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OVERVIEW 

This document is a detailed reference guide for the Statistical Algorithms used in the 
analysis of GeneChip expression data. The guide focuses on how they work, what 
calculations and approaches they comprise, and how the tunable parameters are designed. 
Additional references are provided for additional information.  

GENECHIP ARRAY DESIGN 

It is important to understand how a GeneChip array is designed when considering the 
most appropriate approaches for its analysis. A GeneChip probe array cons ists of a 
number of probe cells where each probe cell contains a unique probe. Probes are tiled in 
probe pairs as a Perfect Match (PM) and a Mismatch (MM). The sequence for PM and 
MM are the same, except for a change to the Watson-Crick complement in the middle of 
the MM probe sequence. A probe set consists of a series of probe pairs and represents an 
expressed transcript. 
 

 

DATA OUTPUTS 

The statistical algorithms provide the following data outputs: 
Output           Descriptions 

Signal A measure of the abundance of a transcript. 

Stat Pairs The number of probe pairs in the probe set. 

Stat Pairs Used The number of probe pairs in the probe set used in the Detection call. 

Detection Call indicating whether the transcript was Present (P) or Absent (A), or 
Marginal (M). 

Detection p-value p-value indicating the significance of the Detection call.  

Stat Common Pairs The number of probe pairs in the probe sets from baseline and 
experimental arrays used in the Change call. 

Change 
Call indicating a change in transcript level between a baseline array and 
an experiment array [i.e. increase (I), decrease (D), marginal increase 
(MI), marginal decrease (MD), no change (NC)]. 

Change p-value p-value indicating the significance of the Change call. 

Signal Log Ratio 
The change in expression level for a transcript between a baseline and an 
experiment array. This change is expressed as the log2 ratio. A log2 ratio 
of 1 is the same as a Fold Change of 2. 

Signal Log Ratio Low The lower limit of the log ratio within a 95% confidence interval. 

Signal Log Ratio High The upper limit of the log ratio within a 95% confidence interval. 
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DATA PREPARATION 
In this section we will discuss steps that occur prior to application of the new statistical 
algorithms.  

A note about .CEL Files 
The Statistical Algorithms begin with information contained in the .CEL file generated by 
Microarray Suite software. The .CEL files contain a captured image of the scanned 
GeneChip® array and calculations of the raw intensities for probe sets. The method for 
calculating individual cell intensities, thus generating the .CEL file, is not affected by the 
Statistical Algorithms. Therefore, it will not be discussed here. 

Masking 
Masked probe pairs are excluded from all algorithms. For more information about “probe 
masking” see the Affymetrix® GeneChip® Expression Analysis Technical Manual 
(2001), Section 4.1.17.  

Background Subtraction 
A calculated background establishes a “floor” to be subtracted from each cell value. 

Zone Values 
• For purposes of calculating background values, 

the array is split up into K rectangular zones Z_k 
(k = 1, …, K, default K = 16). 

• Control cells and masked cells are not used in the 
calculation. 

• The cells are ranked and the lowest 2% is chosen 
as the background b for that zone (bZk). 

• The standard deviation of the lowest 2% cell 
intensities is calculated as an estimate of the 
background variability n for each zone (nZk). 

 
Smoothing Adjustment  
To provide a smooth transition between zones, we 
compute distances from each cell on the chip to the 
various zone centers. A weighted sum is then calculated 
based on the reciprocal of a constant plus the square of 
the distances to all the zone centers. In more detail, if the 
distance d between the chip coordinate (x,y) and the 
center of the kth zone is dk, we can calculate a weighting 
factor, which is related to the square of d (the relationship  
between w and d is illustrated in the graph next page). A 
small factor, smooth, is added to d2 to ensure that the value will never be zero. 
 

A GeneChip® array is divided into a 
number of equally spaced zones and an 
average background is assigned to the 
center of the zone, indicated by green 
circles. For each cell, the distance is 
calculated to the center of every zone. A 
weighting factor is then calculated as the 
reciprocal of the sum of a constant and 
the square of the distance. The colors of 
the arrows indicate the relative weights. 
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Noise Correction 
Now we want to compute an adjusted value that shifts intensities down by the local 
background. In order to do so, we must first ensure that the values would not become 
negative. Negative intensity values are problematic later in the calculations when log 
values are calculated.  
 
For noise correction, a local noise value n based on the standard deviation of the lowest 
2% of the background in that zone  (nZk) is calculated and weighted for background 
values (just substitute n(x, y) for b(x, y) and nZk for bZk in the formula above).  
 
Then a threshold and a floor are set at some fraction of the local noise value, so that no 
value is adjusted below that threshold. That is, for a cell intensity I '(x,  y) at chip 
coordinates (x, y), we compute an adjusted intensity.  
 

( ,  ) max( '( ,  ) - ( , ), * ( , ))
where '( ,  )   max( '( , ),  0.5)
A x y I x y b x y NoiseFrac n x y

I x y I x y
=

=
 

 
NoiseFrac is the selected fraction of the global background variation.  
(default NoiseFrac = 0.5) 

W

d

A(x, y) = max(I '(x, y) - b(x, y), NoiseFrac*n(x, y)) 
where I '(x, y) = max(I '(x, y), 0.5) 
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EXPRESSION VALUE CALCULATION (SIGNAL) 
The Signal value is calculated from the combined, background-adjusted, PM and MM 
values of the probe set. It represents the amount of transcript in solution. 
 
