

Cross-hybridization modeling on Affymetrix exon arrays

Special Topics in Bioinformatics, SS 2010 Andrea Salfinger, 0455957

Report about ...

BIOINFORMATICS ORIGINAL PAPER

Vol. 24 no. 24 2008, pages 2887–2893 doi:10.1093/bioinformatics/btn571

Gene expression

Cross-hybridization modeling on Affymetrix exon arrays

Karen Kapur¹, Hui Jiang², Yi Xing³ and Wing Hung Wong^{1,4,*}

¹Department of Statistics, ²Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA, ³Department of Internal Medicine and Department of Biomedical Engineering, University of Iowa, Iowa City, IA and ⁴Department of Health Research and Policy, Stanford University, Stanford, CA, USA

Received on July 15, 2008; revised on October 3, 2008; accepted on October 30, 2008

Advance Access publication November 4, 2008

Associate Editor: Trey Ideker

Outline

- Introduction
 - Recap: Microarrays \rightarrow State of the Art \rightarrow Motivation \rightarrow Idea
- Analysis, Methods & Algorithms
 - Algorithm
 - Methods
 - The Cross-Hybridization Model
- <u>Results</u>
 - GeneBASE-xhyb
 - Evaluation of GeneBASE-xhyb
 - Comparison to Other Methods
 - Summary

~ 24 slides in total

Recap: Microarrays (1)

- When?
 - introduced in 1995
- What?
 - measure extracted mRNA transcripts of a cell
- How?
 - hybridize the amplified and labeled transcripts to template strands on a solid surface (microarray), measure which and how many transcripts have bound
- Why?
 - to measure gene expression levels of a cell

Recap: Microarrays (2)

- DNA fragments (= "probes") are attached to a microarray slides
- each probe has exact nucleotide sequence complementarity to a specific transcript

Recap: Microarrays (2)

- DNA fragments (= "probes") are attached to a microarray slides
- each probe has exact nucleotide sequence complementarity to a specific transcript

hybridize transcripts to array

Recap: Microarrays (2)

- DNA fragments (= "probes") are attached to a microarray slides
- each probe has exact nucleotide sequence complementarity to a specific transcript

hybridize transcripts to array

scan microarray with laser

State of the Art: Problems (1)

 Gene expression microarray probes are designed with perfect complementarity to target mRNA transcripts

BUT:

- Share sequence similarity with additional transcripts
 Probes may hybridize to specific off-target transcripts!
 cross-hybridization
 A T T A C G A T C A T C A T A T A C G A T A C G A T A T A C G A T A C
- Therefore:
 - artifacts of cross-hybridization = important source of noise
 - overall gene expression estimate suffers from biases of probe crosshybridization

State of the Art: Problems (2)

- estimation of gene-level expression with strategies for avoiding a cross-hybridization bias:
 - dChip (Li and Wong, 2001)
 - Outlier removal procedure removes probes from a probe set with intensities which differ substantially from the other probes of this probe set
 - Robust estimation procedure (e.g. Robust Multichip Average)
 - Mitigate the effects of a small number of cross-hybridizing probes
 - Probe selection strategies
 - Select subset of probes which show highly correlated intensities across multiple samples
- Problem:
 - These methods work well when only a <u>minority of probes</u> are affected by cross-hybridization!

Motivation

- What to do when a large % of probes (of a probe set) bind to off-target transcripts?
 - no reliable estimate of overall gene expression possible
- Especially criticial for
 - Closely related genes
 - Possibly substantial number of potentially cross-hybridizing probes
 - Cross-hybridization is a major cause of false predictions of differential alternative splicing
 - Increasing oligonucleotide density on microarray chips
 - Specific features targeted by a small number of probes (e.g. exon arrays)

Idea

- systematically investigate cross-hybridization
 - assess how many probes actually are affected by potential crosshybridization
- develop a model that corrects for cross-hybridization:
 - <u>correlation-based</u> filtering method to detect and remove probes showing sequence-specific cross-hybridization to off-target transcripts

Algorithm

- Step (1)
 - identify potentially cross-hybrizing transcripts
 - perform sequence matching between probes and transcripts
- Step (2)
 - correct cross-hybridization bias:
 - when match between a probe to an off-target transcript is found
 - compute correlation between observed probe intensity with expression pattern of putative cross-hybridizing transcript
 - remove probes which follow the off-target expression pattern, keep remaining probes
- Step (3)
 - compute gene-level expression from the retained, informative probes

Methods (1)

- Affymetrix GeneChip Exon 1.0 ST Array used
 - contains ~ 6.5 million probes
 - to target all annotated and predicted exons in the genome

Figure 1: Coverage of probes across the entire length of the transcript.*

*Taken from the Affymetrix

Methods (2)

- analyzed exon array data for a panel of mouse tissues
 - brain, embryo, heart, kidney, liver, lung, muscle, ovary, spleen, testes, thymus
 - each with 3 replicates
- probe sequence-specific background correction
- normalization

Identify Cross-hybridization Candidates (1)

- map each 25-bp probe of Affymetrix exon array to transcripts
 - using the <u>SeqMap</u> algorithm
 - try to find off-target transcripts
 - which differ by any combination of mismatches or insertions/deletions (indels)
 - match edit distance = ∑ of mismatches and indels between the 2 sequences = Levenshtein distance
 - match edit distance between the 2 sequences is \leq 3 bp

example of a match between a probe and transcript

Identify Cross-hybridization Candidates (2)

