
Genetic Programming on
Grammars to generate DNA

Motifs

Thomas Unterthiner
0416441

Based on:

Automated DNA Motif Discovery
W. B. Langdon, O. Sanchez Graillet, A.
P. Harrison
(arXiv:1002.0065v1)

2

Genetic Programming on Grammars to generate DNA Motifs

● Part of the “Evolutionary Algorithms”-family
● EAs evolve potential “solutions” of a problem.
● General working principle:

Evaluate quality
of solutions

Randomly generate
possible solutions

“Breed” the better
 solutions

“mutate” new
solutions

Use best solution
found

 after X iterations

3

Genetic Programming on Grammars to generate DNA Motifs

● Grammars: formal languages to describe
patterns in text

● Here: regular expressions (like in Perl)

 [Image based on http://xkcd.com/208/]

4

Genetic Programming on Grammars to generate DNA Motifs

● (biologically significant) Patterns in DNA
● Again: just think of Regular Expressions
● Here:

● Distinguish between non-coding and protein-coding
genes

● Non-coding gene: pseudogene, snRNA, miRNA, ...

5

Materials & Methods

● 46.319 protein-coding and 9.836 non-coding
transcripts (of 22.740 coding and 9.821 genes)

● Only take first 60 bases
● 50% training set, 50% test set

6

Running the GP

● The best 20% of the motifs of each iteration are
used to generate the new iteration

● Performance-Measure:

Σ (matched non-coding transcripts) +

 + Σ (not matched protein-transcripts)

● 50 iterations

7

Best Motif after 50 Iterations:

TACT|TGAT..|TA+TAT.|TA+(.CA+|T)(C|T)

● Performance on test set:

Real non-
protein

Real protein

Predicted
non-protein

3683 (75%) 6884 (30%)

Predicted
protein

1234 (25%) 16101
(70%)

Real non-
protein

Real protein

Predicted
non-protein

4529 (92%) 11207
(99%)

Predicted
protein

382 (8%) 163 (1%)

Using only the first 60 bases Using the whole transcript

8

What I didn't like about the paper

● Use of EA terminology without explaining it

● Only 1 run of the algorithm
(a GP usually gives different results each time it's run)

● Give results on training-data
(it's called training data for a reason!)

● Give results when using the whole transcript
 (not what the GP was trained for!)

● Did not compare results with other methods
(They shortly mention that SVMs manage to get ~70% accuracy as well, but don't give any
references!)

9

… that's all, folks

Any Questions?

10

Genetic Programming on Grammars to generate DNA Motifs (2)

● GP tries to evolve
“programs” (or formulae)

● A possible solution can be
represented as tree

● Trees can swap subtrees
when “breeding”

● Nodes can change their
value when mutating Tree-representation of a possible

solution to a problem like
“find a function that best fits our

measurement data”

11

Genetic Programming on Grammars to generate DNA Motifs (2)

● “Grammars” give you rules how to produce “Sentences”

● (stupid) Example:

 <start> := <A> |

 <A> := “(“ <start> “)”

 = bbb | bbb<start> | <start>

Can produce: “bbb(bbb)((bbb))”

● Can be represented as tree!

12

Grammar used to produce the REs

<start> ::= <RE>
<RE> ::= <union> | <simple-RE>
<union> ::= <RE> "|" <simple-RE>
<simple-RE> ::= <concatenation> | <basic-RE>
<concatenation> ::= <simple-RE> <basic-RE>
<basic-RE> ::= <RE-kleen> | <elementary-RE>
<RE-kleen>::= <minmaxquantifier> | <kleen>
<kleen>::= <star> | <plus>
<star> ::= <elementary-RE2> "*"
<plus> ::= <elementary-RE2> "+"
<minmaxquantifier> ::= <elementary-RE4> "{" <int>
<optREint> "}"
<elementary-RE> ::= <group> | <elementary-RE1>
<elementary-RE1> ::= <xos> | <elementary-RE2>
<elementary-RE2> ::= <any> | <elementary-RE3>
<elementary-RE3>::= <set> | <char>
<elementary-RE4> ::= <group> | <elementary-RE2>
<group> ::= "(" <RE> ")"
<xos> ::= <sos> | "$"
<sos> ::= "^" <elementary-RE4>
<set> ::= <positive-set> | <negative-set>
<positive-set> ::= "[" <set-items> "]"
<negative-set> ::= "[^" <set-items> "]"

<set-items> ::= <set-item> | <set-items2>

<set-items2> ::= <set-item> <set-items>

<set-item> ::= <char>

<char> ::= <c00> | <c01>

<any> ::= "."

<c00> ::= T | C

<c01> ::= A | G

<optREint> ::= <2ndint> | $

<2ndint> ::= "," <int>

<int> ::= <d0>

#4 Bit Gray Code Encoder

<REdigit> ::= <d111> | <d0>

<d0> ::= <d00> | <d01>

<d00> ::= <d000> | <d001>

<d01> ::= <d010> | <d011>

<d000> ::= 1

<d001> ::= 3 | 2

<d010> ::= 7 | 6

<d011> ::= 4 | 5

<d111> ::= 8 | 9

13

Example of a sentence

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