Signal is calculated as follows:  

1. Cell intensities are preprocessed for global background. 
2. An ideal mismatch value is calculated and subtracted to adjust the PM intensity. 
3. The adjusted PM intensities are log-transformed to stabilize the variance. 
4. The biweight estimator (see Appendix I) is used to provide a robust mean of the 

resulting values. Signal is output as the antilog of the resulting value. 
5. Finally, Signal is scaled using a trimmed mean. 
 

 
Background-adjusted cell intensities ◊ Probe set Signal 

Method 

Background and Contrast Correction 
Before we can proceed, we need to do the background  subtraction as described in the 
Data Preparation section.  

Ideal Mismatch (IM) 
Used in Signal Calculations 

 
The reason for including a MM probe is to provide a value that comprises most of the 
background cross-hybridization and stray signal affecting the PM probe.  It also contains 
a portion of the true target signal. If the MM value is less than the PM value, it is a 
physically possible estimate for background, and can be directly used.  
 
If the MM value is larger than the PM value, it is a physically impossible estimate for the 
amount of stray signal in the PM intensity. Instead, an idealized value can be estimated 
based on our knowledge of the whole probe set or on the behavior of probes in general.  
Specifically, we base this estimate either on the average ratio between PM and MM, or (if 
that measure is itself too small) a value slightly smaller than PM.  
 
To calculate a specific background ratio representative for the probe set, we use the one-
step biweight algorithm (Tbi), which is described in Appendix I.  We find a typical log 
ratio of PM to MM that is simply an estimate of the difference of log intensities for a 
selected probe set.  The biweight specific background (SB) for probe pair j in probe set i 
is:  
 

( )2 , 2 ,log ( ) log ( ) : 1, ,i bi i j i j iSB T PM MM j n= − = K  

 

Throughout this text we 
use log base 2 exclusively. 
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If SBi is large, then the values from the probe set are generally reliable, and we can use 
SBi to construct the ideal mismatch IM for a probe pair if needed. If SBi is small 
( iSB contrastτ≤ ), we smoothly degrade to use more of the PM value as the ideal 
mismatch. The three cases of determining ideal mismatch IM for probe pair j in probe set 
i are described in the following formula: 
  
Scaleτ (tau) is the cutoff that describes the variability of the probe pairs in the probe set. 
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The first case where the mismatch value provides a probe-specific estimate of stray signal 
is the best situation. In the second case, the estimate is not probe-specific, but at least 
provides information specific to the probe set. The third case involves the least 
informative estimate, based only weakly on probe-set specific data. 

The blue bars represent PM and the red bars MM 
probes of a hypothetical probe set. In the top panel, 
most of the MM values are smaller than PM, so we use 
the MM directly. The yellow bars indicate the 
estimated value we would use if MM>PM.  
 
For probe pair 4, the MM is larger than the PM, so it 
is not a useful value for estimating the stray signal 
component of PM. An imperfect, but useful resolution 
is to estimate a MM value that is typical for the probe 
set. For the overall probe set, the mean difference SBi 
of the logs of PM and MM is large, so we can use it 
directly to estimate a value for MM 4. The yellow bar 
indicates the estimate. 
 
In the second panel, SBi is small, so we cannot base an 
accurate estimate for MM 4 on it. The best we can do 
is to calculate a value (indicated by the yellow bar) 
slightly less than PM. 

probepai r
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Probe Value and Signal Log Value 
Given the ideal mismatch value, the formula for the probe value (PV) is fairly simple.  To 
guarantee numerical stability, we use the formula: 

(-20)
, , , 

, 2 ,

max( - , ) default 2

log ( ), 1, ,  

i j i j i j

i j i j i

V PM CT

PV V j n

δ δ= =

= = …  

Now we calculate the probe value PV for every probe pair j in probeset i. n is the number 
of probe pairs in the probeset.  

, 2 ,log ( ), 1, ,  i j i j iPV V j n= = …  
 
We then compute the absolute expression value for probe set i as the one-step biweight 
estimate (see Appendix I) of the i n adjusted probe values: 

,1 ,( , , )
ii bi i i nSignalLogValue T PV PV= …  

Scaled Probe Value 
Note: the scaling (sf) and normalization factors (nf) computed in this section are reported by the software. 
 
If the algorithm settings indicate scaling all probes sets or selected probe sets to a target 
we calculate a scaling factor (sf) 

( )2 ,0.02,0.98iSignalLogValue

Sc
sf

TrimMean
=

  
where Sc is the target signal (default Sc = 500) and the SignalLogValues in the 
SignalLogValuei set are the probe sets indicated in the algorithm settings.  The TrimMean 
function here takes the average value of all observations after removing the values in the 
lowest 2% of observations and removing those values in the upper 2% of observations.  If 
the algorithm settings indicate user defined scaling, then sf  = user defined value. 
 
The reported value of probe set i is:  

( )( )   * *2 iSignalLogValueReportedValue i nf sf=   
where nf = 1 for absolute analysis and is computed as follows for a comparison analysis. 
 
If the algorithm settings indicate user defined normalization, then nf = user specified 
normalization.  
 
Otherwise, the algorithm settings either indicate normalizing all or selected probe sets: 

( )
( )

,

,

 0.02,0.98

 0.02,0.98
i

i

TrimMean SPVb
nf

TrimMean SPVe
=

 
where SPVb[i] is the baseline signal, and SPVe[i] is the experiment signal (scaled-only) 
and i defines the probe sets selected by the user. 

 
This is reported as Signal. 

