysis” (PCA) the data is projected into a lower
dimensional space. Here a trade-off between losing information and low dimensionality appears.
It is difficult to define a loss function which takes both the dimension and the information loss into
account.

p(u; w) ()
projections @ & model CE_
I g9(z; w) ) _ é
- Pt u) observations
reference \
projections target

Figure 3.1: Projection model, where the observed data « is the input to the model u = g(x; w).
The model output distribution should match a target distribution or the output distribution should
fulfill some constraints. The later can be replaced by the distribution which fulfills the constraints
and is closest to the target distribution.

19
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- p(; w)
u,| model &
@ =1 =) w model data
g(u;w) A
Pu p(x) =
sources world / observations

Figure 3.2: Generative model, where the data « is observed and the model * = ¢g(u;w) should
produce the same distribution as the observed distribution. The vectors v are random vectors
supplied to the model in order to drive it, i.e. to make it a data generation process.

For example with “Independent Component Analysis” (ICA) the data is projected into a space
where the components of the data vectors are mutually independent. As loss function may serve
the minimal difference of the actual distribution of the projected data to a factorial distribution (a
distribution where the components are independent from each other).

Often only characteristics of a factorial distribution are optimized such as entropy (factorial
distribution has maximal entropy under constant variance), cummulants (some are maximal and
some are zero for factorial distributions), and others.

For some cases a prototype factorial distribution (e.g. the product of super-Gaussians) is used
and the projected data should be aligned to this prototype distribution as good as possible.

For example with “Projection Pursuit” the components have to be maximally non-Gaussian.
Here the ideas as for ICA hold, too.

3.1.2 Generative Model

One of the most common unsupervised tasks is to build a generative model that is a model which
simulates the world and produces the same data as the world. Fig. 3.2 depicts a generative model.

The data generation process of the world is assumed to be probabilistic. Therefore, the ob-
served data of the world are only random examples and we do not want to exactly reproduce the
observed data (that can be done by storing the data in data bases). However, we assume that the
data generation process produces the data according to some distribution.

The generative model approach attempts to approximate the distribution of the real world data
generation process as good as possible. As loss function the distance between the distribution of
the data generation process and the model output distribution is suitable.

Generative models include “Factor Analysis”, “Latent Variable Models”, and Boltzmann Ma-
chines.

3.1.3 Parameter Estimation

In another approach to unsupervised learning we assume that we know the model which produces
the data but the model is parameterized and the actual parameters are not known. The task of the
unsupervised learning method is to estimate the actual parameters.
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Here the loss would be the difference between the actual (true) parameter and the estimated
parameter. However we have no future data points. But we can evaluate the estimator through the
expected difference, where the expectation is made over the training set.

In the next sections we will focus on parameter estimation and will evaluate estimation meth-
ods based on expectation over the training set.

3.2 Mean Squared Error, Bias, and Variance

In unsupervised tasks the training data is {z',...,2'}, where 2 = x' and, therefore, it is
{x} = {1:1, ey azl} for which we will often simply write X (the matrix of training data).

The true parameter vector is denoted by w and its estimate by w.

An estimator is unbiased if
Ex(w) = w, (3.1

i.e. on the average the estimator will yield the true parameter.

The bias is

b(w) = Ex(w) — w. (3.2)

The variance of the estimator is defined as

var(w) = Ex (@ — Bx () (& — Ex(w))) . (3.3)

An evaluation criterion for supervised methods is the mean squared error (MSE) as described
in the text after eq. (2.2). The MSE in eq. (2.2) was defined as an expectation over future data
points.

Here we define the MSE as expectation over the training set, because we deal with unsuper-

vised learning and evaluate the estimator. The MSE gives the expected error as squared distance
between the estimated parameter and the true parameter.

mse(w) = Ex ((71} — w)’ (w — w)) : (3.4)
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‘We can reformulate the MSE:
x ((w — ) ( — w)) - (3.5)

var(w) + b (w) .
where the last but one equality comes from the fact that only w depends on X and therefore
Ex (0 — Ex(@))" (Ex (i) — w)) = (3.6)
(Ex () — Ex ()" (Ex () — w) = 0.
The MSE is decomposed into a variance term var(w) and a bias term b?(). The variance

has high impact on the performance because large deviations from the true parameter have strong
influence on the MSE through the quadratic error term.

Note that averaging linearly reduces the variance. The average is

) 1o
Way = N;wi, (3.7)
where
w; = w; (X;) (3.8)
X, = {m(i—l) l/N+17“"wil/N} ’

i.e. X is the i-th subset of X and contains [ /N elements. The size of the data is [ and the examples
of X; range from (: — 1) I/N + 1toil/N.

The average is unbiased:

1 1<
Ex (W,,) = NZEX@Z- = NZw = w. (3.9)
i=1 i=1
The variance is linearly reduced
X
covarx (Wq,) = N2 Zcovarxi (w;) = (3.10)
i=1

N

1 R 1 .

e > " covarx /(W) = woovarx in (W)
p
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where covar x ;v (W) is the estimator with [/N training points.

We used the facts:

covarx(a + b) = (3.11)
covarx(a) + covarx(b) + 2 covarx(a,b)

covarx (A a) = A covarx(a) .

For averaging it is important that the training sets X; are independent from each other and
do not overlap. Otherwise the estimators are dependent and the covariance terms between the
estimators do not vanish.

One approach to find an optimal estimator is to construct from all unbiased estimators the one
with minimal variance, which is called Minimal Variance Unbiased (MVU) estimator.

A MVU estimator does not always exist. However there are methods to check whether a given
estimator is a MVU estimator.

3.3 Fisher Information Matrix, Cramer-Rao Lower Bound, and Ef-
ficiency

In the following we will define a lower bound, the Cramer-Rao Lower Bound for the variance of
an unbiased estimator. That induces a lower bound on the MSE of an estimator.

We need the Fisher information matrix I to define this lower bound. The Fisher information
matrix I'r for a parameterized model is

' Olnp(x; w) 0lnp(x;w)
IF(w) : [IF(w)]ij = Ep(m;w) < w; awj ) (3.12)
and [A];; = Aj; selects the ijth element of a matrix and
Olnp(x; w) Olnp(x; w)
E, e = 3.13
p(@w) ( ow; ow; (3-13)
Olnp(x;w) Olnp(x; w) _
o, o, p(x; w) de .
If the density function p(x; w) satisfies
Olnp(x; w)
then the Fisher information matrix is
0 Inp(x; w)
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The last equation follows from the fact that

0 = Epaw) <alng(,j7w)dw> = (3.16)
0l ;
/ Mp( w) dz
X
aw/ alnp @w) o w)dz = 0 (3.17)
0?1 :
/X (WW%W (3.18)
0 lnp(z; w) Op(z; w) _
ow ow dz =0
0?1 :
/X (W p(@;w) + (3.19)
o0l ;w) Olnp(x;w
ngg ) n];w )p(:c;'w)> de = 0

0% In p(=; w)) _ (3.20)

= B < ow dw
Olnp(x;w) Olnp(x; w)
Ep(aiw) ow ow '

The Fisher information gives the amount of information that an observable random variable
a carries about an unobservable parameter w upon which the parameterized density function
p(x; w) of x depends.

Theorem 3.1 (Cramer-Rao Lower Bound (CRLB))
Assume that

Vw : Epzw) (W) =0 (3.21)
and that the estimator w is unbiased.
Then,
covar(w) — Iz (w) (3.22)
is positive definite:
covar(w) — Iz (w) > 0. (3.23)

An unbiased estimator attains the bound in that covar(w) = I,'(w) if and only if

Olnp(x; w)
ow

for some function g and square matrix A(w) . In this case the MVU estimator is

— A(w) (g(x) — w) (3.24)

w = g(x) with covar(w) = A (w). (3.25)
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var(w) var(w)

Figure 3.3: The variance of an estimator w as a function of the true parameter is shown. We show
three estimators: wi, ws, and the minimal variance unbiased wyyy. Left: The MVU estimator
w\vu is efficient because it reaches the CRLB. Right: The MV U estimator wy vy does not reach
the CRLB and is not efficient.

Note that
[covar(w) — Igl(w)]ii >0, (3.26)
therefore

var(w;) = [covar(w)],, > [Igl(w)]ii . (3.27)

An estimator is said to be efficient if it reaches the CRLB. It is efficient in that it efficiently
makes use of the data and extracts information to estimate the parameter.

A MVU estimator may or may not be efficient. This means it could have minimum variance
but without reaching the CRLB as depicted in Fig. 3.3.

3.4 Maximum Likelihood Estimator

In many cases of parameter estimation with unsupervised learning the MVU estimator is unknown
or does not exist.

A very popular estimator is the Maximum Likelihood Estimator (MLE) on which almost all
practical estimation tasks are based. The popularity stems from the fact that it can be applied to
a broad range of problems and it approximates the MVU estimator for large data sets. The MLE
is even asymptotically efficient and unbiased. That means the MLE does everything right and this
efficiently if enough data is available.

The likelihood £ of the data set {x} = {z',... '} is
L{z}w) = p({z};w), (3.28)

i.e. the probability of the model p(x; w) to produce the data set. However the set {} has zero
measure and therefore the density at the data set {a} must be used.
For iid data sampling the likelihood is

l

L{z};w) = p({a};w) = [[pa’;w). (3.29)

1=1
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Instead of maximizing the likelihood £ the log-likelihood In £ is maximized or the negative
log-likelihood — In £ is minimized. The logarithm transforms the product of the iid data sampling
into a sum:

l
~mnL({z}w) = = > Inpa’;w). (3.30)
=1

To motivate the use of the density in the likelihood one can assume that if p(x%; w) is written
actually p(x’; w) dz is meant, which gives the probability of observing « in a region of volume
da around x°. In this case the likelihood gives the probability of the model to produce similar data
points as {x}, where similar means data points in a volume da around the actual observed data
points.

However the fact that the MLE is so popular is based on its simple use and its properties (given
in the next section) especially that it is optimal for the number of training points going to infinity.

3.5 Properties of Maximum Likelihood Estimator

In the next subsections different properties of the MLE are given. First, MLE is invariant under
parameter change. Then, most importantly, the MLE is asymptotically unbiased and efficient, i.e.
asymptotically optimal. Finally, the MLE is consistent for zero CRLB.

3.5.1 MLE is Invariant under Parameter Change

Theorem 3.2 (Parameter Change Invariance)

Let g be a function changing the parameter w into parameter u: u = g(w), then
@ = g(), (3.31)
where the estimators are MLE. If g changes w into different u then 4 = g(w) maximizes the
likelihood function
max p({x}w). (3.32)
wu=g(w)

This theorem is important because for some models parameter changes simplify the expres-
sions for the densities.

3.5.2 MLE is Asymptotically Unbiased and Efficient
Note, that an estimator @ = (X)) changes its properties with the size [ of the training set X.
For example for a reasonable estimator the variance should decrease with increasing .

The maximum likelihood estimator is asymptotically unbiased

l—00

Ep(zmw) (W) 5% w (3.33)
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and it is asymptotically efficient
covar(w) '25° CRLB. (3.34)
These properties are derived from the following theorem

Theorem 3.3 (MLE Asymptotic Properties)
If p(x; w) satisfies

Olnp(x;w
Ve : Eplaw) (g(w)da:> — 0 (3.35)

then the MLE which maximizes p({x};w) is asymptotically distributed according to
~ =00 —1
w x N(w I (w)), (3.36)
where I'r(w) is the Fisher information matrix evaluated at the unknown parameter w.

This quite general theorem is the basis of the asymptotic optimal properties of the MLE.

However for practical applications the number ! is finite and the performance of the MLE is
not known.

For example consider the general linear model
r = Aw + €, (3.37)

where e o« N (0, C) is an additive Gaussian noise vector.
Then the MLE is

w = (ATC'A) ATC w . (3.38)
which is also efficient and, therefore, MV U. The density of w is
W o N (w, (ATCT14) ) (3.39)

Note for factor analysis which will be considered later also C' has to be estimated.

3.5.3 MLE is Consistent for Zero CRLB

A estimator is said to be consistent if

~ l—00
w —

w, (3.40)

i.e. for large training sets the estimator approaches the true value.

Later — in the empirical risk minimization treatment by V. Vapnik in 5.2 — we need a more
formal definition for consistency as

limp(|lw — w| > € = 0. (3.41)
l—o00

The MLE is consistent if the CRLB is zero. This follows directly from the fact that MLE is
asymptotically unbiased and efficient, i.e. the variance will approach zero.



28 Chapter 3. Maximum Likelihood

Generative Model
A o pla;w)
I T u moagel |L SAuyAN
S -
pt g(u; w) =

sources observations

Likelihood

p\x
N A n N
R A& Model & P
g (x;w
Pu
sources observations

plx;w) = [ pu(u) d(z = gu;w)) du

Figure 3.4: The maximum likelihood problem. Top: the generative model which produces data
points. Bottom: in order to compute the likelihood for x all points w which are mapped to  must
be determined and then multiplied with the probability p,, () that u is observed in the model.

3.6 Expectation Maximization

The likelihood can be maximized by gradient descent methods as will be described in Section 7.1.
However the likelihood must be expressed analytically to obtain the derivatives. For some models
the likelihood cannot be computed analytically because of hidden states of the model, of a many-
to-one output mapping of the model, or of non-linearities. As depicted in Fig. 3.4, to compute the
likelihood the inverse of a function — more precise, all elements « which are mapped to a certain
observed point & — must be computed in order to obtain the likelihood that the point is generated
by the model. If g is highly nonlinear, then the integral which determines the likelihood is difficult
to compute analytically. To guess the likelihood numerically is difficult as the density of the model
output at a certain point in space must be estimated.

The variables u in Fig. 3.4 can be interpreted as unobserved variables, i.e. hidden variables
or latent variables. For models with hidden variables the likelihood is determined by all possible
values of the hidden variables which can produce output x.

For many models the joint probability p({x}, u; w) of the hidden variables u and observations
{zx} is easier to compute than the likelihood of the observations. If we can also estimate p(u |
{x};w) of the hidden variables u using the parameters w and given the observations {x} then
we can apply the Expectation Maximization (EM) algorithm.
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Let us assume we have an estimation Q(u | {x}) for p(u | {x}; w), which is some density
with respect to w. The following inequality is the basis for the EM algorithm:
InL({z};w) = np({z};w) = (3.42)
ln/ p{z},u;w) du =

Qu | {=})
ln/ u\{x} p({x}, u;w) du >

P} ww)
| @) Qu | {x}) ™ =

/ Q(u | {x}) Wp({w}, u; w) du —
U

| @t {e)) mQtu | o) du -
U

F(Q,w) .
where the “>” is the application of Jensen’s inequality. Jensen’s inequality states that the value of
a convex function of an integral is smaller or equal to the integral of the convex function applied to
the integrand. Therefore a convex function of an expectation is smaller or equal to the expectation

of the convex function. Here the expectation with respect to Q(u | {x}) is used and the fact that
— In is a convex function.

Above inequality states that F(Q), w) is a lower bound to the log-likelihood In £({x}; w).
The EM algorithm is an iteration between two steps, the “E”-step and the “M”-step:
E-step: (3.43)
Qr+1 = arg max F(Q, wy)
M-step:

wg1 = argmax F(Qp41,w) .
It is important to note that in the E-step the maximal () is

Qry1(u | {x}) = plu | {z};wy) (3.44)
F(Qry1,wg) = InL{x};wy) .

This means that the maximal @ is the posterior or the hidden variables p(u | {x}; wy) using the
current parameters wy. Furthermore, the lower bound F' is equal to the log-likelihood with the
current parameters wy. The bound is thight and reaches the log-likelihood.

To see the last statements:

p(u, {z};w) = plu | {z};wi) p({x}; wy) , (3.45)
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therefore
LpUzhww)

/ Q(u|{x}) 1 Q(u| (=) du = (3.46)

plu fehiw)

/Qu\{az} O [y @+ Ir{ehw)

Quil{e)) o

- [ Qo)) 1B du 1 £({ )
The expression [;; Q(u | {z}) In (uﬁgf})) du is the Kullback-Leibler divergence Dkr,(Q || p)

between Q(u | {x}) and p(u | {x};w). The Kullback-Leibler divergence KL(p1, p2) is defined
as

u
Dxy(p1 || p2) = /pl(u) In pi(w) du (3.47)
U p2(u)
and the cross entropy as
- /pl(u) In po(u) du . (3.48)
U

The Kullback-Leibler divergence is always greater than or equal to zero:

Dkv(p1 || p2) > 0 (3.49)
because
0 =Inl = ln/ p2(u) du = (3.50)
U
p2(u)
ln/Upl( u) P1(w) du >
/Upl(u) In ZEZ; du = — Dxr(p1 || p2) -

Thus, if Dx1,(Q || p) = 0then F(Q, wy) is maximized because the Kullback-Leibler divergence,
which enters the equation with a negative sign, is minimal. We have Q(u | {z}) = p(u |
{x}; w) and obtain

F(Q,w) = mL{z};w). (3.51)

In the M-step only the expression [;; Q11 (u | {x}) Inp({x}, u;w) du must be considered
because the other term (the entropy of QJx11) is independent of the parameters w.

The EM algorithm can be interpreted as:
= E-step: Tighten the lower bound to equality: F(Q,w) = InL({z}; w) .

m M-step: Maximize the lower bound which is at the equality and therefore increase the like-
lihood. This might lead to a lower bound which is no longer tight.
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The EM algorithm increases the lower bound because in both steps the lower bound is maxi-
mized.

Can it happen that maximizing the lower bound may decrease the likelihood? No! At the
beginning of the M-step we have F(Qy+1,wr) = InL({x};ws), and the E-step does not
change the parameters w:

InL({z};w) = F(Qr+1,wi) < (3.52)
F(Qrt1, wis1) < F(Qpa2, wpp1) = mL({z}; wyy1)

where the first “<” is from the M-step which gives w1 and the second “<” from the E-step
which gives Q2.

The EM algorithms will later be derived for hidden Markov models, mixture of Gaussians,
factor analysis, independent component analysis, etc.

3.7 Maximum Entropy Estimation

A maximum entropy probability distribution is the distribution with maximal entropy given a class
of distributions. If any prior knowledge is missing except that a distribution a certain class, then
maximum entropy distribution should be chosen because

» it has minimal prior assumptions on the distribution and

m physical systems converge over time to maximal entropy configurations which makes it the
most likely observed solution.

The principle of maximum entropy was first expounded by E.T. Jaynes in 1957, where he empha-
sized a natural correspondence between statistical mechanics and information theory.

For discrete random variables p = p(xz = x), the entropy of is defined as

H = - plogps. (3.53)
k>1

We assume pilogpr = 0 for p,, = 0. For continuous random variables x with probability density
p(x), the entropy is

H = — /OO p(x)logp(zx) dz (3.54)

where we set p(z)logp(z) = 0 for p(z) = 0.

The normal distribution N (1, 02) has maximum entropy among all real-valued distributions
with mean p and standard deviation o. Normality imposes the minimal prior assumptions given
the first two moments. The uniform distribution on the interval [a, b] is the maximum entropy
distribution among all continuous distributions which are supported in the interval [a, b]. The ex-
ponential distribution with mean 1/ is the maximum entropy distribution among all continuous
distributions supported in [0, co| that have a mean 1/).
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Theorem 3.4 (Boltzmann’s Theorem: Discrete)

Suppose S = {x1,x2,...} is a (finite or infinite) discrete subset of the reals and n functions
fi,--., fnandnnumbers ay, ..., a, are given. Let be C the class of all discrete random variables
X which are supported on S and which satisfy the n conditions:

E(f;(X)) = a; forj=1,...,n (3.55)

If there exists a member of C' which assigns positive probability to all members of S and if
there exists a maximum entropy distribution for C, then this distribution has the following shape:

Pr(X =) = cexp | D X filax) | fork=1,2,..., (3.56)
j=1

where the constants ¢ and \j have to be determined so that the sum of the probabilities is 1 and
the above conditions for the expected values are satisfied.

Conversely, if constants c and \; as above can be found, then the above distribution is indeed
the maximum entropy distribution for class C.

Theorem 3.5 (Boltzmann’s Theorem: Continuous)

Suppose S is a closed subset of the real numbers R and n measurable functions fi, ..., f, andn
numbers a1, . .. ,ay, are given. Let be C the class of all continuous random variables which are
supported on S and which satisfy the n expected value conditions:

E(f;(X)) = a; forj=1,....n (3.57)

If there is a member in C whose density function is positive everywhere in S, and if there exists
a maximal entropy distribution for C, then its probability density p(x) has the following shape:

p(z) = c exp Z/\j fi(x) forallz € S, (3.58)
j=1

where the constants c and \j have to be determined so that the integral of p(x) over S is 1 and the
above conditions for the expected values are satisfied.

Conversely, if constants c and \; like this can be found, then p(x) is indeed the density of the
(unique) maximum entropy distribution for class C.

This theorem is proved with the calculus of variations and Lagrange multipliers.

Not all classes of distributions contain a maximum entropy distribution. A class may contain
distributions of arbitrarily large entropy (e.g. the class of all continuous distributions on R with
mean 0 but arbitrary standard deviation). Or the entropies of distributions from a class are bounded
from above but there is no distribution which attains the maximal entropy (e.g. the class of all
continuous distributions X on R with E(X) = 0 and E(X?) = E(X?) = 1. The expected value
restrictions for the class C' may force the probability distribution to be zero in certain subsets of
S. In that case Boltzmann’s theorem does not apply, but S can be shrinked.
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SOLUTION: DISCRETE CASE
We require our probability distribution p to satisfy

Zp(a:,») felzi) = Fr,  k=1,...,m. (3.59)
i=1

Furthermore, the probability must sum to one:

n
Z p(x) = 1. (3.60)
i=1
The probability distribution with maximum information entropy subject to these constraints is
1

This distribution is called the Gibbs distribution in statistical mechanics. The normalization con-
stant Z is determined by

ZO,- o Am) = 3 expMfi(@) + 0+ Amfa(z)) | (3.62)
=1

and is called the partition function. The value of the Lagrange multipliers )\ are determined by

0
Fi = 5108 20 An) (3.63)

These m simultaneous equations may not have a closed form solution but can be solved numeri-
cally.

The derivatives are:

o) 1 =
—log Z(A\1,..., ) = = i A i o Amfm(T
O 0g Z(A1, .-+ Am) Z0m o) ;fk(ﬂf)exp( Lfilzi) + + Amfim(3))
(3.64)
= plai) fula) .
i=1
SOLUTION: CONTINUOUS CASE
Instead of the entropy, we use the Kullback-Leibler divergence of m from p
_ p(x)
Do llm) = = [ p(@)tos 2 da (3.69)

where m(x) is proportional to the limiting density of discrete points and is assumed to be known.
The Kullback-Leibler divergence generalizes the entropy since for constant m the Kullback-
Leibler divergence is the entropy plus a constant.

We require our probability density function p to satisfy

/p(x) fr(z)dx = Fy, k=1,....m. (3.606)
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The density must integrate to one:

/ p(z)de = 1. (3.67)

The probability density function p with maximum Dk, subject to these constraints is

1

p(z) = mm(x) exp (A1 fi(x) + - + Anfm(2)) (3.68)

with the partition function Z given by

Z(M,y .oy Am) = /m(x) exp (Aifi(z) + -+ + Amfm(x)) do. (3.69)

Again the values of the Lagrange multipliers \; are determined by:

0
F, = —logZ e Am) .
k I 08 Z(Ai,-- s Am) (3.70)
The derivatives are the contraints:
0 1
aT\klOgZ()\lw--,)\m) = Z0m ) /fk(z:) exp (Aifi(z) + -+ + Anfm(z)) do
3.71)
— [ @) fula) o

Here m(z) canceled out.

The invariant measure function m(z) is actually the prior density function representing the
“lack of relevant information”. The prior density m(x) cannot be determined by the principle of
maximum entropy. It can be determined by the principle of transformation groups or marginaliza-
tion theory.

If = takes values only in (a, b), then the maximum entropy probability density function is
p(z) = Z-m(z), a<z<b, (3.72)

where Z is a normalization constant.
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Noise Models

In this section we will make a connection between unsupervised and supervised learning in terms
of the quality measure. Towards this end we introduce additional noise on the targets, that means
we do not know the exact values of the targets. If we know the noise distribution then we can look
for the most likely target. Therefore we can apply maximum likelihood to supervised learning.
Supervised learning will be treated as an unsupervised maximum likelihood approach using an
error model. The kind of measurement noise determines the error model which in turn determines
the quality criterion of the supervised approach. Here also classification methods with binary
output can be treated.

4.1 Gaussian Noise

We consider the case of Gaussian target noise and a simple linear model:

s = X w “4.1)
y=s8+¢€¢ =Xw + €, 4.2)

where s is the true signal, X is the observed data, w is the parameter vector, y is the observed tar-
get, and € is the Gaussian noise vector with zero mean and covariance 3. Note, that the covariance
3. is the noise distribution for each measurement or observation x.

The value y — X w is distributed according to the Gaussian, therefore the likelihood of
(y, X) is

L((y, X);w) = (4.3)

1 1 T -1

The log-likelihood is
InL((y, X);w) = (4.4)

d 1 1
- 5111(277) - 51n]2| —§(y - Xw!'2 Yy - Xw).

To maximize the log-likelihood we have to minimize

y - Xw)' 2 '(y - Xw), (4.5)

35
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because other terms are independent of w.
The minimum of this term, called least square criterion, is the linear least square estimator.

Multiplying out the criterion gives

(y — Xw)!' 2y - Xw) = (4.6)
Y2 ly — T2 Xw + w' XTE ' X w

and the derivative with respect to w is
—2XTy 1y 4+ 2XTy ' X w, 4.7)

which are called the Wiener-Hopf equations (correlation between features X and target y should
be equal to the correlation between features X and model prediction X w). Setting the derivative
to zero gives the least square estimator

W = (XIS X)) xTely (4.8)
The minimal least square criterion is

" (2*1 - »lx (xTs ! X)‘lezfl) y. (4.9)

In many cases the noise covariance matrix is

1
>t=-1T, (4.10)

o
which means that for each observation we have the same noise assumption.
We obtain

' XTy (4.11)

w = (X"X)"
where (X Tx )_1 X7 is known as the pseudo inverse or Moore-Penrose inverse of X. The
minimal value is

I 7 Ty \"1 T
~y (I—X(X X) X)y. 4.12)

Note that we can derive the squared error criterion also for other models g(X; w) instead of
the linear model X w. However, in general the estimator must be selected by using an optimization
technique which minimizes the least square criterion

(y — 9(X;w)" =7y — g(X;w)). (4.13)

These considerations are the basis for the least square fit and also for the mean squared error
as a risk function. These approaches to loss and risk are derived from maximum likelihood and
Gaussian noise assumptions. Therefore the mean squared error in 2.2 can be justified by Gaussian
noise assumption.
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4.2 Laplace Noise and Minkowski Error

Even if the Gaussian noise assumption is the most widely used noise model, other noise models
may be more adequate for certain problems.

For example the loss function

ly — g(X;w)l; (4.14)

corresponds to Laplace noise assumption. Or for one dimension
ly — g(z;w)] . (4.15)
For one dimensional output we obtain for the Laplacian noise model
P — glaw) = 5 exp (- Bly — glaw)) @.16)
with loss function
ly — g(z;w)| . 4.17)

For the Minkowski error

ly — g(z;w)[" (4.18)
the corresponding noise model is
r /Bl/r .
ply — g(@;w)) = Wexp(—ﬁ ly — gz w)|") , (4.19)
where I is the gamma function
o0
I'(a) = / u e du (4.20)
0
I'(n) = (n—1)!.

For r < 2 large errors are down-weighted compared to the quadratic error and vice versa for
r > 2. That means for data with outliers 7 < 2 may be an appropriate choice for the noise model.
See examples of error functions in Fig. 4.1.

If random large fluctuations of the output are possible then r» < 2 should be used in order to
give these fluctuations more probability in the noise model and down-weight their influence onto
the estimator.

4.3 Binary Models

Above noise considerations do not hold for binary y as used for classification. If the class label is
disturbed then y is assigned to the opposite class.

Also for binary y the likelihood approach can be applied.
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Figure 4.1: Different noise assumptions lead to different Minkowski error functions: r = 1

(Laplace noise), r = 2 (Gaussian noise), and r = 4.

4.3.1 Cross-Entropy

For a classification problem with K classes, we assume that the model output is a probability:
gr(x;w) = ply=-e; | x). (4.21)

and that

Yy € {61,...,6[{}. 4.22)

If « is in the k-th class theny = (0,...,0,1,0

,...,0), where the “1” is at position k in the
vector y.

The likelihood of iid data is

I K ,
£({zhw) = p({zhw) = [[T[ew =erloiwlhp@) = @)

i=1 k=1
l K ‘
[[p@) [ p(y' = ex | ')
i=1 k=1
because
K . . 1 . . .
Hp(yz =e; | wl;w)[y ]k = p(yl =e, | a}l;w) for yz — e, . (4.24)
k=1

K 1
InL({z};w) = ZZ [yi]klnp(yi = ey | ' w) + Zlnp(mi). (4.25)
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1

Figure 4.2: The sigmoidal function TFexp(=a)"

Therefore the criterion
K 1 '
S W np(y' =ep|atw) (4.26)
k=1 i=1

is a natural loss function Wthh is called cross entropy. Note that [ } is the observed probability
p(y’ = ey) which is one if y* = e;, and zero otherwise.

Therefore above formula is indeed the cross entropy as defined in eq. (3.48) for discrete
distributions.

4.3.2 Logistic Regression

A function g mapping x onto R can be transformed into a probability by the sigmoidal function

1
15 o sew 4.27)
which is depicted in Fig. 4.2.
Note that
1 e~ 9(ww)
1= 1 4+ e~ 9(mw) 1 4+ e~ 9(@w) (4.28)
We set
g — ! 4.29
ply = ‘$7w)—m (4.29)
and
e~ 9(mw)
We obtain

N ply =1|x)
g(x;w) = hr1<1 - 1|:1:)> . 4.31)
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According to eq. (3.30) the log-likelihood is
l . .
InL({z};w Zlnp zZiiw) = Zlnp(yl,mz;'w) = (4.32)

l
Y np(y’ |2’ w) + Z In p(a’
i=1 =1

Therefore maximum likelihood maximizes

!
Zlnp(yi | 2';w) (4.33)
i=1

Next we will consider the derivative of the log-likelihood. First we will need some algebraic
properties:

0 0 1
8— np(y =1|z"w) = aw, In T o s (4.34)

( e~ 9@ w) e dgasw) _
(1 + e g(tw)? Ow;

e” 9@ g g(atiw)

d g(z';w)

—ply = 0] z";w)

B 1 + e g(x";w) 811)]' 8’[1)]‘
and
9, 0| 0 |, o 435
ijnp(y_ | #5w) = dw; 1+ e s@w) (*33)
1 + e 9(@'w) e 9(@w) - e~ 2 9(x"w) 0 glz’;w)
e~ 9(ztw) 1 + e g(z'w) (1 + e~ g(:l:i;w))2 8’11)]' -
1 3 g(z'; w) o dglahw)
- = = 1 .
1 4+ e 9(@w) 8wj p(y | * 7w) 8wj
We can rewrite the likelihood as
l . .
Zlnp(y’ | s w) = (4.36)
i=1

l l

Y y'hply =1z w) + > (1 — ¢') Inp(y =0|a';w)

i=1 i=1
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which gives for the derivative

9 < o
%Zlﬂp(yl |z’ w) = (4.37)
J =1

Lo
;ly o, np(y | ' w) +

l

> =y i1np(y=0|mi;'w) =

i—1 8wj
l .
i i 9 g(z'; w
Y —yiply = OIw;w)(8>+
- w;
i=1
l .
- ~ 0 g(x";w
Y= y)ply = 1]2hw) ((9 ) -
— wy
i=1
l . .
(v = ply = 1]|ahw))
i=1
: ; 0 g(z'; w)
1 -9 =1]z% =
(1 —y)ply = 1]z"w)) o0,
l .
< o 0g(xh;w
(ply = 1]z"5w) — ¢) é),
— Wy
i=1
where
; 1
_ 2. —
For computing the maximum the derivatives have to be set to zero
l .
- 0 glxh;w
Vit Y (ply = 1|zhw) — ) dglatw) (4.39)

ow;
i=1 j

Note that the derivatives are products between the prediction error

(p(y = 1| z";w) — o) (4.40)
and the derivatives of the function g.
This is very similar to the derivative of the quadratic loss function in the regression case, where
we would have
(9(z';w) — y') instead of (p(y = 1| x’;w) — y').
If a neural network h with a sigmoid output unit, the mean squared error as objective function,
and the class labels as target is trained, then the derivative is
l

7 Z (h(mi;w) — yl)

=1

8h(mi;w) B
o~ (4.41)
9 g(z'; w)

(ply = 1| 2" w) — o) h(z';w) (1 - h(z';w)) o,

)
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where
i i _ i. _ 1
h’(m 7w) - p(y =1 | €T ,w) - 1 + e g(mi;w) (442)
Oh(xh;w) .
dglziw) h(z';w) (1 — h(z";w)) . (4.43)

Therefore the gradient for logistic regression and neural networks differs only in the factor
h(x';w) (1 — h(x';w)). The effect of the factor is that the neural network does not push the
output towards 1 or 0.

Alternative formulation with y € {+1, —1}
We now give an alternative formulation of logistic regression with y € {+1, —1}.

We remember

1
ply = 1|zw) = 1T+ o= s@w) (4.44)
and
e~ 9(zw) 1 s
p(y_ —1|:c7w) - 1+€—g(m;w) - 1+€g(m;w)' (5)
Therefore we have
—Inp(y = 3 |z ;w) = In <1 +e ¥ g(mi”")) (4.46)
and the objective which is minimized to find the maximum likelihood solution is
L=-) lpy|aiw) = > In (1 + eV g(wz%w>> (4.47)
i=1 i=1
The derivatives of the objective with respect to the parameters are
l ; i i.
oL ;0glxhiw) e v ehw)
ow; ;y ow; 1 4 e~ v 9(@w) (4.48)
0 g(z'; w) e
-3 I 1y i)
=1
The last equation is similar to eq. (4.37).
In matrix notation we have
l .
oL i ~ 0 g(x"; w)
— = - 1 — Y @ _— . 4.49
S v (1=l | @w) = (4.49)
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4.3.3 (Regularized) Linear Logistic Regression is Strictly Convex
Following Jason D. M. Rennie, we show that linear Logistic Regression is strictly convex.
In the linear case we have
glzt;w) = wlz’. (4.50)
For labels y € {+1, —1} we have
oL L 4
o = > vy (1 - ply' | zw)) (4.51)
i=1
The second order derivatives of the objective L that is minimized are
oL Lo , ‘
Hj, = 5 oy = Z; (v)" @ij v p(y' | 3w) (1 — ply' | 5 w)) | (4.52)
where H is the Hessian.
Since p(1 — p) > 0 for p < 1, we can define
pij = mij (| wiw) (1 — plyt | @:w)). (4.53)
The bilinear form of the Hessian with a vector a is
I d d ' '
=33 D wyrina;arpy | mw) (1 - ply' | z;w)) = (4.54)

=1 j=1 k=1

Z aj i /oy | @w) (1 — ply | @3w))

Since we did not make any restriction on a, the Hessian is positive definite.

Adding a term like % w” w to the objective for regularization, then the Hessian of the objective

is strict positive definite.

4.3.4 Softmax

For multi-class problems logistic regression can be generalized by Softmax.
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We assume K classes with y € {1,..., K'} and the probability of « belonging to class k is

) e Ik (Tswy) 455
p(y - |maglv"‘7gK7w1""’wK) N W ( ‘ )

which gives a multinomial distribution across the classes.