- Result of sequence matching:
 - most core probes uniquely match their target transcripts when allowing a matching distance of up to 3 bp

 Table 1. The number of matches between core probes and off-target transcripts, allowing variable matching edit distances

Distance	Number matching transcripts						
	0	1	2	3	4+		
0	839580	11312	3937	573	1069		
	(98.03%)	(1.32%)	(0.46%)	(0.07%)	(0.12%)		
1	834693	13174	5501	1042	2061		
	(97.46%)	(1.54%)	(0.64%)	(0.12%)	(0.24%)		
2	831059	14534	6395	1438	3045		
	(97.03%)	(1.70%)	(0.75%)	(0.17%)	(0.36%)		
3	774502	43623	25673	5083	7590		
	(90.43%)	(5.09%)	(3.00%)	(0.59%)	(0.89%)		

Identify Cross-hybridization Candidates (3)

- only a small number of probes matches to off-target transcripts
- Are we done yet? No!
 - Individual genes may have a large number of such probes!
 - Standardized residual statistic reveals genes with large proportions of non-unique probes:

• This statistic gives the observed minus expected number of non-unique probes, 17 divided by the SD of a hypergeometric distribution.

Identify Cross-hybridization Candidates (4)

- detecting genes enriched for non-unique probes:
 - majority of transcript clusters tend to have residuals near 0
 - large number of transcript clusters that are enriched for potentially cross-hybridizing probes (residuals > 0)
 - 1136 transcript clusters having residuals > 7.0
 - Reason for this?
 - investigate whether these genes belong to paralog families
 - using the Ensembl compara homology database of paralog predictions
 - 65.29 % of genes were classified as belonging to a paralog familiy

- Result of this analysis:

Fig. 2. The empirical cdf of gene standardized residuals, separated by paralog classification.

• Genes belonging to <u>paralog gene families</u> are enriched for probes with sequence similarity to off-target transcripts!

The Cross-Hybridization Model

- Can the expression of an off-target transcript explain the observed probe intensity?
 - probe intensity y_{ii} of probe j in sample i is modeled as:

 <u>R² statistic</u> of this model represents the % of probe intensity variance which can be explained by cross-hybridization to the off-target transcript

Correlation-Based Filtering (1)

• Example:

Correlation-Based Filtering (2)

- Some of the Scd3 probes are cross-hybridizing to the Scd1 transcript
- Resulting gene-level expression pattern changes depends on set of probes used for summarization
 - only a relatively small number of cross-hybridizing probes can result in large biases of gene-level expression

Therefore:

- Identiy potentially cross-hybridizing probes
 - remove cross-hybridization bias \rightarrow use uniquely matching probes to estimate expression level of Scd3

Match Type Effects

 Assess <u>effects of match type</u> (number of mismatches/indels) on cross-hybridization behaviour:

- decreasing correlation between probes and expression patterns of matching off-target transcripts as match edit distance between probe and transcript is increased
- allowing an edit distance of 3 bp between probes and offtarget transcripts → probes may show strong signals of cross-hybridization, compared with signals expected by chance

GeneBASE-xhyb

- GeneBASE = program for generating gene-level expression estimates
- GeneBASE-xhyb extends GeneBASE with cross-hybridization correction:

- remove probes showing strong evidence of cross-hybridization
 - Probes with up to 2-bp mismatches/ indels and correlation > 0.7 with the off-target transcript expression level are excluded from gene-level summarization.
- retain probes which have matches to off-target transcripts but show little evidence of cross-hybridization

Evaluation of GeneBASE-xhyb (1)

- compare GeneBASE and GeneBASE-xhyb
 - to estimates obtained by Solexa sequencing of RNA sequences
 - for mouse liver, skeletal muscle and brain
 - Independent samples pooled from adult mouse tissues
 - generated estimates of gene-level expression from sequencing reads
 - by counting the reads per kilobase gene exon per million mapped reads
 - for each RefSeq transcript:
 - generated expression estimate by counting the number of normalized reads which fall in exonic regions

Evaluation of GeneBASE-xhyb (2)

- Is GeneBASE-xhyb more concordant with Solexa expression estimates than GeneBASE?
 - Result: yes
 - Implication:
 - Correction for cross-hybridization leads to a significant improvement of gene expression estimates!
- Comparison with other methods:

Table 2. Spearman correlation between exon array estimates of gene expression and ultra high-throughput sequencing estimates for different summarization methods

	GeneBASE-xhyb	GeneBASE	RMA	Plier	IterPlier
Liver					
(N = 12339)	0.8539	0.8521	0.8064	0.8198	0.8125
Muscle					
$(N = 13\ 136)$	0.8500	0.8481	0.8072	0.8109	0.8080
Brain					
(N = 13783)	0.7542	0.7535	0.7443	0.7275	0.7132

Summary

- Proposed a correlation-based filtering method:
 - to detect and remove probes showing sequence-specific crosshybridization to off-target transcripts.
- Takes advantage of the tiling of probes of all transcribed regions
 - to compare the observed probe intensity with the expression pattern of the putative cross-hybridizing transcript
- Include as many informative probes as possible for the summarization of gene-level expression
- Predictions of gene-level expression were validated using Solexa sequencing data
 - cross-hybridization modeling improves estimates of gene-level expression