 

  

IMi, j ,d ) 
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Since comparison analyses are done on matched probe pairs, the individual probe pair 
values are also modified by this scaling factor.   The scaled probe value SPV is 

, , 2log ( * ) i j i jSPV PV nf sf= +  
These values are used in computing the log-ratio in comparison analysis. 
 

Performance on corrupted data 
 
The algorithms were developed on a very clean data set, where every precaution was 
taken to ensure that the data was of high quality. It is important to validate the 
performance on poor quality data. Good performance on poor quality data will be an 
indication of how well the algorithms will perform under real-world situations, where the 
data is less than perfect. To generate data with a controlled amount of noise, several .CEL 
files were used and an increasing amount of data was replaced with random numbers. 
The random numbers were chosen uniformly within the typical intensity range (0 to 
46,000). The correlation coefficient between the true concentration and the output from 
the newly generated corrupted data set was then plotted as a function of the proportion of 
uncorrupted data. When the proportion of uncorrupted data is 1 (the original data set), we 
see a correlation coefficient near 1.0 (even the original data set has some noise).  As the 
proportion of good data decreases, we expect the predictive power of the data with 
respect to concentration to decrease. This loss of predictive power is reflected by a lower 
correlation coefficient. 
 

 

Performance against bad data (human). This graph illustrates the robustness against bad data obtained by 
using this analysis strategy. The data in several .CEL files from the human array HG-U95A are degraded by 
substituting random numbers between 0 and 46,000.  The intact data set is indicated by 1 on the x-axis. As 
the amount of intact data decreases, the average values start deviating from the original. The data from the 
Signal Calculation Algorithm implemented in MAS 4.0 also starts deviating, while the biweight algorithm 
remains accurate even after 20% of the data were corrupted. 

Performance of methods against bad data (human)
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For averages (blue line) the correlation coefficient drops rapidly indicating that the results 
quickly become less accurate. This is not surprising, because an average is not robust 
against outliers. The AvgDiff algorithm used in MAS 4.0 (pink line) is more robust 
because it discards some outliers. However, this strategy loses power when the data is 
increasingly corrupt, because it has only a small ability to identify outliers when much of 
the data is corrupt. The Signal algorithm implemented in MAS 5.0 is very robust against 
corrupted data and the results remain well-correlated even when as much as 20% of the 
data is corrupt.  Naturally, additional noise never improves the quality of the data, and so 
does degrade the results, but robustness provides a safety net against corrupted data 
completely destroying the utility of an array. 
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RELATIVE EXPRESSION VALUES (LOG RATIOS) 
 
By doing a direct cell to cell comparison between probe sets on two arrays, systematic 
probe effects will be canceled out. Probe effects refer to the inherent differences in the 
hybridization efficiency of different probes, which is a source of varia tion in sampling  
signals from different sequences present at the same concentration, even when physically 
linked in the same nucleic acid polymer. Calculating the ratio of signal for the same 
probe on two different arrays effectively cancels the intrinsic affinity factor for that 
sequence. 
 

Adjusted cell intensities (Baseline and 
Experiment) ◊ Log Ratio, Log Ratio Low and 

Log Ratio High 

Method 
The Signal Log Ratio calculation is an extension of the 
Signal calculation. 

1. Scale the baseline and experiment. 
2. Correct for probe pair bias. 
3. Calculate the signal log ratio. 

 

Nomenclature 

 

Signal Log Ratio 
Once we have a scaled probe value each probe pair (SPV is calculated in the previous 
section), we can calculate the Signal log ratio using the biweight algorithm (see Appendix 
I). The probe log ratio PLR is calculated for probe pair j in probeset i on both the baseline 
b and experiment e arrays: 

, , , 

,1 ,

 -  

( , ,  )

i j e i j b i j

i bi i i ni

PLR SPV SPV

SignalLogRatio T PLR PLR

=

= …
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The values of log2(PM-IM) plotted 
for a series of probe pairs over a 
concentration range (low 
concentration to the left, increasing 
to the right). Although the probes 
respond near-linearly, their 
affinities are slightly different. This 
is termed the probe affinity effect. 
 Comparative experiments are always run on two 

arrays, one assigned baseline b and the other 
experiment e. Here we show the same probeset i 
from two arrays. 

PM
MM

probe pair j

array 1= baseline b array 2 = experiment e
probe set i

Experiment (by concentration) 
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If we have the probe log ratios PLR we can use the biweight algorithm to calculate the 
SignalLogRatio (see Appendix I for a description of the biweight algorithm). 
 

,1 ,( , ,  )i bi i i n i
SignalLogRatio T PLR PLR= K  

 
From the biweight calculation, we can also determine the 95th confidence interval and 
report the results as Log Ratio  Low and Log Ratio High. Thus, the relative expression for 
a target in two samples being compared is estimated by calculating the average of the log 
(ratios) for each corresponding probe pair in the probe sets. 
 

Fold Change 
Previous versions of the Affymetrix® Microarray Suite software communicated the 
relative signal level between the same probe set on two different arrays as a fold-change 
ratio that was signed depending on the direction of the change in an ordered pair.  It is 
straight- forward to convert from the LogRatio metrix to the older Fold-Change value.   
 
Fold Change from log ratios is calculated as follows: 
Corrected formula  

 
-

2 0

(-1) 2 0
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SignalLogRatio
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SINGLE ARRAY ANALYSIS (DETECTION CALLS)  
 
A detection call answers the question: “Is the transcript of a 
particular gene Present or Absent?” In this context, Absent 
means that the expression level is below the threshold of 
detection. That is, the expression level is not provably 
different from zero.  In the case of an uncertainty, we can get 
a Marginal call.  It is important to note that some probe-sets 
are more variable than others, and the minimal expression 
level provably different from zero may range from a small 
value to very large value (for a noisy probe-set). The 
advantage to asking the question in this way without actual 
expression values is that the results are easy to filter and easy 
to interpret. For example, we can imagine that we may only 
want to look at genes whose transcripts are detectable in a 
particular experiment.  
  