The objective which is minimized in order to maximize the likelihood is

! ! K
L = — Zlnp(y:yi |z w) = Zln Zegj(m""j) — gyi(T;wy) . (4.56)

=1

In the following we set

ply = k|=z;01,...,9x,w1,...,wg) = plk|x;W). 4.57)

The derivatives are

Zag’“m PO | — 5, kzag’“m W) (4.58)

awkn izl Owgp Owpy,

4.3.5 (Regularized) Linear Softmax is Strictly Convex

Following Jason D. M. Rennie, we show that linear Softmax is strictly convex.

In the linear case we have

gr(xbwy) = w%mi (4.59)
or in vector notation
gz W) = wlzt. (4.60)
The derivatives are
oL
Jor. = mepk|a: W) . kan (4.61)
mn

To compute the second order derivatives of the objective, we need the derivatives of the prob-
abilities with respect to the parameters:

Op(v | z'; W)
OWym,
Op(k | ='; W)
OWym,

= Zim p(k [ ;W) (1 — p(k | z'; W)) (4.62)

= zim p(k | 2, W) p(v | '; W)) .
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The second order derivatives of L with respect to the components of the parameter vector w
are

oL
Hipom = —22  — 4.63
i OWpn OWym, ( )

l

me Tim p(k | 5 W) (0o (1 — p(k | 2, W) —
i=1

(1 = dp=o)p(v | 25 W)

Again we define a vector a with components a,,; (note, the double index is considered as
single index so that a matrix is written as vector).

‘We consider the bilinear from

a’Ha = (4.64)
DD ko Gom Tin i plk | @ W) (Sp=y (1 — plk | @' W) —

kn v,m g

(1 — Op—yp) p(v | xZ,W)) =

YO arn wim p(k | 25 W) D i, (akm = > aump(v | wi;W)> =

kn 1 m

DD win ) arplk | 25W) Y wim (akm — D awmp(v| mi;W)) =
n k m v

7

Z - {(me Zakn p(k ‘ "Ele)> (Z Tim Zavmp(v ’ xi; W))} +
n k m v

)

n k —
2
Z - (Z Tin Zakn p(k | :ci; W)> +
n k

i

{zk:p(k |z W) (; Tin a;m> <; Tim a,,m> } _
> - (;fﬂm zk:aknp(k\:c";vv)>2 1

i

2
Zp(k ’ aji; W) (Z Tin akn)
k n

If for each summand of the sum over
2

2
> plk | zh W) (Zx a;m> - (Z pk |5 W)D a, a;m) (4.65)
k n k n

>0
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holds, then the Hessian H is positive semidefinite. This holds for arbitrary number of samples as
each term corresponds to a sample.

In the last inequality the p(k | z%; W) can be viewed as a multinomial distribution over k. The
terms » . %in A, can be viewed as functions depending on k.

In this case Y, p(k | s W) (3, win axn)? is the second moment and the squared expecta-

tion is (Z w DK | x', W) Yo Tin a;m)Q. Therefore the left hand side of inequality (4.65) is the
second central moment, which is larger than zero.

Alternatively inequality (4.65) can be proven by applying Jensen’s inequality with the square
function as a convex function.

We have proven that the Hessian H is positive semidefinite.

Adding a term like % >k 'wkT wj, to the objective for regularization, then the Hessian of the
objective is strictly positive definite.



Chapter 5

Statistical Learning Theory

A central question in machine learning is: Does learning from examples help in the future? Obvi-
ously, learning helps humans to master the environment they live in. But what is the mathematical
reason for that? It might be that tasks in the future are unique and nothing from the past helps to
solve them. Future examples may be different from examples we have already seen.

Learning on the training data is called “empirical risk minimization” (ERM) in statistical learn-
ing theory. ERM results that if the complexity is restricted and the dynamics of the environment
does not change, learning helps. “Learning helps” means that with increasing number of training
examples the selected model converges to the best model for all future data. Under mild conditions
the convergence is uniform and even fast, i.e. exponentially. These theoretical theorems found the
idea of learning from data because with finite many training examples a model can be selected
which is close to the optimal model for future data. How close is governed by the number of
training examples, the complexity of the task including noise, the complexity of the model, and
the model class.

To measure the complexity of the model we will introduce the VC-dimension (Vapnik-Chervo-
nenkis).

Using model complexity and the model quality on the training set, theoretical bounds on the
generalization error, i.e. the performance on future data, will be derived. From these bounds the
principle of “structural risk minimization” will be derived to optimize the generalization error
through training.

In this section we address the question whether learning from training data that means selecting
a model based on training examples is useful for processing future data. Is a model which explains
the training data an appropriate model of the world, i.e. also explains new data?

We will see that how useful a model selected based on training data is is determined by its
complexity. We will introduce the VC-dimension as complexity measure.

A main issue in statistical learning theory is to derive error bounds for the generalization error.
The error bound is expressed as the probability of reaching a certain error rate on future data if the
model is selected according to the training data.

Finally from the error bounds it will be seen that model complexity and training data mis-
match of the model must be simultaneously minimized. This principle is called “structural risk
minimization”.

This statistical learning theory is based on two simple principles (1) the uniform law of large

47
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numbers (for inductive interference, i.e. the empirical risk minimization) and (2) complexity con-
strained models (structural risk minimization).

A first theoretical error bound on the mean squared error was given as the bias-variance formu-
lation in eq. (3.5). The bias term corresponds to training data mismatch of the model whereas the
variance term corresponds to model complexity. Higher model complexity leads to more models
which fit the training data equally good, therefore the variance is larger. However the bias-variance
formulation was derived for the special case of mean squared error. We will generalize this for-
mulation in this section. Also the variance term will be expressed as model complexity for which
measurements are available.

First we will start with some examples of error bounds.

5.1 Error Bounds for a Gaussian Classification Task

We revisit the Gaussian classification task from Section 2.3.

The minimal risk is given in eq. (2.30) as
Ryin = / min{p (z,y = —1),p(x,y =1)} do, 5.1
X
which can be written as
Rumin = (5.2)

/Xmm{p@ ly=—1)ply=—1), p(z|y=1) ply=1)} dw.

For transforming the minimum into a continuous function we will use the inequality
va,b>0 : VOSBSI : min{a, b} < G/B bliﬁ . (5.3)

To proof this inequality, without loss of generality we assume a > b and have to show that b <
a® b'=B. This is equivalent to b < (a/b)® b which is valid because (a/b)? > 1.

Now we can bound the error by
Vo<p<i i Rumin < (py=1))" (p(y=—1))'"" (5.4)
| 0@ ly=17 G |y=-1)"" do.

Up to now we only assumed a two class problem and did not make use of the Gaussian assumption.

The Gaussian assumption allows to evaluate above integral analytically:

/X (@ |y="1)° (p(x|y=—1)"" dz = exp(~v(8)), (5.5

where

o(8) = 5(12— B)

(o — )T (B + (1-B)22)  (po — p1)
118 + (1-p) 3y
2 =7 (=)

(5.6)
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The Chernoff bound is obtained by maximizing v () with respect to S and substituting this 3
into eq. (5.4).

The optimization has to be done in a one dimensional space which is very efficient.

The bound obtained by setting 5 = % is called the Bhattacharyya bound:

1
0(1/2) = 7 (2 — )" (B2 + 22)7 (2 — ) (5.7)
1 |21 + 22 ‘
+ —In 2

2 JIZ =

5.2 Empirical Risk Minimization

The empirical risk minimization principle states that if the training set is explained by the model
then the model generalizes to future examples.

In the following considerations we need to restrict the complexity of the model class in order
to obtain statements about the empirical error.

empirical risk minimization: minimize training error

5.2.1 Complexity: Finite Number of Functions

In this subsection we give an intuition why complexity matters. We restrict the definition of the
complexity to the number M of functions from which the model can be selected.

First we are interested on the difference between the training error, the empirical risk, and the
test error, the risk.

In eq. (2.2) the risk has been defined as

R(g) = Ez (L(y,9(x))) . (5.8)

We define the empirical risk R analog to the cross-validation risk in eq. (2.14) as

Remp(% Z) =

~| =

iL (v',9 (")) . (5.9)

We will write Remp (g, ) instead of Remp (g, Z) to indicate the size of the training set.

We assume that we chose our model g from a finite set of functions
{91,--,9m}. (5.10)

The difference between the empirical risk Remp and the risk R can be different for each of the
functions g;. A priori we do not know which function g; will be selected by the training procedure,
therefore we will consider the worst case that is the maximal distance between Ry, and R on the
set of functions:

j:ql’f"’“.}fMHRemp(gjal) - R(gj)” . (5.1D)
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We now consider the probability that the difference is large than e:

p (e IRy (05:0) = R > € = 512

At

M
S ([Remplg. 1) — Rig))ll > ) <
j=1

In M
M2 exp(—262l) = 2exp<<nl — 262> l) =9,

where the first inequality "<" comes from the fact that p(a OR b) < p(a) + p(b) (this is called the
“union bound”) and the second inequality "<" is as special case of Hoeffding’s inequality for each
gj if R are within [0, 1]. Hoeffding’s inequality bounds the difference between empirical mean (the
average) and the expectation. For R are within [0, a] the bound would be exp (— 2 €? (1/a?) [)
instead of exp (— 2 €? I). The one-sided Hoeffding’s inequality is

pliy — s > €) < exp(—2€1), (5.13)

where 1 is the empirical mean of the true value s for [ trials.

Above last equation is valid for a two-sided bound. For a one-sided bound, we obtain

In M — In(9)

e(l,M,0) = 57 .

(5.14)
The value €(l, M, ) is a complexity term depending on the number [ of training examples, the
number of possible functions M, and the confidence (1 — §).

Theorem 5.1 (Finite Set Error Bound)
With probability of at least (1 — 0) over possible training sets with | elements and for M possible
functions we have

R(9) < Remp(g,1) + €(l,M,9) . (5.15)

Fig. 5.1 shows the relation between the test error R(g) and the training error as a function of the
complexity. The test error R first decreases and then increases with increasing complexity. The
training error decreases with increasing complexity. The test error R is the sum of training error
and a complexity term. At some complexity point the training error decreases slower than the
complexity term increases — this is the point of the optimal test error.

In order that €(I, M, §) converges to zero with increasing [ we must assure that

In M l_l?o 0

] (5.16)

Because M is finite this expression is true.

However in most machine learning applications models are chosen from an infinite set of
functions. Therefore we need another measure for the complexity instead the measure based on
M, the number of functions.
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error

test error

training error

complexity

Figure 5.1: Typical example where the test error first decreases and then increases with increasing
complexity. The training error decreases with increasing complexity. The test error, the risk, is the
sum of training error and a complexity term. At some complexity point the training error decreases
slower than the complexity term increases — this is the point of the optimal test error.

5.2.2 Complexity: VC-Dimension

The main idea in this subsection is that on a given training set only a finite number of functions can
be distinguished from one another. For example in a classification task all discriminant functions
¢ which lead to the same classification function signg(.) build one equivalence class.

We will again use parametric models g(.; w) with parameter vector w.

We first want to answer the following question. Does minimizing the empirical risk with
respect to parameter vector (e.g. minimizing the training error) converge to the best solution with
increasing training set size, i.e. do we select better models with larger training sets? This question
asks whether the empirical risk minimization (ERM) is consistent or not.

We first have to define the parameter w; which minimizes the empirical risk as

w; = argmin Remp(g(;w), 1) . (5.17)
The ERM is consistent if
A =00 .
R(g(.31br)) =5 inf R(g(;;w)) (5.18)
Remp(9(5101), 1) "7 inf R(g(;w)) (5.19)

hold, where the convergence is in probability.

The ERM is consistent if it generates sequences of w;, [ = 1,2,.. ., for which both the risk
evaluated with the function parameterized by w; and the empirical risk evaluated with the same
function converge in probability to the minimal possible risk given the parameterized functions.
The consistency is depicted in Fig. 5.2.
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R01np(9(~§ 71’1)7 l)

Figure 5.2: The consistency of the empirical risk minimization is depicted. The risk R(g(.; w;)) of
the optimal training parameter w; and the empirical risk Remp(g(.; W;), ) for the optimal training
parameter w; converge to the minimal possible risk inf,, R(g(.;w)).

The ERM is strictly consistent if for all

2@ = {wlz= @), [ Lot = o (5.20)
the convergence

=00 .
inf  Romp(g(;w), 1) =5 f Rig(.: 521
W p(g(;w), 1) oy (9(;w)) (5.21)

holds, where the convergence is in probability.

The convergence holds for all subsets of functions where the functions with risk smaller that ¢
are removed.

In the following we only focus on strict consistency and mean “strictly consistent” if we write
“consistent”.

The maximum likelihood method for a set of densities with0 < a < p(x;w) < A < oo
is (strictly) consistent if

T, - (5.22)
l

inf % (— Inp(x;; w)) 290 ing / (— Inp(z;w)) p(x;w) de .

w — w Jx

=1

If above convergence takes place for just one specific density p(a; w1 ) then maximum likelihood
is consistent and convergence occurs for all densities of the set.

Under what conditions is the ERM consistent?
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Figure 5.3: Linear decision boundaries can shatter any 3 points in a 2-dimensional space. Black
crosses are assigned to -1 and white to +1.

In order to express these conditions we have to introduce new capacity measures: number
of points to be shattered, the entropy, the annealed entropy, the growth function, and finally the
VC-dimension.

For the complexity measure we first restrict ourselves to classification. Regression can be
approximated through classification by dividing the output range into intervals of length ¢ and
defining for each interval a class.

How many possibilities exist to label the input data z* by binary labels y* € {—1,1}? Clearly
each binary vector of length [ represents a labeling, therefore we obtain 2 labelings.

Is our model class complex enough to produce any labeling vector based on the inputs? Not
all model classes can do that. Therefore we can define as a complexity measure the number of
data points a model class can assign all binary vectors. Assigning all possible binary vectors is
called shattering the points. Fig. 5.3 depicts the shattering of 3 points in 2-dimensional space. Fig.
5.4 shows a specific labeling of 4 points in a 2-dimensional space which cannot be represented by
a linear function. The complexity of linear functions in a 2-dimensional space is that they can
shatter 3 points.

The maximum number of points a function class can shatter will be introduced as the VC-
dimension.

However we will do it more formally.

The shattering coefficient of a function class F with respect to inputs 2/, 1 < i < [is the
cardinality of F if restricted to the [ input vectors 2*, 1 < i < [ (on input vectors distinguishable
functions in F). The shattering coefficient is denoted by

Nz(xb,...,z). (5.23)

The entropy of a function class is

Hr(l) = Bz WNp(z',... 2). (5.24)
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® ©
Qo ®

Figure 5.4: Linear decision boundaries cannot shatter any 4 points in a 2-dimensional space. Black
crosses are assigned to -1 and white to +1, this label assignment cannot be represented by a linear
function.

The annealed entropy of a function class is

H¥™ () = mWE g Ne(z',... 2). (5.25)

Until now we defined entropies, which are based on a probability measure on the observations
in order to have a well-defined expectation.

The next definition avoids any probability measure. The growth function of a function class is

Gr(l) = In sup Nf(:cl,...,a:l). (5.26)
(x1,...,2!)
Note that
Hy(l) < HE() < GF(), (5.27)

where the first inequality comes from Jensen’s inequality and the second is obvious as the supre-
mum is larger than or equal to the expectation.

Theorem 5.2 (Sufficient Condition for Consistency of ERM)
If

H
lim 7]:(0

l—00 l

=0 (5.28)

then ERM is consistent.

For the next theorem we need to define what fast rate of convergence means. Fast rate of
convergence means exponential convergence. ERM has a fast rate of convergence if

p(sg}p]R(g(.;'w)) — Remp(9(;w), 1) > e> < bexp(—cel) (5.29)

holds true.
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Theorem 5.3 (Sufficient Condition for Fast Rate of Convergence of ERM)
If

lim 220

=00 l

=0 (5.30)

then ERM has a fast rate of convergence.

The last two theorems were valid for a given probability measure on the observations. The
probability measure enters the formulas via the expectation E. The growth function however does
not use a probability measure.

Theorem 5.4 (Consistency of ERM for Any Probability)
The condition

lim Gr{)

l—00 l

=0 (5.31)

is necessary and sufficient for the ERM to be consistent and also ensures a fast rate of convergence.

As can be seen from above theorems the growth function is very important as it is valid for
arbitrary distributions of .

We define dy as the largest integer for which Gxz(I) = [In2 holds:

dvc = mlax{l | Gr(l) = [In2}. (5.32)

If the maximum does not exists then we set dyc = o0. The value dy ¢ is called the VC-dimension
of the function class /. The name VC-dimension is an abbreviation of Vapnik-Chervonenkis
dimension. The VC-dimension dvy¢ is the maximum number of vectors that can be shattered by
the function class F.

Theorem 5.5 (VC-Dimension Bounds the Growth Function)
The growth function is bounded by

= [In2 if I < dyc
Gr(l) < dvc (1 + lnﬁ) ifl > dye (5-33)

Fig. 5.5 depicts the statement of this theorem, that the growth function G £(1) is either linear
in [ or logarithmic in .

It follows immediately that a function class with finite VC-dimension is consistent and con-
verges fast.

However the VC-dimension allows to derive bounds on the risk as we already have shown for
function classes with finite many functions.

We now want to give examples for the VC dimension of some function classes.
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{ In2
“Tdve (In(l/dve) + 1)
Gr()
0 dvc l

Figure 5.5: The growth function is either linear or logarithmic in [.

w Linear functions: The VC dimension of linear discriminant functions g(z;w) = w’x
is dyc = d, where d is the dimension of the input space. The VC dimension of linear
discriminant functions g(z; w) = w’x + b with offset b is

dvc = d + 1. (5.34)

» Nondecreasing nonlinear one-dimensional functions: The VC dimension of discriminant
functions in 1D of the form Z,’f:l ‘ai le signz + ag is one. These functions are nonde-
creasing in x, therefore they can shatter only one point: dyc = 1. The VC-dimension is
independent of number of parameters.

» Nonlinear one-dimensional functions: The VC dimension of discriminant functions in 1D
of the form sin(w z) defined on [0, 27] is infinity: dyc = oo. This can be seen because
there exist [ points ', ..., 2! for which a wy exists for which sin(wq z) is a discriminant
function.

» Neural Networks: dyc < 2 W logy(e M) for multi-layer perceptions, where M are the
number of units, W is the number of weights, e is the base of the natural logarithm (Baum
& Haussler 89, Shawe-Taylor & Anthony 91). dyc < 2 W log,(24 e W D) according to
Bartlett & Williamson (1996) for inputs restricted to [—D; D).

In the following subsections we will report error bound which can be expressed by the VC-
dimension instead of the growth function, which allows to compute the actual bounds for some
functions classes.

5.3 Error Bounds

The idea of deriving the error bounds is to define the set of distinguishable functions. This set has
cardinality of Nx, the number of different separations of inputs.
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Now we can proceed as in 5.2.1, where we had a finite set of functions. In eq. (5.12) we replace
the maximum by the sum over all functions. For finite many functions the supremum reduces to
the maximum and we can proceed as in eq. (5.12) and use N as the number of functions in the
class.

Another trick in the proof of the bounds is to use two half-samples and their difference

l 2l

T STRTER T D SR
=1 i=l+1
1 1 l 7 7
2p<83;p YZL(y,g(w;w)) — R(g(;w)| > e)
1=1

The probability that the difference of half samples exceeding a threshold is a bound on the
probability that the difference of one half-sample to the risk exceeds a threshold (“symmetriza-
tion”). The symmetrization step reduces the risk which is defined on all possible samples to finite
sample size. The difference on the half-samples counts how the loss on the first sample half differs
from the second sample half.

Above considerations clarify why in the following bounds values derived from Nx (finite
distinguishable functions) will appear and appear with arguments 2/ (two half-samples).

Before we report the bounds, we define the minimal possible risk and its parameter:
wy = argmin R(g(.;w)) (5.35)
w
Biin = min R(g(;w)) = R(g(; wo)) - (5.36)

Theorem 5.6 (Error Bound)
With probability of at least (1 — 0) over possible training sets with | elements, the parameter w
(more precisely w; = w (Z)})) which minimizes the empirical risk we have

R(g(;w)) < Remp(g(;wy),l) + VVe(l,9) . (5.37)

With probability of at least (1 — 26) the difference between the optimal risk and the risk of wy is
bounded by

R(g(;wy)) — Rumin < Ve(l,0) + 1/ — ;né. (5.38)
Here €(1,6) can be defined for a specific probability as
e(l,6) = ? (H2™(21) + In(4/6)) (5.39)
or for any probability as
(1,8) = S (Gr2) + I(4/0)) (5.40)

l

where the later can be expressed though the VC-dimension dvyc

e(l,5) = § (dve (In(2l/dve) + 1) + In(4/8)) . (5.41)
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The complexity measures depend all on the ratio dVTC, the VC-dimension of the class of func-
tion divided by the number of training examples.

The bound above is from [Scholkopf and Smola, 2002], whereas an older bound from Vapnik
is

R(g(;wi)) < Remp(g(:;wi),l) + (5.42)
E(Zad) Remp(g(';wl)al)
(1 [ el

It can be seen that the complexity term decreases with % If we have zero empirical risk then

the bound on the risk decreases with %

Later in Section 5.6 we will see a bound on the expected risk which decreases with % for the
method of support vector machines.

The bound on the risk for the parameter w; which minimized the empirical risk has again the
form

R < Remp + complexity . (5.43)
This sum is depicted in Fig. 5.6, where it is also shown that the complexity term increases with
the VC-dimension whereas the empirical error decreases with increasing VC-dimension.

Note that we again arrived at a bound which is similar to the bias-variance formulation from
eq. (3.5), where the means squared error was expressed as bias term and a variance term. Bias cor-
responds to Remp and variance to the complexity term. With increasing complexity of a function
class the number of solutions with the same training error increases, that means the variance of the
solutions increases.

In many practical cases the bound is not useful because only for large number of training ex-
amples [ the bound gives a nontrivial value (trivial values are for example that the misclassification
rate is smaller than or equal to 1). In Fig. 5.7 the bound is shown as being far above the actual test
error. However in many practical cases the minimum of the bound is close (in terms of complexity)
to the minimum of the test error.

For regression instead of the shattering coefficient covering numbers can be used. The e-
covering number of F with respect to metric d is N (e, F,d) which is defined as the smallest
number which e-cover F using metric d. Usually the metric d is the distance of the function on
the data set X. For example the maximum norm on X, that is the distance of two functions is
the maximal difference of these two on the set X, defines the covering number N (¢, F, X ) The
e-growth function is defined as

G(e, F,l) = In sup N(e, F, Xo) - (5.44)
X

We obtain similar bounds on the generalization error like

R(g(;;wi)) < Remp(9(;wi),l) + Ve(e, 1,0), (5.45)
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error

complexity

training

VC-dimension

Figure 5.6: The error bound is the sum of the empirical error, the training error, and a com-
plexity term. The complexity increases with increasing VC dimension whereas the training error
decreases with increasing complexity.

error

test error

training error

complexity

Figure 5.7: The bound on the risk, the test error, is depicted. However the bound can be much
larger than the test error because it is valid for any distribution of the input.
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Figure 5.8: The structural risk minimization principle is based on sets of functions which are
nested subsets F,.

where

e(e,1,6) — ? (In(121) + G(c/6,F,1) — Ins) . (5.46)

Instead to minimizing the empirical risk it would be better to minimize the risk or at least a
bound on them.

5.4 Structural Risk Minimization

The Structural Risk Minimization (SRM) principle minimizes the guaranteed risk that is a bound
on the risk instead of the empirical risk alone.

In the SRM a nested set of function classes is introduced:
FiCc F C...C Fp C ..., (5.47)
where class F,, possesses VC-dimension dy;- and
dhe < Be < . db < ... (5.48)

holds.

One realization of the SRM principle is the minimum description length [Rissanen, 1978] or
minimum message length [Wallace and Boulton, 1968] principle. In the minimum description
length principle a sender transmits a model and the inputs ', 22, ..., 2! and the receiver has to
recover the labels y', 42, ..., y' from the model and the inputs. If the model does not supply the
exact y from the input z then the sender has also to transmit the error. Goal is to minimize the
transmission costs, i.e. the description length.

For fixed [ the error is Remp and if the model complexity corresponds to the number of bits to
describe it, then the risk R is analog to the transmission costs:

transmissioncosts = Remp + complexity . (5.49)

Minimizing the transmissions costs is equivalent to minimizing the risk for appropriate error
(coding the error) and appropriate model coding which defines the complexity.
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If the model codes main structures in the data, then for many training examples (assume large
[) the error description can be reduced. If however the model codes specific values for one or few
training points which may even correspond to random noise then it should not be transmitted via
the model. Transmitting the specific values through the error would be more efficient in terms of
bits than coding these values into the model. That means the model should contain rules which
apply to as many data points as possible whereas data point specific variations or noise should be
contained in the error.

Is the SRM principle consistent? How fast does it converge?

The SRM is always consistent and even supplies a bound on the rate of convergence. That
means the SRM procedure converges to the best possible solution with probability one as the
number of examples [ goes to infinity.

The asymptotic rate of convergence is

n Inl
r(l) = |Rpin — Rmin| + %ﬂ (5.50)

where R} is the minimal risk of the function class F,,. Asymptotic rate of convergence means
that

p(llggo sup (1) ’R (g ( wf")) — Ruin| < oo> — 1. (5.51)

We assume that n = n(l) increases with the number of training examples so that for large

l—00

enough training set size |R';  — Rmin| — 0.

If the optimal solution belongs to some class F,, then the convergence rate is
Inl
ril) = O ( I;) . (5.52)

5.5 Margin as Complexity Measure

The VC-dimension can be bounded by different restrictions on the class of functions. The most
famous restriction is that the zero isoline of the discriminant function (the boundary function),
provided it separates the classes properly, has maximal distance 7y (this distance will later be
called “margin”) to all data points which are contained in a sphere with radius R. Fig. 5.9 depicts
such a discriminant function. Fig. 5.10 gives an intuition why a margin reduces the number of
hyperplanes and therefore the VC-dimension.

The linear discriminant functions w’'@ + b can be scaled (scaling w and b) and give the same
classification function sign (wT:c + b) . Of the class of discriminant functions leading to the same
classification function we can choose one representative.

The representative is chosen with respect to the training data and is called the canonical form

w.r.t. the training data X. In the canonical form w and b are scaled that

min |w'z’ + b = 1. (5.53)
1=1,...,
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Figure 5.9: Data points are contained in a sphere of radius R at the origin. A linear discriminant
function with a boundary having distance -y to all data points is depicted.

lIwll < A

Figure 5.10: Margin means that hyperplanes must keep outside the spheres. Therefore the possible
number of hyperplanes is reduced. Copyright (©) 1997 [Osuna et al., 1997].
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Theorem 5.7 (Margin Bounds VC-dimension)
The class of classification functions sign (wTa: + b), where the discriminant function w' @ +b is

in its canonical form versus X which is contained in a sphere of radius R, and where ||w| < %
satisfy

2
dve < — . (5.54)
v
This gives with the fact from eq. (5.34)
R2
dyvc < min{ [72} ,d} +1, (5.55)

where |[.] is the floor of a real number.

Remark: The VC-dimension is defined for a model class and should not depend on the train-
ing set.

If at least one data point exists for which the discriminant function w”x -+ b is positive and
at least one data point exists for which it is negative, then we can optimize b and re-scale ||w|| in
order to obtain the smallest ||w|| for discriminant function in the canonical form.

This gives the tightest bound % on ||w|| and therefore the smallest VC-dimension.

The optimization of b leads to the result that there exists a data point, without loss of gen-
eralization we denote it by !, for which w”a2' 4+ b = 1, and a data point without loss of
generalization we denote it by «2, for which w”z? +b = —1.

Fig. 5.11 depicts the situation.

To see above result, we consider (without loss of generalization) the case that the distance to
the negative class is larger than 1:

wlz! +b =1 (5.56)
and
wla? +b= -1 -9, (5.57)
where ¢ > 0, then
wl(x! — 2?) =2 + 6. (5.58)
We set
wl = 2 T (5.59)
* 2+ 6 '
which gives
Jws || < [Jw] . (5.60)
Further we set
2
by = 1 — wlz! . (5.61)

2+
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'w*T:I: +bx =0,°

o Q

wzx+b*:1

Figure 5.11: The offset b is optimized in order to obtain the largest ||w]| for the canonical form

which is ||w, || for the optimal value b,. Now there exist points ! and ? with wl 2! + b, = 1
and wlx?> + b, = —1. The distance of ' to the boundary function w!z?> + b, = 0
isy = m In the figure also (ml)p ((acQ)p), the projection of x! (2?) onto the boundary

functions is depicted.

We obtain
wfa:1+b*:2+5wT:c1+1 ﬁszclzl
and
me2+b*:2 6wT:c2+1—2 5wTa:1:
R ' -2%) +1 = - 2 2+6)+1=-1
2 4+ 9 2+ 6

We can generalize above example. Without loss of generalization assume that

! = arg min {w’z'} and
xt: yt=1
xz? = arg max {wlz'}.
xt yl=—1
Then we set
2
T
w, = w
* wl (z! — z2)

which gives

(5.62)

(5.63)

(5.64)

(5.65)

(5.66)
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because both &' and 2 have at least a distance of 1 to the boundary functions which guarantees
that w’ (&' — x?) > 2. Further we set

2 1
b= e [ a e = o

wl (z! + z?)
wl (z! — z2)

This gives

and similarly

w,x” + b, = —1. (5.69)

We see that
whz! — 2%) = wla' + b, — wlz® + b, = 2. (5.70)
For ||w| = a |Jw.|| with 0 < o < 1 we would obtain w’ (z! — z?) < 2 and either ' or 22

is closer than 1 to the boundary function which contradicts that the discriminant function is in the
canonical form.

Therefore the optimal w, and b, are unique.

We want to compute the distance of = to the boundary function. The projection of ! onto
the boundary function is (:cl)p = x! — aw, and fulfills

w! (') + b =0 (5.71)

= w] (' — aw.) +b =

Tl — afw® + b =1 = a [l = 0
1

2
[[w. ]

N (:L,1)p — !

w

1

— 2w*
[[w.|

The distance of ! to the boundary function is

1

—w
|

_ 5. (5.72)

I [l

ot = @) = o - ot -

Similar the distance of &2 to the boundary function is

1

= . (5.73)
[[w.|]
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Theorem 5.8 (Margin Error Bound)
The classification functions sign (w” @ + b) are restricted to |w|| < % and ||z| < R. Letv
be the fraction of training examples which have a margin (distance to w ' +b = 0 ) smaller

han 2.
han

With probability of at least (1 — &) of drawing | examples, the probability to misclassify a
new example is bounded from above by

v+ \/j < B 2y 1n(1/5)> , (5.74)

,02 72

where c is a constant.

The probability (1 — §) is the confidence in drawing appropriate training samples whereas
the bound is on the probability of drawing a test example. The bound is from Bartlett and Shawe-
Taylor.

Again the bound is of the order v + %

In the next chapter we will introduce support vector machines as the method for structural risk
minimization, where the margin is maximized.

5.6 Average Error Bounds for SVMs

In this section we show average error bounds for support vector machines (SVMs). The average
error bounds are tighter than the worst case bounds as factors %/l in the worst case bounds are now

of the order % in average bounds.

The following theorems are proved by using the Leave-One-Out Cross Validation (LOO CV)
estimator which was shown in Subsection 2.2.2.2 to be almost unbiased. The complexity of the
SVM is described by the margin which in turn can be expressed through the support vector weights
a; > 0.

Essential support vectors are the support vectors for which the solution changes if they are
removed from the training set. Fig. 5.12 shows essential and non-essential support vectors for a
two-dimensional problem.

We denote the number of essential support vectors by k; and 7; the radius of the sphere which
contains all essential support vectors.

First we note that k; < d -+ 1 (because (d + 1) points in general position are enough to define
a hyperplane which has equal distance to all points).

Now we can give bounds for the expected risk FR(g(.;w;)), where the expectation is taken
over the training set of size [ and a test data point.



5.6. Average Error Bounds for SVMs 67

Figure 5.12: Essential support vectors. Left: all support vectors (the circled points) are essential.
Right: the three support vectors on the right hand side line are not essential because removing one
of them does not change the solution.

Theorem 5.9 (Average Bounds for SVMs) For the expected risk with above definitions

' Ekiq
ER(g(;wn) < 7775 (5.75)
d+1
ER(g(;wp)) < m (5.76)
2
ER(g(;wi)) < m (5.77)
N - 1 +1 ’
2
Emin{kHl, (:ﬁi) }
ER(g(:;wr) < T (5.78)
E((k,)? o Qix + m
ER(g(;w)) < ( l“)lz ) (5.79)
+1
. B () X0
C<r": ER(g(;w)) < ; (5.80)

I+ 1

where i* are the support vectors with 0 < «a;« < C'and m is the number of support vectors with
o; = C.

All of above bounds are based on the leave-one-out cross validation estimator and its property
to be almost unbiased.

It is important to note that we obtain for the expected risk a bound of the order % whereas we
saw in the theoretical sections bounds (worst case bounds) for the risk of % Interesting to know

would be the variance of the expected risk.
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Chapter 6

Theory of Kernels and Dot Products

6.1 Kernels, Dot Products, and Mercer’s Theorem

A function which produces a scalar out of two vectors is called kernel k. For example k (a:i, x ) =
. . 3

((m’)T ! + 1) . Certain kernels represent the mapping of vectors into a feature space and a

dot product in this space.

The idea of using kernels is to map the feature vectors & by a nonlinear function ® into a
feature space:

®: RIS R™ s xy, ¢y = B(x). 6.1)

In this feature space we can apply linear methods for which the theory holds. Afterwards we
can project the results back into the original space. Fig. 6.1 depicts the feature mapping. In the
feature space the data is assumed to be linear separable . The result can be transferred back into
the original space.

For example consider
®(z) = (:z:%, 22 V2 m g;g) . 6.2)

This is a mapping from a two-dimensional space into a three-dimensional space. The four data
points x' = (1,1), 2% = (1,-1),2% = (-1,1),z* = (—1,—1) with labels y* = 1,9 =
1,32 = 1,y* = —1 are not separable in the two-dimensional space. Their images are

(@) = (1,1,v2)

(%) = (1,1,-V?2)
®(z®) = (1,1,-V2)

(') = (1,1,v2),

which are linearly separable in the three-dimensional space. Fig. 6.2 shows the mapping into the
three-dimensional space.

69
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Figure 6.1: Nonlinearly separable data is mapped into a feature space where the data is linear
separable. The “support vectors” (support vector machine) in feature space are marked by thicker
borders. These vectors as well as the boundary function are shown in the original space where the
linear boundary function becomes a nonlinear boundary function.

—>"°

/

Figure 6.2: An example of a mapping from the two-dimensional space into the three-dimensional
space. The data points are not linearly separable in the two-dimensional space but in the three-
dimensional space.
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We write in the following @, for (™), , the j-th component of the vector @’. The dot
product in the three-dimensional space is

@T(wl)i’(w]) = .1:121 x?l + :L'ZZQ 1‘?2 + 2 Tl T32 Tj1 Tj2 =
9 T\ 2
(i1 xj1 + @2 Tjo)° = ((wz) wJ)
In another example we can map the two-dimensional vectors into a 9-dimensional space by
®(x) = (x‘f , x5, V3at e, V33w, (6.3)
\/5:1:%, \/gsc%, V6 1 29, V321, \/gl’g) .
The dot product in the 9-dimensional space is
o (") ®(2) =
3 .3 3 .3
T le + Zio .ijQ +
322 oo 22 s 322 ot 22 s
i1 Ti2 Ty T2 + O Tjp Tit Tjp Tj1 +
2 .2 2 2
3 T afjl + 3 Tio ij +
6 i1 T2 wj1 Tjo + 3wy w1 + 3 x0T =

- ((mi)ij + 1>3 —1.

