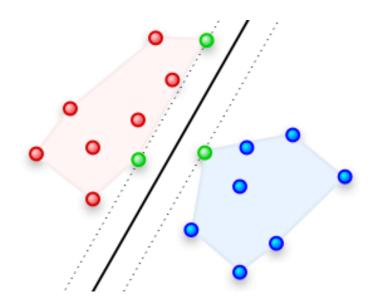
# SVM Classification in $\mu$ -Arrays

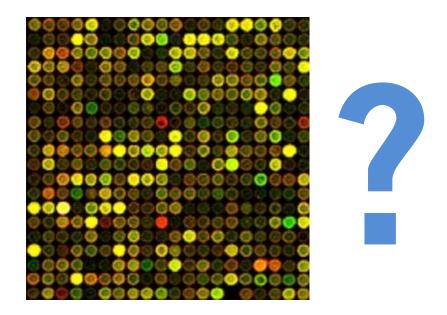


"SVM classification and validation of cancer tissue samples using microarray expression data" Furey et al, 2000

Special Topics in Bioinformatics, SS10 A. Regl, 7055213

### What is it all about?

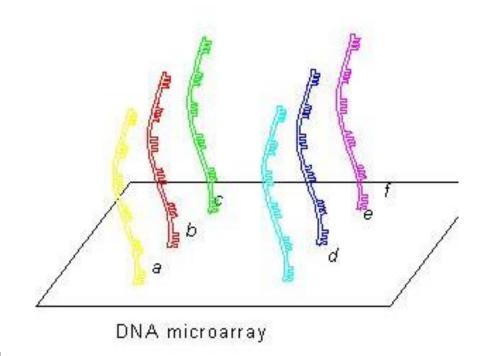
• ... its about classification of Micro-Array data



- we want to extract relevant gene expression differences.
- The paper says *"yes, also SVMs can do the job"*.

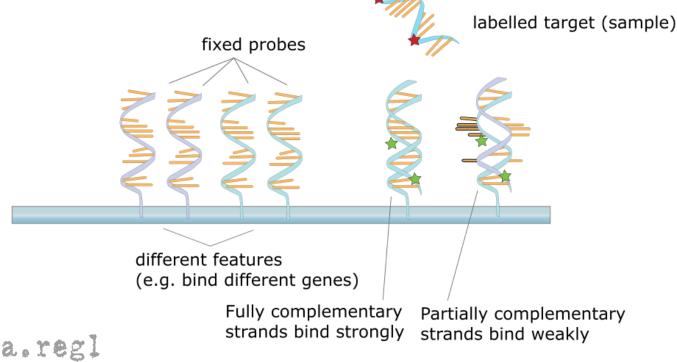
### What are DNA Micro Arrays ? (1)

- "Array" = array of short DNA strands (= probes)
- Sequences are taken from a genome, e.g. human
- genes are represented by  $\geq 1$  probes (= probe set)



### What are DNA Microarrays ? (2)

- We take a cell, extract her mRNAs and transcribe into cDNA
- Then red/green markers are applied to the two samples
- Hybridizing with the probes will give us expression levels
- Now we can compare: normal vs. cancer, young vs. old, normal vs. stress, species Ass. B, etc. etc.



### How do we compare?

- We have a classifaction problem now:
- "Do we have a cancer tissue? Yes or no?" "Are certain genes co-expressed? Yes or no?" "Do we have a certain disease? Yes or no?
- Any classifaction algorithm will do:
- Clustering methods
   Self-organizing maps
   Correlation methods, and...
- ... Support Vector Machines

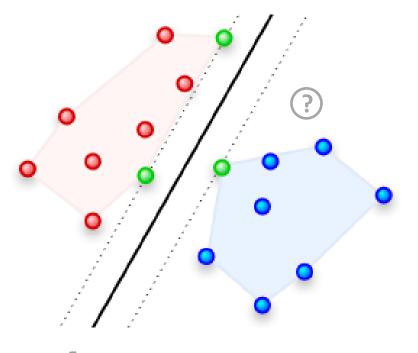
. . .

### **Properties of SVMs**

- Supervised classification (Training set with known classes has to be provided)
- Robust for large number of features (in contrast to other methods)
- Robust for noisy data (but: not generally!)
- Well defined for 2 classes only (called +1 and -1) (Extensions to n classes are available, but not straightforward)

### What are SVMs?

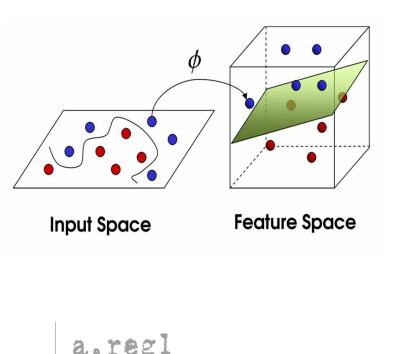
- What is given? A set of points in n-dimensional space, labelled with 2 classes
- What do we look for?
   Which (n-1)-dimensional hyperplane will result in maximal separation?



