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Abstract
Background: The task of computing highly accurate structural alignments of proteins in very short
computation time is still challenging. This is partly due to the complexity of protein structures.
Therefore, instead of manipulating coordinates directly, matrices of inter-atomic distances, sets of
vectors between protein backbone atoms, and other reduced representations are used. These
decrease the effort of comparing large sets of coordinates, but protein structural alignment still
remains computationally expensive.

Results: We represent the topology of a protein structure through a structural profile that
expresses the global effective connectivity of each residue. We have shown recently that this
representation allows explicitly expressing the relationship between protein structure and protein
sequence. Based on this very condensed vectorial representation, we develop a structural
alignment framework that recognizes structural similarities with accuracy comparable to
established alignment tools. Furthermore, our algorithm has favourable scaling of computation time
with chain length. Since the algorithm is independent of the details of the structural representation,
our framework can be applied to sequence-to-sequence and sequence-to-structure comparison
within the same setup, and it is therefore more general than other existing tools.

Background
Comparing protein structures is a major issue in structural
and evolutionary biology. Structure comparison allows
discovering evolutionary and functional relationships
that are beyond the reach of methods based only on
sequences. There are two major demands for an alignment
algorithm: First, it has to recognize small but significant
structural similarities very efficiently and it has to produce
accurate alignments even for far relatives, in order to get
maximum profit from available data. Second, it must per-
form its computation in very short time. In fact, when all-
vs-all comparison of all structures in a database is needed,

a very large amount of pairwise alignments is required.
For the Protein Data Bank (PDB [1]) all-vs-all alignment
would take around 160 years of computation time for a
tool that needs one second for a single alignment (about
≈ 105 protein chains known, July 2007).

If comparisons are not carried out accurately enough, evo-
lutionary and functional information gets shrouded in
background noise. If comparisons are too slow, some
large scale analyses could become unfeasible. The above
stipulates requirements for an alignment framework that
go beyond currently available tools.
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Here we propose a novel alignment framework that
allows dealing with structure-to-structure, structure-to-
sequence and sequence-to-sequence alignments in the
same scheme, exploiting a vectorial representation of both
sequences and structures [2]. On the one hand, these vec-
torial representations of protein structures reduce three-
dimensional atom coordinate data to just one real
number per amino acid [3], allowing fast comparisons.
On the other hand, as shown in [2,4], the structural pro-
files used are deeply related to sequence representations
like the ones discussed in [2,5,6] that are naturally of vec-
torial form. A similar relationship has already been
exploited to predict approximate structural profiles from
sequences [7,8].

Results and Discussion
Vectorial Structure Profiles
To represent protein structural information in form of
three-dimensional coordinates is highly redundant. Due
to the stiffness of the polypeptide backbone, volume
exclusion, and restrictions imposed by physical interac-
tions between atoms, only a small subset of the combina-
torially possible set of conformations is feasible for
physical protein structures. This implies that a reduction
of the mathematical description should be possible with
minor loss of information.

A reduced representation of protein structure that is often
used consists of the so-called contact matrix Cij, which is a
binary matrix representing all amino acid pairs i and j
whose distances lie below a cutoff distance dth. In the
present work, contacts are defined based on minimum
distances between heavy atoms (i.e. all but hydrogen) of
amino acid pairs with a cutoff of dth = 4.5 Å. A contact
matrix defined by the protein backbone, for instance by
Cα atom distances, would have the advantage that it is less
dependent on the details of the side-chains and more con-
served in evolution. Nevertheless, we prefer to adopt here
a contact definition based on heavy atoms since this has a
closer relationship to protein energetics and it yielded bet-
ter results in our tests.

It was numerically shown in [9] that the contact matrix
preserves the structural information of globular protein
folds up to a level comparable with experimental resolu-
tion.

Several structural profiles associating each protein site i
with a single real number vi can be derived from the con-
tact matrix in a natural way. In [3] it was shown that one
such representation, based on the principal eigenvector of
the contact matrix, in the following denoted as PE, is suf-
ficient to reconstruct the whole contact matrix for protein
chains that consist of one structural domain, and conse-
quently it is able to encode protein structure. Neverthe-

less, the PE is a meaningful structural profile only for
single-domain protein chains. If more domains are
present, or if a structure has relevant internal modularity
below domain level, the contact matrix splits up into a
number of modules that are highly intra-connected but
only marginally inter-connected. In general, the principal
eigenvector of such a matrix contains information about
only the largest or most densely connected domain, while
the remainders are distributed over the whole eigensys-
tem.