Therefore mapping into the feature space and dot product in this space can be unified by
. . 3
((m’)T x) + 1) . A function which produces a scalar out of two vectors is called kernel k. In
L . ) 3
our example we have k (z*, @7) = ((azl)T ! + 1) .
Certain kernels represent the mapping of vectors into a feature space and a dot product in this

space. The following theorem characterizes functions which build a dot product in some space.

Theorem 6.1 (Mercer)
Let the kernel k be symmetric and from Lo(X x X) defining a Hilbert-Schmidt operator

L)) = [ ko) f(o) da. (64
X
If Ty, is positive semi-definite, i.e. for all f € La(X)
/ k(z,z') f(x) f(z') de dx’ > 0, (6.5)
XxX
then Ty, has eigenvalues \; > 0 with associated eigenfunctions 1; € Lo(X). Further
()\1,)\2,...) €l (6.6)
K x') = > N vi(x) (@), (6.7)
J

where {1 is the space of vectors with finite one-norm and the last sum converges absolutely and
uniformly for almost all x and x'.
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The sum may be an infinite sum for which the eigenvalues converge to zero. In this case the
feature space is an infinite dimensional space.

Here “for almost all” means “except for a set with zero measure”, i.e. single points may lead
to an absolute and uniform convergence. That the convergence is “absolutely and uniformly” is
important because the sum can be resorted and derivative and sum can be exchanged.

Note that if X is a compact interval [a, b] and k is continuous then eq. (6.5) is equivalent to

positive definiteness of k. A kernel k is positive semi-definite if for all [, all ', ... x!, and all
Qi 1 S 7 S l
Ll
> aiajk(z @) > 0. (6.8)
i,j=1,1
Using the gram matrix K with K;; = k(x’,2’) and the vector & = (a1, . .., oy) this is
o’ Ka > 0. (6.9)

6.2 Reproducing Kernel Hilbert Space

Reproducing kernel Hilbert spaces are an important theoretical tool for proofing properties of
kernel methods.

Hilbert spaces can be defined by reproducing kernels Aronszajn [1950] (see also Stefan Bergman
in the 1950s). Later other work on reproducing kernel Hilbert spaces were published Berlinet and
Thomas [2004], Kimeldorf and Wahba [1971], Wahba [1990], Cucker and Smale [2002]. See for
this section http://en.wikipedia.org/wiki/Reproducing_kernel_Hilbert_space.

X is a set and H a Hilbert space of complex-valued functions on X. We say that H is a
reproducing kernel Hilbert space if every linear map of the form (the evaluation at z)

Ly: [ f(x) (6.10)

from H to the complex numbers is continuous for any x in X.

Theorem 6.2 (Riesz representation theorem)
Let H* denote H'’s dual space, consisting of all continuous linear functionals from H into complex
numbers C. If x is an element of H, then the function ¢, defined by

ba(y) = (y,x) VYyeH, 6.11)

where (-, -) denotes the inner product of the Hilbert space, is an element of H*. The Riesz repre-
sentation theorem states that every element of H* can be written uniquely in this form, that is the

mapping

®: H— H* &)=, (6.12)

is an isometric (anti-) isomorphism.
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We now apply this theorem to kernels. Mercer’s theorem stated that a positive definite kernel
k is a dot product:

k(z,y) = (z,y) - (6.13)
Therefore the kernel k& defines a Hilbert space on X. In contrast to this definition, we now derive
the kernel from Riesz representation theorem.

Theorem 6.2 implies that for every x in X there exists an element k, of H with the property
that:

flz) = (f, k) YfeH. (6.14)

This function k,, is called the “point-evaluation functional” at the point x.

Since H is a function space, k, is a function which can be evaluated at every point. This
allows us to define the kernel as the function k : X x X — C by

k() € ka(y) . (6.15)

The function k is called the reproducing kernel for the Hilbert space H. k is completely determined

by H because Theorem 6.2 guarantees that for every « in X, the element k, satisfying Eq. (6.14)
is unique. H is called “reproducing kernel Hilbert space” (RKHS).

The next theorem states that every symmetric, positive definite kernel uniquely defines an
RKHS.

Theorem 6.3 (Moore-Aronszajn)
Suppose k is a symmetric, positive definite kernel on a set X. Then there is a unique Hilbert space
of functions on X for which k is a reproducing kernel.

Proof.
Define, for all z in X, k, = k(z,-). Let Hy be the linear span of {k, : « € X}. Define an inner
product on Hy by

<ijkijzaikxi> = Zzab]k(y],$l) . (6.16)
=1 i1

i=1 j=1
The symmetry of this inner product follows from the symmetry of k£ and the non-degeneracy
follows from the fact that k is positive definite.

Let H be the completion of Hj with respect to this inner product. Then H consists of functions
of the form

fl@) = aiks, (z) (6.17)
=1

where 20, a?k(x;, x;) < oo. The fact that the above sum converges for every z follows from

the Cauchy-Schwartz inequality.
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We confirm the RKHS property Eq. (6.14):

(f kg) = <Zakxk1> = ak(z,z) = f(z). (6.18)
=1 =1
Therefore we have
fl@) = aik(x, ). (6.19)
=1

which is for example the model class of support vector machines.

To prove uniqueness, let G be another Hilbert space of functions for which & is a reproducing
kernel. For any = and y in X, Eq. (6.14) implies that

<k$7ky>H = k(l’,y) = <k7xaky>G- (620)
By linearity,
(0m = (e 6.21)

on the span of {k, : € X}. Then G = H by the uniqueness of the completion. End Proof.
Properties of the reproducing kernel and the RKHS:

= reproducing property:

= orthonormal sequences, kernel expansion: If {¢;}-  is an orthonormal sequence such
that the closure of its span is equal to H, then

k(z,y) = > ok (@) (v) - (6.23)
k=1

= Moore-Aronszajn Theorem 6.3: every symmetric, positive definite kernel defines a unique
reproducing kernel Hilbert space.

For machine learning, the model class
oo oo
flx) = Z aikz, (x) = Z aik(x;, x) (6.24)
i=1 i=1

is of importance. Since all models of the model class can be represented by the RKHS, this Hilbert
space is convenient to proof properties of models or model selection methods.
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Optimization Techniques

7.1 Parameter Optimization and Error Minimization

We focus on a model class of parameterized models with parameter vector w. Goal is to find or
to select the optimal model. The optimal model is the one which optimizes the objective function.
To find the optimal model, we have to search in the parameter space.

The objective function is defined by the problem to solve. In general the objective function
includes the empirical error and a term which penalizes complexity. The goal is to find the model
from the model class which optimizes the objective function.

7.1.1 Search Methods and Evolutionary Approaches

In principle any search algorithm can be used. The simplest way is random search, where ran-
domly a parameter vector is selected and then evaluated — the so far best solution is kept.

Another method would be exhaustive search, where the parameter space is searched system-
atically.

These two methods will find the optimal solution for a finite set of possible parameters. They
do not use any dependency between objective function and parameter space. For example, if the
objective function should be minimized and is 1 for every parameter w except for one parameter
Wopt Which gives 0. That is a singular solution.

In general there are dependencies between objective function and parameters. These depen-
dencies should be utilized to find the model which optimizes the objective function.

The first dependency is that good solutions are near good solutions in parameter space even
if the objective is not continuous and not differentiable. In this case a stochastic gradient can be
used to locally optimize the objective function. In the context of genetic algorithms a stochastic
gradient corresponds to mutations which are small. With “small” we mean that every component,
e.g. “gene” is mutated only slightly or only one component is mutated at all. In general a stochastic
gradient tests solutions which are similar to the current best solution or current best solutions.
Finally an update of the current best solution is made sometimes by combining different parameter
changes which improved the current best solution.

Another dependency is that good solutions share properties of their parameter vector which
are independent of other components of the parameter vector. For example if certain dependencies

75
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between specific parameters guarantee good solutions and these specific parameters do not influ-
ence other parameters. In this case genetic algorithms can utilize these dependencies through the
“crossover mutations” where parts of different parameter vectors are combined. Important is that
components are independent of other components, i.e. the solutions have different building blocks
which can improve the objective independently of other building blocks.

Besides the genetic algorithms there are other evolutionary strategies to optimize models.
These strategies include genetic programming, swarm algorithms, ant algorithms, self-modifying
policies, Optimal Ordered Problem Solver, etc. Sometimes the model class is predefined by the
search algorithm or the model class is not parameterized. The latter even modify their own search
strategy.

All these methods have to deal with local optima of the objective function. To reduce the
problem of optima, genetic algorithms search in general at different locations in the parameter
space simultaneously. Also other approaches search in parallel at different locations in parameter
space.

To overcome the problem of local optima simulated annealing (SA) has been suggested. SA
can be shown to find the global solution with probability one if the annealing process is slow
enough. SA probabilistic jumps from the current state into another state where the probability
is given by the objective function. The objective function is transformed to represent an energy
function, so that SA jumps into energetically favorable states. The energy function follows the
Maxwell-Boltzmann distribution and the sampling is similar to the Metropolis-Hastings algorithm.
A global parameter, the temperature, determines which jumps are possible. At the beginning large
jumps even into energetically worse regions are possible due to high temperature whereas with low
temperature only small jumps are possible and energetically worse regions are avoided. Therefore
the parameter space is at the beginning scanned for favorable regions which later are searched in
more detail.

Advantages of these methods are that they

m can deal with discrete problems and non-differentiable objective functions and

m are very easy to implement.
Disadvantages of these methods are that they

m are computationally expensive for large parameter spaces and

m depend on the representation of the model.

To see the computational load of stochastic gradient or genetic algorithms assume that the
parameter vector has W components. If we only check whether these components should be
increased or decreased, we have 2" decisions to make. When the amount of change also matters
then this number of candidates will be soon infeasible to check only to make one improvement
step.

The dependency between the parameter space and the objective function which will be of in-
terest in the following is that the objective function is differentiable with respect to the parameters.

Therefore we can make use of gradient information in the search of the (local) minimum.



7.1. Parameter Optimization and Error Minimization 77

Figure 7.1: The negative gradient — g gives the direction of the steepest decent depicted by the
tangent on (R(w), w), the error surface.

Problems like that were already treated in Subsection 7.3. However we focused on convex
optimization. There only one minimum exists. Further we treated linear and quadratic objectives.
The idea of Lagrange multipliers carries over to constraint optimization in general: assume that
the problem is locally convex.

7.1.2 Gradient Descent

Assume that the objective function R(g(.; w)) is a differentiable function with respect to the pa-
rameter vector w. The function g is the model. For simplicity, we will write R(w) = R(g(.;w)).

The gradient is

OR(w) OR(w) OR(w)\”
== w - ) _1
ow Vawli(w) < ow Oww 7D
for a W-dimensional parameter vector w.
For the gradient of R(w) we use the vector
g = VyR(w). (7.2)

The negative gradient is the direction of the steepest descent of the objective. The negative
gradient is depicted in Fig. 7.1 for a one-dimensional error surface and in Fig. 7.2 for a two-
dimensional error surface.

Because the gradient is valid only locally (for nonlinear objectives) we only go a small step
in the negative gradient direction if we want to minimize the objective function. The step-size is
controlled by 0 < 7, the learning rate.

The gradient descent update is

Aw = —nVyuR(w) (7.3)
w"" = w' + Aw. (7.4)
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Figure 7.2: The negative gradient — g attached at different positions on a two-dimensional error
surface (R(w), w). Again the negative gradient gives the direction of the steepest descent.

Figure 7.3: The negative gradient — g oscillates as it converges to the minimum.

Momentum Term. Sometimes gradient descent oscillates or slows down because the error
surface (the objective function) has a flat plateau. To avoid oscillation and to speed up gradient
descent a momentum term can be used. The oscillation of the gradient is depicted in Fig. 7.3 and
the reduction of oscillation through the momentum term in Fig. 7.4.

Another effect of the momentum term is that in flat regions the gradients pointing in the same
directions are accumulated and the learning rate is implicitly increased. The problem of flat regions
is depicted in Fig. 7.5 and the speed up of the convergence in flat regions in Fig. 7.6.

The gradient descent update with momentum term is

AW = —nVy,R(w) (7.5)
wheV — wold + APV + MAOldw (7.6)
AOld’w — Aneww’ 7.7)

where 0 < p < 1 is the momentum parameter or momentum factor.
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Figure 7.4: Using the momentum term the oscillation of the negative gradient — g is reduced
because consecutive gradients which point in opposite directions are superimposed. The minimum
is found faster.

»
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Figure 7.5: The negative gradient — g lets the weight vector converge very slowly to the minimum
if the region around the minimum is flat.
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Figure 7.6: The negative gradient — g is accumulated through the momentum term because con-
secutive gradients point into the same directions. The minimum is found faster.
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Figure 7.7: Left: the length of the negative gradient — g is large because of the steep descent.
However a small gradient step would be optimal because of the high curvature at the minimum.
Right: the length of the negative gradient — g is small because of the flat descent. However a
large gradient step could be performed because the low curvature ensures that the minimum is not
jumped over.

7.1.3 Step-size Optimization

Instead of choosing a fixed step-size the step-size should be adjusted to the curvature of the error
surface. For a flat curve the step-size could be large whereas for high curvature and steep minima
the step-size should be small. In Fig. 7.7 the

7.1.3.1 Heuristics
Learning rate adjustments. The learning rate is adjusted: if the change of the risk
AR = R(w + Aw) — R(w) (7.8)

is negative then the learning rate is increased and otherwise decreased:

ew old if AR <
e = { - N (7.9)

0
on if AR >0
where p > land 0 < 1, e.g. p = 1.1 and ¢ = 0.5. Here p is only slightly larger than one but
sigma is much smaller than one in order to reduce too large learning rates immediately.

Largest eigenvalue of the Hessian. Later in eq. (7.76) we will see that the largest eigenvalue
Amax Of the Hessian, H given as

0’R(w)
H, = —— 7.10
K 8wi 8wj ’ ( )
bounds the learning rate:
2
n < (7.11)

>\max
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The idea is to efficiently infer the largest eigenvalue of the Hessian in order to find a maximal
learning rate. The maximal eigenvalue of the Hessian can be determined by matrix iteration. Let

(e1,...,ew) be the from largest to smallest sorted eigenvectors of the Hessian with according
eigenvalues (A1,...,A\y) andleta = ZZVL o; e;, then
w
H'a =) Xaie ~ Xoaje . (7.12)
i=1

Normalizing H® a and multiplication with H gives both a hint how well e; is approximated and
how large A\; may be.

The method depends on how time intensive it is to obtain the Hessian or the product of the Hes-
sian with a vector. How the Hessian is computed depends on the model. For quadratic problems
the Hessian is directly given and for neural networks there exist different methods to approximate
the Hessian or to compute the product of the Hessian with a vector.

Individual learning rate for each parameter.

We have for parameter w;

Aw; = —n; g , (7.13)

where g; is the ¢-th component of the gradient g: g; = [agig")} . If the parameters would be
independent from each other, then individual learning rates are justliﬁed. However for dependent

parameter, as long as all n; > 0 the error decreases.

The delta-delta rule adjusts the local learning parameter according to
A =y gi g? <. (7.14)

The delta-delta rule determines whether the local gradient information changes. If it changes
then the learning rate is decreased otherwise it is increased. In a flat plateau the learning rate is
increased and in steep regions the learning rate is decreased.

This rule was improved to the delta-bar-delta rule:

[k if gold ghev > 0
Anz - { _ ¢g;1ew if f];')ld glnew S 0 ) (715)
where

g = (1= 0) g™ + 0g" (7.16)

gi is an exponentially weighted average of the values of g;. That means instead of the old gradient
information an average is used to determine whether the local gradient directions changes.

Big disadvantage of the delta-bar-delta rule that it has many hyper-parameters: 0, «, ¢ and p
if a momentum term is included as well.
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\

Figure 7.8: The error surface (the solid curve) is locally approximated by a quadratic function (the
dashed curve).

Quickprop. This method was developed in the context of neural networks, therefore the name
“quickprop” which reminds on the name “back-propagation”, the most popular method for com-
puting the gradient in neural networks.

Here again the parameters are treated individually. The quickprop learning rule is

new

new, . __ gi
A Wi = —35q new

g9, —9;

A%y, (7.17)

Let us assume that R(w) is a function of one variable R(w;) then the Taylor expansion is

R(w; + Aw;) = R(w;) + W Aw; + (7.18)

2 (Ow;)?

1
R(w;) + gi Aw; + 3 g (Awi)2 + O ((Awi)g) .
That is a quadratic approximation of the function. See Fig. 7.8 for the quadratic approximation of
the error function R(w).

To minimize R(w; + Aw;) — R(w;) with respect to Aw; we set the derivative of the right
hand side to zero and obtain

Aw; = — L, (7.19)
i
Now approximate g, = g/(w;) by g}(w??) and use a difference quotient:

gnew _ gqld
g9 = W ) (7.20)
where gfld = gi(w; — AOldwi). We now insert this approximation into eq. (7.19) which results

in the quickprop update rule.
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7.1.3.2 Line Search

Let us assume we found the update direction d either as the negative gradient or by also taking
into account the curvature through the Hessian or its approximation.

The update rule is

Aw =nd. (7.21)

We now want to find the value of  which minimizes

R(w + nd). (7.22)
For quadratic functions and d = — g and very close to the minimum w*, 7 is given later in
eq. (7.77) as
T
g g
n = . (7.23)
g" H(w*) g

However this is only valid near the minimum. Further we do not know H (w™).

Finding the best update step could be viewed as a separate task. If we assume that at the
minimum the function R(w) is convex then we can apply line search.

Line search fits first a parable though three points and determines its minimum. The point with
largest value of R is discharged. The line search algorithm is given in Alg. 7.1.

Algorithm 7.1 Line Search

BEGIN initialization ag, by, co; R(ao) > R(co); R(bo) > R(co), Stop=false, i = 0
END initialization
BEGIN line search
while STOP=false do
fit quadratic function through a;, b;, ¢;
determine minimum d; of quadratic function
if stop criterion fulfilled, e.g. |a; — b;| < e or |R(by) — R(cp)| < € then

Stop=true
else
Ciy1 = d;
biy1 = ¢
G+l = { b, if Rla;) > R(b;)
end if
1=1+1
end while
END line search

Fig. 7.9 shows the line search procedure. At each step the length of the interval [a, b] or [b, a
is decreased.
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R(n d) R(n d)

Figure 7.9: Line search. Left: the error function R(nd) in search direction d is depicted as solid
curve. The scalars a, b, c are given with R(a d) > R(cd) and R(b d) > R(c d). Right: The
dashed curve is a quadratic approximation (parabola) of the error function by fitting the parabola
through a, b, and c. The minimum of the parabola is at d. For the next step weseta = b, b = c,
andc = d.

Line search starts with R(w), R(w + mnod) and R(w + nmax d) , Where ag, bo,co €
{n0,0, Nmax }. If a large range of 1 values are possible, then the search can be on a logarithmic
scale as preprocessing.

7.1.4 Optimization of the Update Direction

The default direction is the negative gradient — g. However there are even better approaches.

7.1.4.1 Newton and Quasi-Newton Method

The gradient vanishes because it is a minimum w*: V,R(w*) = g(w*) = 0. Therefore we
obtain for the Taylor series around w*:

R(w) = Rw*) + = (w — w*)T Hw") (w — w*) + (7.24)

0 (w - w|?) .

N

The gradient g = g(w) of the quadratic approximation of R(w) is

g = Hw") (w — w") . (7.25)

Solving this equation for w* gives
w' = w — Hlg. (7.26)

The update direction H ~!g is the Newton direction. The Newton direction is depicted in Fig. 7.10
for a quadratic error surface.

Disadvantages of the Newton direction are
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Figure 7.10: The Newton direction — H~! g for a quadratic error surface in contrast to the
gradient direction — g. The Newton direction points directly to the minimum and one Newton
update step would find the minimum.

m that it is computationally expensive because computing the Hessian is expensive and its
inversion needs O(WW3) steps;

m that it only works near the minimum if the Hessian is positive definite.

A remedy for the later disadvantage is the model trust region approach, where the model is
only trusted up to a certain value. A positive definite matrix is added to the Hessian:

H + M. (7.27)

The update step is a compromise between gradient direction (large A) and Newton direction
(lambda = 0).

To address the problem of the expensive inversion of the Hessian, it can be approximated by a
diagonal matrix. The diagonal matrix is simple to invert.

Quasi-Newton Method.

From the Newton equation eq. (7.26) two weight vectors w°d and w™®" are related by
wheV wold - _ Hfl <gnew . gold) . (7.28)

This is the quasi-Newton condition.

The best known method is the Broyden-Fletcher-Goldfarb-Shanno (BFGS) method. The
BFGS update is

wheV — wold + Gold gold (7 29)
where 7 is found by line search.
The function G is an approximation of the inverse Hessian and is computed as follows:

T
new old pp
_ _ 7.
G = M PP (730)
(Gold U) ,UTGold

TG ¢

+ ('UTGOld 'v) uul,
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Figure 7.11: Conjugate gradient. After line search in search direction d the new gradient is or-
thogonal to the line search direction.

where
p = w'V — w°d (7.31)
v = gV — g°ld (7.32)
. P G (1.33)

plv TGy

Initialization of G can be done by I, the identity matrix (only a gradient step as first step).

7.1.4.2 Conjugate Gradient

Note that for the line search algorithm we optimized 7 so that
R(w + nd) (7.34)

1S minimized.

The minimum condition is

B,
gy fw +nd) =0, (7.35)

which gives

(g"e™)" @M = 0. (7.36)

new

The gradient of the new minimum g™®¥ is orthogonal to the previous search direction d°'9. This

fact is depicted in Fig. 7.11.

However still oscillations are possible. The oscillations appear especially in higher dimen-
sions, where oscillations like in Fig. 7.3 can be present in different two-dimensional subspaces
which alternate. Desirable to avoid oscillations would be that a new search directions are orthogo-
nal to all previous search directions where orthogonal is defined via the Hessian. The later means
that in the parameter space not all directions are equal important. In the following we construct
such search directions.
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Figure 7.12: Conjugate gradient. Left: d] do = Oandd} dy = 0. Right: dl Hdy = 0
and dg{ H dy = 0. Conjugate directions can be viewed as orthogonal directions which were
transformed by a change of the coordinate system: d = H~1/2d.

The oscillations can be avoided if we enforce not only
g(w™™)T @ = 0o (7.37)
but also the same condition for the new gradient
g(w™™ + pd™")" d = 0. (7.38)
Taylor expansion of g(w™*" + nd"*") with respect to 7 around 0 gives
g(w™™ + nd™™)" = g(w"™) + nH(w"")d™" + O(n’) . (7.39)
We insert that into eq. (7.38) and apply eq. (7.37) and divide through 7 and obtain

(@) H(w™v) dd = 0. (7.40)

Directions which satisfy eq. (7.40) are said to be conjugate. See Fig. 7.12 for conjugate direc-
tions.

Let us assume a quadratic problem

R(w) = %wTHw +clw + k (7.41)
with

g(w) = Hw + ¢ (7.42)
and

0 = Hw* + c. (7.43)
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We want to have W conjugate directions, i.e.
Vizi: diHd; =0
i#£j - 0 i )

which are linearly independent, therefore we can set

W
w' — wy; = E n; d;
i—1

and
j—1
w; — w; = andz
=1
In the last but one equation w* = — H~! ¢ is multiplied by de and we obtain

w
=1

From eq. (7.47) we obtain

Using g; = ¢ + Hwj, n; can be determined as

T
dj gj

NS dTH G

Because of
Wiyl = wj + nj dj .

we have determined the learning rate 7);.

Now we have found the search directions d;. We set
djy1 = —gjy1 + Bid;.
Multiplying by d;‘-FH gives

ng+1 H d;

B =
! d'H d;

(7.44)

(7.45)

(7.46)

(7.47)

(7.48)

(7.49)

(7.50)

(7.51)

(7.52)

(7.53)
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Since
gji+1 — g; = H (wj1 — w;) = n; Hdj, (7.54)
we can rewrite eq. (7.53) as

Hestenes — Stiefel : (7.55)

T
g1 (gj+1 — gj)
T dl (gin - g))

Multiplying eq. (7.52) by ng+1 and using the conditions d{ g; = Ofork < j gives
djg; = —4g; 9 (1.57)

The equation for 3; can be rewritten as

Polak — Ribiere : (7.58)
T L a
g; 9;

Similar to the previous reformulation this expression can be simplified to

Fletcher — Reeves : (7.60)
T .

gy = LI (7.61)
g; gj

Even if the equations eq. (7.55), eq. (7.58), and eq. (7.60) are mathematically equivalent, there
are numerical differences. The Polak-Ribiere equation eq. (7.58) has an edge over the other update
rules.

The computation of the values 7); need the Hessian, therefore the 7; are in most implementa-
tions found by line search.

The disadvantage of conjugate gradient compared to the quasi-Newton methods is

m the line search must be done precisely in order to obtain the conjugate and orthogonal gra-
dients

The advantage of conjugate gradient compared to the quasi-Newton methods is

m that the storage is O(W) compared to O(WW?) for quasi-Newton
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Algorithm 7.2 Conjugate Gradient (Polak-Ribiere)

BEGIN initialization g9 = V,,R(wp),j = 0,dy = —go, Stop=false
END initialization
BEGIN Conjugate Gradient
while STOP=false do
determine 7); by line search
w1 = w; + 1; d;
gi+1 = VyR(wj)
Bj _ gf+1(gg'r+1 — 9j)
g; 9;
djit1 = —gj+1 + Bjd;
if stop criterion fulfilled, e.g. || g;j+1(|| < € or |R(wj41) — R(w;)| < € then
STOP=true
end if
j=j+1
end while
END Conjugate Gradient

7.1.5 Levenberg-Marquardt Algorithm
This algorithm is designed for quadratic loss, i.e. for the mean squared error

!
R(w) = Z (e (w))” . (7.62)

=1

We combine the errors e’ into a vector e. The Jacobian of this vector is J defined as

det
o , 7.
Jii ow; (7.63)

The linear approximation of the error vector gives

e(w™v) = e(w?) + J('wnew - w01d) . (7.64)

The Hessian of the loss function R(w) is

02R L /8¢ Oei 92
Ho = -9 - (o — 7.65
Ik 810]‘ 8wk ZZ; (871)]' awk T 8wj 8wk) ( )
If we assume small e’ (if we are close to the targets) or if we assume that the term e’ awa;g;k

averages out, then we can approximate the Hessian by

H=J"J. (7.66)
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Note that this “outer product approximation” is only valid for quadratic loss functions.

We now can formulate an unconstrained minimization problem where

1 2 2
5 He(wold) + J(wnew _ wold)H + A Hwnew . woldH (767)

has to be minimized. The first term accounts for minimizing the error and the second term for
minimizing the step size.

The solution is the Levenberg-Marquardt update rule
w = w — (JTT 4 A1) JT e(w?). (7.68)

Small A gives the Newton formula while large A gives gradient descent.

The Levenberg-Marquardt algorithm is a model trust region approach.

7.1.6 Predictor Corrector Methods

The problem to solve is R(w) = 0. That problem is different from minimization problems.

The idea is to make a simple update (predictor step) by neglecting higher order terms. In a
second step (corrector step) the value is corrected by involving the higher order terms. Here the
higher order terms are evaluated with the solution obtained by the predictor step.

The Taylor series of R(w™%) is

R(wnew) _ R(wold) + S(’UJOld,A’w) + T(wOId,A’w) . (7.69)

Here S(w°4,0) = 0and T'(w°9,0) = 0.

In the predictor step solve
R(w) + S(w°¢ Aw) = 0 (7.70)
with respect to Aw which gives A, .qw. In the corrector step solve
R(w) + S(w Aw) + T(w, Apreqw) = 0, (7.71)

which gives the final update Aw.

The predictor-corrector update can be formulated as an iterative algorithm.
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7.1.7 Convergence Properties

Gradient Descent. We make a Taylor series expansion of the gradient function g locally at the
minimum w*. The gradient vanishes because it is a minimum V., R(w*) = g(w*) = 0,
therefore we obtain

R(w) = R(w") + %(w — wT H(w") (w — w') + (7.72)

O (lw — w?) .

The improvement of the risk is

R(w — ng) — R(w*) = (7.73)
1 * * *
5(w—ng—w)TH(w)(w—779—w):

1 *

§n29TH(w )g —nglg+c,

where c is independent of 7.

First we note that

1 .
519 Hw)g —ng'g <0, (7.74)

to ensure improvement for arbitrary c. That is equivalent to

29" g
n < (7.75)
g" H(w*) g
which gives the bound (the g which gives the smallest value)
2
n < (7.76)
)\max

The optimal update is obtained if we minimize the left hand side of eq. (7.74) with respect to
7. Setting the derivative with respect to 7 to zero and solving for 7 gives

T
g'g
= =2 9 _ 7.77
7= gTH(wY) g 777
The update is
T
W = qod - 99 (7.78)

g H(w*) g
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The improvement is
R (wOld) ~ R (w"v) = (7.79)

T
,wold_,w*)Hw* 99 g -
( ( )gT H(w*) g

(rvara) o s -

(9"9)" _ 4 (1054) (9" 9)
g’ H(w*) g (T H(w*) g) (" H Y (w*) g) |

N~ N

The Kantorovich inequality states that

(gT g>2 > 4 >‘min )\max > 1
9" Hg) (9" H'g) = (Amin + Amax)®  cond(H)’

(7.80)

where A\pax and A, are the maximal and minimal eigenvalues of the Hessian, respectively, and
cond(H) is the condition of a matrix

cond(H) = Ama". (7.81)

)\min

The improvement depends strongly on the condition of the matrix H (w*).
Newton Method.
The Newton method has the update rule:

w™ — ,wold _ va(,wold)H—l(,wold) ) (7.82)

With previous definitions and Taylor expansion of R around w* we have g(w*) = 0.

The Taylor expansion of the i-th component of g around w° is
0 = gl(w*) = g (wold) + ngi(wold) (w* - wold) + (7.83)
¢ H(w™) ¢,

where H; is the Hessian of g; and £ is a vector §; = A ('w* — 'wOId) with0 < A < 1, thus
H&H2 < Hw* _ wOldH'

‘We obtain
gi(w) = gi(w) — gi(w*) = gi(w') — (7.84)

T
<gi(,wold) + <,w* _ wold) ngi(wold)+

S Hw ) &)
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Combining above equations we obtain
g(w) = — H (w9 <w* _ wold) _ (7.85)
5 (@ &, e Hw ) &)
which gives

wod — H! g(w) — w* = (7.86)

%Hfl (ElTHl(wdd) &1, ... &y Hy (w®) 5W>T

that means
new * 1 -1 T old T old T
W —w' = S H <£1H1(w )€1, €8 Hy(w )5W) . (7.87)
Because
p = max|&] < [w — w* (7.88)
K
and
1 -1 T old T old T 2
S H (51 Hy(w) &1,..., €5 Hy(w )gw) — 0(p?) (7.89)
the Newton method is quadratic convergent in Hw‘ﬂd — w*H assumed that
L o1 (.1 old T old T
o H (&Hl(w ) &1, S Hw (w )€w) < 1. (7.90)

7.2 On-line Optimization

Until now we considered optimization techniques where a fixed set of training examples was given.

However there are cases where we do not want to have a fixed set but update our solution
incrementally. That means a single training example is used for update. The first method with
fixed training size is called batch update whereas the incremental update is called on-line.

In a situation where the training examples are very cheap and a huge amount of them exist we
would not like to restrict ourselves to a fixed training size. This might lead to overfitting which
can be avoided if the training set size is large enough. On the other hand using all examples may
be computationally too expensive. Here on-line methods are an alternative for learning because
the danger of overfitting is reduced.

In a situation where the dynamics changes, i.e. for non-stationary problems, on-line methods
are useful to track the dependencies in the data. If we have a solution, then as soon as the dynamics
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changes, the error increases and learning starts again. Therefore on-line methods are a good choice
for non-stationary problems.

The goal is to find w* for which

glw*) = 0. (7.91)
We assume that g is a conditional expectation
g(w) = E(f(w) | w) . (7.92)
with finite variance
E(g — f)?lw) < . (7.93)
The Robbins-Monro procedure is
wtt = w' — f('wi), (7.94)

where f(w") is a random variable.

The learning rate sequence 7; satisfies

lim 7 = 0 (7.95)
1— 00
d mi= o (7.96)
=1
Zm < 0. (7.97)

The first conditions ensures convergence. The second condition ensures that the changes are suf-
ficiently large to find the root w*. The third condition ensures that the noise variance is limited.

The next theorem states that the Robbins-Monro procedure converges to the root w*.

Theorem 7.1 (Robbins-Monro) Under the conditions eq. (7.95) the sequence eq. (7.94) con-
verges to the root w* of g with probability 1.

If we apply the Robbins-Monro procedure to maximum likelihood we obtain

:\.\H

l
iz (' |w) = 0. (7.98)
w :

The expectation is the limit

=00

9 .
lim 7 Z Inp(x’ | w) = E <awlnp(m’ | 'w)> . (7.99)
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The maximum likelihood solution is asymptotically equivalent to

E <£vlnp(mi | 'w)) = 0.

(7.100)
Therefore the Robbins-Monro procedure is applicable as

,wz—i-l —

wi—i-m

w Inp(az™ | w)

lwi -

(7.101)

This is an online update formula for maximum likelihood.
7.3 Convex Optimization

Convex Problems.

The optimization problem

mmin f(x)

s.t. V; ¢ Cl(l')
7

IN

(7.102)
0
e]'(m) =0,
where f, ¢;, and e; are convex functions has as solution a convex set and if f is strictly convex

then the solution is unique. This problem class is called “constraint convex minimization”.

Note, that all SVM optimization problems we encountered so far are constraint convex mini-
mization problems.

The Lagrangian is

L(x, o, p)

where o

f(x) + Zaz‘ ci(x) + Zﬂj ej(x)

(7.103)
> 0. The variables o« and p are called “Lagrange multipliers”. Note, that the La-
grangian can be build also for non-convex functions.

Assume that a feasible solution exists then the following statements are equivalent, where x
denotes a feasible solution:

(a) an x exists with ¢;(x) < 0 for all i (Slater’s condition),

(b) an x and a; > 0 exist such that ) . o; ¢;(x) < 0 (Karlin’s condition).

Above statements (a) or (b) follow from the following statement

(c) there exist at least two feasible solutions and a feasible x such that all ¢; are strictly convex
at  w.r.t. the feasible set (strict constraint qualification).
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The saddle point condition of Kuhn-Tucker:
If one of (a) - (c) holds then
L(Z,a,p) < L(xz,&,p) < L(x,a,0) . (7.104)
is necessary and sufficient for (&, &, ft) being a solution to the optimization problem. Note, that
“sufficient” also holds for non-convex functions.

The optimal Lagrange multipliers & and i maximize £ with x fixed to the optimal solution
Z. The optimal & minimize £ with Lagrange multipliers fixed to their optimal solution ¢ and ft.

All (&, &, 1) which fulfill the saddle point condition eq. (7.104) are a solution to the optimiza-
tion problem.

To see that assume that (Z, &, f1) satisfy the saddle point condition eq. (7.104). From £ (&, o, pp) <
L (&, &, ) it follows that

Z(ai — &) (@) + Z(uj — fij) ej(&) < 0. (7.105)

If we set all 41; = f1; and oy = &; except a, = G, + 1 then we obtain ¢ () < 0 which shows
the & fulfills the constraints. The equality constraint e;(x) = 0 can be replaced by constraints
ei(x) < 0ande;j(x) > 0. From both constraints follows 0 < eg(z) < 0, therefore,
er(&) = 0 (here we can introduce 1 and p~ and set py, = pf — ;).