- Only a small subset of the points defines the plane! ("Support Vectors")
- Classification:
   On which side of the hyperplane is the unknown point?

### Nonlinear hyperplanes

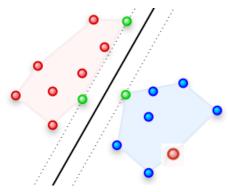
- What if the classes are not linearly separable?
- Try it in higher dimensions!
- Nonlinear mapping  $\Phi$  from input space to feature space
- Linear separation plane in feature space corresponds to nonlinear separation plane in input space



- $\Phi$  = "kernel function"
- Kernel Matrix:  $K_{ij} = \langle \Phi(\mathbf{x}^i), \Phi(\mathbf{x}^j) \rangle$
- Generalized kernel functions:
   *K*<sub>ij</sub> = *K*(x<sup>i</sup>, x<sup>j</sup>)
- Popular kernel functions: Dot Product: <**x**<sup>i</sup>,**x**<sup>j</sup>> Polynomial: (<**x**<sup>i</sup>,**x**<sup>j</sup>>+1)<sup>d</sup> Gaussian: exp(-||**x**<sup>i</sup>-**x**<sup>j</sup>||/σ<sup>2</sup>)

### **Other intricacies**

 Training errors are not tolerated (can lead to grossly false hyperplanes, see example)



- The answer: *"soft-margin"* classifiers
- Or: modifiers for the kernel diagonal in the training phase  $K \leftarrow K + \lambda \mathbf{1}$ , ( $\lambda$  to be tuned) or  $K \leftarrow K + \lambda D$ , with  $D_{ii} = d^+$  or  $d^-$  (e.g. to reflect class size)
- Many more tweaks available, but not used in this paper.
- If you can't get enough: see "BI 2".

a.regl

### **Feature Selection**

|                                 | Genes<br>(j = 1 n)                                                           | Y (class<br>labels) |
|---------------------------------|------------------------------------------------------------------------------|---------------------|
| Expression vectors<br>(i = 1 m) | x <sub>j</sub> i                                                             | Уi                  |
| mean (+)                        | $\mu_1^* \dots \mu_j^* \dots \mu_n^*$                                        |                     |
| sd (+)                          | $\sigma_1^* \dots \sigma_j^* \dots \sigma_n^*$                               |                     |
| mean (-)                        | $\mu_1^{-} \dots \mu_j^{-} \dots \mu_n^{-}$                                  |                     |
| sd (-)                          | $\sigma_1 \dots \sigma_j \dots \sigma_n$                                     |                     |
| Feature<br>quality              | $F(x_{j}) =  (\mu^{+}_{j} - \mu^{-}_{j})/(\sigma^{+}_{j} + \sigma^{-}_{j}) $ |                     |

- Having many features can be nasty
- Idea: take relevant features only (to make life for the classifactor easier)
- In this paper: rank features according to relative expression level difference ("Take only genes that show some action")
- How many? The paper is very clear here: *"… some number of the top features are extracted …"*

a.regl

#### **Data Sets**

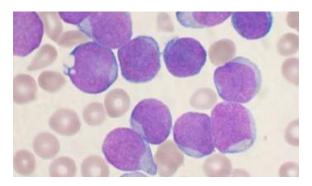
- Previously unpublished:
   Ovarian tissues
- Previously published:

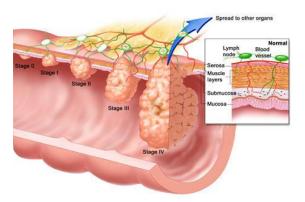
**Blood samples** 

Colon

 Common question: "Cancer - yes or no?"







a.regl

### **Ovarian Dataset**

- 98000 DNA clones
   31 tissue samples
   2 classes (cancer or not)
- Leave-one-out cross validation
- Experimenting with parametes: Diagonal factor (λ): 0, 2, 5, 10 Feature selection: 25, 50, 100, 500, 1000, 98000 Kernels: dot-product, polynomial and RBF
- One misclassification detected one "outlier" removed.