An 'ad hoc' generalization of the PE, described in [10], is
also applicable to multi-domain protein folds. This is
achieved by assigning a small value to those components
of the contact matrix whose corresponding residues are
not in contact and were formerly set to zero. After comput-
ing the new principal eigenvector, a non-linear transfor-
mation is applied to recover the distribution of the
original PE's components. This revised definition permits
to consistently describe single- and multi-domain protein
structures, keeping crucial properties of the original PE. In
the following we call this profile the 'revised principal
eigenvector' (revised PE).

Another more systematic way to extend the properties of
the PE to modular protein structures consists of defining
the 'generalized effective connectivity' profiles (GEC) [2]
(UB, A.R.Ortíz, MP, FT: Effective Connectivity profile: A
structural representation that  evidences the relationship
between protein structures and sequences submitted),
which are a family of structural profiles whose compo-
nents ci self-consistently represent the effective contact
density at site i in the native protein structure. The effec-
tive connectivity ci depends not only on the local contacts
at site i, but it is a global property of protein structure. The
principal eigenvector of the contact matrix is a specific
member of this GEC family of profiles.

The relevance of the GEC structural profiles for the
description of proteins derives from the fact that it is pos-
sible to naturally define a vectorial representation for pro-
tein sequences by associating the corresponding
hydrophobicity value h(Ai) to each amino acid Ai. In the
framework of folding models based on contact interac-
tions, it is possible to show that the hydrophobicity pro-
file (HP) associated with the optimally stable protein
sequence belongs to the GEC family of the corresponding
native structure [4]. This important property establishes a
strong mathematical relationship between protein
sequence and protein structure, both represented as vec-
tors in the same space which, in turn, leads us to predict
that the evolutionary average of the HP corresponding to
stable protein sequences is very strongly correlated with
some vector of the GEC family.
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In UB, A.R.Ortíz, MP, FT: Effective Connectivity: A struc-
tural profile for multi-domain proteins, submitted, we
proposed how to select a particular profile belonging to
the GEC family in such a way that it depends only on pro-
tein structure and that it is strongly correlated with the
average HP over a broad range of mean hydrophobicity
values. In the following this profile will simply be called
'effective connectivity' (EC). For small single-domain pro-
tein structures without internal modularity, the EC essen-
tially coincides with the PE.  In the same paper, it was also
shown that the revised PE is related to a vector of the GEC
family through a non-linear transformation, and that the
revised PE and the EC are very strongly correlated, with
correlation coefficient typically as large as 0.95.

Both the EC and the revised PE have been employed in the
alignment framework discussed in this paper. We
observed slightly better performance for the EC, which
was therefore used as the standard for the alignment rou-
tine, whereas the revised PE is mentioned for some special
cases where significantly different alignments are found
using this profile. Nevertheless, the revised PE may be the
better choice if fast computation of the profiles outbal-
ances slightly higher accuracy.

The vectorial structure profiles revised PE and EC, together
with contact maps and sequences can be freely down-
loaded from our web server at [11]. For more details
please refer to the Methods section.

Alignment Framework
In the framework discussed here, the task of finding a
proper alignment of two protein structures is translated
into the recognition of similar connectivity patterns in
their corresponding structural profiles. This analogy is
grounded on the assumption that the structural profile is
conserved in protein evolution, like the overall topology
of the protein structure that it describes.

In this way, we can use fast and simple comparison algo-
rithms, while relevant non-local properties of protein
structure are retained. Moreover, the resulting alignment
is little dependent on spurious local similarities that could
obliterate the recognition of far homologs. However,
these local structural details have to be reintroduced in a
second step, in order to obtain a more precise structural
match.

Following this idea, we developed a structural alignment
routine that consists of two steps. First, the alignment of
the structural profiles is used to recognize global similari-
ties. Second, a refinement step employs the atomic coor-
dinates in order to improve the local structural
superimposition.