If we set all ;i; = fi; and oy = &; except o, = 0 then we obtain Gy, ¢ () > 0. Because
di > 0and from above cx () < 0 we have dy, cx(€) < 0. It follows that

qici(z) =0 (7.106)
and analog
fjej(x) = 0. (7.107)

These conditions are called “Karush-Kuhn-Tucker” conditions or KKT conditions.

For differentiable problems the minima and maxima can be determined.

Theorem 7.2 (KKT and Differentiable Convex Problems)
A solution to the problem eq. (7.102) with convex, differentiable f, c;, and e; is given by & if
&; > 0and fi; exist which satisfy:

L@, &) _ Of(@)

9% p (7.108)

. 0ci() . Oej(x)
EZ:O&Z ox + Z .Y 0
OL(z, &, 1) .

= ¢ <

9 ci(z) <0 (7.109)
oL@ c )

o =ej(z) =0 (7.110)
VZ'Z (351' CZ(ZIAJ> =0 (7.111)

V]’: ﬂj ej(a%) =0 (7.112)
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For all z,a and p for which eq. (7.108) to eq. (7.110) are fulfilled we have

f@) > f@) > fl@) + 3 aici(), (7.113)

note that e;(x) = 0.

The dual optimization problem (Wolfe’s dual) to the optimization problem eq. (7.102) is

max f(x) + Zai ci(x) + Zuj ej(x) (7.114)
i J

z,0

st.Vi: o >0

OL(x, o, p)
——— =0.
ox
The solutions of the dual eq. (7.114) are the solutions of the primal eq. (7.102). If w =0

can be solved for x and inserted into the dual, then we obtain a maximization problem in o and
u.
Linear Programs.

min 'z (7.115)
xr

st Az +d <0,

where A x + d < 0 means that for all i: 22:1 Ajj x + d; < 0.

The Lagrangian is

L=c'z+al(Ax +d) . (7.116)

The optimality conditions are

9L _ ATa g e =0 (7.117)
ox
8—E:AmJFdSO (7.118)
oo
o' (Az +d) =0 (7.119)
a>0. (7.120)

The dual formulation after inserting A” o + ¢ = 0 into the Lagrangian is:

max d’ o (7.121)

(o7

st ATa+c¢=0
a>0.

We compute the dual of the dual. We first make a minimization problem by using — d” o as
objective and alsouse — o < 0Oaswellas — AT a« — ¢ = 0 with Lagrange multiplier =’ for
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the equality constraints — AT @ — ¢ = 0and p for —a < 0. The dual of the dual is after
again transforming it into a minimization problem:

min ¢!z’ (7.122)

o,
st Az’ +d +pu =0
p > 0.

Because o do not influence the objective, we can chose them freely. Therefore we obtain again
the primal eq. (7.102) because we only have to ensure A ' + d < 0.
Quadratic Programs.

The primal quadratic problem is

1
min ngK:c + e (7.123)

T

st Ax +d < 0,

where K is strictly positive definite (implying that K ~! exists).

The Lagrangian is

Lz, o) = %wTK:c +clz +al'(Ax + d) . (7.124)

The optimality conditions are

oL

— =Kz + ATa+¢ =0 (7.125)
oz
%:Am+d§0 (7.126)
15/6"
o’ (Ax +d) =0 (7.127)
a>0. (7.128)

The first equation is used to substitute « in the Lagrangian:

1
L(x,a) = inK.’B +cz +al(Ax + d) = (7.129)
1
— §xTKac + (acTK + el + aTA) z + ald =
- —2TKx + a'd =

(K7 (e + ATa)) K (K~ (c + ATa)) + ad =

— N =N

1
— iaTA K'ATa + (dT — cTKflAT) o — §cTKflc.

Note that %CTK ~lcis constant in o and . We transform the maximization again into mini-
mization by using the negative objective.
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The dual is
1
min §aTAK_1ATa — (d" - K 'AT) a (7.130)
€T
st.0 < .

Note that the dual of the dual is in general not the primal but a similar problem. Dualizing
twice, however, gives again the dual.

Optimization of Convex Problems.

The convex optimization can be solved by gradient descent or constraint gradient descent
methods. See next chapter for such methods.

Efficient methods are interior point methods. An interior point is a pair (x, &) which satisfies
both the primal and dual constraints.

We can rewrite the optimality conditions of eq. (7.125) as

Kz + ATa + ¢ =0 (7.131)

oL

Azt d+E=0 (7.132)

15/6"

aTe =0 (7.133)

o, >0, (7.134)
where weset0 < &€ = — (Axz + d).

The first two equations are linear in the variables o and &, however the third equations is
quadratic.

Interior point algorithms solve these equations by an iterative method called “predictor-corrector”
and set a; & = 1 > 0 which is decreased (annealed) to zero.



Chapter 8

Bayes Techniques

In this chapter we introduce a probabilistic framework, the Bayes framework, for the empiri-
cal error and regularization. In particular the framework will be applied to neural networks but
it can also be applied to other models. The Bayes framework gives tools for dealing with the
hyper-parameters which often trade-off the empirical error with the complexity term. However an
optimal value for these parameters can so far only be found by cross-validation on the training set.
The Bayes framework helps to formally treat these parameters. Especially in the case when many
hyper-parameters are needed then their combination cannot be tested by cross-validation and a
formal treatment is necessary.

Another important issue is that Bayes methods allow to introduce error bars and confidence
intervals for the model outputs. Bayes approaches also help to compare quite different models like
different neural networks architectures. Bayes techniques can be used to select relevant features.
Bayes methods can be used to build averages and committees of models.

Summarizing, Bayes techniques allow

to introduce a probabilistic framework

m to deal with hyper-parameters

to supply error bars and confidence intervals for the model output

to compare different models

to select relevant features

to make averages and committees.

8.1 Likelihood, Prior, Posterior, Evidence

As in Section 2.2.1 we have the training data {2, ..., 2!} (z' = («',y")), the matrix of feature
vectors X = (azl, ... ,a:l)T, the vector of labels y = (yl, - ,yl)T, and the training data
matrix Z = (2',...,2"). Further we define the training data as

{z} = {z},...,2'}. (8.1)

101
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In Section 3.4 the likelihood £ was defined as

L{z};w) = p({z};w), (8.2)

i.e. the probability of the model p(z;w) to produce the data set. We found that for iid data
sampling the likelihood is

l

L{z}w) = p({zhw) = [[p(z'sw). (8.3)

i=1
In supervised learning we can write

p(z;w) = p(z) ply | z;w) (8.4)

and

l l

L{zhw) = [[p@E) [[p@' |2 w). (8.5)

i=1 =1

Because Hﬁzl p(x*) is independent of the parameters, it is sufficient to maximize the conditional
likelihood

l

Ly} [{z}w) = [[p' |25 w). (8.6)

=1

The likelihood or the negative log-likelihood can be treated as any error term.

For the likelihood in this chapter the parameter vector w is not used to parameterize the like-
lihood but the likelihood is conditioned on w.

The likelihood is
p({z} | w) . (8.7)

However we found that only maximizing the likelihood would lead to overfitting if the model
is complex enough. In the most extreme case the model would only produce the training examples
with equal probability and other data with probability zero. That means p (z; w) is the sum of
Dirac delta-distributions.

To avoid overfitting we can assume that certain w are more probable to be observed in the real
world than others. That means some models are more likely in the world.

The fact that some models are more likely can be expressed by a distribution p(w), the prior
distribution. The information in p(w) stems from prior knowledge about the problem. This is
knowledge without seeing the data, that means we would choose a model according to p(w) if we
do not have data available.

Now we can use the Bayes formula:

p({z} | w) p(w)

D = )

(8.8)
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where

p(w | {z}) (8.9)

is called the posterior distribution and the normalization constant

Pu({z}) = /Wp<{z} | w) p(w) dw (8.10)

is called the evidence for a class of models parameterized by w, however it is also called accessible
volume of the configuration space (from statistical mechanics), partition function (from statistical
mechanics), or error moment generating function.

Bayes formula is

likelih i
posterior — Lxelihood > prior 8.11)
evidence

Note that only if p(w) is indeed the distribution of model parameters in the real world then

rw({z}) = p({z}). (8.12)
That means if the real data is indeed produced by first choosing w according to p(w) and then
generating {z} through p({z} | w) then p,,({z}) is the probability of observing data {z}.

However in general the data in real world is not produced according to some mathematical
models and therefore p,, ({z}) is not the distribution of occurrence of data {z} in the real world.

However p,,({z}) gives the probability of observing data {z} with the model class which is
parameterized by w.

8.2 Maximum A Posteriori Approach

The Maximum A Posteriori Approach (MAP) searches for the maximal posterior p(w | {z}). Fig.
8.1 shows the maximum a posteriori estimator wyap Which maximizes the posterior.

For applying the MAP approach the prior p(w) must be defined. For neural networks the
weight decay method leads to the simple term

Qw) = [lw|> = w'w = > w;. (8.13)
ij

This can be expressed through a Gaussian weight prior

Zy(a) 2

Zufa) = [ e (= galwl?) dw - (QJ)W/Q .

The parameter « is a hyper-parameter which trades in the log-posterior in the error term against
the complexity term and is here correlated with the allowed variance of the weights.

1 1
p(w) = exp (— La |rw|2) (8.14)
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' plw | {=})

; _.

WMAP

Figure 8.1: The maximum a posteriori estimator wyap is the weight vector which maximizes the

posterior p(w | {z}). The prior distribution p(w) is also shown.

Other weight decay terms give either a Laplace distribution (Q(w) = |Jw||1)
() = 5 5 allwl
p(w —Zw(a>exp 5 @ lwlh

Zufe) = [ e (- jalul) do

or for compact weight sets a Cauchy distribution (Q(w) = log (1 + [Jw|?) ):

pw) = 5 o (-~ ga) (L o)

Zu(a) = /W exp (—;a> (1 + Jw]?) dw .

For Gaussian noise models from Section 4.1 we have

p{z} |w) =

g @@ (@ - XTI - X w)) ple))

and forYX = o021

p({z} |w) =
(27r)‘11/20d exp <—222 (y — Xw' (y - Xw)) p({x}) .

The term Remp = (y — X w)! (y — X w) is only the mean squared error.

The negative log-posterior is

— logp(w | {z}) = — logp({z} | w) — logp(w) + logpw({2}),

where pq,({2z}) does not depend on w.

(8.15)

(8.16)

(8.17)

(8.18)

(8.19)
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For maximum a posteriori estimation only — log p({z} | w) — log p(w) must be minimized
which results in the terms

~ 1 1 1 1
R(w) = ﬁRemp + 5o Qw) = 3 B Remp + 3 aQw), (8.20)
where 3! = o2, If we set R(w) = R(w) 2 o2 and setting A\ = o2 a we have to minimize
R(w) = Remp + A Q(w) . (8.21)

Therefore minimizing error terms consisting of the empirical error plus a complexity term can
be viewed in most cases as maximum a posteriori estimation.

Note that the likelihood is the exponential function with empirical error as argument

1 1
p({z} ‘ w) = m €xp (_ 9 B Remp) (8.22)
and the prior is an exponential function of the complexity
- ! Q 8.23
p('LU) - Zw(Oé) exXp | — 5 o (’LU) ( . )
and the posterior is
1 1
pw [ (=D = g0 (= 5 (0 00w) + 5 Romy)) (5.24)
where
Z(a, ) = / exp <;(a Q(w) + ,BRemp)> dw . (8.25)
w

8.3 Posterior Approximation

In order to approximate the posterior a Gaussian assumption is made.

First we make a Taylor expansion of R('w) around its minimum wWy[AP:

R(w) = R(wMAp) + (w — wMAp)TH (w — ’wMAp) R (8.26)

N | —

where the first order derivatives vanish at the minimum and H is the Hessian of R(w) at WwMAP-

The posterior is now a Gaussian

pw | {z)) = - exp(- R(w)) = (8.27)
% exp ( R(wyap) — % (w — wuap)" H (w — 'wMAP)) ;

where Z is a normalization constant.
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The Hessian for weight decay is given by

H:ﬁﬂemp+aI:§Hemp+aI, (8.28)
where Hp,, is the Hessian of the empirical error.
The normalization constant is
Z(0,8) = exp (—R(wyap)) @m)"/? |H|7V? . (8.29)

8.4 Error Bars and Confidence Intervals

We now want to derive confidence intervals for model outputs. A user is not only interested in the
best prediction but also wants to know how reliable the prediction is.

The distribution for the outputs is

p(y |z {z}) = /Q/p@/|w,u01xujr{z}>du), (8.30)

where we used the posterior distribution p(w | {z}) and a noise model p(y | x, w).

The Gaussian noise model for one dimension is

ply |z, w) = ZRl(ﬁ) exp <_§ (y — g(z;w) )2> 7 (8.31)
where we again used 8 = % and
9\ /2
Zr(B) = <;> . (8.32)

We now approximate g(a; w) linearly around wyap:
g(x;w) = g(z;wyap) + g7 (w — wyap) , (8.33)

where g is the gradient of g(x;w) evaluated at wyap. This approximation together with the
approximation for the posterior gives us

ple ) x [ e (=50 - lwwnae) - 0" (0~ o)’ - 639

(w — wyap) H (w — wMAp)> dw .
This integral can be computed and results in

p(y |z, {z}) = \/iy exp (— ﬁ (y — g(a:;'wMAp))2> , (8.35)

270 Iy
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A L
Y \]Qw’{z}) g(x; w)
/ _.-""'ﬁ‘—_l = g2

plw[1z})
N >

f w

WNAP

Figure 8.2: Error bars obtained by Bayes technique. Depicted is the double error line correspond-
ing to 20. On the y-axis the error bars are given as quantiles of the distribution p(y | «; {z}). The
large error bars result from the high inherent error 37! = o2 of the data. The parameter wyap
has been chosen very precisely (e.g. if many training data points were available).

where

1
05 =3 +g'H g =02+ g¢g"'H g. (8.36)

The output variance is the inherent data noise variance o plus the approximation uncertainty
T H—l
g g.
Fig. 8.2 shows error bars which are large because of a high inherent error 5~! = 2. Fig. 8.3

shows error bars which are large because of a not very precisely chosen wyap. The later can be
if few training data are available or if the data contradicts the prior.

To derive the solution Eq. (8.35) of the integral Eq. (8.34), we require the identity:
/W exp (— %wTAw + vT'w> dw = (8.37)
(27T)W/2 |A|_1/2 exp <;UTA_1’U> :
In the exponent of the integrand of the integral Eq. (8.34), we first multiply out the polynomials
and then collect terms in (w — wyap). Thereafter, we obtain
» the quadratic part:
A = H + fgg",
m the linear part:

v =B (y — g(x;wmar)) g,
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) 2w | {z})
o

WMAP

Figure 8.3: Error bars obtained by Bayes technique. As in Fig. 8.2 the double error line corre-
sponds to 20 but with much smaller noise variance in the data. On the y-axis the error bars are
given as quantiles of the distribution p(y | @;{z}). The large error bars result from the broad
posterior, that means the parameter wyap has not been chosen very precisely (few data points or
prior and data were not compatible).

m the constant part
v =8y — glw;wyap))’
Using the identity Eq. (8.37), the exponent of the result of the integral Eq. (8.34) is

1+ 1
——oTA Zc =
2’0 'v+2c

% (v = glw;waar)) (8 — B%" (H + ag”) ' g) .

2

The variance o2 can be reformulated

Y
-1 \! 1 _
or = (6 — B°g" (H + pgg") g) =3+ g"H 'g.
This last equality is obtained by the matrix inversion lemma:
A+UCV)i=Al-—AaU(C'+VvaAaU)'vVaATl, (8.38)

where we set A = %,U:gT,V:g, and C = H 1

8.5 Hyper-parameter Selection: Evidence Framework

We are focusing on the hyper-parameters o and 3 from the objective eq. (8.20). 3 is an assumption
on the noise in the data. « is an assumption on the optimal network complexity relative to the
empirical error.
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The posterior can be expressed by integrating out o and 8 which is called marginalization:

p(w | {z}) (8.39)

/ / (w,a,8 | {z}) dadf =

| [ vtwlap =) s | (=) dads.
"S5

To compute the integrals will be considered in Section 8.6.

Here we first consider to approximate the posterior. We assume that the posterior p(«, 8 | {z})
is sharply peaked around the maximal values aprap and Syap. That means around high values of
p(a, B | {z}) the p(w | o, B, {z}) is constant p(w | anap, Smap, {z}). We obtain

p(w | {z}) = p(w | amap, Suapr, {2}) / / o, 8| {z}) dadf = (8.40)
p(w | anap, Buap, {2}) -

Using this approximation we are searching for the hyper-parameters which maximize the pos-
terior. We will try to express the posterior with the variables o and 8 and then to search for the
variables which maximize the posterior.

The posterior of « and [ is

~ p({z} | o, 8) p(a, B)
pla, B[ {z}) = (2D . (8.41)

Here the prior for o and 3, p(«, 5) must be chosen. For example non-informative priors which
give equal probability to all values are a popular choice.

Note that from objective eq. (8.20). we see that 8 = =5 is only present in the w-likelihood
because it determines the noise in the data. In contrast o 1s only present in w-prior as a weight-
ing factor for the w-prior which scales the complexity against the error. We express the (o, /3)-
likelihood through marginalization over w:

p({z} |, B) = /Wp({z} | w,a,B) p(w | o, B) dw = (8.42)
[ vt} w5 vl ) dw
w

Using eq. (8.22), eq. (8.23), eq. (8.24), and eq. (8.25) we obtain
Z(a, B)

r({z} |, B) = m . (8.43)
Especially,
Wl (1) = 5 s vl w) plw). (5.44)
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Example.
We will show this on an example with concrete empirical error and prior term.

For example if we use the mean squared error and as regularization a weight decay term we
already computed Z(«, ) in eq. (8.29) as

Z(0,8) = exp (= Rlwwar)) @m)"/2 |H[T/ (8.45)
where

1 1
R(wyap) = 3 BRemp + e Qw) . (8.46)

According to eq. (8.32)

2 /2
Zr(B) = <> (8.47)
p
and according to eq. (8.14)
9 =\ W/2
Zu(a) = (”) (8.48)
e
1 1 1
Inp({z} | a,5) = — 5 a Q(wymap) — 3 B Remp — 5 In|H| + (8.49)
w l l
5 Ina + 5 Ing — 51n(27r),
where according to eq. (8.28)
H = b H 1 8.50
= 5 Hemp + ol . (8.50)
Assume we already computed the eigenvalues \; of 1/2 Hey,p, then
w
0 0
5o | H| = aalnjl:[l(,é’ A+ ) = (8.51)

o L W 1
—) In(BN + a) = - = TrH !,
604]2::1 (BA; ) Jz::lﬁ)\j—i-a

where we assumed that A\; do not depend on . However the Hessian H was evaluated at wyjap

which depends on «, therefore terms in % were neglected.

Setting the derivative of the negative log-posterior (for v and [3) with respect to « to zero gives

0

J(tpl{z} 0 8) = (5.5
1 1 1 11

g o) + 3 2 555~ e T
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which gives

aQ(wMAp) = (8-53)
i a
_;BAjJra _ZﬁA Jra:7

If Q(wnmap) = 0 then the weight vector is zero, so Q(wyap) shows how far the weights are
pushed away from their prior value of zero by the data.

The term 5 f ,/\i 5 isin [0; 1] and if it is close to one then the data governs this term and terms
J

close to zero are driven by the prior.

The term v measures the effective number of weights which are driven by the data.

Note, however that the Hessian is not evaluated at the minimum of Rey,p, but at wyiap, there-

fore the eigenvalues A; of 1 /2 Hepyp, are not guaranteed to be positive. Therefore terms 3 f ‘Ai o
J

may be negative because (5 \; + «) is positive.
Now we compute the derivative of the negative log-posterior (for « and /3) with respect to [3.

The derivative of the log of the absolute Hessian determinant with respect to [ is

0 0 Z
ole] | H]| = B =1 A = o
= BAj + «

Setting the derivative of the negative log-posterior with respect to 5 to zero gives

B Remp = ZBA+a:l_7' (8.55)

The updates for the hyper-parameters are

new Y
o = —— (8.56)
Q(wwmap)
Bnew — [ — g ]
Remp (wMAP)

Now with these new hyper-parameters the new values of wyiap can be estimated through
gradient based methods. Then again the hyper-parameters « and 3 can be updated and so forth.

If all parameters are well defined v = W and if much more training examples than weights
are present [ >> W then one can use as an approximation for the update formulae
%%
'V = (8.57)
Q(wnap)
/BIIGW — l

Remp (wMAP) )
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In some textbooks the weight decay term is defined as

1 1 1
Qw) = 5 Jlw|* = Jw'w = 2w, (8.58)
]

which contains the factor 1/2. In these cases the empirical error contains the factor 1/2, too.
Consequently, the update rules eq. (8.57) for the hyperparameters contain the factor 2 in their
denominators.

8.6 Hyper-parameter Selection: Integrate Out

In previous section we started with the posterior which was obtained by integrating out « and .

plw | {z}) = /S /Sp(w,a,ﬁ{z}) dadf = (8.59)
o /S8

/ / p(w | o, B, {z}) pla, 8| {2}) dardB =

Se /S5

5 | [ o w8 s | o) plo) p(8) dacd.

w o 8

Here we used that the hyper-parameters « and (3 are independent from one another and do not
depend on the data: p(a,5 | {z}) = p(a) p(B). The w-posterior p(w | «,,{z}) was
expressed through the Bayes formula

p(w | {z}) = p({ZP}wl(?;)}z)?(w) (8.60)

and then the hyper-parameters are removed from densities where the variable is independent from
the hyper-parameter . Thatis p({z} | w,a, 8) = p({z} | w,p) and p(w | o, B) = p(w | ).

The parameters « and 3 are scaling parameters. If target and output range is increased then 3
should re-scale the empirical error.

Similar hold for weight scaling. If the activation functions say H% change their
. ) ‘ exp(—p net)
slopes p then the same network functions are obtained by re-scaling the weights and, therefore,

net. That means different weight ranges may implement the same function.

Such parameters as the standard deviation o for the Gaussians are scale parameters. For scale
parameters the prior is often chosen to be non-informative (uniformly) on a logarithmic scale, that
is p(In(«)) and p(In(p)) are constant.

From this follows (note, p,(x) = p,y(g(x)) g—g ):
1
pla) = — (8.61)
1
p(B) = 3 (8.62)
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We first consider the prior over the weights

p(w) = /000 p(w | @) p(a) da = (8.63)
>~ 1 1 1

/0 Zu(a) exp(— 5@ Q(w)) o da =
A2 [T = L g Q) a2 do = — LOV/2)

@m ™ [ expl— g @) o e = R

where I is the gamma function.

Analog we obtain

N(IP)

p({z} |w) = (r Remp)l/2 :

(8.64)

From these two values and the Bayes formula we can compute the negative log-posterior as

l
— Inp(w | {z}) = 3 In Remp + g In Q(w) + const . (8.65)

The logarithm of eq. (8.24) gives for negative log-posterior

1 1
— Inp(w | {z}) = 5 B Remp + 3@ Qw) . (8.66)

We compute the gradient of eq. (8.65)

l w
— VBuwl = wlem ———— Vw2 . 8.67
Vewhp(w | {z}) > Fems VBwRemp + 3 O w) V BuQ(w) (8.67)
and the gradient of eq. (8.66)
1 1
— Vpwlhp(w | {z}) = 5 B VBwRemp + 3 a Vp,Q(w) . (8.68)

In the last two equations we set the factors in front of V gy, Remp and in front of Vg, Q(w)
equal. Solving for « and for 3 gives the update rules from eq. (8.57):

w
QY = 8.69
Q(wwnap) (8.69)
new __ !
ﬁ N Remp(wMAP) ’

These values of « and 3 are sometimes called effective values because they result from averaging
over all values of a or 5.

Again an iterative methods first uses the actual o and 3 to find wy;ap through gradient descent.
And then « and 3 are updated whereafter again the new wyap is estimated and so on.
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8.7 Model Comparison

Using the Bayes formula we can compare model classes M.
Bayes formula gives

p({z} | M) p(M)
pm({z}) 7

where p({z} | M) is here the likelihood of the data given a model class but is at the same time
the evidence introduced in Section 8.1 for model selection.

pPIM [ {z}) = (8.70)

The evidence for model selection was defined in eq. (8.10) as

p({z} | M) = /Wp<{z} | w, M) p(w | M) duw , 8.71)

where we only made all probabilities conditioned on the model class M.

If the posterior p(w | {z}, M) (or according to the Bayes formula equivalently p({z} |
w, M) p(w | M)) is peaked in weight space then we can approximate the posterior by a box
around the maximum a posteriori value wyap:

p({z} [ M) = p({z} | wmap, M) p(wmap | M) Awniap - (8.72)

If we assume a Gaussian distribution of the posterior then Awyap can be estimated from the
Hessian H.

We can also use the eq. (8.49)
1 1 1
mp({z} |, 8) = =5 aQwmar) = 5 B Remp — 5 In|H| + (8.73)
g Ino + é Ing — éln(27r),

where we insert aprap and Syap for o and 5.

It can be shown (e.g. [Bishop, 1995] page pp 420/421) that the more exact term is

1
Inp({z} M) = — aN;AP Q(wmap) — BM% Remp — 3 In|H| + (8.74)

W l 1 2
o In apiap + B InBvap + nMM! + 2 InM + 3 In () +
Y

1 2
“In(—2—) .
2 (l—7>

Here the terms in M, the number of hidden units in the network, appear because the posterior
is locally approximated but there are equivalent regions in weights space. For each local optimum,
equivalent optima exist which are obtained by permutations of the hidden units (thus the term M!).

The networks are symmetric so that the signs of incoming and outgoing weights to a hidden
unit can be flipped. This gives 2 weight vectors representing the same function. The hidden
units can also be reordered which gives M orderings. Together we obtain a factor of (M! 2M)
equivalent representations through weight vectors of the same function.
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8.8 Posterior Sampling

In order to compute the integrals like

/ f(w) p(w | {z}) dw (8.75)

we can sample weight vectors w; to estimate

L
f) ~ % Z;f(wi), (8.76)

where the w; are sampled according to p(w | {z}).

Because we cannot easily sample from p(w | {z}) we use a simpler distribution ¢(w) where
we can sample from. We obtain

/f w|{)z}) g(w) dw (8.77)

which is an expectation in ¢(w). This expectation can be approximated by

L

AG) = 7 Zlf(wi)W’ (878)

where now the w; are sampled according to ¢(w).

To avoid the normalization of p(w | {z}) which also includes integrations which are difficult
to perform, the following term can be used

iy f(wi) pwi | {2}) / a(wi) 8.79)
S bwi [{2}) [ a(wi)

where p(w | {z}) is the unnormalized posterior, i.e. the product of the likelihood and the prior.

A(f) =

This approach is called importance sampling.

Because p(w | {z}) is in general very small we must guarantee to sample in regions with
large probability mass. This can be done by using Markov Chain Monte Carlo methods where
regions with large mass are only left with low probability.

One method which improves random walk in a way that regions with large p(w | {z}) are
sampled is called Metropolis algorithm. The Metropolis algorithm can be characterized as follows

w™® = wndidate with probability (8.80)
o if p(wendide | {z}) > p(wdld | {z})
candidate . .
M i (e | (2)) < p(w | {2))

Also simulated annealing can be used to estimate the expectation under the posterior which is
similar to the Metropolis algorithm.

These sampling methods are discussed in [Neal, 1996] which is recommended for further
reading.
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Chapter 9

Linear Models

For linear regression we express one variable y as a linear function of the other variable x:
y=a+ bx. 9.1

If fitting a linear function (a line), that is, to find optimal parameters a and b, the objective was the
sum of the squared deviations between the y values and the regression line. The line that optimized
this criterion is the least squares line. We now generalize this approach to the multivariate case.
We already noticed in the simple bivariate case that interchanging the role of z and y may result
in a different functional dependency between x and y.

The scalar variable y is called the dependent variable. We now generalize x to a vector of
features x with components x; which are called explanatory variables, independent variables,
regressors, or features.

The estimation of y from a vector of explanatory variables x is called multiple linear regres-
sion. If y is generalized to a vector y, then this is called multivariate linear regression. We focus
on multiple linear regression, that is, the case where multiple features are summarized in the vector
x.

9.1 Linear Regression

9.1.1 The Linear Model

We assume to have m features x1, . . ., x,, which are summarized by the vector = (x1,...,Zm).
The general form of a linear model is

m
y =060+ > xB+ec. 9.2)
j=1
This model has (m + 1) parameters By, 51, . . . , Bm Which are unknown and have to be estimated.

€ is an additive noise or error term which accounts for the difference between the predicted value
and the observed outcome .

To simplify the notation, we extend the vector of features by a one: * = (1,x1,...,Zp).
Consequently, we use the parameter vector 3 = (fo, 51, - - -, Om) to denote the linear model in
vector notation by:

y = a:T,@ + €. (9.3)

117
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If the constant 1 is counted as independent variable, then (m+1) is both the number of parameters
and the number of the independent variables. In some textbooks this might be confusing because
m and (m + 1) may appear in the formulas.

We assume to have n observations {(y;, ;) | 1 < i < n}. The y; are summarized by a vector
y, the x; in a matrix X € R7X (m+1) (x; is the i-th row of X), and the ¢; in a vector € € R™. For
n observations we obtain the matrix equation:

y=XpB+ €. 9.4)

9.1.2 Interpretations and Assumptions

The linear model can be applied in different frameworks, where the independent variables have
different interpretations and assumptions. The parameter estimation depends only on the noise
assumption. The task which must be solved or the study design, from which the data comes,
determines interpretations, assumptions, and design of the dependent variables.

9.1.2.1 Interpretations

One of the main differences is whether the explanatory / independent variables are random vari-
ables sampled together with the dependent variable or constants which are fixed according to the
task to solve.

Our model for bivariate data is a model with one independent variable:
yi = Bo + bizi + €, 9.5)
where [y is the y-intercept and 3 the slope.

An example with 7 observations in matrix notation is

Y1 1 = €1
Y2 1z €9
Y3 1 a3 3 €3
yu |l = |1 x4 < 0) + le | . (9.6)
Y5 1 a5 b €5
Y6 1 s €6
Y7 1 €7

An example for a model with two regressors is
yi = Bo + Biza + Paziz + € - 9.7

For 7 observations this model leads to following matrix equation:

Y1 1 z11 w0 €1
Y2 1 xo1 woo €2
Y3 1 xz31 w32 | (bBo €3
ya | = |1 2y za2 | | B + |ea] - 9.8)
Ys 1 x51 @52 | \Pe €5
Y6 1 we1 we2 €6
Y7 1z @72 €7
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We show an example for a cell means model or a one-way ANOVA model. We assume that
from the study design we know 3 groups and want to find the mean for each group. The model is

Ygi = Bg + €4, 9.9)

where 3, is the mean of group g. For example we have three groups and 3 examples for the first
group, and two examples for the second and third group. In matrix notation this example with 7
observations and three groups is

Y11 1 0 0 €11
Y12 100 €12
Y13 1 0 0f /5 €13
Y21 = 01 0 B2 + | €21 . (9.10)
Y22 0 10 B3 €22
Y31 0 0 1 €31
Y32 00 1 €32

We present another example of an ANOVA model which is again a one-way ANOVA model.
We are interested in the offset from a reference group. This model is typically for a study design
with one control group or reference group and multiple treatment groups. The offset of group g
from group 1 is denoted by 3, thus 31 = 0.

Ygi = Bo + By + €gi - 9.11)

For three groups and 7 observations (3 in group g = 1, 2 in group g = 2, and 2 in group g = 3),
the matrix equation is

Y11 100 €11
Y12 100 €12
Y13 1 0 0 /Bo €13
yor | = |1 1 OB + [ean] - 9.12)
Y22 1 1 0 \Bs €22
Y31 101 €31
Y32 101 €32

The mean of the reference group is By and f3, is the difference to the reference group. In this
design we know that 3; = 0, therefore we did not include it.

A more complicated model is the two-way ANOVA model which has two known groupings or
two known factors. Each observation belongs to a group of the first grouping and at the same time
to a group of the second grouping, that is, each observation is characterized by two factors.

The model is

Yghi = Bo + By + an + (Ba)gn + €gni s (9.13)

where g denotes the first factor (grouping) and h the second factor (grouping), and ¢ indicates the
replicate for this combination of factors. The term (3c)4y, accounts for interaction effects between
the factors, while 3, and oy, are the main effects of the factors.
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This model has too many parameters to possess a unique solution for the parameters if each
combination of groups is observed exactly once. One observation per combination of groups is
the minimal data set. Consequently, noise free observations can be modeled by more than one set
of parameters. Even for a large number of noise free observations the situation does not change:
there is more that one set of parameters which gives the optimal solution. The solution to this
over-parametrization is to include additional constraints which use up some degrees of freedom.
These constraints are that either

m the main and interaction effect parameters sum to zero for each index (sum-to-zero con-
straint) or

m all parameters that contain the index 1 are zero (corner point parametrization).

With the corner point parametrization we have

a; = 0 9.14)
Bi =0 (9.15)
(Ba)in = 0 (9.16)
(Ba)g = 0. 9.17)

We present an example, where the first factor has 3 levels 1 < g < 3, the second factor has
2 levels 1 < h < 2, and for each combination of factors there are two replicates 1 < ¢ < 2. In
matrix notation we have

Y111 100 0 0O €111
Y112 100 00O €112
Y211 100 1 00 €211
Y212 100100 Bo €212
Y311 110000 B2 €311
Y312 1100 00 B3 €312
yor | 110110 a | T eaa | ©.18)
Y122 110110 (Ba)a2 €122
Y221 101000 (Ba)s2 €221
Y222 1 01 0 0 O €992
Y321 1 011 0 1 €321
Y322 1 01 1 0 1 €322

9.1.2.2 Assumptions
The standard linear regression model has the following assumptions:

m Strict exogeneity. The errors have zero mean conditioned on the regressors:
E(e| X) = 0. 9.19)

Therefore the errors have zero mean E(e) = 0 and they are independent of the regressors
E(XTe) = 0.
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= Linear independence. The regressors must be linearly independent almost surely.

Pr(rank(X)=m+1) = 1.

(9.20)

If X does not have full rank, then estimation is only possible in the subspace spanned by the
x;. To obtain theoretical properties of the estimator, the second moments should be finite to

ensure E(1 X7 X) to be finite and positive definite.
» Spherical errors.

Var(e | X) = o> I, .

9.21)

Therefore the error has the same variance in each observation E(e? | X) = o2 (ho-
moscedasticity). If this is violated, then a weighted least squared estimate should be used.
Further the errors of different observations are not correlated E(e;e;, | X) = 0 fori # k (no

autocorrelation).

Normality of the Errors. For further theoretical properties often the errors are assumed to be

normally distributed given the regressors:

€| X ~ N(0,0°I,)

9.22)

In this case the estimator is the maximum likelihood estimator, which is asymptotically efficient,
that is, it is asymptotically the best possible estimator. Further it is possible to test hypotheses

based on the normality assumption because the distribution of the estimator is known.

In many applications the samples {(y;,z;)} are assumed to be independent and identically

distributed (iid). The samples are independent,

Pr ((yla ml) | (yly ml)a DRI (yi—h wi*l)’ (yi+1> mi+1)7 ey (yna mn)) = Pr ((yh ml)) 5 (923)

and are identically distributed,
Pr((yi,@:)) = Pr((yk, z)) -
For iid samples the assumptions simplify to
= Exogeneity. Each error has zero mean conditioned on the regressor:
E(e |x;)) = 0.
m Linear independence. The covariance matrix

1

Var(z) = E(zz?) = % zn:E(aczw;f) = B(-XTX).
i=1

n

must have full rank.

= Homoscedasticity.

Var(e; | ;) = o?.

