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• ... its about classification of Micro-Array data

• we want to extract relevant gene expression differences.

• The paper says „yes, also SVMs can do the job“.

What is it all about?

?



• „Array“ = array of short DNA strands (= probes)

• Sequences are taken from a genome, e.g. human

• genes are represented by 1 probes (= probe set)

What are DNA Micro Arrays ?  (1)
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• We take a cell, extract her mRNAs and transcribe into cDNA

• Then red/green markers are applied to the two samples

• Hybridizing with the probes will give us expression levels

• Now we can compare: normal vs. cancer, young vs. old, 
normal vs. stress, species A vs. B, etc. etc.

What are DNA Microarrays ?  (2)
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• We have a classifaction problem now:

• „Do we have a cancer tissue? Yes or no?“
„Are certain genes co-expressed? Yes or no?“
„Do we have a certain disease? Yes or no?
...

• Any classifaction algorithm will do:

• Clustering methods
Self-organizing maps
Correlation methods, and...

• ... Support Vector Machines

How do we compare?



• Supervised classification
(Training set with known classes has to be provided)

• Robust for large number of features
(in contrast to other methods)

• Robust for noisy data
(but: not generally!)

• Well defined for 2 classes only (called +1 and -1)
(Extensions to n classes are avaible, but not straightforward)

Properties of SVMs

6



• What is given?
A set of points in n-dimensional space, labelled with 2 classes

• What do we look for?
Which (n-1)-dimensional hyperplane will result in maximal 
separation?

What are SVMs?
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• Only a small subset of 
the points defines the 
plane! („Support 
Vectors“)

• Classification:
On which side of the 
hyperplane is the 
unknown point?

?



• What if the classes are not linearly separable?

• Try it in higher dimensions!

• Nonlinear mapping   from input space to feature space

• Linear separation plane in feature space corresponds to 
nonlinear separation plane in input space

Nonlinear hyperplanes
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•  = „kernel function“

• Kernel Matrix: Kij = (xi),(xj)

• Generalized kernel functions:
Kij = K(xi,xj)

• Popular kernel functions:
Dot Product: xi,xj
Polynomial: (xi,xj+1)d

Gaussian: exp(-xi-xj/2)



• Training errors are not tolerated
(can lead to grossly false hyperplanes, see example)

• The answer: „soft-margin“ classifiers

• Or: modifiers for the kernel diagonal in the training phase

K  K + 1, ( to be tuned)

or K  K + D, with Dii = d+ or d- (e.g. to reflect class size)

• Many more tweaks available, but not used in this paper.

• If you can‘t get enough: see „BI 2“.

Other intricacies
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Feature Selection
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• Having many features can 
be nasty

• Idea: take relevant features 
only (to make life for the 
classifactor easier)

• In this paper: rank features 
according to relative 
expression level difference
(„Take only genes that show 
some action“)

• How many? The paper is 
very clear here: „... some 
number of the top features 
are extracted ...“
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• Previously unpublished:
Ovarian tissues

• Previously published:

Blood samples

Colon

• Common question:
„Cancer - yes or no?“

Data Sets
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http://upload.wikimedia.org/wikipedia/commons/0/0e/Acute_leukemia-ALL.jpg


• 98000 DNA clones
31 tissue samples
2 classes (cancer or not)

• Leave-one-out cross validation

• Experimenting with parametes:
Diagonal factor (): 0, 2, 5, 10
Feature selection: 25, 50, 100, 500, 1000, 98000
Kernels: dot-product, polynomial and RBF

• One misclassification detected
one „outlier“ removed.

Ovarian Dataset
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Results for Ovarian Dataset
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some  and low nr. of 
features give good 

results

avoid using all 
features available

results are somehow 
disappointing 



• Remember: DNA sequences could be genes - or not.

• Lets look at the 10 top-ranked sequences.
Are they biologically significant genes?

1, 2, 3: not readable 
4,5: poly-A-tailssequence
6: no relation to cancer
7: ferritin-H
8, 9: homologs to cancer-library ESTs
10: related to white blood cells in cancer tissues

• A look at some „bottom-rankers“:
there are cancer related genes also

• „... additional effort is needed to develop
ways of identifiying meaningful features ...“

Survivors of the Feature Selection Process
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directly related 
to cancer

indirectly related 
to cancer



Results for Leukemia and Colon tumor Dataset

Leukemia

• 7192 genes from 72 patients

• normalized Affy scores

• Original (SOM):
29 OK, 5 „dont know“

• SVM:
30-32 OK (including the 29)
(slightly better in special cases)

Colon tumor

• 6500 genes from 40+22 pat.

• no normalization

• Original (clustering method):
(35OK+3F) + (19OK+5F)

• SVM:
(56OK+6F)
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• Perceptron by Rosenblatt (1958!)

• Simple algorithm, updates its
weight vector with each „mistake“
(wi+1 = wi + yixi)

• Modification required for
non-perfect linear separation

• Results for our data sets are ...

• ... comparable to SVM!

And what about Perceptron-like Classifiers?
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• SVM does the job, but not really superior to other methods

• Even simple perceptrons are equally good

• BUT: datasets contain too few examples to draw a hard 
conclusion.

• With more examples, more complex kernels could be 
necessary, and then SVMs could outperform other methods.

• And: the paper dates from 2000, only a short time after SVMs 
and Microarrays had been available

Conclusions
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Any
Questions?

18