Alignment Algorithm
The profile alignment was designed similarly to 'tradi-
tional' sequence alignment routines like e.g. dot-matrix
alignments. We represent every possible alignment of two
proteins by a path through an alignment matrix Aij, as the
one shown in Fig. 1. Possible alignments are defined as
the line-up of two amino acid chains, together with an
arbitrary number of inserted gaps of arbitrary length. Rare
deviations from this pattern, like sequence repetition,
mirrored parts, and replacement of groups of amino acids
are not taken into account.

Building up this path, a diagonal step Ai-1, j-1 → Aij along

the alignment matrix in Fig. 1 represents the alignment of

amino acid  from chain 1 with  from chain 2.

Horizontal and vertical steps introduce gaps in chain 1
and 2, respectively. The set of admissible paths consists of
all combinations of steps starting in the upper left corner
of the matrix, ending at the lower right.

The optimum alignment path minimizes the cost func-
tion described below, which depends on a set of parame-
ters that are analogous to traditional 'substitution
probabilities' for alignments and 'open/extend' penalties
for gaps. However, in contrast to those, the penalties used
here are directly dependent on the structures through their
explicit dependence on profile components.

Evidently, the cost function must be such that the align-

ment of amino acids  and  is favoured if the asso-

ciated profile components  and  are similar, so

that the cost increases if aligned components are more dif-
ferent. Inserting a gap is penalized in two different ways.
First, the chain in which the gap is inserted needs to be
broken. From a structural point of view this is equivalent
to a disruption of a number of contacts, which is less likely
in parts of the chain that are more highly connected, since
more contacts have to be broken. With a second penalty
we model that it is less likely that the inserted chain part
(that is opposite to the gap) is very highly connected to
the rest of the structure because a higher number of con-
tacts imposes stronger steric constraints.

The entangled use of these 'break' and 'insert' contribu-
tions to the gap penalty models the inherent ignorance of
whether a gap in the alignment was caused by the deletion
of a fragment from one chain during evolution, or by the
insertion of a fragment in the other chain.

Ai
( )1 A j

( )2

Ai
( )1 A j

( )2

ci
( )1 c j

( )2
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Alignment MatrixFigure 1
Alignment Matrix. The alignment matrix with a possible path encoding a specific alignment is depicted. Diagonal steps corre-
spond to aligned amino acids while horizontal and vertical steps introduce gaps in chain 1 and 2, respectively. The path follow-
ing arrows from 'End' to 'Start' refers to trace-back pointers set by Dijkstra's algorithm to mark the cheapest path found. 
Below the figure the alignment related to the marked path is displayed in gapped sequence description.
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A detailed description of the path cost function and the
parameters used can be found in the Methods section
below.

Being equipped with a cost function, the cheapest path
can be selected through very efficient standard algorithms.
Here we used Dijkstra's shortest path algorithm [12], but
dynamic programming algorithms, like Smith-Waterman
[13] or Needleman-Wunsch [14] would have been
equally applicable.

The resulting optimal alignment can be represented in the
form of superposed profiles, as in Fig. 2, upper plot. As
expected, continuous regions of similar patterns are
aligned and gaps are inserted in regions with low connec-
tivities.

Up to this point our alignment algorithm does not use
any other information besides of that encoded into the
structural representation and the scoring function. The
results presented below show that the algorithm is able to
identify significant similarities in around 95% of the
alignments of distant relatives from the test set discussed
below.

We are aware that introducing other sources of informa-
tion, such as secondary structure, prior domain decompo-
sition, or biological knowledge of protein function, to
name but a few, could further improve the alignments.
However, this was deliberately omitted to keep the algo-
rithm general, moving these issues to the structural repre-
sentations and their possible future improvements.

In order to assess the alignment, we apply the standard
MaxSub routine to the set of aligned residue pairs and
compute the optimal rigid body rotation and translation
that maximize the spatial superimposition of the two pro-
teins, as described in [15] for MaxSub and in [16,17] for
the rotation itself. This allows for the calculation of stand-
ard similarity scores based on coordinates and producing
spatial views of the alignment.

Refinement on the Coordinates
As described above, through the MaxSub routine and the
set of aligned residues we can derive the optimally super-
imposed set of coordinates, and from that we can com-
pute the pairwise distances of all combinations of amino
acids connecting the two protein chains. This detailed
local information can then be exploited in a second align-
ment step in order to refine the alignment itself, similar in
principle to other structural alignment algorithms.