9.24)

(9.25)

(9.26)

(9.27)
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For time series models the iid assumption does not hold. In this case the assumptions are

» the stochastic process {(y;,x;)} is stationary (probability distribution is the same when
shifted in time) and ergodic (time average is the population average);

m the regressors are predetermined: E(x;e;) = 0foralli =1,...,n;
m the (m + 1) x (m + 1) matrix E(z;x]) is of full rank;

» the sequence {x;¢;} is a martingale difference sequence (zero mean given the past) with

existing second moments E(e?z;z]).

Linear models for time series are called autoregressive models.

9.1.3 Least Squares Parameter Estimation

The residual for the i-th observation is
v =y - B, (9.28)
where 3 is a candidate for the parameter vector 3. The residual r; measures how well y; is

predicted by the linear model with parameters 3.

To assess how well all observations are fitted simultaneously by a linear model, the squared
residuals of all observation are summed up to .S, which is called the sum of squared residuals
(SSR), the error sum of squares (ESS), or residual sum of squares (RSS):

- n " N 2 AT -
SB == (w-alB) =(y-XB) (y-x8).  ©29
i=1 i=1
The least squares estimator 3 for 3 minimizes S (B)
B =argminS(B) = (XTX) " xTy. (9.30)
B

The solution is obtained by setting the derivative of S (B) with respect to the parameter vector B
to zero:

95(B)
B
The matrix X ™ = (X ¢ ) 1 XT s called the pseudo inverse of the matrix X because X T X =
I,.

The least squares estimator is the minimal variance linear unbiased estimator (MVLUE), that
is, it is the best linear unbiased estimator. Under the normality assumption for the errors, the least
squares estimator is the maximum likelihood estimator (MLE).

:2XT(y—XB>:0. 9.31)

Concerning notation and the parameter vector, we have the true parameter vector 3, a candi-
date parameter vector or a variable 3, and an estimator 3, which is in our case the least squares
estimator.
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9.1.4 Evaluation and Interpretation of the Estimation
9.1.4.1 Residuals and Error Variance

The estimated values for y are
j = XB = XXy = X (X"X) X"y = Py, (9.32)
where
P=Xx (X"x)" x7 (9.33)
is a projection matrix, the hat matrix as it puts a hat on y. We have PX = X and P? = P.

The minimal residuals or the least squares residuals are
—y-XB=I,-P)y=(I, - P)e. (9.34)

Both P and (I, — P) are symmetric and idempotent (P = P?).

S (B) is the sum of squared residuals for the least squares estimator 3, which can be used to

estimate o2,

o N\ T A
$®B) = (v - x8) (v - x8) 9.35)
= y'y - 25" X"y + BTXTXP
= y"y ﬁTXT = &'y,

where we used XTX,é =XTy.

The least squares estimate for o

is

2= 1 gp (9.36)

n—m-—1

and the maximum likelihood estimate for o2 is
6% = =S(8). (9.37)
n

The estimate s? is an unbiased estimator for o> while the ML estimate 52 is biased. Both are
asymptotically optimal, that is, unbiased and efficient. The estimator with minimal mean squared
error is

1 .
~2
= ——§ . 9.38
? n—m-+1 B) ©-38)
The covariance of the vector of residuals is

E(e’) = (I, — P) E(e€l) (I, — P) (9.39)

= o2, — P)? = o*(I, — P),

where we used Eq. (9.34). Further we assumed that the residuals have the covariance structure
021, as the assumptions state.
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9.1.4.2 Coefficient of determination

The coefficient of determination R? is the ratio of the variance “explained” by the model to the
“total” variance of the dependent variable y:

S (5 - 9)°

R? = =X (9.40)
Sty — 9)?
_y'PLPy | y(I-Py SR
yT'Ly yT'Ly TSS’

where L = I,, — (1/n)1 17, with 1 as the n-dimensional vector of ones. L is the centering matrix
which subtracts the mean from each variable. “T'SS” is the total sum of squares for the dependent
variable and “SSR” the sum of squared residuals denoted by S. To account for a constant offset,
that is, the regression intercept, the data matrix X should contain a column vector of ones. In that
case R? is between 0 and 1, the closer R? is to 1, the better the fit.

9.1.4.3 Outliers and Influential Observations

An outlier is an observation which is worse fitted by the model than other observations, that is,
it has large error compared to other errors. An influential observation is an observation which
has large effect on the model fitting or has large effect on the inferences based on the model.
Outliers can be influential observations but need not be. Analogously, influential observations can
be outliers but need not be.

9.1.4.3.1 Outliers. We define the standardized residuals or studentized residuals p; as

€
- N 9.41
P;; are the diagonal elements of the hat matrix P defined in Eq. (9.33) and 62 is an estimate
of o2. The standardized residuals can be used to check the fitted model and whether the model
assumptions are met or not. Such assumptions are linearity, normality, and independence. In
particular, an outlier may be detected via the standardized residuals p; because they have the same

variance.

Another way is to do leave-one-out regression, where observation (y;, ;) is removed from the
data set and a least squares estimate performed on the remaining (n — 1) observations. The least
squares estimator 3(;) on the data set where (y;, x;) is left out is:

~ A €; _
By =B - —— (X"X) ;. (9.42)
1 — P
Therefore the residual of the left-out observation is
) €

Plotting the leave-one-out residuals against the standard residuals may reveal outliers. However
outliers can already be detected by (1 — P;;): the closer P;; to one, the more likely is the i-th
observation an outlier.
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X

Figure 9.1: Simple linear regression with three marked outliers. Observations 1 and 3 deviate in
the z-direction. Observations 2 and 3 appear as outliers in the y-direction. Observation 1 is not
influential but observation 3 is. Figure from Rencher and Schaalje [2008].

9.1.4.3.2 Influential Observations. An influential observation (y;, ;) has large effect on the
estimates B or X B This means that the estimates are considerably different if observation (y;, ;)
is removed. Fig. 9.1 shows a simple linear regression with three marked outliers. Observations
1 and 3 deviate in the x-direction. Observations 2 and 3 appear as outliers in the y-direction.
Observation 1 is located close to the regression line which would be obtained without it. Thus,
it is not influential. However, observation 3 has a large effect on the regression line compared to
regression if it is removed. Thus, observation 3 is influential. Observation 2 is influential to some
degree but much less than observation 3.

With the hat matrix P we can express ¢y as y = Py, therefore

n
gi = > Pyy; = Payi + > Pyuy; - (9.44)
Jj=1 Ji.J#

If P;; is large, then P;; for j # i is small because P is idempotent. Therefore P;; is called the

leverage of y;, that is, how much y; contributes to its estimate.

The influence of the ¢-th observation can be measured by Cook’s distance

2
Pi Py
= L — 9.45
m+11— Py ( )
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If D; is large, the observation (y;, ;) has considerable influence on the estimates.

This distance can be written as

By — BTXTX (B — B)

D; = D)o (9.46)
(X By - XPT(X By - XP)
N (m+1) s?
@ - 9" @ - )
B (m+1) s

Thus, D; is proportional to the Euclidean distance between the estimate ¢ using all data and the
estimate ;) where observation (y;, x;) is removed.

More complicated but giving the same result is first to perform a leave-one-out estimate, where
each observation (y;, «;) is left out, and, subsequently, compare the estimated values to the esti-
mated values with all data.

9.1.5 Confidence Intervals for Parameters and Prediction
9.1.5.1 Normally Distributed Error Terms

If the error terms are normally distributed then the least squares estimator is a maximum likelihood
estimator which is asymptotically normally distributed:

B4 NG, o (XT X)), (9.47)

where % means convergence in distribution. This means that the distribution of ,é is increasingly
(with number of samples) better modeled by the normal distribution. This maximum likelihood
estimator is efficient and unbiased, that is, it reaches the Cramer-Rao lower bound, and therefore
is optimal for unbiased estimators.

This asymptotic distribution gives an approximated two-sided confidence interval for the j-th
component of the vector 3:

Bj € Bj + 7fcv/2,n—m—1 § [(XTX)l]jj] (9.48)

where 4,/ ,—m—1 18 the upper /2 percentage point of the central ¢-distribution and « is the
desired significance level of the test (probability of rejecting Hy when it is true). This means we
are 100(1 — )% confident that the interval contains the true ;. It is important to known that the
confidence intervals do not hold simultaneously for all 3;.

The confidence interval for the noise free prediction is

e’B e |2"B £ tajonmo1s \/a:T (XTX)~1 w] . (9.49)

Again this holds only for a single prediction but not for multiple simultaneous predictions.
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If noise € is added then we have a confidence interval for the prediction:

y € | % tajpmmo syl + el (XTX) Mz |, 9.50)

where ¢ = ch,é'. Of course, this holds only for a single prediction but not for multiple simultane-
ous predictions.

The estimator s? is distributed according to a chi-squared distribution:

2 o 2
§ ~ — x5 9.51
n—m—1 Xn—m—1 ( )
The variance is 20* /(n —m — 1) and does not attain the Cramer-Rao lower bound 20 /n. There
is no unbiased estimator with lower variance, this means that the estimator is the minimal variance
unbiased estimator (MVUE). The estimator 52 from above has the minimal mean squared error.
An advantage of s? is that it is independent of 3 which helps for tests based on these estimators.

A confidence interval for o is given by

o 1) &2
(nzm 1)s< 2

— 2
Xa/2,nfmfl lea/2,n7m71

_ _ 2
(n—m—1)s 9.52)

at 100(1 — )% confidence.

9.1.5.2 Error Term Distribution Unknown

For unknown error distributions we still known that the least squares estimator for (3 is consistent,
that is, B converges in probability to the true value 3. The following results are obtained by the
law of large number and the central limit theorem. The estimator ﬁ is asymptotically normally
distributed:

Vi (B - B8) L N(0, o> (XTX)Y), (9.53)

which gives

R 2

B~ N(B, = (XTX)T) (9.54)

where ~, means asymptotically distributed. This asymptotic distribution gives an approximated
two-sided confidence interval for the j-th component of the vector 3:

Bj € [Bj = g s R [(XTX) (9.55)

ata (1 — «) confidence level.

If the fourth moment of the error € exists, the least squares estimator for o2 is consistent and
asymptotically normal, too. The asymptotic normal distribution is

V(62 — o%) 4 N(0, E(eh) — o), (9.56)



128 Chapter 9. Linear Models

which gives
6% ~q N(o®, (BE(") — o) /n). (9.57)

Also the predicted response § is a random variable given «, the distribution of which is deter-
mined by that of 3:

Vi@ —y) 5 N0 o? 2T (XTX) a), (9.58)
which gives
2
g ~a N(y, % ' (XTX) ). (9.59)

This distribution gives a confidence interval for mean response y, that is, an error bar on the
prediction:

y € [a:TB + ) /Lo at (XTX) e (9.60)

ata (1 — «) confidence level.

9.1.6 Tests of Hypotheses

We want to test whether some independent variables (regressors) are relevant for the regression.
These tests assume the null hypothesis that models without some variables have the same fitting
quality as models with these variables. If the null hypothesis is rejected, then the variables are
relevant for fitting.

9.1.6.1 Test for a Set of Variables Equal to Zero

We remove h variables from the original data and fit a reduced model. The error is assumed to be
normally distributed. We divide the data in m — h + 1 variables (including the constant variable)
and h variables which will be removed:

X = (X4, X5) (9.61)
with X; € R"*(m=h+1) and X, € R"*". Also the parameters are accordingly partitioned:
B = (B1,B2) (9.62)
with 3; € R™~"*1 and 35 € R". We want to test the null hypothesis H,
B2 = 0. (9.63)
We denote the least squares estimator for the reduced model that uses only X; by Br €

R™~ "1 1n contrast, B € R™—"+1 are the first (m — h + 1) components of the least squares
estimator 3 of the full model. We define an F’ statistic as follows:

p_ Y P-P)y/h (B7XTy — BTXTy) / o
y' I —P)y/(n—m-—1) (yTy —BTXTy> /(n—m—l)’ .
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Source of Degrees of Sum of squares Mean
Variation freedom square
reduced 3, df =m—-h+1 S = BI'XTy S / df
improved 3 df =h S = BTXTy — B?XlTy S /df
residual df=n-m-1 S = yTy — BTXTy S /df
total center df =n—1 S =yly —ny S /df
total df =n S = yly S /df

Table 9.1: ANOVA table for F test of Hy: B3 = 0.

where [3 is the least squares estimator of the full model and Br the least squares estimator of the
reduced model. The distribution of the F’ statistic is the following:

(i) If Hy: B2 = 0O is false, then F is distributed according to F'(h,n —m — 1, \), where
-1
A= gl (XQT X, — XFx, (xFx,) ' xT X2> B/ (20%) . (9.65)
(ii) If Ho: B2 = O is true, then A\ = 0 and F' is distributed according to F'(h,n —m — 1).

Hy isrejected if ' > Fy, p n—m—1, Where Fy, , 1 is the upper « percentage of the central
F distribution. That is, Hy is rejected if the p-value is smaller than c.

The statistic F' can also be expressed by R?:
(R* — RY) /h

E = 0oy T emo1)

(9.66)

where R? is the coefficient of determination for the full model and R? is the coefficient of deter-
mination for the reduced model using only X;. It can be shown that this test is equivalently to a
likelihood ratio test.

These hypotheses tests are often summarized by the Analysis-of-Variance (ANOVA) table as
shown in Tab. 9.1.

9.1.6.2 Test for a Single Variable Equal to Zero

To test the null hypothesis Hy: 3; = 0, the I statistic
5

52 [(XTX)_l]jj

F =

(9.67)

can be used. If Hy: B; = 0 is true, then F is distributed according to F'(1,n —m — 1). We reject
Ho: B; =0if F > F, 1 (n—m—1) OF, equivalently, if the p-value is smaller than c.

Alternatively, the ¢-statistic
t; = Bi (9.68)

s [(XTX)—l]jj
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can be used. We reject Hy: 3; = 0if |t;| > ¢, /2,(n—m—1) OF, equivalently, if the p-value is smaller
than a.

If several (3; are tested for being zero, then we have to correct for multiple testing. The false
discovery rate (FDR) can be controlled by the Benjamini-Hochberg procedure Benjamini and
Hochberg [1995], Benjamini and Yekutieli [2001]. Alternatively, the familywise « level can be
adjusted by the Bonferroni approach Bonferroni [1936].

9.1.7 Examples
9.1.7.1 Hematology Data

This data set is from Rencher and Schaalje [2008] page 252, Ex. 10.3, Table 10.1 and stems from
Royston (1983). The following six hematology variables were measured on 51 workers:

1. y: lymphocyte count,

2. x1: hemoglobin concentration,

3. x2: packed-cell volume,

4. x3: white blood cell count (x.01),
5. x4: neutrophil count,

6. x5: serum lead concentration.

The data are given in Tab. 9.2.

If we look at the correlation matrix

[,1] [,2] [,3] [,4] [,5] [,6]
[1,] 1.00000000 0.23330745 0.2516182 0.79073232 0.02264257 0.08290783
[2,] 0.23330745 1.00000000 0.7737330 0.27650957 0.05537581 -0.08376682
[3,] 0.25161817 0.77373300 1.0000000 0.30847841 0.07642710 0.12970593
[4,] 0.79073232 0.27650957 0.3084784 1.00000000 0.60420947 0.07147757
[5,]1 0.02264257 0.05537581 0.0764271 0.60420947 1.00000000 0.03169314
[6,] 0.08290783 -0.08376682 0.1297059 0.07147757 0.03169314 1.00000000

we see that the largest correlation between the response y and an explanatory variable is 0.79
between y and x3.

9.1.7.1.1 Computing Estimates, Confidence Intervals, Tests. The mean y of the response
variable y is 22.98039.

The means of the explanatory variables x; to x5 are:

15.10784 45.19608 53.82353 25.62745 21.07843



9.1. Linear Regression 131

# Yy x1 x2 X3 T4 T3 # y x x2 X3 Ty T3
1 14 134 39 41 25 17 27 16 155 45 52 30 20
2 15 146 46 50 30 20 28 18 145 43 39 18 25
3 19 135 42 45 21 18 29 17 144 45 60 37 23
4 23 150 46 46 16 18 30 23 146 44 47 21 27
5 17 146 44 51 31 19 31 43 153 45 79 23 23
6 20 140 44 49 24 19 32 17 149 45 34 15 24
7 21 164 49 43 17 18 33 23 158 47 60 32 21
8 16 148 44 44 26 29 34 31 144 44 77 39 23
9 27 152 46 41 13 27 35 11 147 46 37 23 23
10 34 155 48 84 42 36 36 25 148 43 52 19 22
11 26 152 47 56 27 22 37 30 154 45 60 25 18
12 28 169 50 51 17 23 38 32 162 50 81 38 18
13 24 148 44 47 20 23 39 17 150 45 49 26 24
14 26 162 45 56 25 19 40 22 151 47 60 33 16
15 23 147 43 40 13 17 41 20 160 46 46 22 22
16 9 147 42 34 22 13 42 20 153 48 55 23 23
17 18 165 45 54 32 17 43 20 145 41 62 36 21
18 28 154 45 69 36 24 4 26 142 41 49 20 20
19 17 151 45 46 29 17 45 40 150 45 72 25 25
20 14 142 46 42 25 28 46 22 142 46 58 31 22
21 8 159 46 52 34 16 47 61 149 45 84 17 17
22 25 160 47 47 14 18 48 12 162 48 31 15 18
23 37 174 50 86 39 17 49 20 145 45 40 18 20
24 20 143 43 55 31 19 50 35 164 49 69 22 24
25 15 148 44 42 24 29 51 38 147 44 78 34 16
26 9 149 43 43 32 17

Table 9.2: Rencher’s hematology data Rencher and Schaalje [2008] page 252, Ex. 10.3, Table
10.1 — originally from Royston (1983). The variables are y: lymphocyte count, z1: hemoglobin
concentration, xo: packed-cell volume, x3: white blood cell count (x.01), x4: neutrophil count,
and z5: serum lead concentration.
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We assume centered data and estimate the coefficients without 5y which is estimated sepa-
rately. The covariance matrix Cov(X) of the explanatory variables is

[,1] [,2] [,3] [,4] [,5]
[1,] 0.6907373 1.494431 3.255412 0.3509804 -0.2966275
[2,] 1.4944314 5.400784 10.155294 1.3545098 1.2843137
[3,] 3.2554118 10.155294 200.668235 65.2729412 4.3141176
[4,] 0.3509804 1.354510 65.272941 58.1584314 1.0298039
[5,]1 -0.2966275 1.284314 4.314118 1.0298039 18.1537255

The covariance Cov(y, X ) between the response and the explanatory variables is
[1] 1.878157 5.663922 108.496471 1.672549 3.421569

We now compute

B =(X"x)"xTy. (9.69)
for the centered data, i.e. we assume that X is centered. In this case (X7 X)) o /n (Cov(X))™*
is the inverse of the covariance matrix divided by the number of samples n. X7y = nCov(y, X)
is the covariance between the response and the explanatory variables multiplied by the number of
samples n. Since the number of samples n cancel, we have

(XTX)"' XTy = (Cov(X)) " Cov(y, X) . (9.70)

Therefore the least squares estimate can be computed as:

[,1]
[1,] -0.21318219
[2,] -0.28884109
[3,] 0.85984756
[4,] -0.92921309
[5,] 0.05380269

We assumed centered data. Now we estimate 3y using the mean of the response 4 and the
mean of the explanatory variables: 15.65486.

In our derivation of the least squares estimator, we used the formula
B =(X"X)" X"y, 9.71)

where the first column of X contains 1’s to account for the intercept. Therefore the least squares
estimate is:

[,1]
[1,] 15.65485611
[2,] -0.21318219
[3,] -0.28884109
[4,] 0.85984756
[5,] -0.92921309
[6,1 0.05380269
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This is the same result as previously, where we first estimated the parameter for the centered data
and then adjusted 5.

SB) =yTy - BTX"y. (9.72)
The estimate for the error variance s? is
1 R
2
— S 9.73
5 n—m-—1 (ﬁ) ( )

where n = 51 and m = 5 in our example. We compute s2 and the standard error s:

s2: 4.3729
sqrt(s2): 2.091148

The coefficient of determination R?2 is

R — iy (Ui — ?)2
> (i — ?)2

which is R2 = 0.9580513. R? is the variance of the estimated response divided by the variance of
the response.

9.74)

The approximate two-sided confidence intervals for components of the vector B3 are:
Bj € Bj + ta/Q,n—m—l S [(XTX)il]jj :| (975)

where 4,/ ,—m—1 is the upper /2 percentage point of the central ¢-distribution and « is the
desired significance level of the test. These confidence intervals are:

[,1] [,2]
[1,] 3.03587336 28.2738389
[2,] -1.40187932 0.9755149
[3,] -0.71833021 0.1406480
[4,] 0.80366905 0.9160261
[5,] -1.02844916 -0.8299770
[6,] -0.09389755 0.2015029

Only for the intercept (component 1), x3 (component 4), and x4 (component 5), the confidence
intervals do not include zero.

For testing whether the components of the estimated parameter vector are significantly differ-
ent from zero, we compute the ¢-statistics:
B
t; = J (9.76)

s [(XTX)—l]jj

the t-statistics are
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[,1]
[1,] 2.4986561
[2,] -0.3612114
[3,] -1.3545299
[4,] 30.8271243
[5,] -18.8593854
[6,] 0.7336764

These t-statistics together withn — m — 1 = 51 — 5 — 1 = 45 degrees of freedom allow to
compute the p-values:

[,1]
[1,] 1.618559e-02
[2,] 7.196318e-01
[3,] 1.823298e-01
[4,] 6.694743e-32
[5,] 5.395732e-23
[6,] 4.669514e-01

Only the intercept, x3, and x4 are significant, where the latter two are highly significant.

9.1.7.2 Carbohydrate Diet Data

This example is from Dobson [2002], page 96, data of Table 6.3. The data are shown in Tab. 9.3
and contain for twenty male insulin-dependent diabetics: responses, age, weight, and percent-
ages of total calories obtained from complex carbohydrates. The individuals had been on a high-
carbohydrate diet for six months. Compliance with the regime was thought to be related to age (in
years), body weight (relative to “ideal” weight for height) and other components of the diet, such
as the percentage of calories as protein. These other variables are treated as explanatory variables.

We fitted a normal linear model by least squares:

Residuals:
Min 1Q Median 3Q Max
-10.3424 -4.8203 0.9897 3.8553 7.9087

Coefficients:

Estimate Std. Error t value Pr(>|tl|)
(Intercept) 36.96006 13.07128 2.828 0.01213 =*
age -0.11368 0.10933 -1.040 0.31389
wgt -0.22802 0.08329 -2.738 0.01460 *
prot 1.95771 0.63489 3.084 0.00712 *x*

Signif. codes: 0 “**%*’ 0.001 ‘**’ 0.01 ‘x> 0.05 “.” 0.1 ¢ *> 1

Residual standard error: 5.956 on 16 degrees of freedom
Multiple R-squared: 0.4805, Adjusted R-squared: 0.3831
F-statistic: 4.934 on 3 and 16 DF, p-value: 0.01297
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Carbohydrate Age Weight Protein

Yy r1 Z2 x3
33 33 100 14
40 47 92 15
37 49 135 18
27 35 144 12
30 46 140 15
43 52 101 15
34 62 95 14
48 23 101 17
30 32 98 15
38 42 105 14
50 31 108 17
51 61 85 19
30 63 130 19
36 40 127 20
41 50 109 15
42 64 107 16
46 56 117 18
24 61 100 13
35 48 118 18
37 28 102 14

Table 9.3: Dobson’s carbohydrate diet data Dobson [2002], page 96, data of Table 6.3. Carbohy-
drate, age, relative weight, and protein for twenty male insulin-dependent diabetics.
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Dobson's Carbohydrate Diet Data
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Figure 9.2: Dobson’s carbohydrate diet data Dobson [2002] with percentages of total calories
obtained from complex carbohydrates plotted against percentage of calories as protein.

The feature “Protein” seems to be the feature that is most related to carbohydrates. We verify
this by a scatter plot. Fig. 9.2 shows percentages of total calories obtained from complex carbo-
hydrates plotted against percentage of calories as protein. A linear dependence is visible which
supports the finding that protein is significantly related to carbohydrate.
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9.2 Analysis of Variance

Analysis-of-variance (ANOVA) models apply linear models to compare means of responses to
different treatments. The treatments are the levels of one factor. Thus, they compare means
of different groups which are known a priori. Typically, the results of fitting linear models are
analyzed by the variance explained as shown previously. @ is neither measured nor a sample
but constructed and contains dummy variables, therefore, the matrix X is called design matrix.
Typically, ANOVA models use more parameters than can be estimated, therefore X may not
have full rank. We first consider the case where observations are divided into different groups
corresponding to a factor. Then we consider the case where observations can be divided by two
ways into different groups, that is, two factors. In this case, besides the treatment, a second factor
influences the outcome of a study.

9.2.1 One Factor

The response variable, that is, the dependent variable, has now two indices: the first index gives
the group to which the observation belongs and the second index gives the replicate number for
this group. The standard case is a treatment-control study, where one group are controls and the
other group are the treatments. It is possible to analyze different treatments if they are mutually
exclusive.

The response variable is yg; With y11, Y12, .- -, Yinys Y21, Y225 - - Y2ns, Y315 - - -, YGng» Where
the j-th group has n; replicates and G’ denotes the number of groups. The model is

Ygi = Bo + By + €gi- (9.77)

The value 3y is a constant offset or the mean of group 1 if we force 51 = 0. The value j3, is
the mean difference to the offset (or group 1). As previously €4 is an additive error term with
previously introduced assumptions.

For each group the model uses different parameters, therefore the model equation depends on
the group to which the observation belongs. The model equations are written down as a matrix
equation. For example, in a case-control study with 3 controls and 3 cases, we write:

Y11 1 10 €11
Y12 110 B €12
1 1 0
yis | _ gl + [ (9.78)
Y21 1 01 3, €21
Y22 1 01 €922
Y23 101 €23
In matrix notation we have the linear model:
y=XpB+¢€, (9.79)

where X is designed depending on the groups to which the observations y belong.
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However X does not have full rank. In the example above, the 6 x 3 matrix has rank 2 because
the first column is the sum of the other two. The least squares estimator cannot be computed
because (X7 X)~! does not exist. The model is not identifiable, that is, for every data set there
exists more than one solution. For example, we can subtract § from 3y and, at the same time, add
4 to 81 and 2. The solution will not change, only the parameters.

There are different ways to ensure that X has full rank and the least squares estimate can be
applied:

(i) re-parametrization using fewer parameters, e.g., corner point parametrization,
(ii) side conditions as constraints on the parameters, e.g., sum-to-zero constraints,
(iii) linear projections a” (3 of parameter vector (3 which is estimable.

ad (i) re-parametrization:
We assume that 3y is the mean response of the controls and f, is the offset of group g to the
controls. Therefore we set 51 = 0 because controls have zero offset to themselves. We obtain:

Y11 10 €11
Y12 10 €12
Y13 1 0] (Bo €13

= + . 9.80
Y21 11 (52) €21 ( )
Y22 11 €22
Y23 11 €23

Setting 81 = 0 is called corner point parametrization which removes 3, from the equations.
In general corner point parametrization removes all variables that contain the index one. This
means that variables that contain the index one are considered as reference groups or as reference
group combinations.

In general, the re-parametrization is

y=URB (9.81)

which gives with
X =ZU (9.82)
y=2~v + €. (9.83)

The matrix Z has full rank and U blows Z up to X, therefore, Z and X have the same rank.

ad (ii) side conditions:
We can assume that 31 4+ 82 = 0. If group 1 and group 2 have the same number of replicates, then
Bo is the mean over all groups. From the condition 81 4+ 82 = 0 we immediately obtain 8y = —f31.
This gives the matrix equation

Y11 1 1 €11
Y12 1 1 €12
Y13 1 1 50) €13

— + . 9.84
Yo1 I -1 <51 €21 ©-84)
Y22 1 -1 €22
Y23 1 -1 €23
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Variable (3 is removed from these equations.

The constraint Zle By = 01is the sum-to-zero constraint. This ensures that 3y is the overall
mean. The 3, estimate the deviation of the mean of group g from the overall mean. In general
sum-to-zero constraints set sums over an index to zero and, thereby, define the constant offset as
the overall mean.

ad (iii) linear projection:
a = (0,1,-1)) gives 8, = a’' B = 1 — P2, which is estimable. This approach is of interest, if
specific questions have to be answered. In our example, the difference of the means of group 1
and group 2 may be relevant but not the means themselves. We obtain the matrix equation:

Y11 1 €11
Y12 1 €12
Y13 1 / €13

= + . 9.85
Y21 -1 b €21 (©-85)
Y22 -1 €22
Yo3 -1 €23

The models can be used to test hypotheses. A common null hypothesis is Hy: 51 = (B2 =
... = Bg, where the null hypothesis states that the means of all groups are equal. This can be
expressed by the new variables 37 = 31 — 32, 85 = B1 — 33, ..., 85_1681 — Ba, which are tested
for 87 = 35 = ... = B5_; = 0. Or we introduce the constraint ZgG:l , = 0 while keeping (3.
We then can test for 81 = 85 = ... = Ba = 0, that is, deviation from the overall mean . Tests
for these hypotheses have been presented earlier. The reduced model has only the overall mean 3y
as parameter.

9.2.2 Two Factors

We now consider the case where two factors influence the response. Consequently, the response
variable has now three indices: the first index gives the group for the first factor, the second index
the group for the second factor, and the third index gives the replicate number for this combination
of groups.

The response variable is y45; with the model
Yghi = Bo + By + an + (aB)gn + €ghi - (9.86)

The value f3j is a constant offset. The values 3, are the mean difference for the first factor and
ay, the mean differences for the second factor. The new term (/3),, models the interaction
effects between the two factors. As always, €gp; is the additive error with previously introduced
assumptions.

The following hypotheses are often tested and correspond to different reduced models:

(i) the additive model with the hypothesis Ho: (c3)g5, = 0 for all g and all h:

Yghi = Bo + By + an + €ghi - (9.87)

This model should be compared to the full model.



140 Chapter 9. Linear Models

(i1) factor corresponding to « has no effect:

Yghi = Bo + Bg + €ghi - (9.88)
This model should be compared to the additive model in (i).

(iii) factor corresponding to S has no effect:

Yghi = Bo + an + €gni - (9.89)

As for the model in (ii), also this model should be compared to the additive model in (i).

These models should be either tested with sum-zero constraints

i) Yo, By =0,

(i) S5 =0,
(i) Vg : pi(@B)gn =0,
(v) Vi Sgi(aB)gn =0,

or with corner point constraints

@) b1 =0,

(i) a1 =0,
(iii) Vy: (af)g1 =0,
(iv) Vn: (aB)in = 0.

We have one offset parameter 3, G' factor parameters 3,, H factor parameters vy, and GH
interaction parameters (of3) g, which sums up to GH +G+ H +1 = (G +1)(H + 1) parameters.
The minimal data set has only GH observations, one observation for each combination of factors.
For both sets of constraints the 3, equations use up one degree of freedom, the o, use also up one
degree of freedom, the (a3) 4y equations for all g use up G degrees of freedom, and the (af3)gy,
equations for all h use up H degrees of freedom. We have to add one degree of freedom because
for corner point constraints («/3)1; is counted twice and for sum-zero constraints the last equation
follows from the other equations. We have 1 + 1+ G + H — 1 = G 4+ H + 1 degrees of freedom
used up. Therefore we have (G+1)(H +1) — (G+ H +1) = GH free parameters. For sum-zero

constraints we show that the last equation follows from the others. From ¥, :  S>1° (a8)gn = 0
follows that 30 711, (aB)gn = 0. We have 341 (325 (aB)g) = 0 and S5 () gn = 0
for h < H since the last equation is not used. Thus, Z?:l (af8)gm = 0, which is the last equation.
We showed that the last equation can be deduced from the others. Therefore for both constraint
sets we have GH free parameters, as desired.

The design matrix X should have at least rank GH to distinguish all interaction effects
(af)gn- Thus, the least squares estimator can be computed and the according tests performed.

To simplify notations, means are denoted by
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(i) mean of group combination gh:

Ngh

Ygh = 7Zygm, (9.90)

where ngj, are the number of replicates of group combination gh.
(i) mean of group g:

H nNgn

Jo. = ——— D D Yghi » 9.91)

Zh 1 Mgh =1 =1

(iii) mean of group h:

G TNgh

Jh = Z DD Yahi» (9.92)

=1"gh g=1 =1

(iv) overall mean:

TLgh

G H
V.= —am——2_ 2. Yahi- (9.93)
h=1

Zg,h 1,1 gh g=1 i=1

If we use the full design matrix X then the normal equations are

B
X'X | a = XTy, (9.94)

(aB)

where 3 is the first component of 3. The matrix X’ X is not invertible. However for the optimal
solution (87, &, (&B)™)T with sum-zero constraints or with corner point constraints the normal
equations must hold.

The normal equations can be written as:

G,H . G H ) H G G H R
Sy ﬂo+z(zngh) 53 (o) + 30
g=1 \h=1 1

g,h=1,1 h=1 \g= g=1h=1
G.H
Z Ngh Zj
g,h=1,1
H H H H H
(z) o + (z ) o Yoo+ @il = i 12956
— h=1 - — h=1
G
anh Bo + anh By + anh ap + anh Jgh = anh Yn, L<h<H
g=1

Ngh ﬁ(] + Ngh ﬁg + Ngh ap + ngh(dﬁ)gh = NghYgh, 1<g<G, 1<h<H. (9.95)
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These are 1 + G + H + GH = (G + 1)(H + 1) equations but in the worst case we have only
G H observations. The constraints use up G + H + 1 degrees of freedom, e.g. via the zero sum
conditions

M=
=
1

0, (9.96)
g=1
H
Zdh =0, (9.97)
h=1

G N

> (@B)gn = 0, (9.98)

g=1

H A

> (@B)gn = 0. (9.99)

>
Il
—_

We then have at least GH observations and GH free parameters and the normal equations can be
solved.

For the balanced case the number of replicates is the same for each combination of conditions.
That means

Ngp = 1 . (9.100)
In this case the means simplify to:
(i) mean of group combination gh:
L
Ygh = =D Yghi 9.101)
i=1
(i) mean of group g:
| A
Uo. = T DD Yghi 9.102)
h=1 i=1
(iii)) mean of group h:
1 G n
h = G DD ahis (9.103)
g=1i=1

(iv) overall mean:

G H n
g = GHﬁZZZygm. (9.104)
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The normal equations become:

the normal equations further simplify to
GHnfy=GHny.
Hafy+ Hify = Hag,, 1<g<G
Gnfo+ Gnép = Gagy, 1<h<H
iifo + By + Ran + 7 (6P = g,

which gives

(9.105)

(9.106)

(9.107)

(9.108)

(9.109)

(9.110)

(9.111)

These are the estimators for the means which one would use intuitively. Actually these are

unbiased estimators for the according means.
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Treatment group Control group

4.81 5.36 417  4.66
4.17 3.48 305 558
4.41 4.69 5.18  3.66
3.59 4.44 4.01 450
5.87 4.89 6.11 3.90
3.83 4.71 410 4.61
6.03 5.48 517  5.62
4.98 4.32 357 453
4.90 5.15 533  6.05
5.75 6.34 559 514

Table 9.4: Weights of dried plants which were grown under two conditions. The data are from
Dobson [2002], page 46, data of Table 2.7.

9.2.3 Examples
9.2.3.1 Dried Plant Weights

The first example is from Dobson [2002], page 46, data from Table 2.7. Genetically similar seeds
are randomly assigned to be raised in either a nutritionally enriched environment (treatment group)
or standard conditions (control group) using a completely randomized experimental design. After
a predetermined time, all plants are harvested, dried and weighed. The results, expressed in grams,
for 20 plants in each group are shown in Tab. 9.4 and in Fig. 9.3. The goal is to test whether there
is a difference in yield between the treatment and the control group.