Raw cell intensities ◊ Absent, Present, or Marginal call  

plus p-values 

Method 
There are four steps to the method:  

1. Remove saturated probe pairs and ignore 
probe pairs wherein PM ~ MM + tau 

2. Calculate the discrimination scores. (This 
tells us how different the PM and MM cells 
are.) 

3. Use Wilcoxon’s rank test to calculate a 
significance or p-value. (This tells us how 
confident we can be about a certain result.) 

4. Compare the p-value with our preset 
significance levels to make the call. 

Saturation 
If a mismatch cell is saturated 46000MM ≥ , the 
corresponding probe pair is not used in further 
computations.  We also discard pairs where PM 
and MM are within tau of each other. 
 
If all probe pairs in a unit are saturated, we report 
the gene as detected and set the p-value to 0. 

In this hypothetical probe set the PM intensity 
is 80 and the MM intensity for each probe pair 
increases from 0 to 100. The discrimination 
score offers a smooth function that decreases as 
the MM intensity increases. In other words, as 
the intensity of the MM increases our ability to 
discriminate between the PM and MM 
decreases. Note that the value becomes negative 
when MM>PM. 
 
The broken line indicates the threshold τ. 
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 The statistical significance, or p-
value, of a result is the probability that 
the observation in a sample occurred 
merely by chance under the null 
hypothesis. The null hypothesis is that 
the target is absent (zero effect on the 
probes). For example, a p-value of 
0.005 means that less than 5 out of 
1000 probe sets for absent transcripts 
will be called present based on the 
distribution of intensity within the 
corresponding probe sets that is 
equally or less likely occur by chance. 
In detection, the smaller the p-value, 
the more significant the results 
suggesting that the gene may be 
present. 
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Discrimination Score 

The discrimination score [R] is a relative measure of the 
difference between the PM and MM intensities.  The 
discrimination score for the ith probe pair is:  

 -  
  

  
i i

i
i i

PM MM
R

PM MM
=

+
 

We use τ (default τ = 0.015), a small threshold between 0 
and 1 as a small significant difference from zero. If the 
median (Ri) > τ, we can reject the hypothesis that PM and 
MM are equally hybridizing to the sample.  We can make a 
detection call based on the strength of this rejection (the p-
value). 
 

 Increasing the threshold τ can reduce the number of 
false detected calls, but may also reduce the number of 
true detected calls. 

Computing p-values: 
The one-sided Wilcoxon’s Signed Rank Test  (Appendix II) 
is used in the Call algorithms and is used to calculate the 
p-values for the null hypothesis:  
 

0H : median( )  0iR τ− =  versus the alternative hypothesis:  
 

1H : median( ) > 0iR τ−   
 

 

 

 

 Note: detection calls are cal-
culated on the raw intensity values, 
so τ prevents false Detected calls 
where PM is only slightly larger 
than MM. 
 

 HINT: See Appendix for 
complete description of the one-sided 
Wilcoxon’s Signed Rank Test 
calculation. 

Determining the default τ. The discrimination scores of 8960 probe 
pairs spiked at known concentrations on the human U95Av2 array 
and yeast S98 array were examined. The default τ value was selected 
to fall between the discrimination ratio of spikes at zero and 0.25pM 
concentration.  

 Note: There is a relationship 
between the discrimination scores 
and the log2 ratio used in 
the Specific Background (SB) 
calculation. It is known as “Fisher's 
z-transformation.” 
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Making the call  
We set two significance levels α1 and α2 

(*) such that 
1 20      0.5α α< < <   

 
default α1 = 0.04 (16-20 probe pairs)  
default α2  = 0.06 (16-20 probe pairs) 
 
 
 

 
 

 
 
 
 
 

 Reducing the significance level α1 can reduce the number of false Detected calls and 
reduce the number of true Detected calls. 

 

  Increasing the significance level α2 can reduce the number of false undetected calls and 
reduce the number of true undetected calls. 

 
(*)   Although in an ideal world, the distribution of probes exactly matches the statistical 

assumptions, in practical cases the distribution is not precise.  Our thresholds therefore 
do not result in the exact false-positive rate specified by the alpha parameter when the 
target is absent.  This rate will vary with extraneous factors, including the number of 
probe-pairs used. 
 

 

 

  
  

 NOTE: the saturated probe 
pairs are excluded from the 
computation of absolute calls. 
If all probe pairs in a probe set 
are saturated, we make a 
Detected call. 

0 0 . 1 0 . 0 2 0 . 0 4 0 . 0 6 0 . 0 8 

1 2 
A b s  e n t M a r g i n a l P r e s  e n t 

Significance levels α 1 and α 2 define cut-offs of 
p-values for making calls. 