### **Results for Ovarian Dataset**

| λ     | nF                                     | FP     | FN | ТР                         | TN | FP+FN | TP+TN                |            |
|-------|----------------------------------------|--------|----|----------------------------|----|-------|----------------------|------------|
| 0     | 25                                     | 5      | 4  | 10                         | 12 | 9     | 22                   | → 71%      |
| 2     | 25                                     | 5      | 2  | 12                         | 12 | 7     | 24                   | 77%        |
| 5     | 25                                     | 4      | 2  | 12                         | 13 | 6     | 25                   | <b>81%</b> |
| 10    | 25                                     | 4      | 2  | 12                         | 13 | 6     | 25                   | <b>81%</b> |
| 0     | 50                                     | 4      | 2  | 12                         | 13 | 6     | 25                   | <b>81%</b> |
| 2     | 50                                     | 3      | 2  | 12                         | 14 | 5     | 26                   | 🔶 84%      |
| 5     | 50                                     | 3      | 2  | 12                         | 14 | 5     | 26                   | 🔶 84%      |
| 10    | 50                                     | 3      | 2  | 12                         | 14 | 5     | 26                   | <b>84%</b> |
| 0     | 100                                    | 4      | 3  | 11                         | 13 | 7     | 24                   | 17%        |
| 2     | 100                                    | 5      | 3  | 11                         | 12 | 8     | 23                   | 14%        |
| 5     | 100                                    | 5      | 3  | 11                         | 12 | 8     | 23                   | 14%        |
| 10    | 100                                    | 5      | 3  | 11                         | 12 | 8     | 23                   | 14%        |
| 0     | 98000                                  | 17     | 0  | 14                         | 0  | 17    | 14                   | 45%        |
| 2     | 98000                                  | 9      | 2  | 12                         | 8  | 11    | 20                   | 🔶 65%      |
| 5     | 98000                                  | 7      | 3  | 11                         | 10 | 10    | 21                   | 🔶 68%      |
| 10    | 98000                                  | 5      | 3  | 11                         | 12 | 8     | 23                   | 14%        |
|       | e $λ$ and lo<br>atures give<br>results | e good |    | oid using a<br>ares availa |    |       | re someh<br>pointing | ow         |
| a, re | gl                                     |        |    |                            |    |       |                      | 13         |

## Survivors of the Feature Selection Process

- Remember: DNA sequences could be genes or not.
- Lets look at the 10 top-ranked sequences. Are they biologically significant genes?
  - 1, 2, 3: not readable
  - 4,5: poly-A-tailssequence
  - 6: no relation to cancer
  - 7: ferritin-H

a.regl

- 8, 9: homologs to cancer-library ESTs
- 10: related to white blood cells in cancer tissues
- A look at some "bottom-rankers": there are cancer related genes also
- "... additional effort is needed to develop ways of identifiying meaningful features ..."

directly related

to cancer

indirectly related

to cancer

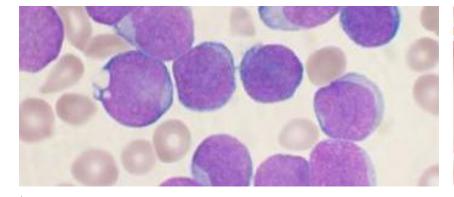
## **Results for Leukemia and Colon tumor Dataset**

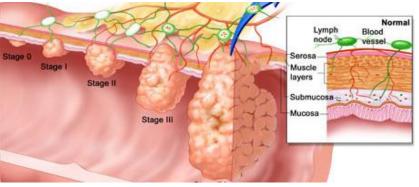
#### Leukemia

- 7192 genes from 72 patients
- normalized Affy scores
- Original (SOM):
  29 OK, 5 "dont know"
- SVM:
   30-32 OK (including the 29)
   (slightly better in special cases)

#### **Colon tumor**

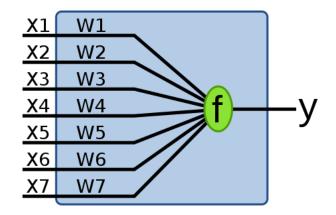
- 6500 genes from 40+22 pat.
- no normalization
- Original (clustering method): (350K+3F) + (190K+5F)
- SVM: (560K+6F)





### And what about Perceptron-like Classifiers?

- Perceptron by Rosenblatt (1958!)
- Simple algorithm, updates its weight vector with each "mistake" (w<sup>i+1</sup> = w<sup>i</sup> + y<sup>i</sup>x<sup>i</sup>)
- Modification required for non-perfect linear separation
- Results for our data sets are ...
- ... comparable to SVM!



### Conclusions

- SVM does the job, but not really superior to other methods
- Even simple perceptrons are equally good
- BUT: datasets contain too few examples to draw a hard conclusion.
- With more examples, more complex kernels could be necessary, and then SVMs could outperform other methods.
- And: the paper dates from 2000, only a short time after SVMs and Microarrays had been available

# Any Questions?