To obtain an overview of the data, we do a simple summary:

ctl:
Min. 1st Qu. Median Mean 3rd Qu. Max.
3.060 4.077 4.635 4.726 5.392 6.110
trt:
Min. 1st Qu. Median Mean 3rd Qu. Max.

3.480 4.388 4.850 4.860 5.390 6.340

We see that the treatment has larger median and larger mean. Is this significant? When looking at
the data in Fig. 9.3 there could be some doubts.

To answer the question whether the difference in means is significant or not, we fit a linear
model and print the ANOVA table:

Analysis of Variance Table

Response: weight

Df Sum Sq Mean Sq F value Pr(>F)
group 1 0.1782 0.17822 0.2599 0.6131
Residuals 38 26.0535 0.68562
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Dobson's Plant Weight Data

weight

4.5
|
o
o

Index

Figure 9.3: Dobson’s dried plant data: orange indicates the control and blue the treatment group.
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Figure 9.4: Results of ANOVA for dried plant data.

The difference in means between treatment and control is not significant, i.e. the treatment did
not show more or less average yield. We shown the results in Fig. 9.4.

Next we fit a model without an intercept

Residuals:
Min 1Q Median 3Q Max
-1.67650 -0.57400 -0.05825 0.60763 1.48000

Coefficients:

Estimate Std. Error t value Pr(>|tl)
groupCtl 4.7265 0.1852 25.53 <2e-16 *xx*
groupTrt 4.8600 0.1852 26.25 <2e-16 *x**

Signif. codes: 0 ‘*%x> 0.001 ‘%%’ 0.01 ‘x> 0.05 ¢.

> 0.1 ¢ 1
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Control Treatment A Treatment B

4.17 4.81 6.31
5.58 4.17 5.12
5.18 441 5.54
6.11 3.59 5.50
4.50 5.87 5.37
4.61 3.83 5.29
5.17 6.03 4.92
4.53 4.89 6.15
5.33 4.32 5.80
5.14 4.69 5.26
>y 5032 46.61 55.26
> y? 25627 22292 307.13

Table 9.5: Dried weight of plants grown under three conditions from Dobson [2002], page 101,
data of Table 6.6.

Residual standard error: 0.828 on 38 degrees of freedom
Multiple R-squared: 0.9724, Adjusted R-squared: 0.971
F-statistic: 670.3 on 2 and 38 DF, p-value: < 2.2e-16

The intercept is replaced by the groups because always one of them is present. Therefore both
groups are significantly different from zero (sure: dried plants have a weight), however there is no
difference between the groups.

9.2.3.2 Extended Dried Plants

The second example extends the first example and is from Dobson [2002], page 101, data of
Table 6.6. The results of plant weights in grams for three groups (control, treatment A, treatment
B) are shown in Tab. 9.5 and in Fig. 9.5. Plants from treatment B group (green) seem to be larger
than the others. We will check whether this impression also holds after fitting a linear model and
analyzing the results.

The ANOVA models are fitted:
Analysis of Variance Table

Response: weight

Df Sum Sq Mean Sq F value Pr(>F)
group 2 3.7663 1.8832 4.8461 0.01591 =*
Residuals 27 10.4921 0.3886

Signif. codes: 0 ‘“#*%*’ 0.001 ‘**’ 0.01 ‘x> 0.05 “.” 0.1 ¢ *> 1
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Dobson's Three Group Plant Weight Data
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Figure 9.5: Dobson’s dried plant data for three groups: orange indicates the control, blue the
treatment A, and green treatment B group. Treatment B group seem to be larger than the others.
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Residuals:
Min 1Q Median 3Q Max
-1.0710 -0.4180 -0.0060 0.2627 1.3690

HURSHHHHHHA R R R R R R R R R

Coefficients:

Estimate Std. Error t value Pr(>Itl|)
(Intercept) 5.0320 0.1971 25.527 <2e-16 **x*
groupA -0.3710 0.2788 -1.331 0.1944
groupB 0.4940 0.2788 1.772 0.0877 .

Signif. codes: 0 ‘*%x> 0.001 ‘%%’ 0.01 ‘x> 0.056 ¢.”> 0.1 ¢ > 1
Residual standard error: 0.6234 on 27 degrees of freedom
Multiple R-squared: 0.2641, Adjusted R-squared: 0.2096
F-statistic: 4.846 on 2 and 27 DF, p-value: 0.01591

HUFHHHHHH AR R R R R R

(Intercept) groupA groupB
5.032 -0.371 0.494
Estimate Std. Error t value Pr(>Itl)
(Intercept) 5.032 0.1971284 25.526514 1.936575e-20
groupA -0.371 0.2787816 -1.330791 1.943879e-01
groupB 0.494 0.2787816 1.771996 8.768168e-02

Group B can be distinguished best from other groups. Its coefficient has a p-value of 0.09
which is almost significant. The F'-statistic and its p-value of 0.016 shows that the groups together
are significant. The estimated parameters show that group B is larger (0.494) and group A smaller
(-0.371) than the control group.

9.2.3.3 Two-Factor ANOVA Toy Example

This example for a two-way ANOVA problem is from Dobson [2002], page 106, data of Table 6.9.
The fictitious data is shown in Tab. 9.6, where factor A has 3 levels and factor B has 2 levels. This
gives 2 X 3 = 6 subgroups which form all combinations of A and B levels. Each subgroup has 2
replicates. The data is shown in Fig. 9.6.

Questions for this data set can be:
m are there interaction effects?,
m are there different responses for different levels of factor A?,

m are there different responses for different levels of factor B?

Each question corresponds to a hypothesis.

We analyze this data by an ANOVA table:
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Levels of factor B

Levels of factor A B, Bs Total
Aq 6.8,6.6 5.3,6.1 248

Ao 75,74 72,65 28.6

Az 7.8,9.1 8.8,9.1 348

Total 45.2 43.0 88.2

Table 9.6: Fictitious data for two-factor ANOVA with equal numbers of observations in each
subgroup from Dobson [2002].

Dobson's Two Way ANOVA Data

Index

Figure 9.6: Fictitious data for two-factor ANOVA with equal numbers of observations in each
subgroup from Dobson [2002]. Levels of factor A are indicated by the interior color of the circles
while levels of factor B are indicated by the border color of the circles.
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Analysis of Variance Table

Response: y
Df Sum Sq Mean Sq F value Pr(>F)

a 2 12.7400 6.3700 25.8243 0.001127 *x*
b 1 0.4033 0.4033 1.6351 0.248225
a:b 2 1.2067 0.6033 2.4459 0.167164

Residuals 6 1.4800 0.2467

Signif. codes: 0 ‘*%x> 0.001 ‘%%’ 0.01 ‘x> 0.05 ¢.”> 0.1 ¢ > 1

The is no evidence against the hypothesis that the levels of factor B do not influence the response.
Similar there is no evidence against the hypothesis that the interaction effect does not influence the
response. Therefore we conclude that the response is mainly affected by differences in the levels
of factor A.
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9.3 Analysis of Covariance

9.3.1 The Model

We now consider models that combine covariates (variables or regressors measured together with
y) and designed or dummy variables as in the ANOVA models. These models are called analysis
of covariance (ANCOVA) models. Thus, we know treatment groups but have also additional mea-
surements. The additional measurements, the covariates, reduce the error variance because some
variance is explained by them. Therefore, the unexplained variance is reduced before comparing
the means of groups which is supposed to increase the performance of the ANOVA models.

The model is
y=XB+ Zu + €, (9.112)

where X b is the same as in the ANOVA model but now the covariate values Z together with their
coefficients v are added. The designed X contains zeros and ones while Z contains measured
values.

For example, a one-way balanced model with only one covariate is
ygi:ﬁO+Bg+uzgi+EgiylgggGaléiSﬁ, (9.113)

where [3, is the treatment effect, z,; is the covariate that was observed together with sample y,;,
and w is the coefficient or slope for z4;. With ¢ covariates the model is

q
ygl-:ﬁ0+ﬁg+ZurzgiT+egi,1§g§G,1§i§ﬁ (9.114)

T

which is in matrix notation

2111 2112 - Zllg Uy
Z121 2122 -.. Z12¢ U2

Zu = . . . . . (9.115)
2Gnl  2Gn2 --- 2Gngq Ugq

The matrices X and Z can be combined:

y = (X,2) (ﬁ> + €. (9.116)

U
The normal equations are

xT ¢ xX'x XxTz\ (3 XTy
We obtain two equations:

X"XB8+ X724 = X"y (9.118)
Z'X B+ 224 = Z7y. (9.119)
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Solving the first equation for B gives
B = (XTxX)"XTy — (XTX)*"XTZ 4 (9.120)
=B - (XTX)"'X"Za,

where (X7 X)* denotes the pseudo inverse of (X7 X ) and By = (X7 X)* Xy is the solution
to the normal equations of the model without covariates.

We now substitute this equation for B into the second equation in order to solve for w:
Z'X (XTX)"XxTy - (XTX)"XTZa) + 2"Z24 = Z"y. (9.121)
We define
P =X (xXTx)*x7T (9.122)
and obtain for u:

= (Z'(I - P) Z)_lZT(I - P)y. (9.123)

We immediately obtain a solution for B :

B =08 — X"TX)"X"Za. (9.124)
Different hypotheses can be tested like Hy: 51 = [2 = ... = B¢ (equality of treatment
effects), Hy: u = 0 (slope equal to zero), or Hy: u1 = us = ... = uq (equal slopes, homogeneity

of slopes) Rencher and Schaalje [2008]. Also two-way models with covariates can be constructed
Rencher and Schaalje [2008].

9.3.2 Examples
9.3.2.1 Achievement Scores

The data are from Dobson [2002], page 111, data of Table 6.12. The data are listed in Tab. 9.7
which is originally from Winer (1971), page 776. The responses are achievement scores measured
at three levels of a factor representing three different training methods. The covariates are aptitude
scores measured before training commenced. We want to compare the training methods, taking
into account differences in initial aptitude between the three groups of subjects. The data is plotted
in Fig. 9.7, where the data points are jittered to avoid data points covering others.

The figure shows that the achievement scores y increase linearly with aptitude x. Further the
achievement scores y are generally higher for training methods B and C if compared to A. We
want to test the hypothesis that there are no differences in mean achievement scores among the
three training methods, after adjustment for initial aptitude.

Analysis of Variance Table

Response: y
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Dobson's Achievement Scores Data
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Figure 9.7: Scatter plot of Dobson’s achievement scores data. Observations are jittered to avoid
data points covering others.
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Training method
A B C

AW AW pbhoe
<N 00O 0O 0o
Y B N, T, TN NG
BN BV, e IR RN RN B e) SN
—_ Rk W NN WR

2

xldly 53 24 47 19
Sa? /Y y? 147 41 413 96 321 59
Say 75 191 132

Xz
3
1
3
1
2
1
4
15

[9]
—

Table 9.7: The responses are achievement scores measured at three levels of a factor representing
three different training methods. The data is from Dobson [2002] and originally from Winer
(1971), p. 776.

Df Sum Sq Mean Sq F value Pr (>F)
X 1 36.575 36.575 60.355 5.428e-07 *%*x*
m 2 16.932 8.466 13.970 0.0002579 x*x*x*
Residuals 17 10.302 0.606

Signif. codes: 0 ‘*%x> 0.001 ‘*x’ 0.01 ‘x> 0.05 ¢.”> 0.1 ¢ > 1

Of course, the initial aptitude x is significant for the achievement scores y. More importantly, the
training methods, which are given by m, show significant differences concerning the achievement
scores. We obtain the same result by looking at the ANOVA table of different models:

Analysis of Variance Table

Model 1: y " x + m
Model 2: y 7 x

Res.Df RSS Df Sum of Sq F Pr (>F)
1 17 10.302
2 19 27.234 -2 -16.932 13.97 0.0002579 x**x*

Again we see that the training methods show significant differences after adjusting for the initial
aptitude.

9.3.2.2 Birthweights of Girls and Boys

The data set is from Dobson [2002], page 30, data of Table 2.3. Birthweights (in grams) and
estimated gestational ages (in weeks) of 12 male and female babies are sampled. Tab. 9.8 shows
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Boys Girls
Age Birthweight Age  Birthweight
40 2968 40 3317
38 2795 36 2729
40 3163 40 2935
35 2925 38 2754
36 2625 42 3210
37 2847 39 2817
41 3292 40 3126
40 3473 37 2539
37 2628 36 2412
38 3176 38 2991
40 3421 39 2875
38 2975 40 3231
Means 38.33 3024.00 38.75 2911.33

Table 9.8: Birthweight and gestational age for boys and girls from Dobson [2002].

the data. The mean ages are almost the same for both sexes but the mean birthweight for boys is
higher than the mean birthweight for girls. The data are shown in a scatter plot in Fig. 9.8. There
is a linear trend of birth weight increasing with gestational age and the girls tend to weigh less
than the boys of the same gestational age. The question of interest is whether the rate of increase
of birthweight with gestational age is the same for boys and girls.

For analysis we fit a linear model where the groups are male and female and the covariate is

the age:
Residuals:

Min 1Q Median
-257.49 -125.28 -58.44

Coefficients:

3Q
169.00

Max
303.98

Estimate Std. Error t value Pr(>lt|)

(Intercept) -1610.28
sexFemale -163.04
age 120.89

Signif. codes: O ‘*%xx> 0.001 ‘*x> 0.01 ‘x> 0.05 ¢.

786.08
72.81
20.46

-2.049
-2.239

0.0532 .
0.0361 *

5.908 7.28e-06 ***

> 0.1 ¢ 1

Residual standard error: 177.1 on 21 degrees of freedom
Multiple R-squared: 0.64,

F-statistic: 18.67 on 2 and 21 DF,

Correlation of Coefficients:
(Intercept) sexFemale

Adjusted R-squared: 0.6057

p-value: 2.194e-05
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Dobson's Birth Weight Data
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Figure 9.8: Scatter plot of Dobson’s birthweight data. Regression lines are shown.
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sexFemale 0.07
age -1.00 -0.12

Of course, the birthweight depends on the age, which is highly significant. However also the sex
is significant at a level of 0.05. Females weigh less than males as the coefficient for females is
-163.04.

The intercept was not important, we fit the model without an intercept:

Residuals:
Min 1Q Median 3Q Max
-257.49 -125.28 -58.44 169.00 303.98

Coefficients:

Estimate Std. Error t value Pr(>|tl|)
sexMale -1610.28 786.08 -2.049 0.0532 .
sexFemale -1773.32 794.59 -2.232 0.0367 *
age 120.89 20.46 5.908 7.28e-06 *x*x

Signif. codes: 0 “**%*’ 0.001 ‘**’ 0.01 ‘x> 0.05 “.” 0.1 ¢ > 1

Residual standard error: 177.1 on 21 degrees of freedom
Multiple R-squared: 0.9969, Adjusted R-squared: 0.9965
F-statistic: 2258 on 3 and 21 DF, p-value: < 2.2e-16

Correlation of Coefficients:
sexMale sexFemale

sexFemale 1.00

age -1.00 -1.00

The intercept is now attributed to the males. This is in agreement to the result in previous setting,
where the males were the reference group. Either the reference group effect or the constant offset
(the intercept) is set to zero.

We compare the models by an ANOVA table:
Analysis of Variance Table

Model 1: birthw ~ sex + age

Model 2: birthw 7 sex + age - 1
Res.Df RSS Df Sum of Sq F Pr(>F)

1 21 658771

2 21 658771 0 1.5134e-09

The intercept is not required.

Next we fit a more complex model which contains the interaction of factor sex with variable
age:
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Residuals:
Min 1Q Median 3Q Max
-246.69 -138.11 -39.13 176.57 274.28

Coefficients:

Estimate Std. Error t value Pr(>|t]|)
sexMale -1268.67 1114.64 -1.138 0.268492
sexFemale -2141.67 1163.60 -1.841 0.080574 .
sexMale:age 111.98 29.05 3.855 0.000986 **x*
sexFemale:age  130.40 30.00 4.347 0.000313 ***

Signif. codes: 0 ‘*%x> 0.001 ‘%%’ 0.01 ‘x> 0.056 ¢.”> 0.1 ¢ > 1

Residual standard error: 180.6 on 20 degrees of freedom
Multiple R-squared: 0.9969, Adjusted R-squared: 0.9963
F-statistic: 1629 on 4 and 20 DF, p-value: < 2.2e-16

Correlation of Coefficients:
sexMale sexFemale sexMale:age

sexFemale 0.00
sexMale:age -1.00 0.00
sexFemale:age 0.00 -1.00 0.00

The interaction terms (interaction of factor sex with variable age) explain significant variance in
the data. However the interaction factors are driven by age. Thus, age is now less significant as it
is divided into two interaction factors.

The ANOVA table shows
Analysis of Variance Table

Model 1: birthw 7 sex + sex:age - 1
Model 2: birthw ~ sex + age - 1

Res.Df RSS Df Sum of Sq F Pr(>F)
1 20 652425
2 21 658771 -1  -6346.2 0.1945 0.6639

The difference between the models is not significant. Only age is separated into the combined
factors containing the sex.
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9.4 Mixed Effects Models

So far, we considered only the noise € as random variable given . Thus, only € could explain the
variance of p(y | ). We now assume there is a second source of variation which is represented
by a hidden or latent variable u. If the variance of w is not known, then the parameter estimation
becomes more complicated. The error variance has to be distinguished from the variance through
u. So far the parameters could be estimated without knowing the error variance. We assumed
that the errors have the same spherical variance. Therefore this variance would factor out in the
objective and the normal equations would not change. For mixed effect models that is no longer
the case.

For each observation y there is a corresponding latent variable u:
y=a'8 + 2Tu + €. (9.125)

z is a vector indicating the presence of the latent variable, which can be sampled with y or be
designed via dummy variables.

We assume that

E(u) = 0, (9.126)
E(e) = 0, (9.127)
Var(u) = G, (9.128)
Var(e) = R, (9.129)
Cov(e,u) = 0 (9.130)
The model in matrix notation is
y=XB+ Zu + €. (9.131)

The design matrix is X with 3 as the coefficient vector of fixed effects. w is the vector of random
effects with Z as fixed predictor matrix. Z is often used to specify group memberships or certain
measurement conditions.

‘We have

E(y) = X8, (9.132)
Var(y) = Z'GZ + R. (9.133)

These properties of y follow immediately from the assumptions.

9.4.1 Approximative Estimator

We want to find an estimator for both e and u. The estimator for u is the posterior, that is, the
distribution of u after having seen the observation, while the prior is the distribution of « without
an observation.
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94.1.1 Estimator for Beta

We assume that both G = agI and R = o2I as well as normal distributed errors. Then, we
approximate G by 621 and R by 62I. We have to find an estimator 62 for o2 and an estimator &>
for o2. One approach for this estimate is the restricted (or residual) maximum likelihood (REML)
estimator.

We define
K=C(I-P)=cC(I-XX"xX)"x"), (9.134)

where C' is a full-rank transformation of the rows of (I — P). We immediately see that

KX =0. (9.135)
We define
> =0227Z" + I, . (9.136)
We know the distribution of K y:
Ky~N((O,KXK"). (9.137)

Using this distribution, estimators for o2 and 2 can be obtained by solving the equations:

T (K" (KSK') 'K) = y"K"(KZK") 'KK"(KZK") 'Ky (.13

T (KT (K S K") ' K22") = y'K" (KT K") 'K 2Z"K" (KT K") 'Ky.
(9.139)

These equations are obtained by setting the derivatives of the likelihood of Ky with respect to o
and to o2 to zero.

The solution of these equations are the estimators 62 and 2 for o2 and o2, respectively. Using
these estimators, we define

> =62z27 + 5°I,. (9.140)

to obtain an estimator for 3 as
. . + .
8 = (XTEJ*lX) XTIy 1y, (9.141)

This is the estimated generalized least squares (EGLS) estimator. The EGLS estimator is only
asymptotically the minimum variance unbiased estimator (MVUE).

Similarly, an approximated estimate for the covariance of 3 is

A + N ~ +
Var(8) = (XT2—1X) xXT81x (XTz—lx) . 9.142)
For full rank X that is

Var(8) = (XT2*1X>_1 . 9.143)



162 Chapter 9. Linear Models

Large-sample estimator. Using this approximation for the variance, we can approximate
100(1 — a)% confidence intervals by

T T3 T T$1—1 *
a’B € a8 + 245 1/a (Xz: X) a. (9.144)
Using the a = e; gives a confidence interval for 3;. However this confidence interval is not valid
for a small number of samples. For a small number of samples we use a different approach.

Small-sample estimator. For

a’p

N +
\/aT <XTE*1X) a

often a ¢-distribution with unknown degrees of freedom is assumed. The task is to estimate the
degrees of freedom to compute confidence intervals or p-values. Different approaches exist to
estimate the degrees of freedom Rencher and Schaalje [2008].

t = (9.145)

94.1.2 Estimator for u

If w is normally distributed, then we know the posterior p(u | y).
We use the following connection between two normally distributed variables:
u~ Ny, 2uw) , Yy ~ N(“yvzyy) ) (9.146)
Yuw = Cov(y,u) and X,, = Cov(u,y):
wly ~ N + S0y (¥ — 1) 5 Zow — ZouZyy Suw)

The covariance between u and vy is

Cov(u,y) = Cov(u, XB + Zu + €) = G Z". (9.147)
and we have
E(u) = 0, (9.148)
Var(u) = G, (9.149)
E(y) = X3, (9.150)
Var(y) = Z'GZ + R. (9.151)

Therefore we obtain

uly ~ N (G2"(27GZ + R)

y - XB),G - Gz (2'GzZ + R)_1ZGT) .
9.152)

This posterior can be computed if G, R, and 3 are known. We can use above approximation
for these values

G = ¢, (9.153)
R = 6°1I, (9.154)
Z'"GZ + R =% (9.155)

to estimate the posterior.
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9.4.2 Full Estimator

Here we consider the full estimator and not only an approximation. Henderson’s “mixed model
equations” (MME) are:

XTR'X XTR'z B XTR 'y
ZTR'X ZTR 1z + Gl i = ZTR_ly . (9.156)

The solution to these equations are best linear unbiased estimates (BLUE).

Mixed effect models can also be fitted by the EM algorithm. Variance components are consid-
ered as unobserved variables which are estimated in the E-step. The M-step maximizes the other
parameters. For example, the R function 1me () (“linear mixed effect”) of the R package nlme
(“non-linear mixed effect”) implements such an EM algorithm.

For R = 021 we obtain for the MME
xTx xTz J¢; XTy
ZTX 7ZTZ + o2G V) \a) ~ \ZTy) - ©.157)
9.5 Generalized Linear Models

So far, we assumed spherical and often normal errors. However other distributions may be possi-
ble — even discrete or count distributions. For example with counts the error corresponds to the
deviation from the mean count. The error-free model is obtained by the expectation of the obser-
vation y;: E(y;) = p; = zr:iTﬁ. We now generalize this relation by introducing a link function g.
The link function g relates the mean E(y;) = y; to the linear component g(y1;) = =7 3.

Generalized linear models require

(i) a random component or an error distribution which specifies the probability distribution of the
response ¥,

(1) a systematic component which is a linear function of the explanatory variables / regressors,

(i) alink function which determines the functional relation between the expectation of the random
variable and the systematic component, i.e. the linear function.

For the exponential dispersion model with the natural parameter 6; and dispersion parameter
¢, the density is

fi | bi,¢) = exp <y0—)b(6) + C(yz‘,¢)> ) (9.158)

where

b(6;) = ale) ln/exp (ZL’ Loy c(yi,qb)) dy; . (9.159)
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The function b is a normalizing constant (in y;) that ensures f to be a distribution:

[ exp (yzgj + c(yi,q§)> dy;

/f(yilﬂi,qﬁ) dy; = ’;6) =1. (9.160)
Jexp (a@f) + C(yi,¢)) dy;
Using this density we can derive Rao and Toutenburg [1999]:
E(yi) = mi = v'(63) (9.161)
Var(y;) = "(6:) a(¢) - 9.162)

These equations can be derived as follows. For the mean we have

Jwifa(@)) exp (45 + clyin0)) dy

82(99?) = a(¢) — (9.163)
i Jexp (45 + clyin0)) dy
@fwmwmm@$+d%@%m
= a
exp(b(6;)/a(s))
_ , yithi — b(0;) ‘ ,
= /yz eXp( a(¢) + C(yza¢) dy;
= M.
and for the variance we obtain
52b(6)) L (o e (55 + cwi0)) du)
57 = o ; L+ (9.164)
' (f exp (f{@f) + C(yi,¢)> dyi>
1 Jyi exp (i’if;') + C(yi,¢)) dy;
A0) Jexp (L5 + clyi, ) dys
= —— (—pi + E(y;)) = Var(y;) .
a(¢)( p (¥7)) o) Vo)
The log-likelihood is
L= It =) (M + c(yi,qﬁ)) , (9.165)
izl i1 a(¢)
where L£; = f(y; | 05, ¢) is the conditional likelihood of y; given ;.
The derivative of the log-likelihood with respect to the coefficient (; is
Oln L; _ olnL; 90; Ou; 8g(,uz)' (9.166)

dB; 00;  Opi O0g(ps) 0PB;

We only applied the chain rule a couple of times.
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The derivatives which appear in the chain rule can be computed separately. We compute these
derivatives, where we use p; = b/(6;):

Oln L; yi — U'(0;) Yi — M

= = (9.167)
00, a(9) a(9)
891 i 6,[11' -1 N 7 -1 a(¢)
Opi <09(m)>1
— (9.169)
) Opi
9g(pi)
= T . A
o5, Tij (9.170)
For finding the maximum, the derivative of the log-likelihood is set to zero
OlnL — (yi — i) Tij (ag(,ui)>1
= =0. 9.171
dB; ZZ: Var(y;) Opi ( )

The maximum likelihood solution is obtained by solving this equation for the parameters 3.

Since g(p;) = =] B, pi = V'(6;), and Var(y;) = b"(6;) a(¢), this equation is nonlinear in 3
depending on the functions g and b. Therefore numerical methods are used to solve this equation.
The probability function is determined by the functions a and b while the link function is given by
g. A popular method to solve this equation is the iteratively re-weighted least squares algorithm.

Using
(o)
99(pi)

and the diagonal matrix W = diag(w;) the iterative algorithm is

OlnL

Ty (k) (k+1) _ Ty (k) (k) hdianiad

(X W X)B - (X w X)B + 350 9.173)

Here (X Tw k) x ) approximates the Fisher information matrix F:
F~ XTwhx . (9.174)

If X has full rank then the update rule becomes
-1 9InL
(k+1) _ k) Tyxr (k)

B+ — g 4 (X w X) 550 9.175)

If different models are fitted, then the maximum likelihood solutions of different models can
be compared by a likelihood ratio test. The likelihood ratio test is of interest when using reduced
models to test which variables are relevant. Also the interaction of variables might be tested.

Tab. 9.9 shows commonly used generalized linear models described by their distribution and
link function. The last three models are known as logistic regression and multinomial logistic
regression for more than two classes.
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distribution link function link name support application

normal XB=gp)=p identity real, (—oo, +00) linear response
exponential XB=g(p) =—p! inverse real, (0, +00) exponential response
Gamma XB=g(p) =—pt inverse real, (0, +00) exponential response
inv. Gaussian X3 = g(u) = —p 2 inv. squared real, (0, +00)

Poisson XB=g(p) =1In(u) log integer, [0, +00)  count data

Bernoulli XB=g(p) =In ﬁ logit integer, [0, 1] two classes, occurrence
binomial XB=g(p) =In ﬁ logit integer, [0, 1 two classes, count
categorical XB=g(p) =In ﬁ logit integer, [0, K| K classes, occurrence
multinomial X3 =g(y) =1In ﬁ logit integer, [0,n]% K classes, count

Table 9.9: Commonly used generalized linear models described by their distribution and link
function. The probability distribution and the link function are given. Further the support of the
distribution, the short-cut name for the link, and the typical application.

LR N3 LR N3 LN LIS LN

Commonly used link functions are: “logit”, “probit”, “cauchit”, “cloglog”, “identity”, “log”,

99 <6l

“sqrt”, “inverse squared”, and “inverse”.

The “cloglog” is the “complementary log log function” given as

g(x) = log(— log(x)) . (9.176)

The “cloglog” model is similar to the logit models around 0.5 but differs near 0 or 1. Following

models are common:

binomial:
gaussian:

Gamma :
inverse.gaussian:
poisson:

quasi:
quasibinomial:
quasipoisson:

link
link
link
link
link
link
link
link

logit

identity

inverse

1/mu~2

og

identity, variance = constant
logit

log
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Figure 9.9: The sigmoid function

9.5.1 Logistic Regression
9.5.1.1 The Model

The inverse of the logit function

is the sigmoid function:

which is depicted in Fig. 9.9.

Since

1 e T
1 4+ e 7 14+ e’

we obtain the probabilities

1
ply = 1|xz;8) = PR
and
e z'P
ply = 0|z 8) = [

The logit as link function gives

<o = (T2l

1
Ttexp(—a)’

(9.177)

(9.178)

(9.179)

(9.180)

(9.181)

(9.182)
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9.5.1.2 (Regularized) Logistic Regression is Strictly Convex

Following Jason D. M. Rennie, we show that linear Logistic Regression is strictly convex.

For labels y € +1, —1 we have

oL "
B > yiwi; (1= plyi | 2:8)) - (9.183)
J i=1
The second derivatives of the objective L that is minimized are
oL i
2
Hie = 98; 0Bx ;(yi) zij vk p(yi | 2;8) (1 — plyi | 2;8)) , (9.184)

where H is the Hessian. The Hessian is the Fisher information matrix 7 = (X Twx ), where
W contains the variance of the binomial p(1 — p).

Since p(1 — p) > 0 for p < 1, we can define

pij = i /Pl | 28) (1 — plyi | z:8)) - (9.185)
The bilinear form of the Hessian with a vector a is
n d d
a" Ha = > > Y zijzinajarply | 2:8) (1 — plyi | 2:8)) = (9.186)
i=1 j=1 k=1
n d
SN 4@y Vol [258) (1 — plyi | 2:8))
i=1 j=1

d
> ar wa V/plyi [2:8) (1 — plyi | =:8)) =
k=1

n n

> (a”pi) (a” pi) = 3" (a" pi)” = 0.

=1 =1

Since we did not impose any restriction on a, the Hessian is positive definite. Adding a term

like % BT 13 to the objective for regularization, then the Hessian of the objective is strictly positive
definite.

9.5.1.3 Maximizing the Likelihood

We aim at maximizing the likelihood by gradient ascent. Therefore we have to compute the gra-
dient, that is, the first order derivatives of the likelihood £ with respect to the parameters /3;.

The log-likelihood for iid sampled data is

mL{(yi, )} 8) = Y Inp(yi, xi;8) = (9.187)
=1

Y Inp(yi | i:8) + Y Inp(w;) .
i=1

=1
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Only the first sum depends on the parameters, therefore maximum likelihood maximizes the sum
of the conditional probabilities

> Inp(yi |z 8) (9.188)
=1

This term is often called the conditional likelihood.

Next we will consider the derivative of the log-likelihood. First we will need some algebraic
properties:

0 0 1
—1 =1l|x;B8) = —Ih——F7— = 9.189
—z{B oxT3
a7 e x;
(1 + e 15> - — 35 =
(1 + e % '3) J
e~ @i P oxzl'p

2

- _ -0 . g
1+ o =73 a/Bj p(y ’xwﬁ) Tij

and

d d e @B
—1In =0 i, = —In———+—

(9.190)

e~ 2 m;frﬂ

ozlp B
L B (1 i w}“ﬁ)Q 98,

P ply = 1]x;8) zij .

We can rewrite the likelihood as

> Inp(yi |z 8) =
=1

(9.191)

D yilnply=1]a;;8) + Y (1 — ) Inply =0 z;; B)
i=1

i=1
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which gives for the derivative
8 n
55 2 (i |z 8) = 9.192)
B i=1

" 0
i— In =1|x;;8) +
;y 55, mplv=11=::B)

0
> — ) afﬂjlnp(yzo | @;8) =
=1

Y o —vinly = 0| @i B)wi; +

=1

S0 = y)ply = 1] @By =

i=1
where
ply = 1]z B8) = ;T (9.193)
1+ e @h
For computing the maximum, the derivatives have to be zero
n
Vit Y (ply = 1|@58) — gi)wi; = 0. (9.194)

i=1

A gradient ascent based method may be used to find the solutions to this equation.

Alternative formulation with y € +1, —1
We now give an alternative formulation of logistic regression with y € +1, —1. We remember

1

ply = 1l@B) = o o5

(9.195)

and

e~ '8 1

= —1|ax; = = . 9.196
p(y | z; 8) 11 e '8 1+ coB ( )

Therefore we have

—Inp(y = yi | ®;8) = In (1 4o ¥ %Tﬁ) 9.197)
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and the objective which is minimized to find the maximum likelihood solution is

n n
— — S p(i|ziB8) = Y In (1 e U “‘?5) (9.198)
=1 =1

The derivatives of the objective with respect to the parameters are

i 92 e+ il

= 1
0B 1+ e velP o199
- Zyz zij (L — p(yi | =:8)) .
i=1
The last equation is similar to Eq. (9.192). In matrix notation we have for the gradient:
Zyz plyi | :8)) ;. (9.200)

We showed that the objective, the log likelihood, of logistic regression is strictly convex.
Therefore efficient gradient-based techniques to find the maximum likelihood solution can be used.

9.5.2 Multinomial Logistic Regression: Softmax
9.5.2.1 The Method

For multi-class problems logistic regression can be generalized to Softmax. We assume K classes
with y € {1,..., K'} and the probability of x belonging to class & is

k ol 9.201
ply = |93,517--~75K)—m (9.201)
which gives a multinomial distribution across the classes.
The objective, which is minimized in order to maximize the likelihood, is
n n K -
- Zlnp(y =y |zi;8) = Zln Zem Pil — 278, . (9.202)
i=1 =1 Jj=1
In the following we set
where W = (34, ..., Bk) is the matrix of parameters.
The derivatives are
oL 8:1: Bk dz] B
= p(k | zi; — Oy (9.204)
0Bkt Z | Ouih Z 0Bkt
= Z zup(k | i W) — 6=, Z Tt . (9.205)
i=1 i=1

Next we show that the objective of Softmax is strictly convex.



172

Chapter 9. Linear Models
9.5.2.2 (Regularized) Softmax is Strictly Convex

Following Jason D. M. Rennie, we show that linear Softmax is strictly convex.

The derivatives are

8£ n n
- = E i k 75 W — 0 L E it -
8/Bkt ‘T;tp( |Q:' ) Yi kl—lxt

=1

(9.206)

To compute the second derivatives of the objective, we need the derivatives of the probabilities
with respect to the parameters:

Op(v | xi; W)

95 = Timplk [z5; W) (1 — p(k |z W)) (9.207)
W Zim plk | T3 W) p(v | i3 W)) .

The second derivatives of £ with respect to the components of the parameter vector 3 are

oL

H vm — As an |
M aﬁktaﬁvm

(9.208)

> @it i pk | @5 W) (S (1 — plk | s W) —
=1

(1 = dp=o)p(v |2 W)) .

Again we define a vector a with components a,; (note, the double index is considered as
single index so that a matrix is written as vector).
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We consider the bilinear from
a’Ha = (9.209)
Z Z Zakt Aym Tit Tim P(k | Zi; W) (619:11 (1 - p(k | Zi; W)) -

kit v,m g

(1 = k=) p(v | zi; W) =

2.2 aw i plk| 25 W) 3 aim (akm = 2 aunalo | :m-;W)) -
Zzt:@“t Zk:aktp(k | z; W) ;xm (akm - szavmp(v | a:i;W)> -
= (S sem) (S et )
> - (Et:xzt Zk:aktp(k | wi;W)>2 +

%

[t (o) (5}

2
Z - <Z Tt Zakt p(k: \ x;; W)) +
t k

i
2
> ok |z W) (Z it akt)
k t
If for each summand of the sum over

2
> ok |z W) (Z Tit akt> - (Z (k| ;W Z zit akt> (9:210)
k t k
>0
holds, then the Hessian H is positive semidefinite. This holds for arbitrary numbers of samples as

each term corresponds to a sample.