  Present (detected)        p < a1 

        Marginal              a1 = p < a2 

Absent (undetected)       p = a2 
 

 

p-value 

α1 α2 
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COMPARATIVE ANALYSIS (COMPARISON CALLS) 
A comparative call answers the question: “Does the expression level of a transcript on 
one chip (experiment) change (significantly) with respect to the other chip (baseline)?” 
The possible distinct answers are Increase, Marginally Increased, No Change detected, 
Marginally Decreased, and Decrease.  As with detection calls, No Change means the 
difference is below the threshold of detection.  That is, the difference is not provably 
different from zero.  It is important to note that some probe-sets are more variable than 
others, and the minimal expression difference provably different from zero may range 
from a small value to very large value (for a noisy probe-set, or for low concentrations).  
Note that saturated probe pairs are excluded from the computation of comparative calls. 
If all probe pairs of a probe set are saturated, we report that no comparative call can be 
made. 
 We attempt to find changes in expression level by examining changes in the 
intensities of both PM and MM probes between experiments.  The differences in PM and 
MM in both experiments and differences between PM and background in both 
experiments are examined using a non-parametric Wilcoxon rank test to look for 
significant differences. 
  
Differences between PM and MM and Differences between PM and Background 

(Experimental and Baseline) ◊ Change call and p-value 

Saturation 
If one of the four cells (PM and MM in Baseline and PM and MM in Experiment) is 
saturated (PM or MM ≥ 46000), the corresponding probe pair is not used in further 
computations. The number of discarded cells can be determined from the Stat Common 
Pairs  parameter. 

Quantities Used in Comparative Calls 
 For a probe set of n probe pairs, we form two n-dimensional vectors for comparative 
calls. 
 ( ) ( )1 1,  ,   and ,  ,  n nq q q z z z= =K K  
 
The component qi is the difference between Perfect Match intensity PMi and Mismatch 
intensity MMi for the ith probe pair: 
 

( )   -  ,    1, ,  ,i i iq PM MM i n= = K  
 
and the component zi is the difference between the Perfect Match intensity PMi and 
background level bi: 
 

( )   -  ,    1,  ,  i i iz PM b i n= = K  
 
b is the background and is calculated the same as for Data Preparation (b(x,y)) .  
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Using both q and z can produce better empirical call results than using only one of them.  
 

Balancing Factors  
Note: The factors computed in this section are not reported by the software. 
 
The distributions of q and z over all probe pairs in an experiment are slightly and subtly 
different from each other, and are different between two experiments.  We therefore 
provide a balancing factor for each type of data to correct some of this difference.  (The 
distributions of q and z are also not identical to the Signal distribution, and therefore the 
scaling factor used for signal is not used here). 
 
Vectors q and z have two different balancing factors:  
 
e[i] is a modified average of qj for the probe pairs of transcript i,  and is calculated as the 
average of all q values within three standard deviations from the average q for transcript 
i. We calculate a global balancing factor using the trimmed mean of e[i] over all 
transcripts i: 

[ ]( ),0.02,0.98
Sc

sf
trimmedMean e i

=   

 
If ( [ ],0.02,0.98) 0trimmedMean e i ≤ , the scaling factor can be calculated as: 

[ ]( )( )max ,0 ,0.02,0.98

Sc
sf

trimmedMean e i
=  

 
These values are calculated for both the experiment (E) and the baseline (B) arrays. Now 
the primary balancing factor nf can be calculated: 

sfE
nf

sfB
=  

 
A second, primary balancing factor nf2 is calculated for z. The calculations are exactly the 
same as for q, except only z values are used. These values are calculated for both the 
experiment (E) and the baseline (B) arrays to give:  
 

2
2

2
sf E

nf
sf B

=  

The two balancing factors are combined to match the distributions of q and z over the 
whole signal range.  
 
However, any calculated balancing factor is only an approximation to the true differences 
between the distributions.  To allow for small differences between the distributions not 
covered by the balancing factor, we will use a range of balancing factors. We straddle the 

sf2E 
sf2B 
 

  nf2= 
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true balancing function by using three different balancing factors f[k] for q, as well as 
three different balancing factors f2[k] for z (k = 0, 1, 2). They are defined as:  

 
[0] * [1] [2]  

2
2[0] 2* 2[1] 2 2[2]

nf
f nf d f nf f

d
nf

f nf d f nf f
d

= = =

= = =
 

where 1d ≤ , (default = 1.1). 
 
Special Case 
If the algorithm settings indicate a user defined balancing factor and the factor is not 
equal to 1 then, nf = nf2 = user defined normalization factor * sfE /sfB 
 
where sfE is the experiment sf and sfB is the baseline sf as described in the Scaled Probe 
Value section. 
 

Wilcoxon Signed Rank Test  (Appendix I) 
For every unit, we can form the (2n)-dimensional vector qB in the baseline and vector qE 
in the experiment. For k = 0, 1, 2, three vectors were formed: 

 

[ ][ ] [ ] [ ] [ ]
[ ][ ] [ ] [ ] [ ]( )

( )

* -

  * 2 * -

1, , ;  0,1,2

default 0.2

v k i f k qE i qB i

v k i n C f k zE i zB i

i n k

C

=

+ =

= =
=

K
  

and three, one-sided p-values p[k] from the signed rank tests of the null hypothesis 
 [ ]( )0 : median 0H v k =  
versus the alternative hypothesis 
 [ ]( )1 : median 0H v k > . 
 
We use significance levels  γ1 and γ2 to make calls. γ1 is the small significance level for 
comparative calls of a unit (an interpolation of γ1H and γ1L), and is 0.0025 for  
default values of γ1H and γ1L. γ2, the large significance level for comparative calls of a 
unit (an interpolation of γ2H and γ2L), and is 0.003 for default values of γ2H and γ2L. γ1 

and γ2 should satisfy the relationship 0 < γ1L < γ2L < 0.5 and 0 < γ1H < γ2H < 0.5.  
 
