Bioinformatics III Structural Bioinformatics and Genome Analysis

Chapter 7. DNA Microarrays TGA 7.9 Next Generation Sequencing **454 Sequencing** Solexa Illumina Solid TM System CTATEC

Sequencing

"Process of determining the nucleotide order of a given DNA fragment" *Wikipedia*

To identify, diagnose and potentially develop treatments for genetic diseases.

Treatments for contagious diseases in pathogenesis

Chain termination method: Frederick Sanger

Sequence-specific termination of a DNA synthesis reaction using modified nucleotide substrates (di-deoxynucleotide)

Extension is initiated at a specific site on the template DNA by 'primer'

Pyrosequencing (Sequencing by synthesis): Pål Nyhren and Mostafa Ronaghi 454 Life Sciences array-based method Stockholm in 1996

Pyrosequencing

- Detection of pyrophosphate release on nucleotide incorporation, rather than chain termination with dideoxynucleotides
- Components: ssDNA template+ primer + enzymes (DNA polymerase, ATP sulfurylase, luciferase and apyrase), and adenosine 5' phosphosulfate (APS) and luciferin
- > DNA nucleotides are added sequentially in a fixed order \rightarrow light signal recorded by the camera in the instrument.
- > The signal strength is proportional to the number of nucleotides

- 1. The addition of one (<u>dNTPs</u>) DNA polymerase incorporates the correct, complementary dNTPs onto the template.
 - → Releases pyrophosphate (PPi)
- 2. ATP sulfurylase quantitatively converts PPi to ATP in the presence of adenosine 5' phosphosulfate.

 \rightarrow Generation of visible light in proportional amounts to the amount of ATP (ATP luciferase-catalyzed reaction).

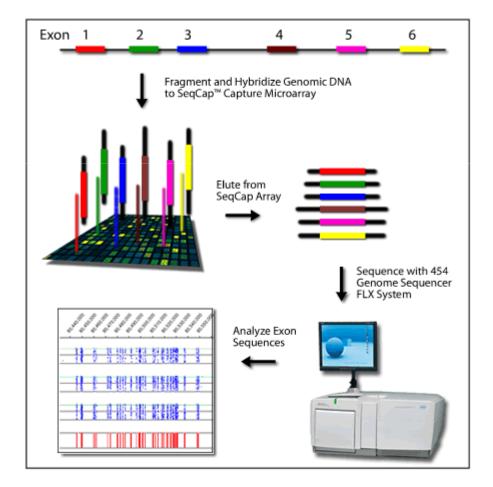
 \rightarrow Light produced in the is detected by a camera and analyzed in a program

 \rightarrow Homopolymer stretches incorporated in a single nucleotide flow generate a greater signal than single nucleotides. Signal strength is linear only up to eight consecutive nucleotides after which the signal falls-off rapidly

- 3. Unincorporated nucleotides and ATP are degraded by the apyrase, and
- 4. Reaction is restarted with another nucleotide

Next Generation Sequencing

Massive parallel sequencing Community of genomics and transcriptomics


Sequences of the GENOME DNA Suffix and prefix

BIOINFORMATICS CHALLENGE Data Infrastructure

+

Data Analysis

Parallel and GRID computing http://www.austriangrid.at/

CACTCCTGTGG CTCACTCCTGTGG

CTCCTGTGG

SNP rolls

ILLUMINA Sequencing duration rechance .GCTGATGTGCCGCCTCACTCCGGTGG **GCTGATGTGCCACCTCA** SATGTGCCACCTCACTC GTGCCGCCTCACTCCTG

✓ Back-mapping

✓ Reads

✓ Storing

Algorithms main memory and Need of parallel on multiprocessors and/or Run on computers GRID

Assemble a genome Transcripts determination Transcripts concentration Nucleosome position detection SNPs detection, CNV estimation

GCTGA ...