In the last equation the p(k | @;; W) can be viewed as a multinomial distribution over k. The
terms Zt Zi ag: can be viewed as functions depending on k.

In this case Y, p(k | zi; W) (3, vt art)? is the second moment and the squared expectation
is (32, p(k | @;; W)Y, it apg)?. Therefore the left hand side of inequality Eq. (9.210) is the
second central moment, which is larger than zero.

Alternatively inequality Eq. (9.210) can be proved by applying Jensen’s inequality with the
square function as a convex function.
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distribution parameters pmf Pr(X = k) 1 Var r = p/Var r

binomial neN,p (H)pF @ —pn* np np(l—-p) 1/(1—-p) >1
. )\kef/\

Poisson 0< A S A A 1 =1

negative binomial 0 < 7, p (H,’:l)(l —p)pk i (132)2 (1-p) <1

Table 9.10: Commonly used distributions to model count data. The parameter p € [0, 1] is the
probability of a success. The probability mass function (“pmf™), the mean p, the variance Var,
and the ratio r = /= of mean to variance are given. The last column indicates whether r is larger
or smaller than 1.

We have proved that the Hessian H is positive semidefinite.

Adding a term like % Dok ,BkT B to the objective for regularization, then the Hessian of the
objective is strictly positive definite.

9.5.3 Poisson Regression

To model count data, three distributions are popular: the binomial (variance smaller than the
mean), Poisson (variance equal to the mean), negative binomial (variance larger than the mean).
Tab. 9.10 shows these distributions.

In many cases the observations can be described by a rate § and the number of trials n: A = 0n.
An observation is the number of successes or failures out of n trials or exposures. Depending on
the kind of applications and the problem which should be modeled, either the rate # changes or
the number of exposures changes. For example, n may be the number of kilometers which an
individual drives with a car, while @ is the probability of having an accident. In this case, different
individuals drove a different number of kilometers, that is, the exposure changes. For another task,
all persons drive on a test track 100 km, however, different persons consumed a different amount
of alcohol. Therefore, 6§, the probability of having an accident, is different for each individual.
Consequently, either 6 or n can be modeled by a linear regression.

Poisson regression models the case were the rate changes and can be estimated by a linear
model using the explanatory variables. We have

E(y) = Ai = n;6; = n; ™ P ©.211)
log\; = logn; + zciT,B. (9.212)
The term log n; is an additional offset.

Hypotheses tests can be based on the Wald statistics or on a likelihood ratio statistic. Reduced
models allow to test the relevance of different variables for explaining the response variable. Also
the combination and interactions of variables can be tested.

SE(B) = \/E : 9.213)

The standard error is
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where F is the Fisher information matrix. Confidence intervals can be estimated using

uNNoy 9214
SE(Bj) (0,1) (9.214)

The estimated values are
e; = n;e®iP (9.215)

giving the estimated standard deviation ,/e;. The variance is equal to the mean for a Poisson. The
Pearson residuals are

r = - (9.216)
where o; are the observed counts. These residuals can be standardized by

0; — €5
Tpi = —————— (9.217)
Y Ve VI= Py

where P;; is the leverage which is the i-th element of the main diagonal of the hat matrix P.

The goodness of fit, that is, the error or the objective is chi-squared distributed because

9 (0 — e)?
Zi:ri - Ze (9.218)

which is the definition of a chi-squared statistic.

The Poisson regression is an example of log-linear models:

logE(y;) = ¢ + =/ 3. (9.219)
This includes models like
log E(y;x) = logn + log6;. + logf (9.220)
or
log E(y;x) = logn + log0jy. (9.221)
which is similar to
logE(yjx) = 1 + o + B + (af)ji - (9.222)

These models show that ANOVA like approaches are possible in the context of generalized linear
models.
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9.5.4 Examples
9.54.1 Birthweight Data: Normal

We revisit Dobson’s birthweight data set from Section 9.3.2.2.

The first model 10 in Section 9.3.2.2 was a linear model estimated by least squares. This
model is a generalized linear model with Gaussian error, therefore 10 can also be produced by a
glm:

Deviance Residuals:
Min 1Q Median 3Q Max
-257.49 -125.28 -58.44 169.00 303.98

Coefficients:

Estimate Std. Error t value Pr(>|t]|)
(Intercept) -1610.28 786.08 -2.049 0.0532 .
sexFemale -163.04 72.81 -2.239 0.0361 *
age 120.89 20.46 5.908 7.28e-06 x**x

Signif. codes: 0 “**%*’ 0.001 ‘**’ 0.01 ‘x> 0.05 “.” 0.1 ¢ *> 1
(Dispersion parameter for gaussian family taken to be 31370.04)
Null deviance: 1829873 on 23 degrees of freedom
Residual deviance: 658771 on 21 degrees of freedom
AIC: 321.39
Number of Fisher Scoring iterations: 2
The model without intercept is:
Deviance Residuals:

Min 1Q Median 3Q Max
-257.49 -125.28 -58.44 169.00 303.98

Coefficients:

Estimate Std. Error t value Pr(>|t]|)
sexMale -1610.28 786.08 -2.049 0.0532 .
sexFemale -1773.32 794.59 -2.232 0.0367 *
age 120.89 20.46  5.908 7.28e-06 ***

Signif. codes: 0 “**%*’ 0.001 ‘**’ 0.01 ‘x> 0.05 “.” 0.1 ¢ *> 1
(Dispersion parameter for gaussian family taken to be 31370.04)

Null deviance: 213198964 on 24 degrees of freedom
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Residual deviance: 658771

AIC: 321.39

on 21 degrees of freedom

Number of Fisher Scoring iterations: 2
We compare these models by an ANOVA table:

Model 1:
Model 2:
Resid.

birthw = sex + age

birthw 7 sex + age - 1
Df Resid. Dev Df
21 658771
21 658771

Deviance
0 -1.1642e-10

The scatter plot in Fig. 9.8 shows that the observation (35,2925) of a male baby looks like an
outlier. If we check the residuals, we see

1 2 3 4 5 6
-257.4905645 -188.701891 -62.490545 303.981090 -116.913237 -15.807564
7 8 9 10 11 12
-54.384872 247.509455 -234.807564 192.298109 195.509455 -8.701891
13 14 15 16 17 18
254.548758 150.126066 -127.451242 -66.662588 -94.239896 -124.556915
19 20 21 22 23 24
63.548758 -160.768261 -166.873934 170.337412 -66.556915 168.548758

Indeed the fourth observation has the largest residual. We now investigate a subset of the data by
removing the observation no. 4. We remove oberservation no. 4:

Deviance Residuals:

Min 1Q Median 3Q Max
-253.86 -129.46 -53.46 165.04 251.14
Coefficients:

Estimate Std. Error t value Pr(>|t])

sexMale -2318.03 801.57 -2.892 0.00902 *x*
sexFemale -2455.44 803.79 -3.055 0.00625 **
age 138.50 20.71 6.688 1.65e-06 *x*x*
Signif. codes: 0 “#*%*’ 0.001 ‘**’> 0.01 ‘x> 0.05 “.” 0.1 ¢ > 1

(Dispersion parameter for gaussian family taken to be 26925.39)

204643339
538508

Null deviance: on 23 degrees of freedom

Residual deviance: on 20 degrees of freedom

AIC: 304.68

Number of Fisher Scoring iterations: 2
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Now all regressors are more significant.

Next we add an interaction term:

Deviance Residuals:
Min 1Q Median 3Q
-246.69 -138.11 -39.13 176.57

Max
274 .28

Estimate Std. Error t value Pr(>lt|)

Coefficients:

sexMale -1268.67 1114.64
sexFemale -2141.67 1163.60
age 111.98 29.05
sexFemale:age 18.42 41.76

Signif. codes: 0 “**x*’ 0.001 ‘*x*’

(Dispersion parameter for gaussian

-1.138 0.268492
-1.841 0.080574 .
3.855 0.000986 ***
0.441 0.663893

0.01 ‘x> 0.05 .2 0.1 ¢ > 1

family taken to be 32621.23)

Null deviance: 213198964 on 24 degrees of freedom
Residual deviance: 652425 on 20 degrees of freedom

AIC: 323.16

Number of Fisher Scoring iterations: 2

These results are already known from Section 9.3.2.2: the interaction does not help. The ANOVA

table tells the same story:

Analysis of Deviance Table

Model 1: birthw ™ sex + age - 1

Model 2: birthw = sex + age + sex:age - 1

Resid. Df Resid. Dev Df Deviance
1 21 658771
20 652425 1 6346.2

9.5.4.2 Beetle Mortality: Logistic Regression

An example for logistic regression is found in Dobson [2002], page 124, data of Table 7.2. The
numbers of dead beetles are counted after five hours exposure to gaseous carbon disulfide at var-
ious concentrations. The data stems from Bliss (1935). The data are shown in Tab. 9.11 and as a
scatter plot in Fig. 9.10. The dose is actually the logarithm of the quantity of carbon disulfide. For
the scatter plot the response was the percentage of dead beetles from all beetles.

The data are binomial because from all beetles a certain number is dead. We produce count
data as pairs of (dead,alive). We start with logistic regression, that is the distribution is binomial

and the link function is logit:
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Dose Number of Number
(log;y CSamgl™")  beetles  killed
1.6907 59 6
1.7242 60 13
1.7552 62 18
1.7842 56 28
1.8113 63 52
1.8369 59 33
1.8610 62 61
1.8839 60 60
Table 9.11:

Dobson's Beetle Data
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Figure 9.10: Scatter plot of Dobson’s beetle data for logistic regression.
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Deviance Residuals:
Min 1Q Median 3Q Max
-1.5941 -0.3944 0.8329 1.2592 1.5940

Coefficients:

Estimate Std. Error z value Pr(>|zl|)
(Intercept) -60.717 5.181 -11.72 <2e-16 *x*x
dose 34.270 2.912 11.77 <2e-16 *xx*

Signif. codes: 0 ‘*%x> 0.001 ‘%%’ 0.01 ‘x> 0.05 ¢.”> 0.1 ¢ > 1
(Dispersion parameter for binomial family taken to be 1)

Null deviance: 284.202 on 7 degrees of freedom
Residual deviance: 11.232 on 6 degrees of freedom
AIC: 41.43

Number of Fisher Scoring iterations: 4

Both intercept and dose are significant. The mean is not around zero, therefore the intercept has
to move it. The significance of the dose shows that the number of dead beetles indeed depends on
the dose of carbon disulfide.

The next link function, that we try, is the probit.

Deviance Residuals:
Min 1Q Median 3Q Max
-1.5714 -0.4703 0.7501 1.0632 1.3449

Coefficients:

Estimate Std. Error z value Pr(>|zl|)
(Intercept) -34.935 2.648 -13.19 <2e-16 **x
dose 19.728 1.487 13.27 <2e-16 **x*

Signif. codes: 0 ‘*%x> 0.001 ‘*x’ 0.01 ‘x> 0.05 ¢.”> 0.1 ¢ > 1
(Dispersion parameter for binomial family taken to be 1)

Null deviance: 284.20 on 7 degrees of freedom
Residual deviance: 10.12 on 6 degrees of freedom

AIC: 40.318

Number of Fisher Scoring iterations: 4

The result is very similar to the logit link function.

We now test the cloglog link function:
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Deviance Residuals:
Min 1Q Median 3Q Max
-0.80329 -0.55135 0.03089 0.38315 1.28883

Coefficients:

Estimate Std. Error z value Pr(>|zl|)
(Intercept) -39.572 3.240 -12.21 <2e-16 *x*x
dose 22.041 1.799 12.25 <2e-16 *xx*

Signif. codes: 0 ‘*%x> 0.001 ‘%%’ 0.01 ‘x> 0.05 ¢.”> 0.1 ¢ > 1
(Dispersion parameter for binomial family taken to be 1)

Null deviance: 284.2024 on 7 degrees of freedom
Residual deviance: 3.4464 on 6 degrees of freedom
AIC: 33.644

Number of Fisher Scoring iterations: 4

For this cloglog link function the residual deviance is 3.4464 while it was 11.232 and 10.12 for
the logit and probit link function, respectively. Also the AIC (Akaike information criterion) of the
last model is lower. This hints at the fact that the last model fits the data better. The fitting of the
different link functions is shown in Fig. 9.11, where it is clear that the cloglog link function fits
the data best.

9.5.4.3 Embryogenic Anthers: Logistic Regression

Another example for logistic regression is found in Dobson [2002], page 128, data of Table 7.5.
The data are taken from Sangwan-Norrell (1977) and are shown in Tab. 9.12. The authors counted
the embryogenic anthers of the plant species Datura innoxia Mill. obtained from a particular
number of anthers prepared. The embryogenic anthers were obtained under different conditions.
The first factor has two levels which relate to the storage type, which is either a control storage or
a storage at 3 °C for 48 hours. The second factor has three levels corresponding to the centrifuging
forces. The data is shown in Fig. 9.12. The task is to compare the treatment and the control storage
type after adjusting for the centrifuging force.

f gives the centrifuging force and g the storage type. We first fit a full model:

Deviance Residuals:
1 2 3 4 5 6
0.08269 -0.12998 0.04414 0.42320 -0.60082 0.19522

Coefficients:

Estimate Std. Error z value Pr(>|z|)
(Intercept) 0.1456719 0.1975451 0.737 0.4609
g2 0.7963143 0.3125046 2.548 0.0108 =*
f -0.0001227 0.0008782 -0.140 0.8889
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Dobson's Beetle Data
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Figure 9.11: Fitting of Dobson’s beetle data with different link functions. Orange rectangles are
the original data, blue circles are the fitted points with logistic link function, green circles are the
fitted points with the probit link function, and the magenta circles are the fitted points with the
cloglog link function. The z-axis values are jittered. The cloglog link function fits the points best.

Centrifuging force (g)
Storage condition 40 150 350
Control y 55 52 57

n 102 99 108

Treatment y 55 50 50
n 76 81 90

Table 9.12: Dobson’s embryogenic anther data taken from Sangwan-Norrell (1977).
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Dobson's Embryogenic Anther Data
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Figure 9.12: Dobson’s embryogenic anther data taken from Sangwan-Norrell (1977). The color
mark the groups, which are the storage types.
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g2:f -0.0020493 0.0013483 -1.520 0.1285

Signif. codes: 0 ‘*%x> 0.001 ‘%%’ 0.01 ‘x> 0.056 ¢.”> 0.1 ¢ > 1
(Dispersion parameter for binomial family taken to be 1)

Null deviance: 10.45197 on 5 degrees of freedom
Residual deviance: 0.60387 on 2 degrees of freedom
AIC: 38.172

Number of Fisher Scoring iterations: 3
Next we do not consider the interaction effect between centrifuging force and storage type:

Deviance Residuals:
1 2 3 4 5 6
-0.5507 -0.2781 0.7973 1.15568 -0.3688 -0.6584

Coefficients:

Estimate Std. Error z value Pr(>|zl|)
(Intercept) 0.306643 0.167629 1.829 0.0674 .
g2 0.405554 0.174560 2.323 0.0202 *
f -0.000997 0.000665 -1.499 0.1338

Signif. codes: 0 “**%*’ 0.001 ‘**’ 0.01 ‘x> 0.05 “.” 0.1 ¢ > 1
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 10.4520 on 5 degrees of freedom
Residual deviance: 2.9218 on 3 degrees of freedom
AIC: 38.49

Number of Fisher Scoring iterations: 3

The centrifuging force seems not to be relevant for explaining the yield in embryogenic an-
thers. Therefore we only consider the group effects, that is the different storage conditions:

Deviance Residuals:
1 2 3 4 5 6
0.17150 -0.10947 -0.06177 1.77208 -0.19040 -1.39686

Coefficients:

Estimate Std. Error z value Pr(>|zl)
(Intercept) 0.1231 0.1140 1.080 0.2801
g2 0.3985 0.1741 2.289 0.0221 *

Signif. codes: 0 ‘*xx> 0.001 ‘*x> 0.01 ‘x> 0.05 ¢.” 0.1 ¢ > 1
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Figure 9.13: The best best model for Dobson’s embryogenic anther data with respect to the AIC
considers only the groups. The groups are the storage type.

(Dispersion parameter for binomial family taken to be 1)
Null deviance: 10.452 on 5 degrees of freedom
Residual deviance: 5.173 on 4 degrees of freedom

AIC: 38.741

Number of Fisher Scoring iterations: 3

This best model with respect to the AIC, which only considers the groups, is analyzed in
Fig. 9.13.
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Dobson's Poisson Regression Data
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Figure 9.14: Scatter plot of Dobson’s toy data for Poisson regression.

9.5.4.4 Toy Example 1: Poisson Regression

For Poisson regression we present a toy example from Dobson [2002], page 71, data of Table 4.3.
The data are shown in Fig. 9.14. There is a clear relation between x and the count data y as counts
for x = 1.0 are larger than counts for z = 0.0 which in turn are larger than counts for x = —1.0.

On the data

x <- ¢(-1,-1,0,0,0,0,1,1,1)
y <- c(2,3,6,7,8,9,10,12,15)

we performe Poisson regression:

Deviance Residuals:
Min 1Q Median 3Q Max
-0.7019 -0.3377 -0.1105 0.2958 0.7184
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Outcome

Treatment O Oo O3 Total

T 18 17 15 50
Ts 20 10 20 50
Ts 25 13 12 50
Total 63 40 47

Table 9.13: Toy data from Dobson [1990] for randomized controlled trial analyzed
by Poisson regression. Outcomes are indicated by the border color of the circles
(O1=blue,0z=red,03=magenta). Treatments are indicated by the interior color of the circles
(Ty=orange,T3=blue, T3=green).

Coefficients:

Estimate Std. Error z value Pr(>|zl|)
(Intercept)  7.4516 0.8841 8.428 < 2e-16 **x*
X 4.9353 1.0892 4.531 5.86e-06 *x*x*

Signif. codes: 0 ‘*%x> 0.001 ‘*x’ 0.01 ‘x> 0.05 ¢.”> 0.1 ¢ > 1
(Dispersion parameter for poisson family taken to be 1)

Null deviance: 18.4206 on 8 degrees of freedom
Residual deviance: 1.8947 on 7 degrees of freedom
AIC: 40.008

Number of Fisher Scoring iterations: 3

Both the intercept and the coefficient are significant. The intercept must move x into the range of
the count data.

9.54.5 Toy Example 2: Poisson Regression

This is another example for Poisson regression from Dobson [1990] (the first edition), page 93.
This example is a randomized controlled trial with two factors. Both factors, outcome and treat-
ment, have three levels. The data is listed in Tab. 9.13. Each treatment group contains 50
samples. Fig. 9.13 shows the data. Outcomes are indicated by the border color of the cir-
cles (O1=blue,O2=red,03=magenta). Treatments are indicated by the interior color of the circles
(Ty=orange,Ts=blue, T3=green). The counts for outcome O; are larger than the other two.

We analyze the data by Poisson regression:

Deviance Residuals:
1 2 3 4 5 6 7
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Dobson's Randomized Controlled Trial Data
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Figure 9.15: Toy data from Dobson [1990] for randomized controlled trial analyzed by Poisson
regression.
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-0.67125 0.96272 -0.16965 -0.21999 -0.955662 1.04939 0.84715
9
-0.96656

Coefficients:

Estimate Std. Error z value Pr(>|zl|)
(Intercept) 3.045e+00 1.709e-01 17.815 <2e-16 **x*
outcome?2 -4.543e-01 2.022e-01 -2.247 0.0246 *
outcome3 -2.930e-01 1.927e-01 -1.520 0.1285
treatment2 8.717e-16 2.000e-01  0.000 1.0000
treatment3d 4.557e-16 2.000e-01 0.000 1.0000

Signif. codes: 0 ‘x*x’ 0.001 ‘*x’> 0.01 ‘*x’ 0.05 ¢.” 0.1 ¢ > 1
(Dispersion parameter for poisson family taken to be 1)

Null deviance: 10.5814 on 8 degrees of freedom
Residual deviance: 5.1291 on 4 degrees of freedom

AIC: 56.761

Number of Fisher Scoring iterations: 4

-0.09167

Of course the intercept is significant as the data is not centered around zero. Outcome 1 and
treatment 1 are the reference. Treatment does not have influence on the counts because they are
all the same. Outcome Oy is significant for a level of 0.05. That can be seen in Fig. 9.13 because
the reference outcome O; indicated by blue border circles is larger than outcome O5 indicated by

red border circles.

9.5.4.6 Detergent Brand: Poisson Regression

These data were reported by Ries & Smith (1963), analyzed by Cox & Snell (1989) and described
in Modern Applied Statistics with S+. The user preference for brand M or X is counted. At
analyzing these data, different factors are considered. Explanatory variables (regressors, features)

are “user of M”, “temperature”, and “water”. The data are presented in Tab. 9.14.

The results of Poisson regression with
formula = Fr © M.user * Temp * Soft + Brand
are

Min 1Q Median 3Q Max
-2.20876 -0.99190 -0.00126 0.93542 1.97601

Coefficients:
Estimate Std. Error z value Pr(>|zl|)
(Intercept) 4.01524 0.10034 40.018 < 2e-16 x*x*x*
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user of M? No Yes
temperature Low High Low High
preference X M X M X M X M
water softness
hard 68 42 42 30 37 52 24 43
medium 66 50 33 23 47 55 23 47
soft 63 53 29 27 57 49 19 29

Table 9.14: Data set on detergent brand preference from Ries & Smith (1963) and analyzed by

Cox & Snell (1989).

M.userY -0.21184
TempHigh -0.42381
SoftMedium 0.05311
SoftSoft 0.05311
BrandM -0.01587

M.userY:TempHigh
M.userY:SoftMedium
M.userY:SoftSoft
TempHigh:SoftMedium
TempHigh:SoftSoft

0.1425
0.1515
0.1330
0.1330
0.0630

0.

-0.
-0.

M.userY:TempHigh:SoftMedium O.

M.userY:TempHigh:SoftSoft

-0.

7 -1.486
9 -2.796
8 0.399
8 0.399
0 -0.252
13987

.08323
.12169

30442
30442
21189
20387

O O O O O O o

0.13731
0.00518 *x*
0.68984
0.68984
0.80106
.22168 0
.19685 0.
.19591 O
.22239 -1.
.22239 -1.
.31577 0.
.32540 -O0.

Signif. codes: 0 ‘%%’ 0.001 ‘*x’> 0.01 ‘x’ 0.05 ¢.

)

.631 0.52806
423 0.67245
.621 0.53449
369 0.17104
369 0.17104
671 0.50220
627 0.53098
0.1 <1

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 118.627

Residual deviance: 32.82
AIC: 191.24

6 on

on 23 degrees of freedom

11 degrees of freedom

Number of Fisher Scoring iterations: 4

Besides the intercept only temperature is significant but not the water characteristic nor the previ-

ous use of the brand.

We now try another model with

formula = Fr © M.user * Temp * Soft + Brand * M.user * Temp

which gives

Deviance Residuals:

Min 1Q Median

3Q

Max
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-0.91365 -0.3565685 0.00263 0.33027 0.92146

Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) 4.14887 0.10603 39.128 < 2e-16 *x*x*

M.userY -0.40521 0.16188 -2.503 0.01231 *

TempHigh -0.44275 0.17121 -2.586 0.00971 *x*
M.userY:TempHigh -0.12692 0.26257 -0.483 0.62883
SoftMedium 0.05311 0.13308 0.399 0.68984

SoftSoft 0.05311 0.13308 0.399 0.68984
M.userY:SoftMedium 0.08323 0.19685 0.423 0.67245
M.userY:SoftSoft 0.12169 0.19591 0.621 0.53449
TempHigh:SoftMedium -0.30442 0.22239 -1.369 0.17104
TempHigh:SoftSoft -0.30442 0.22239 -1.369 0.17104
M.userY:TempHigh:SoftMedium 0.21189 0.31577 0.671 0.50220
M.userY:TempHigh:SoftSoft -0.20387 0.32540 -0.627 0.53098
BrandM -0.30647 0.10942 -2.801 0.00510 =*x*
M.userY:BrandM 0.40757 0.15961 2.554 0.01066 =*
TempHigh :BrandM 0.04411 0.18463 0.239 0.81119
M.userY:TempHigh:BrandM 0.44427 0.26673 1.666 0.09579 .

Signif. codes: 0 ‘“#*%*’ 0.001 ‘**’ 0.01 ‘x> 0.05 “.” 0.1 ¢ *> 1
(Dispersion parameter for poisson family taken to be 1)

Null deviance: 118.627 on 23 degrees of freedom
Residual deviance: 5.656 on 8 degrees of freedom
AIC: 170.07

Number of Fisher Scoring iterations: 4
Correlation of Coefficients:

(Intercept) 1

M.userY , 1

TempHigh , -1

M.userY:TempHigh |

SoftMedium , . . 1

SoftSoft e . .1
M.userY:SoftMedium R . |
M.userY:SoftSoft ., o, 1
TempHigh:SoftMedium . s e e e 1
TempHigh:SoftSoft . s e e o1
M.userY:TempHigh:SoftMedium e , .o, .1
M.userY:TempHigh:SoftSoft .o B |
BrandM . 1
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M.userY:BrandM . , 1
TempHigh :BrandM B |
M.userY:TempHigh:BrandM B |
attr(,"legend")

[1] 0°¢“°0.3°¢“”0.6 0.8 ‘%’ 0.9 ‘x?» 0.95 ‘B’ 1

Besides the temperature also the brand becomes significant and also, to a lesser degree, the previ-
ous use of brand M and the combined previous use of brand M plus brand M.

Finally we compare the two models by an ANOVA table:
Analysis of Deviance Table

Model 1: Fr ™ M.user * Temp * Soft + Brand

Model 2: Fr 7 M.user * Temp * Soft + Brand * M.user * Temp
Resid. Df Resid. Dev Df Deviance

1 11 32.826

2 8 5.656 3 27.17

9.5.4.7 Tumor Data: Poisson Regression

In Dobson [2002], page 162, in Table 9.4, data from Roberts et al. (1981) are presented. The data
are from a cross-sectional study of patients with a form of skin cancer called malignant melanoma.
For a sample of n = 400 patients, the site of the tumor and its histological type were determined.
The counts of patients with each combination of tumor type and body site, are given in Tab. 9.15.
The patients are categorized by the type of tumor they have, which corresponds to the first factor
with four levels: freckle, superficial, nodular, indeterminate. The patients are also categorized by
the body site where the tumor was found, which corresponds to the second factor with three levels:
head, trunk, extremities. The association between tumor type and site should be investigated.

Fig. 9.16 shows the data, where the four tumor types are indicated by the interior color of the
circles (orange=freckle, blue=superficial, green=nodular, indeterminate=wood). The three loca-
tions at the body are indicated by the border color of the circles (head=blue,trunk=red,extremities=magenta).

We analyze these data by a Poisson regression:

Deviance Residuals:
Min 1Q Median 3Q Max
-3.0453 -1.0741 0.1297 0.5857 5.1354

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.7544 0.2040 8.600 < 2e-16 **x*
typesuperficial 1.6940 0.1866 9.079 < 2e-16 **x*
typenodular 1.3020 0.1934 6.731 1.68e-11 **x*
typeindeterminate  0.4990 0.2174 2.295 0.02173 *
sitetrunk 0.4439 0.1554  2.857 0.00427 *x
siteextremities 1.2010 0.1383 8.683 < 2e-16 **x*
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Site

Head Trunk Extrem Total
Tumor type & neck -ities
Hutchinson’s melanotic freckle 22 2 10 34
Superficial spreading melanoma 16 54 115 185
Nodular 19 33 73 125
Indeterminate 11 17 28 56
Total 68 106 226 400

Table 9.15: Dobson’s malignant melanoma data: frequencies for tumor type and site (Roberts et
al., 1981).

Dobson's Malignant Melanoma Data
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Figure 9.16: Dobson’s malignant melanoma data where tumor types are counted. The four tu-
mor types are indicated by the interior color of the circles (orange=freckle, blue=superficial,
green=nodular, indeterminate=wood). The three locations at the body are indicated by the bor-
der color of the circles (head=blue,trunk=red,extremities=magenta).
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Signif. codes: 0 ‘**%*’ 0.001 ‘**’ 0.01 ‘x> 0.05 “.” 0.1 ¢ *> 1
(Dispersion parameter for poisson family taken to be 1)

Null deviance: 295.203 on 11 degrees of freedom
Residual deviance: ©51.795 on 6 degrees of freedom
AIC: 122.91

Number of Fisher Scoring iterations: 5

This means that type superficial and nodular are highly significant if compared to the counts of type
freckle while indeterminate is less significant. This result can be confirmed in Fig. 9.16, where
the blue and green interior (blue=superficial, green=nodular) circles have clearly higher counts if
compared to freckle. The counts of indeterminate are not so clearly larger. The site extremities
is also highly significant. In Fig. 9.16 data points corresponding to counts for extremities have
magenta borders. The two largest counts belong to extremities of which one has tumor type
superficial and one type nodular. To a lesser degree the site trunk is significant. Also this is
confirmed in Fig. 9.16, where the third and fourth largest counts with a red border belong to the
site trunk.

9.5.4.8 Ulcers and Aspirin Use: Logistic Regression

This example is a case-control study of gastric and duodenal ulcers and aspirin use from Dobson
[2002], page 165/166, with data in Table 9.7. In this retrospective case-control study ulcer patients
were compared to controls which are matched with respect to age, sex and socio-economic status.
The data is from Duggan et al. (1986). The individuals are categorized:

(1) ulcer cases or controls,
(2) site of the ulcer: gastric or duodenal,

(3) aspirin use or not.

The data is shown in Tab. 9.16 and in Fig. 9.16.

Questions which are of interest for this data set are:

1. Is gastric ulcer associated with aspirin use?
2. Is duodenal ulcer associated with aspirin use?

3. Is any association with aspirin use the same for both ulcer sites?
We first look at a model without interaction effects using

formula = y © group + type
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Aspirin use

Non-user User Total
Gastric ulcer

Control 62 6 68

Cases 39 25 64

Duodenal ulcer

Control 53 8 61

Cases 49 8 57

Total 203 47 250

Table 9.16: Dobson’s gastric and duodenal ulcers and aspirin use from Duggan et al. (1986).

Dobson's Aspirin Use Data
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Figure 9.17: Dobson’s gastric and duodenal ulcers and aspirin use. The border color indicates
ulcer patients, the cases (red), and controls (blue). The interior color indicates the type of ulcer for
the cases: gastric (orange) or duodenal (blue).
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which gives

Deviance Residuals:
1 2 3 4
1.2891 -0.9061 -1.5396 1.1959

Coefficients:

Estimate Std. Error z value Pr(>|z|)
(Intercept) 1.8219 0.3080 5.916 3.3e-09 *x¥x*
groupcases -1.1429 0.3521 -3.246 0.00117 *x*
typeduodenal 0.7000 0.3460 2.023 0.04306 *

Signif. codes: 0 “**%*x’ 0.001 ‘**’ 0.01 ‘x> 0.05 “.” 0.1 ¢ > 1
(Dispersion parameter for binomial family taken to be 1)

Null deviance: 21.789 on 3 degrees of freedom
Residual deviance: 6.283 on 1 degrees of freedom
AIC: 28.003

Number of Fisher Scoring iterations: 4

Correlation of Coefficients:
(Intercept) groupcases

groupcases -0.73

typeduodenal -0.38 -0.05

As the count data are not centered, the intercept is significant. Most significant is the group cases
for aspirin use. The rate is the percentage of the first count of all counts, that is the rate of aspirin
non-users. The coefficient of group cases is -1.14 which means the rate of non-users is smaller
than the rate for controls. This means that for cases the percentage of aspirin use is larger than
for controls. Less significant and almost not significant is the type of ulcer where gastric is more
related to aspirin users.

Next, we investigate the linear model with interaction effects using
formula = y 7 group*type
which gives

Deviance Residuals:
[1] 0 0 0 O

Coefficients:
Estimate Std. Error z value Pr(>|zl)
(Intercept) 2.3354 0.4275 5.462 4.7e-08 *x*xx

groupcases -1.8907 0.4984 -3.793 0.000149 **x*
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typeduodenal -0.4445 0.5715 -0.778 0.436711
groupcases:typeduodenal 1.8122 0.7333 2.471 0.013460 *

Signif. codes: 0 ‘“**%*x’ 0.001 ‘**’ 0.01 ‘x> 0.05 “.” 0.1 ¢ > 1
(Dispersion parameter for binomial family taken to be 1)

Null deviance: 2.1789e+01 on 3 degrees of freedom
Residual deviance: 2.3981e-14 on O degrees of freedom
AIC: 23.72

Number of Fisher Scoring iterations: 3

Again cases are significantly associated with aspirin use. Further cases with gastric are more
related to aspirin use.

We compare these two models by an ANOVA table:
Analysis of Deviance Table

Model 1: y © group + type
Model 2: y © group * type
Resid. Df Resid. Dev Df Deviance Pr(>Chi)
1 1 6.283
2 0 0.000 1 6.283 0.01219 *

Signif. codes: 0 ‘“**%*’ 0.001 ‘**’ 0.01 ‘x> 0.05 “.” 0.1 ¢ > 1

The deviance shows that the interaction model is significantly better at fitting the data. However,
the AIC tells that this may only be due to overfitting to the data.
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9.6 Regularization

In machine learning and statistics it is important to avoid that the model is too much fitted to the
data. In this case only data specific features are modeled but not the structure in the data. This is
called overfitting. Overfitting reduces generalization capabilities because other, new data will not
have the specific features of the current data but only the general structures. To avoid overfitting,
simple models should be selected Hochreiter and Schmidhuber [1995, 1994, 1997], Hochreiter and
Obermayer [2006], Hochreiter et al. [2007], Knebel et al. [2008]. Simple models are models from
low-complex model classes and as such cannot capture specific data characteristics but only gen-
eral structures in the data. To prefer simple models during model selection is called regularization.
In the following we present some regularization methods for linear models.

9.6.1 Partial Least Squares Regression

The first kind of regularization is based on models which are based on a [ < m variables. This
means that regularization is achieved by fitting a model in a lower dimensional space. The idea of
partial least squares (PLS) is to factorize both the response matrix Y and the regression matrix
X:

X =TP" +FE (9.223)
Y =UQ" + F, (9.224)

where the covariance between 1" and U is maximized. X is an n X m matrix of predictors. Y is
an n x p matrix of responses. T" and U are n x [ matrices that are, respectively, projections of X
and projections of Y. P and @ are, respectively, m x [ and p x [ orthogonal matrices. E and F'
are additive noise terms which are assumed to be independently normally distributed.

Iterative partial least squares finds projection vectors w for X and v for Y which have maxi-
mal covariance:

max Cov(Xw,Yv). (9.225)

wl[=[v[=1

Iterative partial least squares is closely related to canonical correlation analysis (CCA) which
finds projection vectors w for X and v for Y which have maximal correlation coefficient:

corr(Xw,Yw) . (9.226)

[[wl[=[[v]|=1

PLS takes the variance into account while CCA only looks at the correlation.

For partial least squares regression (PLSR) the score matrix T is orthogonal:
T'T = 1. (9.227)
PLSR defines a linear inner relation, which is basically a regression:

U=TD + H, (9.228)
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where D is a diagonal matrix. Via this regression the covariance between 1" and U is maximized.
This regression gives
Y =TDQY + HQT + F (9.229)
=TCT + F', (9.230)
where CT = DQ are the regression coefficients and F’ = HQ" + F is the noise. We obtained
a least squares estimate with projections 7" from orthogonal matrices.