The γ1value is a linear interpolation of γ1L and γ1H. Similarly γ2 is derived from γ2L and 
γ2 H. The ability to adjust the stringency of calls associated with high and low signal 
ranges independently makes it possible to compensate for effects that influence calls 
based on low and high signals. However, this feature is not used by default, because the 
defaults are set as γ1L = γ1H and γ2L = γ2H 

   f 2 [0] = nf2*d     f 2 [1] = nf2     f 2 [2] = 
 

 nf2  

  f 2 [k]  
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The cut off p-values may appear very 
small if you are used to the usual 
significance value of 0.05. This is due to 
two reasons: 
 
Due to the multiple measurement 
problem, we require smaller p-values 
to ensure that we do not get too many 
false calls for the whole collection of 
transcripts.  This is similar to a 
Bonferroni correction, but we 
determine the value empirically. 
 
The p -value produced by this 
calculation is also an over estimate of 
significance, because we are using two 
values, PM-MM and PM-background, 
that are not truly independent 
measures.  Further, the null 
distribution does not exactly describe 
the empirical situation, and so critical 
thresholds  may change with the 
number of probes. 
 
However, the purpose of the p-values 
produced here is to rank results in 
order of significance, so the absolute  
p-value is not important. 

A representation of a range of p-values for a data set. The Y-axis is the probe 
set signal. The arrows on the vertical bars represent the adjustable γ  values. 
The γ1 value is a linear interpolation of γ1L and γ1H. Similarly γ2 is derived 
from γ2L and γ2H. 

0 0.001 0.002 0.003 0.997
(1 - 0.003)

1−γ2 1−γ1

p value

MarginalIncrease

γ1 γ2

DecreaseMarginal

10.998
(1 - 0.002)

0.999
(1 - 0.001)

No change

low

high

γ1 L

γ1H γ2H

γ1L 1−γ1L

1−γ1H 1−γ2H

1−γ1L

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
We use the “critical” p-value as our output p-value. 
 
The critical p-value, p is the most conservative in making 
increase and decrease calls. It is defined by the following 
formula: 

max( 0, 1, 2)  0 0.5, 1 0.5  2 0.5
min( 0, 1, 2)  0 0.5, 1 0.5  2 0.5
0.5 otherwise

p p p p if p p and p
p p p p if p p and p
p

= < < <
= > > >
=

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

p-value 
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The margins can also be represented as follows (16-20 probe pairs):

 

 
 
 
 

 

 

 

 

 

 
 
 
 
 
 

 
 
If none of the above conditions are satisfied, we make a No-Change call.  

Adjusting Parameters 

 Decreasing γ1  (γ1L and γ1H) can reduce the number of false Increase and 
Decrease calls, but can also reduce the number of true Increase and Decrease 
calls.  

 Increasing γ2  (γ2L and γ2H) can reduce the number of false No-Change-detected 
calls, but can also reduce the number of true No-Change-detected calls. 

 Increasing the perturbation parameter d can increase the number of true No-
Change-detected calls, but can also increase the number of false No-change-
detected calls.  

 

It is recommended to use two or 
more identical sample replicates to 
adjust pa rameters.  
 
All comparative call thresholds 
should ideally be empirically 
determined from the false-positive 
rate. Set an allowed false change call 
rate, e.g., 0.01. Sort the p-values and 
?nd the signi?cant level that give this 
rate of increasing or decreasing calls. 
Do not set the allowed false change 
call rate too small, because it will be 
very difficult to make increasing or 
decreasing calls for other 
experiments where these calls are 
reasonable. 

1
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APPENDIX I 

One-Step Tukey's Biweight Algorithm 

Purpose 
There are several stages in the algorithms in which we want to calculate an average. The 
biweight algorithm is a method to determine a robust average unaffected by outliers.  

1. First, the median is determined to define the center of the data. 
2. Then the distance of each data point from the median is determined. This distance 

is then used to determine how much each value should contribute to the average. 
For example, outliers that are far away from the median should contribute less to 
the average.  

 
The full biweight algorithm iterates through a 
process of calculating the estimate and then 
reweighting the observations until there is no further 
change. We found that the first step of the biweight 
iteration provides the most useful increase in 
quality. 

Method 
The one-step biweight algorithm begins by 
calculating the median M for a data set with n 
values. In the Signal measurement, this data set 
consists of the log (PM-IM) probe values of a probe 
set with n probe pairs. 
 
Next, we calculate the absolute distance for each 
data point from the median. We then calculate S, the 
median of the absolute distances from M. The 
Median Absolute Deviation, MAD, is an initial 
measure of spread. 
 
For each data point i, a uniform measure of distance 
from the center is given by: 

, 1, ,i
i

x M
u i n

cS ε
−

= =
+

K  

 
c is a tuning constant (default c = 5). 
 
e is a very small value used to avoid zero values in the division (default e = 0.0001).  
 
 
 

The top box represents a series of values such as 
intensities. The broken line represents the 
median M. The arrows indicate the distance of 
the actual values from M. 
 
The arrows are re-plotted in the bottom box. The 
direction of the arrows (deviation) is not 
important, so we determine the absolute values. 
The next step is to determine the Median 
Absolute Deviation (MAD). This is a robust 
measure of the spread of a set of values. Unlike 
standard deviation, it is not thrown off by 
outliers. 

probes

M

S
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Weights are then calculated by the bisquare function: 

( )221 , 1
( )

0, 1

u u
w u

u

 − ≤
= 

>
 

 
For each point, the weight w is reduced by a function of its distance from the median so 
outliers are effectively discounted by a smooth function. When values are very far from 
the median, their weights are reduced to zero. 
 