✓ Analysis

ILLUMINA Sequencing

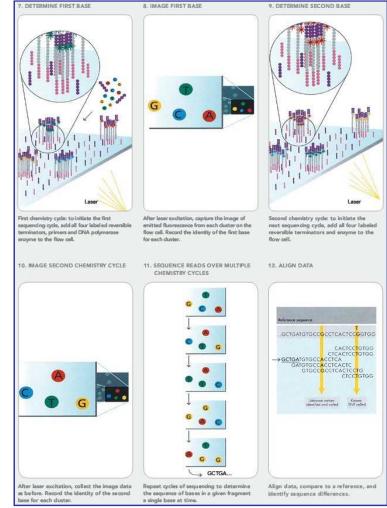
Produces more than 50 million reads

One read: 30 - 72 long prefix or suffix sequences of DNA fragments with length 100 to 500 base pairs

Lane: 150 Gb image data per run/experiment

First: Reads divided into 8 lanes

1 Experiment 1.2 Tb of image data \rightarrow 100 Experiments 120 Tb Second: reads mapped back to the reference genome Third: analysis on the reference genome


Cluster Generation by Bridge Amplification

The flow cell surface is coated with single stranded oligonucleotides that correspond to the sequences of the adapters ligated during the sample preparation stage

Single-stranded, adapter-ligated fragments are bound to the surface of the flow cell exposed to reagents for polyermase-based extension

Priming occurs as the free/distal end of a ligated fragment "bridges" to a complementary oligo on the surface

Repeated denaturation and extension results in localized amplification of single molecules in millions of unique locations across the flow cell surface

Illumina Summary

- Massive parallel sequencing of millions of fragments by reversible terminatorbased chemistry
- Templates sequenced using four color DNA sequencing-by-synthesis
- Removable terminators with removable fluorescent dyes
- Randomly fragmented DNA attached to a planar and transparent surface
- Attached DNA fragments are extended and bridge amplified
- Cell flow created with > 50 million clusters (each approx. 1000 copies same template)
- High sensitivity fluorescence detection by laser excitation

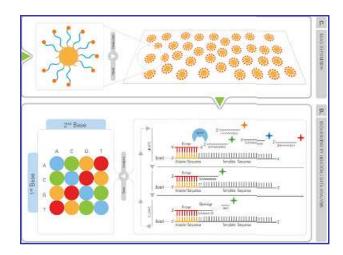
"Paired ends"

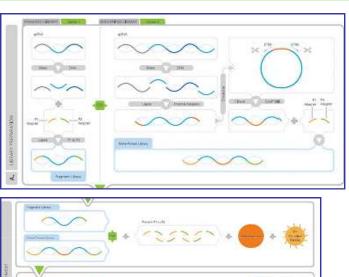
- Both prefix and suffix (algorithm has to include the constraint of matching pairs of reads)
- Second > 36bp reads from the opposite end of the fragment and a cluster formation by a bridge (Total > 3Gb paired-end data)

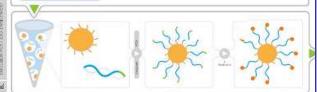
454 Roche

Reads: 400.000 per run BUT 400-800 bases length ????? Better suited for genome assembly by larger overlaps Coverage of the genome 100 times smaller than Solexa

SOLIDTM AppliedBiosystem


- Sequencing of clonally amplified DNA fragments linked to beads The sequencing methodology is based on sequential ligation with dye-labeled oligonucleotides Comparable to Solexa
- Reads: 10-20 millions per run




SOLID[™] AppliedBiosystem

Library preparation
Two types of libraries can be used

2. Emulsion PCR/ Beads enrichment Cloning fragments are prepared

3. Bead deposition and sequencing by ligation data analysis

Solexa Illumina http://www.illumina.com

s454 Sequencing http://www.roche.com/

SOLIDTM System http://www3.appliedbiosystems.com/AB_Home/index.htm

Papers

1. Next-generation DNA sequencing. Jay Shendure & Hanlee Ji

2. Next-generation sequencing (Short communication). Jorge S Reis-Filho

3. CNV-seq, a new method to detect copy number variation using high-throughput sequencing Chao Xie and Martti T Tammi