For the noise free case, we have the decompositions

X =1TPT, (9.231)
T = XW, (9.232)
Y = TDQ", (9.233)
U=YQ. (9.234)

The matrix Y approximates Y, the columns of 1" are the “latent vectors”, D are the “regression
weights” (see Eq. (9.228)) and @Q is the “weight matrix” of the dependent variables Y .

W is pseudo inverse of P7 which leads to the following equations:

T'T = I, (9.235)
QlQ =1, (9.236)
W = (PD)T, (9.237)
U=TD, (9.238)
D=T"U. (9.239)

Using these equations the partial least squares regression algorithm Alg. 9.1 can be derived.

Partial least squares regression can be based on the singular value decomposition of XY . If
noise terms are ignored then we have

X"y = pT"U Q" = PDQ", (9.240)

where the second equality follows from Eq. (9.228). The largest singular value gives the first
w and the first q. The first ¢ is the first eigenvector of X X7YY” and the first u is the first
eigenvector of YYT X X7,

If T are the projections onto the first [ principal components of X then this is called principal
components regression.

9.6.2 Ridge Regression

Ridge regression is also known as Tikhonov regularization for ill-posed problems. The objective
of the least squares estimate is the sum of squares

1X8 — y|?. (9.241)
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Algorithm 9.1 Partial least squares regression

Given: matrix X, matrix Y
initialization
initialize u by random values
A is set to the column centered and column normalized X
B is set to the column centered and column normalized Y
main loop
while A is not the null matrix do
while not converged do
w = ATy (estimate X weights)
t = Aw (estimate X factor scores)
t = t/||t|| (normalize factor scores)
q = BTt (estimate Y weights)
q = q/||q|| (normalize weights)
u = Bgq (estimate Y factor scores)
use w to test if loop has converged

end while
d=t"Tu
p=ATt

A = A — tp” (partial out the effect of ¢ from X ~ A)
B = B — dtq” (partial out the effect of t from Y ~ B)
store all computed values ¢, u, w, g, p in the corresponding matrices
store d as diagonal element of D

end while

result
training: Y =TDQ”
prediction: 7 = & W (z is normalized like A); § = TDQ”
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If the number of regressors is large, then overfitting is a problem. Overfitting refers to the fact
that specific observations are fitted even if they are noisy or outliers. In this case the estimated
parameters are adjusted to specific characteristics of the observed data which reduces the general-
ization to new unknown data. To avoid overfitting simple models should be selected even if they
do not fit the observed data as well as the model with minimal squared error. Regularization fits
the data while preferring simple models, that is, there is a trade-off between simple models and
small squared error. This trade-off is controlled by a hyperparameter.

Regularization can be performed by an additional objective on the parameters, like a squared
term in the parameters:

IXB8 — ylI* + [T 8. (9.242)
The estimator for ridge regression 3, which minimizes this objective, is

B=(X"X +17T) " XTy. (9.243)

Often I' = /71 is used, where 7y is a hyperparameter of the method which has to be adjusted.
7y controls the trade-off between simple models and low squared error. For I' = /71 we have the
estimator

B=(XTX + 1) X"y, (9.244)

The variance of the ridge regression estimator is:

Var(8) = o® (XTX + 1) XTX (X"X + 1) (9.245)
The bias of ridge regression estimator is:

bias(8) = — 7 (XTX + A1) ' 8. (9.246)

It has been shown, that there is always a v for which the parameter mean squared error of
ridge regression is smaller than this error of least squares. However, this « is not known. Ridge
regression is consistent if y/n 2 0 Knight and Fu [2000].

Ridge regression is an L2-norm regularizer, that is the squares of the parameters (or products
of them) are weighted and summed up and thereby penalized. Therefore small absolute parameter
values around zero are preferred by ridge regression. However, in general the ridge regression
estimator has its parameters not exactly at zero. The regularizing term hardly changes if the values
are already small because the derivatives are proportional to the values. If very small parameter
values still improve the squared error, they will be kept. Setting these small parameters to zero
would increase the error more than it would decrease the regularization term. On the other hand,
larger values are very strongly penalized.

Ridge regression gives a solution even if the parameters are under-determined for few data

points because (X 'x + I‘TI‘) - always exists. This means that ridge regression has a unique
solution.
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Figure 9.18: Optimization LASSO (left) vs. ridge regression (right). The error objective, the
ellipse, touches in most cases a corner of the L'-norm where at least one component is zero. In
contrast the L?-norm does not possess corners as all points with the same regularization value are
on a hyperball.

9.6.3 LASSO

Least absolute shrinkage and selection operator (LASSO) Tibshirani [1996] performs a L!-norm
regularization. The objective is

1X8 — ylI> + v 18] - (9.247)

In contrast to ridge regression, the LASSO estimate has many zero components (see Fig. 9.18).
The decrease of the regularization term if the absolute values of parameters are made smaller,
does not depend on the current values of the parameters. Thus, small parameter values are pushed
toward zero. Therefore LASSO is often used for feature selection because features, of which the
corresponding parameters are zero, can be removed from the model without changing regression
result.

The minimization of the LASSO objective is a quadratic optimization problem. It can be
solved by techniques of constrained quadratic optimization. An alternative method for finding a
solution is the forward stepwise regression algorithm:

1. Start with all coefficients 3; equal to zero.

2. Find the predictor z; which is most correlated with y, and add it to the model. Take residuals
r=y—q.

3. Continue, at each stage adding to the model the predictor which is most correlated with r.
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4. Until: all predictors are in the model

A even better approach to finding the LASSO estimator is the least angle regression proce-
dure. In contrast to forward stepwise regression, a predictor is not fully added to the model. The
coefficient of that predictor is increased only until that predictor is no longer the one which is most
correlated with the residual . Then some other competing predictor is pushed by increasing its
parameter.

1. Start with all coefficients 3; equal to zero.

2. Find the predictor x; most correlated with y. Increase the coefficient 3; in the direction of
the sign of its correlation with y. Take residuals 7 = y — ¢ and compute correlations. Stop
when some other predictor x;, has the same correlation with r than x;.

3. Increase (/3;, 5) in their joint least squares direction, until some other predictor x,, has the
same correlation with the residual r.

4. Until: all predictors are in the model

This procedure gives the entire path of LASSO solutions if one modification is made. This mod-
ification is: if a non-zero coefficient is set to zero, remove it from the active set of predictors and
recompute the joint direction.

Lasso is consistent if v/n — 0 Knight and Fu [2000].

LASSO is implemented in the R package lars which can be used to fit least angle regression,
LASSO, and infinitesimal forward stagewise regression models.

9.6.4 Elastic Net

The L!'-norm has also disadvantages. For many features m and few samples n, only the first
n features are selected. For correlated variables LASSO only selects one variable and does not
use the others. Elastic net is a compromise between ridge regression and LASSO. It has both an
L'-norm as well as an L?-norm regularizer. The objective is

1X8 — yl* + v 18l + alIBI3- (9.248)

The elastic net estimator minimizes this objective.

The problem is that now two hyperparameters are introduced. If v = 0 then the elastic net is
ridge regression. If § = 0 then the elastic net is LASSO.

The elastic net is consistent if 7/n — 0 Knight and Fu [2000].

Elastic net is implemented in the R package glmnet. This package allows to fit a generalized
linear model via penalized maximum likelihood. The regularization path is computed for the
LASSO or elastic net penalty at a grid of values for the regularization parameter .
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Correlated Explanatory Variables
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Figure 9.19: An Example for highly correlated explanatory variables.

9.6.5 Examples
9.6.5.1 Example: Ridge Regression, LASSO, Elastic Net
We generate data with highly correlated explanatory variables, where the correlation is as follows:

x1 x2 y
x1 1.0000000 0.9999319 0.8927331
x2 0.9999319 1.0000000 0.8919416
y 0.8927331 0.8919416 1.0000000

The data is shown as pairs of scatter plots in Fig. 9.19.

First we fit a standard linear model:

Min. 1st Qu. Median Mean 3rd Qu. Max.
-12.710 -4.842 3.027 1.723 8.941 14.850
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(Intercept) x1 x2
3.026583  14.854954 -12.711132

Next we fit the model with ridge regression:

x1 X2
2.985240 1.051382 1.011735

The ridge regression is much closer to the true parameter values. Fig. 9.20 shows the results.
The response data are the wooden-colored squares. Standard least squares gives the green circles
while ridge regression gives the orange circles. The noise free data is indicated by crosses. Ridge
regression is less prone to overfitting and closer to the crosses and, therefore, it generalizes better.

We are interested in the LASSO solution:

R-squared: 0.801
Sequence of LASSO moves:

x1 x2

Var 1 2

Step 1 2

LARS/LASSO

Call: lars(x = cbind(xl, x2), y = y)

Df Rss Cp
0 1 138.062 67.3827
1 2 28.030 1.3351
2 3 27.489 3.0000
x1 x2
0 0.000000 0.00000
1 2.116893  0.00000

2 14.854954 -12.71113

The last call supplies the intercept for the LASSO solutions. Since in step 2 the residual does not
change much compared to step 3 which all variables, we select step 2 solution y = 2.982374 +
2.116893 * x1. The solution is shown in Fig. 9.21. LASSO is almost as good as ridge regression
since the orange circles are covered by the blue circles obtained from LASSO. However, LASSO
used only one explanatory variable.

A call to elastic net, where the L' and the L? norms are equally weighted (o« = 0.5), gives:

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.002078 0.014340 0.098850 0.628400 0.681200 4.691000

)\ is the factor which weighs the penalty term that includes both L! and the L? norm.

We choose a small penalty term s = 0.004:
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Ridge Regression Example

response
0
|
O
¢ | h

T T T T T
0 2 4 6 8

explanatory variables

Figure 9.20: Example of ridge regression. The response data are the wooden-colored squares.
Standard least squares gives the green circles while ridge regression gives the orange circles. The
noise free data is indicated by crosses. Ridge regression is less prone to overfitting and closer to
the crosses and, therefore, it generalizes better.
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Ridge Regression Example

response
0
|
O
; | h

T T T T T
0 2 4 6 8

explanatory variables

Figure 9.21: Example of LASSO. The same figure as Fig. 9.20 except that now LASSO with only
one variable is shown (blue circles). This solution is almost as good as the ridge regression because
the orange circles are covered by the blue circles. However, LASSO used only one explanatory
variable.
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Ridge Regression Example

response
0
|
O
: | h

T T T T T
0 2 4 6 8

explanatory variables

Figure 9.22: Example of elastic net. The same figure as Fig. 9.21 except that now elastic net with
a = 0.5 is shown (red circles). This solution does not differ much from the LASSO solution
because the red circles overlay the blue circles.

(Intercept) 2.981441
x1 1.738632
x2 0.374484

The elastic net solution is shown in Fig. 9.22. This solution does not differ much from the LASSO
solution because the red circles overlay the blue circles.

9.6.5.2 Example: Diabetes using Least Angle Regression

The data contain blood and other measurements in diabetics and are taken from Efron, Hastie,
Johnstone and Tibshirani (2003) “Least Angle Regression”, Annals of Statistics. The diabetes
data frame has 442 rows and 3 columns:



9.6. Regularization 209
LASSO LAR
0 2 4 6 7 9 10 12 0 2 4 6 7 9 9 10
I N ) - - o
(] T J2) T
% § — . B F oS § — B E o
© . - L8 . ) =
= o - E o -
8 e _ — 8 R . - o
O o . = (@) o . =
5 © |H— — = HF 45 © —_— Rk 15 4 =
Q Q
N h N it
B - Tttt f -t NT - R I -
[ (5]
o o ko] o
n n
- - 0
T T T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
|betal/max|beta] |beta]/max|beta]
Forward Stagewise Forward Stepwise
0 2 4 6 7 13 15 0 1 2 5 8 9
o
o _ 11l
. - o 3
2 o LT 2 - o
8 37 ; - ifFes o
L . P - Qo o - = o = ©
g - - g ° /
o Xl . ) ! - T
(@] . - % F &} . 4 o
- o — H— - == T e ’ i o =
[0} = 5} o — — k=
N Iz N \ --
B2 ) R O I < <O SN | B
(1] (15 =
o
g 8 £ 8-
! n
- - 0
T T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

|betal/max|beta] |beta]/max|beta]

Figure 9.23: Example of least angle regression. The diabetes data set was fitted by LASSO, least
angle regression, forward stagewise, and forward stepwise. The figure shows the coefficients that
obtain certain values at certain steps.

LR T L INT3 9 .

1. x: amatrix with 10 columns with explanatory variables “age”, “sex2”, “bmi”, “map”, “tc2”,
“1d1”, “hdl”, “tch”, “ltg”, “glu”. That is age, sex, body mass index (bmi), and blood mea-
surements like cholesterol levels (I1dl and hdl) etc.

2. y: a numeric vector,

3. xo: amatrix with 64 columns which contains all explanatory variables, their squared values,
and measurements of interaction effects.

The x matrix has been standardized to have unit L? norm in each column and zero mean. The
matrix xo consists of x plus certain interactions. Fig. 9.23 shows coefficients at different steps
for the diabetes data set fitted by LASSO, least angle regression, forward stagewise, and forward
stepwise.
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In the following, the different solution paths for the different methods are listed (LASSO, least
angle regression, forward stagewise, and forward stepwise):

age sex bmi map tc 1dl hdl tch 1tg glu

[1,] 0 0 0 0 0 0 0 0 0 0
[2,] 0 0 60 0 0 0 0 0 0 0
[3,] 0 0 362 0 0 0 0 0 302 0
[(4,] 0 0 435 79 0 0 0 0 375 0
[5,] 0 0 506 191 0 0 -114 0 440 0
(6,] 0 -75 511 234 0 0 -170 0 451 0
[7,] 0 -112 512 253 0 0 -196 0 452 12
(8,] 0 -198 522 297 -104 0 -224 0 515 55
[9,] 0 -226 527 314 -195 0 -152 106 530 64
[10,] 0 -227 526 315 -237 34 -135 111 545 65
[11,] -6 -234 523 320 -554 287 0 149 663 66

[12,] -7 -237 521 322 -580 314 0 140 675 67
[13,] -10 -240 520 324 -792 477 101 177 751 68

age sex bmi map tc 1dl hdl tch 1ltg glu

[1,] 0 0 0 0 0 0 0 0 0 0
[2,] 0 0 60 0 0 0 0 0 0 0
[3,] 0 0 362 0 0 0 0 0 302 0
[4,] 0 0 435 79 0 0 0 0 375 0
(5,] 0 0 506 191 0 0 -114 0 440 0
(6,1 0 -75 511 234 0 0 -170 0 451 0
[7,] 0 -112 512 253 0 0 -196 0 452 12
[8,] 0 -198 522 297 -104 0 -224 0 515 55
[9,] 0 -226 527 314 -195 0 -152 106 530 64
[10,] 0 -227 526 315 -237 34 -135 111 545 65
[11,] -10 -240 520 324 -792 477 101 177 751 68
age sex bmi map tc 1dl hdl tch 1ltg glu

[1,] 0 0 0 0 0 0 0 0 0 0
[2,] 0 0 60 0 0 0 0 0 0 0
[3,] 0 0 362 0 0 0 0 0 302 0
[4,] 0 0 435 79 0 0 0 0 375 0
(5,] 0 0 506 191 0 0 -114 0 440 0
[6,] 0 -75 511 234 0 0 -170 0 451 0
[7,] 0 -112 512 253 0 0 -196 0 452 12
(8,] 0 -198 522 297 -104 0 -224 0 515 55
[9,] 0 -198 522 297 -104 0 -224 0 515 55
[10,] 0 -230 522 313 -148 0 -224 35 524 65
[11,] 0 -231 522 315 -159 0 -211 50 526 66
[12,] 0 -231 522 315 -159 0 -211 50 526 66
[13,] -1 -232 523 316 -172 0 -195 68 528 66
[14,] -1 -232 523 316 -172 0 -195 68 528 66

[15,] -8 -238 523 322 -644 362 31 151 697 67
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r 2 2 -2 2
xTo 3 -3 1 -1
t 1 -1 -1 1

Table 9.17: A toy example where variable x; is relevant because ¢ = x; + 9 but has no target

correlation.

(16,1 -10

age
[1,1]
[2,]
(3,]
(4,]
(5,]
(6,1
(7,]
(s,]
(9,1
[10,]
(11,1 -10

O O O O O O O O o o

-240

sSex

O O O O O

-236
-227
-233
-236
-241
-240

520

bmi

0
949
675
603
565
524
538
527
518
520
520

324 -792
map tc

0 0

0 0

0 0
262 0
270 0
326 0
328 0
315 0
316 -632
322 -791
324 -792

477

141

O O O O O o

-103
-111
423
474
477

100
101

177

tch

O O OO O O O o o

177
177

751

1tg

0

0
615
544
485
474
498
479
732
750
751

68

glu

O O O O O o o

70
71
66
68

The final solution is the same. The variables that were selected first and second agree between
the different methods. The first variable that has been selected is body mass index followed by
“lgt” and then “map” and thereafter “hdl”.

The features that are selected for the combined variables in x5 are:

(1] "bmi"
[1] "bmi"
(1] "bmi"
[1] "bmi"
(1] "bmi"
[1] "bmi"

The most important variables are the variables which were identified previously.

9.6.5.3 Example: Relevant Variable but No Correlation to Response

n 1tg n
llmapll
llmapll
llmapll
llmapll

llltgll
llhdl n
llhdl n
llhdl n

llltgll

"1tg" "bmi:map"
"ltg" "age:sex" "bmi:map"

We demonstrate on a toy example that relevant variables may be not correlated to the response /
target variable. The toy example is shown in Tab. 9.17.

We now perform least squares regression, ridge regression, and LASSO:

Correlation:

t

x1

X2
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zz 0 1 -1 1
z2 -1 1 0 O
zz 0 0 -1 1
t -1 1 -1 1

Table 9.18: A toy example where variable z; is irrelevant because ¢ = z9 + x3 but has high target
correlation.

t 1.0000000 0.0000000 0.4472136
x1 0.0000000 1.0000000 -0.8944272
x2 0.4472136 -0.8944272 1.0000000

least squares:
(Intercept) x1 x2
-8.326673e-17 1.000000e+00 1.000000e+00

ridge regression with lambda=1:
x1 x2
0.0000000 0.2622951 0.3278689

Fig. 9.24 shows the solution paths for different LASSO fitting methods. The variable x; is always
selected in the second step even if it is not correlated to the response variable.

9.6.5.4 Example: Irrelevant Variable but High Correlation to Response

We demonstrate on a toy example that irrelevant variables may be correlated to the response /
target variable. The toy example is shown in Tab. 9.18.

Again we fit the data by least squares regression, ridge regression, and LASSO:

Correlation:

t x1 x2 x3
t 1.0000000 0.9045340 0.7071068 0.7071068
x1 0.9045340 1.0000000 0.4264014 0.8528029
x2 0.7071068 0.4264014 1.0000000 0.0000000
x3 0.7071068 0.8528029 0.0000000 1.0000000

least squares:
(Intercept) x1 x2 x3
-1.171607e-16 4.686428e-16 1.000000e+00 1.000000e+00

ridge regression:
x1 x2 x3
-0.1043478 0.4173913 0.6330435 0.4660870
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Figure 9.24: A toy example where variable z; is relevant because ¢ = x1 + x2 but has not target
correlation. The solution paths for different LASSO fitting methods. The variable x; is selected
in the second step.
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LASSO LAR
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Figure 9.25: A toy example where variable z; is irrelevant because ¢ = x5+ x3 but has high target
correlation. The solution paths for different LASSO fitting methods are shown. The variable x; is
selected first but in the last step correctly removed.

Least squares finds the correct solution while ridge regression uses the highly correlated variable
to reduce the overall squared sum of coefficients (to obtain small regularization terms). Fig. 9.25
shows the solution paths for different LASSO fitting methods. The variable x; is selected first but
in the last step correctly removed.

9.6.5.5 Gas Vapor: Ridge Regression and LASSO

This data set is from Rencher and Schaalje [2008] page 182, Ex. 7.53, Table 7.3, and originally
from Weisberg (1985), page 138. When gasoline is pumped into the tank of a car, vapors are
vented into the atmosphere. An experiment was conducted to determine whether the response y,
the amount of vapor, can be predicted using the following four variables based on initial conditions
of the tank and the dispensed gasoline:
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Y
29

24
26
22
27
21
33
34
32
34
20
36
34
23
24
32

x1
33
31
33
37
36
35
59
60
59
60
34
60
60
60
62
62

T2
53
36
51
51
54
35
56
60
60
60
35
59
62
36
38
61

T3
3.32
3.10
3.18
3.39
3.20
3.03
4.78
4.72
4.60
4.53
2.90
4.40
4.31
4.27
441
4.39

x4
3.42
3.26
3.18
3.08
341
3.03
4.57
4.72
4.41
4.53
2.95
4.36
442
3.94
3.49
4.39

Y
40

46
55
52
29
22
31
45
37
37
33
27
34
19
16
22

1
90
90
92
91
61
59
88
91
63
60
60
59
59
37
35
37

T2
64
60
92
92
62
42
65
89
62
61
62
62
62
35
35
37

3
7.32
7.32
7.45
7.27
391
3.75
6.48
6.70
4.30
4.02
4.02
3.98
4.39
2.75
2.59
2.73

x4
6.70
7.20
7.45
7.26
4.08
345
5.80
6.60
4.30
4.10
3.89
4.02
4.53
2.64
2.59
2.59

Table 9.19: Rencher’s gas vapor data from Rencher and Schaalje [2008] and originally from Weis-

berg (1985).

1. x; = tank temperature (°F),

2. xo = gasoline temperature (°F),

3. x3 = vapor pressure in tank (psi),

4. x4 = vapor pressure of gasoline (psi).

The data are given in Tab. 9.19.

Correlation of the variables often give a first impression which variables might be helpful for

prediction:

[,1]
[1,] 1.0000000
[2,] 0.8260665
[3,] 0.9093507
[4,] 0.8698845
[5,]1 0.9213333

0.8260665
1.0000000
0.7742909
0.9554116
0.9337690

[,2]

[,3]

0.9093507
0.7742909
1.0000000
0.7815286
0.8374639

[,4]

0.8698845
0.9554116
0.7815286
1.0000000
0.9850748

[,5]

0.9213333
0.9337690
0.8374639
0.9850748
1.0000000

The response y is highly correlated with all explanatory variables which in turn are correlated
among themselves. y is most correlated with x4 followed by x2. x4 is very highly correlated with
x3 and least with xs.

We start with standard least squares regression:
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Coefficients:

(Intercept) x1 x2 x3 x4
1.01502 -0.02861 0.21582 -4.32005 8.97489

anova(l1)

Analysis of Variance Table

Response: y

Df Sum Sq Mean Sq F value Pr(>F)
X 4 2520.27 630.07 84.54 7.249e-15 *x*x*
Residuals 27 201.23 7.45

Signif. codes: 0 ‘“#*%*’ 0.001 ‘**’ 0.01 ‘x> 0.05 “.” 0.1 ¢ > 1

The variables z3 and x4 seem to be relevant. We know that they are highly correlated and lead to
overfitting effects.

The relevance of the variables is checked by ridge regression which deals with these highly
correlated variables:

x1 x2 x3 x4
0.72339986 -0.04937793 0.27780519 0.35225191 3.74029965

Here variable x4 sticks out.

Next we analyze the data set by LASSO:
[1] 0.0000000 0.0000000 0.0000000 0.4963341
[1] 0.0000000 0.2695754 0.0000000 3.5437050
[1] -0.06804859 0.27044138 0.00000000 4.48953562

Here it becomes clear that x4 is the most important variable and next a less correlated variable x5
is selected.

We perform feature selection and use only the variables z9 and z4:

Coefficients:
(Intercept) x[, c(2, 411 x[, c(2, 4)]2
0.1918 0.2747 3.6020

Analysis of Variance Table

Response: y
Df Sum Sq Mean Sq F value Pr(>F)
x[, c(2, 4)] 2 2483.11 1241.56 151.04 4.633e-16 *xx**
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Residuals 29 238.39 8.22
Signif. codes: 0 ‘*%x> 0.001 ‘%%’ 0.01 ‘x> 0.056 ¢.”> 0.1 ¢ > 1

We now compare the full model with the model where only two features are selected:

Analysis of Variance Table

Model 1: y 7 x
Model 2: y ~ x[, c(2, 4)]

Res.Df RSS Df Sum of Sq F Pr(>F)
1 27 201.23
2 29 238.39 -2 -37.159 2.4929 0.1015

The model with only two features does not perform significantly worse.

We want to check which model is better suited by Akaike’s information criterion (AIC):

AIC(11):
[1] 5.00000 68.83842
AIC(13):
[1] 3.00000 70.26103

The model with only two variables should be chosen.

9.6.5.6 Chemical Reaction: Ridge Regression and LASSO

This data set is from Rencher and Schaalje [2008] page 182, Ex. 7.54, Table 7.4 and originally
from Box and Youle (1955) and was also used in Andrews and Herzberg (1985), page 188. The
yield in a chemical reaction should be maximized, therefore the values of the following variables
were used to control the experimenter:

1. x1 = temperature (°C),
2. x2 = concentration of a reagent (%),

3. x3 = time of reaction (hours).
The response variables were:

1. y1 = percent of unchanged starting material,

2. yo = percent converted to the desired material.

The data are given in Tab. 9.20.

First we check the correlation among the variables:
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Y1
41.5

33.8
27.7
21.7
19.9
15.0
12.2
4.3
193
6.4
37.6
18.0
26.3
9.9
25.0
14.1
15.2
15.9
19.6

Y2
45.9

53.3
57.5
58.8
60.6
58.0
58.6
524
56.9
554
46.9
573
55.0
589
50.3
61.1
62.9
60.0
60.6

x1

162
162
162
162
172
172
172
172
167
177
157
167
167
167
167
177
177
160
160

T2 T3
23 3
23 8
30 5
30 8
25 5
25 8
30 5
30 8
275 65
275 6.5
275 65
325 65
225 65
275 95
275 35
20 65
20 6.5
34 75
34 75

Table 9.20: Rencher’s chemical reaction data from Rencher and Schaalje [2008].

[,1]

[,2]

L,

3]

[1,] 1.0000000 -0.60782343 -0.67693865
1.00000000 0.40395099

[2,] -0.6078234
[3,] -0.6769387
[4,] -0.2247259
[5,] -0.4525396

0.40395099

1.00000000

0.07998377 -0.46200145
0.39273121 -0.02188275

[,4]
-0.22472586
0.07998377
-0.46200145
1.00000000
0.17665667

[,5]
-0.45253956
0.39273121
-0.02188275
0.17665667
1.00000000

The first response variable has negative correlation to the first regressor and less negative cor-
relation to the third regressor. The second response variable is negatively correlated to the first
response variable which was to be expected. The second response variable is equally correlated to
the first and third regressor.

We start with a least square estimator:

Coefficients:
(Intercept)
332.111

x1
-1.546

Analysis of Variance Table

Response: yil

X2
-1.425

Df Sum Sq Mean Sq F value

x3
-2.237

Pr (>F)
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X 3 1707.16 569.05 106.47 2.459e-10 *x*x
Residuals 15 80.17 5.34

Signif. codes: 0 ‘*%xx> 0.001 ‘*x> 0.01 ‘x> 0.05 ¢.”> 0.1 ¢ > 1

All variables are relevant for prediction. x3 is the most relevant variable.

We perform regularization using ridge regression:

x1 x2 x3
307.512361 -1.424838 -1.279060 -2.179261

The figure did not change compared to standard least squares estimation. This is a hint that indeed
all variables are required.

Next we perform LASSO:
[1] -0.3518723 0.0000000 0.0000000
[1] -0.5182233 0.0000000 -0.6334936

The first and last variable seem to be the most relevant ones.

We fit a least squares model with the two most important variables:

Coefficients:
(Intercept) x[, c(1, 3)11 x[, c(1, 3)]2
222.957 -1.101 -2.853

Analysis of Variance Table

Response: yl

Df Sum Sq Mean Sq F value Pr(>F)
x[, c(1, 3)] 2 1209.61 604.81 16.75 0.0001192 **x
Residuals 16 577.72  36.11

Signif. codes: 0 ‘*%x> 0.001 ‘%%’ 0.01 ‘x> 0.056 ¢.”> 0.1 ¢ > 1
An ANOVA table shows that all variables are required to predict the response:

Analysis of Variance Table

Model 1: y1 7 x
Model 2: y1 ~ x[, c(1, 3)]

Res.Df RSS Df Sum of Sq F Pr (>F)
1 15 80.17
2 16 577.72 -1  -497.55 93.088 7.988e-08 **x

Signif. codes: O ‘*xx> 0.001 ‘*x> 0.01 ‘x> 0.05 ¢.” 0.1 ¢ > 1
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We move on the second response variable y9, that is, the converted material to the desired
product.

formula = y2 7 x

Coefficients:

(Intercept) x1 x2 x3
-26.0353 0.4046 0.2930 1.0338

anova(1l12)

Analysis of Variance Table

Response: y2

Df Sum Sq Mean Sq F value Pr(>F)
X 3 151.00 50.334 3.0266 0.06235 .
Residuals 15 249.46 16.631

Signif. codes: 0 ‘*%x> 0.001 ‘*x’ 0.01 ‘x> 0.05 ¢.”> 0.1 ¢ > 1

Again z3 is the most relevant variable but now even more dominant.

x1 x2 x3
-19.9403245 0.3747668 0.2617700 0.9933463

The figure remains the same for ridge regression.

We perform fitting with LASSO:
[1] 0.008327752 0.000000000 0.000000000
[1] 0.1931751 0.0000000 0.7039310

Interestingly, z; is selected before x3. Looking at the correlation matrix, we see that indeed z; is
more correlated to yo than z3 (0.40 vs. 0.39).

If we select the two variables which would be first selected by LASSO, then we have for the
least squares fit:

formula = y2 ~ x[, c(1, 3)]

Coefficients:
(Intercept) x[, c(1, 3)11 x[, c(1, 3)]2
-3.5856 0.3131 1.1605
anova(132)

Analysis of Variance Table



9.6. Regularization 221

Response: y2

Df Sum Sq Mean Sq F value Pr(>F)
x[, c(1, 3)] 2 129.96 64.978 3.8433 0.04334 *
Residuals 16 270.51 16.907

Signif. codes: O ‘*%xx> 0.001 ‘*x> 0.01 ‘x> 0.05 ¢.” 0.1 ¢ > 1

Comparing the full model with the model, where only two features are selected by an ANOVA
table gives:

Analysis of Variance Table

Model 1: y2 7 x
Model 2: y2 ~ x[, c(1, 3)]

Res.Df RSS Df Sum of Sq F Pr(>F)
1 15 249.46
2 16 270.51 -1 -21.047 1.2655 0.2783

Therefore, the model with only two features is not significantly worse than the full model.

9.6.5.7 Land Rent: Ridge Regression and LASSO

This data set is from Rencher and Schaalje [2008] page 184, Ex. 7.55, Table 7.5 and originally from

Weisberg (1985) page 162. For 34 counties in Minnesota the following variables were recorded in
1977:

1. y: average rent paid per acre of land with alfalfa,
2. x1: average rent paid per acre for all land,
3. xy: average number of dairy cows per square mile,

4. x3: proportion of farmland in pasture.

The data is shown in Tab. 9.21. A relevant question is: can the rent for alfalfa land be predicted
from the other three variables?

We check the correlation:

[,1] [,2] [,3] [,4]
[1,] 1.0000000 0.8868392 0.2967901 -0.3838808
[2,] 0.8868392 1.0000000 0.0296753 -0.5212982
[3,] 0.2967901 0.0296753 1.0000000 0.4876448
[4,] -0.3838808 -0.5212982 0.4876448 1.0000000

Standard deviatins of the variables:
1:
[1] 21.53698
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Yy T T2 z3 Yy T T2 z3
18.38 1550 1725 24| 850 9.00 8.80 .08
20.00 22.29 1851 .20 | 36.50 20.64 2381 .24
11.50 1236 11.13 .12 | 60.00 8140 454 .05
25.00 31.84 554 .12 |16.25 1892 29.62 .72
5250 8390 544 .04 |50.00 5032 2136 .19
82.50 7225 2037 .05 11.50 21.33 1.53 .10
25.00 27.14 3120 .27 | 3500 46.85 542 .08
30.67 4041 429 .10 | 7500 6594 22.10 .09
12.00 1242 8.69 41 | 31.56 38.68 14.55 .17
6125 6942 6.63 .04 |4850 51.19 759 .13
60.00 4846 2740 .12 | 7750 5942 4986 .13
57.50 69.00 3123 .08 | 21.67 2464 1146 .21
31.00 26.09 2850 .21 | 19.75 2694 248 .10
60.00 62.83 2998 .17 | 56.00 46.20 31.62 .26
7250 77.06 13.59 .05 | 25.00 26.86 53.73 .43
60.33 58.83 4546 .16 | 40.00 20.00 40.18 .56
4975 5948 3590 .32 |56.67 6252 1589 .05

Table 9.21: Rencher’s land rent data from Rencher and Schaalje [2008].

2:
[1] 22.45614
3:
[1] 14.21056
4.
[1] 0.1532131

We also computed the standard deviations of the variables because x3 has smaller values than the
other variables. x3 is about a factor of 100 smaller than the other variables.

We start with a least squares regression:

formula = y 7 x

Coefficients:

(Intercept) x1 x2 x3
0.6628 0.7803 0.5031 -17.1002

anova(11)

Analysis of Variance Table

Response: y

Df Sum Sq Mean Sq F value Pr(>F)
X 3 13266.9 4422.3 65.037 3.112e-13 **x*
Residuals 30 2039.9 68.0
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Signif. codes: 0 ‘**%*’ 0.001 ‘**’ 0.01 ‘x> 0.05 “.” 0.1 ¢ *> 1

x3 has the largest coefficient but it has to be divided by a factor of 100 to be in the range of the
other variables. Thus, x3 has actually the smallest influence on the response variable after fitting
by least squares.

Ridge regression confirms the observations we had for the least squares estimator:

y 7 x with lambda=1
x1 x2 x3
2.1360609 0.7542789 0.4955992 -18.2104311

Since ridge regression penalizes the coefficients for the standardized variables, the absolute coef-
ficient for x3 even increases. The other two coefficients decrease as they are pushed toward zero
by ridge regression.

LASSO confirms our findings:
[1] 0.5832042 0.0000000 0.0000000
[1] 0.7872064 0.3223731 0.0000000

The first two explanatory variables are the most relevant. From the correlations we see that the
first explanatory variable has largest correlation with the response and is therefore selected first.
Interestingly, x3 has the second largest correlation to the response variable but is not selected.
The reason for this is that z3 has also large correlation to x; and does not bring in much new
information. In contrast to x3, 2 has low correlation to x; and brings in new information.

We again fit a least squares model, but now with only the first two explanatory variables:

formula = y ~ x[,c(1,2)]

Coefficients:
(Intercept) x[, c(1, 2)11 x[, c(1, 2)]2
-3.3151 0.8428 0.4103
anova(13)

Analysis of Variance Table

Response: y

Df Sum Sq Mean Sq F value Pr(>F)
x[, c(1, 2)] 2 13159.3 6579.6 94.981 6.015e-14 *xx
Residuals 31 2147.5 69.3

Signif. codes: 0 ‘*xx> 0.001 ‘*x> 0.01 ‘x> 0.05 ¢.” 0.1 ¢ > 1

Comparing the full model with the model that has only the first two variables shows that the
error difference is not significant:



224

Chapter 9. Linear Models

Analysis of Variance Table

Model 1: y 7 x
Model 2: y ~ x[, c(1, 2)]

Res.Df RSS Df Sum of Sq F Pr(OF)
1 30 2039.9
2 31 2147.5 -1 -107.58 1.5821 0.2182

Therefore the reduce model may be chosen for analysis.
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