The corrected values can now be calculated by using the one-step w-estimate (a weighted 
mean): 

 Tbi = ? w(u)xi  

           ? w(u) 
 
“The performance of one-step-from-the-median w-estimators is essentially as good as 
that of fully iterated M-estimates” (Hoaglin, Mosteller, Tukey).  We follow their 
suggestion and save computation by using this w-estimate. 
 
The t distribution can then be used to determine a confidence interval length. 

Confidence Intervals 
An additional benefit of the biweight algorithm is that we can calculate confidence limits 
using standard statistics.   
 
The first step is to calculate the measure of uncertainty for the biweight sbi: 

 
( )( )

2 2 4
| | 1

2 2

1

( ) (1 )

1 1 5
i

iui
bi

i iu

n x M u
s

u u

<

<

− −
=

− −

∑
∑

 

 
An approximate 95% confidence interval is then computed as 

 ( ) ( )0.975
1 2, ,..., bi

bi n df
S

T x x x t
n

±  

 
where (0.975)

dft is the 97.5th percentile 
for the t distribution with the number 
of degrees of freedom set equal to 

( )max 0.7 ( -1),1n∗ . 
 

data distribution

low high

2.5% 97.5%

Tbi 

sbi 



 
 

 
                                                              Page 24 
   

 

APPENDIX II 

One-sided Wilcoxon’s Signed Rank Test 
Wilcoxon’s signed rank test possesses many good properties of 
nonparametric statistical methods.  

1. It does not assume a normal data distribution.  
2. It is robust and insensitive to outliers.  
3. It can be used on raw data without much handling. 

 
The signed rank test applies to two paired data sets. For example 
PMi and MMi probes in a probe set or (PMi-MMi)Baseline and (PMi-
MMi)Experiment from paired data sets. To demonstrate signed rank 
test procedure, we consider two paired data sets: baseline b and 
experiment e with n probe pairs, b = (b1, ..., bn) and e = (e1, ..., en) 
and calculate di = ei - bi for every probe pair. 

 

Uninformative (Tied) Probe Pairs 
We first calculate the absolute differences |di| for all pairs of data. We exclude the probe 
pairs whose di = 0 from further computation. If all differences are zero, we output 0.5 as 
the one-sided p-value.  

Rank Sum 
The steps for calculating the rank sum for non-zero differences are as follows: 
 

 
 
Then we form the sum of positive signed ranks. In our example, 

1 2 4 5 10.5S s s s s= + + + = . 

Start values 
ei - bi 

Convert to 
absolute 
values 
 

Sort in 
increasing 
order 

Assign 
ranks 

Place ranks 
back in their 
original order 

Their signed 
ranks 

d1 = 2 |d1| = 2 a4 = 0.5 r4 = 1.5 r1 = 4.5 S1 = 4.5 
d2 = 1 |d2| = 1 a5 = 0.5 r5 = 1.5 r2 = 3 S2 = 3 
d3 = -2 |d3| = 2 a2 = 1 r2 = 3 r3 = 4.5 S3 = -4.5 
d4 = 0.5 |d4| = 0.5 a1 = 2 r1 = 4.5 r4 = 1.5 S4 = 1.5 
d5 = 0.5 |d5| = 0.5 a3 = 2 r3 = 4.5 r5 = 1.5 S5 = 1.5 

NOTE where values 
are identical, such as R4 
and R5 the values are 
ranked 1 and 2 and we 
assign the average, 
which is 1.5, to both of 
them. 

NOTE: we use the one-
sided test here. For the one-
sided test, if the null 
hypothesis is true, the p-
value should be uniformly 
distributed between 0 and 1. 
In other words, if there is no 
difference between the 
experiment and the baseline 
the p-value should be “near” 
0.5.  
 
When the alternative 
hypothesis is true (i.e., there 
is a positive change), the 
p-value should be close to 0.  
 
When median (g i - hi) < 0 is 
true, the p-value should be 
close to 1. This property 
makes the one-sided test 
useful for both absolute and 
comparative calls. 
 

1 2 3 4 5
PM
MM

probe set

1 2 3 4 5

probe set

Baseline Experiment
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Confidence Values 
The changes in probe set values may vary greatly, from very small to very large. For 
example, our confidence in the change will be low if the changes are small or close to 
background. Large, significant changes will have high confidence. The goal is to be able 
to set a confidence level and give the final call based on whether or not the confidence 
level exceeds a certain threshold. This will allow us to only accept calls in which we have 
confidence, at the risk of missing small changes that may be real, but have a low 
confidence threshold. Conversely, we may be interested in finding as many changes as 
possible at the risk of including changes that may be accidental.  
 
Fortunately, an advantage of the one-sided Wilcoxon’s Signed Rank Test is that there are 
well-known methods for calculating p-values. The formulas are fairly complex, but not 
critical to understanding how the basic method works. We use two different methods: one 
for large probe sets and one for small probe sets. 

Small Probe Sets 
When the number of probe pairs n is small (n < 12), we can simply enumerate all the 
possible outcomes and compute the p-value directly.  In this case, we apply signs to ranks 
ri (i = 1, 2, …, n) in every possible way, calculate the sum of positive ranks and denote 
this sum by Sj (j = 1, …, 2n).  

