Quality Assessment of the Affymetrix UI33A&B probe sets by target sequence mapping and expression data analysis

Yuri L. Orlov et al., August 2007

Special Topics on Bioinformatics SS 2010

J. Palme

Topic

- carefull checking of probe sequences of microarray
- verification of probe sequences against reference data in DBs => identification of unreliable probes
- remove data of problematic probes before analysis
- reevaluation of three corrected cancer data sets
- improvements in selection of differentially expressed genes, clustering and construction of co-regulatory expression networks expected

UI33A & B

This research work is based on 2 specific microarrays

- Affymetrix Human Genome UI33A Array
- Affymetrix Human Genome UI33B Array
- Official annotation files for both arrays from Affymetrix, currently release 30 from 15/11/09 http://www.affymetrix.com/support/technical/annotationfilesmain.affx?hightlight=true&rootCategoryId=
- idea for this work seems to come from the Micro Array Quality Control project (MAQC) initiated by the FDA

UI33A

(3) Probe Pair

Each Perfect Match (PM) and MisMatch (MM) spots are associated by pairs.

UI33A & B

Critical Specifications for GeneChip® Human Genome Products

	Cartridge	Format	Plate Format		
	Human Genome U133 Plus 2.0 Array	Human Genome U133A 2.0 Array	Human Genome U133 A Array Plate	Human Genome U133 B Array Plate	
Number of transcripts	~47,400	~18,400	~18,400	~20,600	
Number of genes	>38,500	>14,500	>14,500	>18,500	
Number of probe sets	>54,000	>22,000	>22,000	>22,000	
Feature size	11 µm	11 µm	8 µm	8 µm	
Oligonucleotide probe length	25-mer	25-mer	25-mer	25-mer	
Probe pairs/sequence	11	11	11	11	
Control sequences included:					
Hybridization controls	bioB, bioC, bioD, cre	bioB, bioC, bioD, cre	bioB, bioC, bioD, cre	bioB, bioC, bioD, cre	
Poly-A controls	dap, lys, phe, thr	dap, lys, phe, thr	dap, lys, phe, thr	dap, lys, phe, thr	
Normalization control set	100 probe sets	100 probe sets	100 probe sets	100 probe sets	
Housekeeping/Control genes	GAPDH, beta-Actin,	GAPDH, beta-Actin,	GAPDH, beta-Actin,	GAPDH, beta-Actin,	
	ISGF-3 (STAT1)	ISGF-3 (STAT1)	ISGF-3 (STAT1)	ISGF-3 (STAT1)	
Detection sensitivity	1:100,000*	1:100,000*	1:100,000*	1:100,000*	

*As measured by detection of pre-labeled transcripts derived from human cDNA clones in a complex human background.

Probe Set Naming I

- ..._at: (anti-sense target) detects antisense strand of given gene, these are unique probes
- _a_at: (gene family probeset) recognize multiple transcripts of same gene
 _s_at: (identical probeset) recognize multiple transcripts from different genes
 _x_at: (mixed probe set) cross-hyb. with other sequences used for design
- a, s, x derived from gene cluster + gene family info

Probe Set Naming II

SEQUENCES

Legend

G: a set of sequences belonging to the same gene family

- S: a sequence
- PS: a probe set
- P: a probe in a probe set

Verifications

- Verification of probe quality as annotated! (assuming identity of probe and annotation)
- Get official sequence information for the probes from Affymetrix annotation files
- Verify unique sequence to gene mapping
- Verify that sequence maps into human genome
- Verify correct strand orientation
- Consideration of repeated exon elements

BLAT Analysis

- BLAT sequence search at 90% simularity level
- check of overlap with exonic regions in RefSeq and mRNA / spliced EST variants in hg17 and hg18
- mapping of probe sets to gene sequence blocks based on initial target sequences
- results of analysis (chromosom coordinates, orientation, overlapping details with exons / repeats...) stored in local DB against probe set ID

Used Reference Data

- NCBI Human Genome (hg17 and hg18)
- RefSeq
- NCBI GEO GSE4922 breast cancer data sets
- NCBI GEO GDS1962 brain cancer data sets
- NCBI GEO GGSE586 lung cancer data sets

Used Tooling

- For sequence verification:
 - BLAT (Difference to BLAST)
 - UCSC Genome Browser
 - Software developed at GIS (Genom Institute of Singapore) and BII (Bioinformatics Inst. Singapore)
- For statistical evaluations:
 - SAM 3.1 (Statistical Analysis of Microarrays)
 - Statistica 6
 - StatXact 6

Probe Quality Criteria

- I. sequence with with unique locus in human genome
- 2. perfect match of transcript
- 3. correspond to sequence of transcribed strand at this locus including correct strand orientation
- 4. no overlapping with any other non-gene sequence
- 5. correspond to mature RNA (only exons included)

Problematic Sequences

# locations(Hg18)	Tag1	Tag2	Tag3	Tag4	Tag5	Tag6+	Tag0	Total
#Affymetrix IDs	42708	450	129	67	42	84	1212	44692
%	95.56	1.0	0.28	0.14	0.09	0.18	2.71	100