( ) ( ) ( )
2

1

   ( ) 1
 

   ( ) 0
2 0.5

   ( ) 1
 

   ( ) 0

n

j j

j jn
j j

j j j

j j

if S S u S S
if S S u S S

p S u S S u S S
if S S u S S
if S S u S S

−

=

> > =
≤ > =

= > + =
= = =
≠ = =

∑  

 
u() is the characteristic function; when the argument is a logical expression, it is one if 
the argument is true, and it is zero if the argument is false; when the argument is a 
numeric expression, it is one if the argument is positive, and it is zero otherwise.  Since 
these assignments of ranks are equally probable, we simply need to count the number of 
instances in which they are as large as our observed value. 
 
In our example, all possible signed ranks and the sum of positive ranks Sj are listed (see 
table).  Since the order of these ranks does not matter, we use the ascending order of their 
absolute values in the table and denote them by s'j. 
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Random Signed Ranks for p-value Evaluation 
J s'1  s'2  s'3 s'4 s'5 Sj 
1 -1.5 -1.5 -3 -4.5 -4.5 0 
2   1.5  -1.5 -3 -4.5 -4.5  1.5  
3  -1.5   1.5  -3 -4.5 -4.5  1.5  
4  -1.5  -1.5  3 -4.5 -4.5  3 
5  -1.5  -1.5 -3  4.5  -4.5  4.5  
6  -1.5  -1.5 -3 -4.5  4.5   4.5  
7   1.5   1.5  -3 -4.5 -4.5  3 
8   1.5  -1.5  3 -4.5 -4.5  4.5  
9   1.5  -1.5 -3  4.5  -4.5  6 
10   1.5  -1.5 -3 -4.5  4.5   6 
11  -1.5   1.5   3 -4.5 -4.5  4.5  
12  -1.5   1.5  -3  4.5  -4.5  6 
13  -1.5   1.5  -3 -4.5  4.5   6 
14  -1.5  -1.5  3  4.5  -4.5  7.5  
15  -1.5  -1.5  3 -4.5  4.5   7.5  
16  -1.5  -1.5 -3  4.5   4.5   9 
17   1.5   1.5   3 -4.5 -4.5  6 
18   1.5   1.5  -3  4.5  -4.5  7.5  
19   1.5   1.5  -3 -4.5  4.5   7.5  
20   1.5  -1.5  3  4.5  -4.5  9 
21   1.5  -1.5  3 -4.5  4.5   9 
22   1.5  -1.5 -3  4.5   4.5  10.5 
23  -1.5   1.5  -3  4.5   4.5  10.5 
24  -1.5   1.5   3 -4.5  4.5   9 
25  -1.5   1.5   3  4.5  -4.5  9 
26  -1.5  -1.5  3  4.5   4.5  12 
27   1.5   1.5   3  4.5  -4.5 10.5 
28   1.5   1.5   3 -4.5  4.5  10.5 
29   1.5   1.5  -3  4.5   4.5  12 
30   1.5  -1.5  3  4.5   4.5  13.5 
31  -1.5   1.5   3  4.5   4.5  13.5 
32   1.5   1.5   3  4.5   4.5  15 

 
All signed ranks above 10.5 are given a weight of 1 (there are five in Table 1) and items 
with signed ranks equal 10.5 are given a rank of .5 (there are four in Table 1). 
 

In our example ( ) (1 ) (0. 45 )
10.5 0.21875

3
5

2
p

∗ + ∗
= =  

Large Probe Sets 
When the number of probe pairs n is large (in our 
implementation,  12n ≥ ), we use the asymptotic 
approximation. The statistic S ' is considered to have a 
standard normal distribution with mean 0 and variance 1, 
where: 
 

( 1)
4'

2 1
( 1)*

24

n n
S

S
n

n n vt

+
−

=
+

+ −
 

 
where vt is a term modifying the variance for ties. The formula for vt is: 

2

1

( 1)
, 1:

48

t
k k

k

b b
vt k t

=

−
= =∑  

 
where t is the number of tie groups; bk is the number of ties in the tie group k. The one-
sided p-value is  
 ( )  1 - ( ')p S f S= , 
where ( ')f S  is the standard normal cumulative distribution function. 

The table shows the 
32 possible results 
for the five probe 
ranks shown (25 
possible ways of 
assigning signs to 
each rank). 

 NOTE: Under certain 
circumstances  “Fisher's 
permutation test” may have 
more power than Wilcoxon 
rank.  We elected to use the 
same test across all numbers of 
probes to be consistent, even if 
it has lower power than the best 
possible test. 

s '1 s '3 s '5 
 

s '4 s '2 S'j 
 

S ' 

S ') 
S ') 
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APPENDIX III 

Noise (Q) Calculation 
 
The calculation of the Q value is provided here for completeness. 

 It is not used anywhere in the statistical algorithm. However, 
since it is based on pixels it provides a useful quality measure of 
how well the grid was placed on the array to calculate the .CEL 
file. All other calculations are derived from the .CEL file. 
 
Q, the noise for a given probe array hybridization, is calculated by taking the average 
(over all the cells used in background computation) of the following value in each cell: 
standard deviation of the pixel intensity (st dev i) divided by the square root of the pixel 
number ( ipixel ): 

 
where N is the total number of background cells for an array, stdev i is the standard 
deviation of the intensities of the pixels making up feature i, pixeli is the number of pixels 
in feature i, sf is the scaling factor, and NF is the normalization factor for the analysis. 
 

1 N
i

i i

stdev
Q SF NF

N pixel

 
= × ×  

 
∑

NOTE: The noise 
(Q) is calculated from 
pixel values in the DAT 
file.  
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