Sequences in UI33A and UI33B

- Tag0 not found in human genome
- Tagl found exactly once => correct sequence
- Tag2+ found at multiple loci

Tag0 and Tag2+

- Tag0: 45% "xenosequence/non-human" (cow, mouse, pathogens, rat ...)
 17% classified as low-accuracy
- Tag2+:

81737_at found at 22 different locations 213089_at found at more than 11 locations

Probedesign based on Genbank sequences without verification of mapping to human genome

Repeats in Tagl

Set of genome repeats	Repeat class	# in target sequences
Simple repeats	Simple repeat, Low complexity	3233
Short transposons (<300 bp)	DNA, SINE/Alu, SINE/MIR	4347
Long transposes (>300 bp)	LINE/CR1, LINE/L1, LTR/ERV1/ERVK/ERVL/MaLR	5420
Non-transposons and satellites	Other, RNA, rRNA, Satellite, scRNA, snRNA, srpRNA	80

 lead to cross hybridization and wrong detection of expressed genes

Inverse Sequences

Sets	Correct orientation		Misoriented to intended transcript in as verified by				Total in
	Total	Match to NAST	Manual curation	RefSeq	mRNA	EST	Tag1
# Target seq	41898	13260	370	138	302	487	42708
%	93.74	29.66	0.82	0.3	0.67	1.08	95.65

- inversely oriented if it matches the opposite strand of RefSeq, mRNA or EST related gene
- match to NAST (natural antisense transcript) 30%

Total Picture

Target sequences groups	Non-redundant # of probesets	%
Total # of non-Tag1 sequences, including:	1984	4.43
Tag0	1212	2.71
Tag2+	772	1.72
Total # misoriented target sequences, including:	810	1.81
RefSeq IDs (by blocks)	138	0.3
mRNA GenBank (by blocks)	302	0.67
Manual curation protocol	370	0.82
Total # of target sequences overlapped with repeats, including:	3387	7.57
Overlap 80-100% of target sequence length	761	1.7
Overlap 60-80%	936	2.09
Overlap 40-60%	1690	3.78
Total # of useful Tag1 target sequences, including:	38511	86.16
Overlaps with observed transcripts in opposite strand	13260	29.66
Misoriented to ESTs in Tag1	487	1.08
Target sequences with 20-40% of repeats	2409	5.39
Target sequences with <20% of repeats	1210	2.7
TOTAL # of Affymetrix target sequences	44692	100

Expression Levels

Repeats in Sequences

- Data for GI and G3 grade breast cancer which show expression for at least 4000 probe sets
- Through overlaps with repeats less specific binding, this means: portion of these probe sets in statistically significant expressed genes decreases => decreased recognition of cancer signals
- Only relevant for longer repeat overlaps
- No impact for simple repeats and low complexity sequences

Cross-Hybridization I

- Kendall T rank correlation between probe set values
- Comparison of problematic groups with randomly selected groups
- Same correlation behavior for whole array and randomly selected groups
- Higher positive correlation for problematic target sequence groups compared to control groups
 => can lead to spurious correlation

Cross-Hybridization II

- Ratio of positive to negative correlation values was about 1 for random groups
- For probe sets with repeat coverage the ratio increases with length of overlap (trend not visible for same size

subgroup of normal probesets (Tag I)

Comparison UII3A&B

	# Probesets	# Correct probesets (passed QC)	% of correct probesets (passed QC)
A and B	100	98	98.0
Service probesets	68	N.A.	N.A.
Array U133A	22115	19753	89.3
Array U133B	22477	18660	83.0

- Passed QC means: tag1, correct orientation on chromosome and repeat coverage is less than 40%
- UII3A:
 - more probes with annotation quality
 - higher signal intensity and lower noise

- lung cancer cell lines:
 - higher expr. values on A
 - more specific expr. on A
 - more noise on B
 - slightly higher expr.
 - values for QC probesets

Signal Intensity Distrib.

- 5-aza treated samples (11a.) vs.
 untreated control samples (10a.):
 (5-aza: higher methylation and expr. increase for many genes)
 - techn. differences larger than biological differences
 - effect of QC filtering similar to biological variation

SUMMARY I

- Carefull analysis reveals probe sequence problems: non-human, multi-locus, misoriented, non-specific sequences
- Only 86% well designed sequences should be used for data analysis
- UII3A has higher number of correct probesets and performs better - related to expression level and noise

SUMMARY II

- Unreliable sequences lower average expression level and add noise
- False correlation for probesets with higher repeat coverage
- Prerequisite for microarray data analysis: Check sequences with most recent annotation files against current references

SUMMARY III

- Excellent research work presented in paper
- No of unreliable probe sets can and will increase with new releases of annotation files and progress in gene definition
- 4 G probes: with 4 or more guanine bases
- chimeric RNA transcribed from 2 genes ...

=> stay alert when using microarrays