For this goal, we firstly identify pairs of Cα atoms that are

closer in space than a threshold , disregarding

whether these pairs belong to the set of aligned amino
acids or not. Spurious pairs are sorted out by imposing the
condition that only pairs that are member of sufficientlydth

refine

Aligned Structural Profiles for Alignment Example 'd1cd9b2' vs. 'd1bpv__'Figure 2
Aligned Structural Profiles for Alignment Example 
'd1cd9b2' vs. 'd1bpv__'. Figure 2a shows the optimal pro-
file alignment of the ASTRAL [33] domains 'd1cd9b2' and 
'd1bpv__' as computed by the first step of SABERTOOTH 
without refinement. Gaps, as marked by small negative val-
ues, are inserted in regions with low connectivities, continu-
ous patterns of larger connectivities are correctly aligned. 
Figure 2b shows the result for the same example as output 
by the full SABERTOOTH algorithm including refinement. 
Comparison to the result of the profile alignment shows only 
slight corrections introduced by the refinement routine while 
the overall similarity match is retained. The number of resi-
dues close in space after optimal rotation increases from 56 
to 78 residues, PSIprofile = 56.6% increases to PSIrefined = 
78.8%.  Improvement of the alignment is achieved by intro-
ducing obvious deviations from the overlap maximization of 
the structural profiles which implies that some local proper-
ties of the structures are not represented in the profiles, as 
expected by their construction. Three-dimensional superpo-
sition for this alignment is shown in Fig. 3.
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long continuous fragments of pairs l ≥ lminare relevant.

The values of these parameters must be chosen carefully
since the result of the whole procedure is strongly influ-
enced by their selection. By increasing the distance thresh-
old and decreasing the minimum length parameter, more
and more incidental pairs are selected. On the one hand,
this results in a larger percentage of structural identity
(PSI) for the refined alignment but, on the other hand, it
lessens the significance of the alignment by interspersing
it with spurious pairs that should actually not be included.
Taking these factors into account we choose a minimum
group length of four amino acids, lmin= 4, and a distance

threshold of  = 4 Å.

The set of amino acids effectively close in space is then
used to restrict the possible paths through the alignment
matrix, so that the second run of Dijkstra's optimization
routine looks for the optimal path only around these
identified groups of close pairs.

This second run of Dijkstra's algorithm incorporates close
pair groups into the alignment where unambiguously
assigned, it picks out the best choice in cases where more
than one alternative is present, and it simply minimizes
the path cost as before in areas that are not constrained.

Obviously, this kind of refinement is only able to improve
the input alignment if the initial spatial superposition was
already close to optimal. From comparison of the plots in
Fig. 2, one can see that the refinement introduces only
minor shifts into the alignment, keeping the originally
assigned common core intact. Interestingly, when looking
closer at the local details of the structures rather than com-
paring their global properties, one can see that the align-
ment can be improved by introducing obvious deviations
from the optimal superimposition of the structural pro-
files. This implies that some local properties of the struc-
tures are not represented in the profiles, as expected by
their construction.

Scoring the Alignment Results
After the refinement step, a second run of the MaxSub
algorithm is used to obtain the optimal spatial superim-
position through which we assess quality and significance
of the final alignment. To this aim, we calculate the
number of aligned residues and gaps, the number of resi-
dues close in space and the percentage, which is named
percentage of structural identity (PSI), the coordinate
RMSD (cRMSD), the sequence similarity of aligned resi-
dues, and the contact overlap. Furthermore, a Z-score
measuring the statistical significance is computed from
the PSI, as discussed below. Scores specific for profile

alignments state the total optimized path cost, the
summed cost of aligned regions, and the gap penalties.

In addition, different visualizations of the alignment
result are computed: PDB-style coordinate files and a RAS-
MOL [18] script file in Cα or all-atoms shape, as well as
plots of aligned profiles are included. Figure 3 shows the
spatial superposition of an example alignment as com-
puted by SABERTOOTH.

The program can be used freely at our web server [19]

Assessing the Significance of the Alignments
In order to distinguish biologically relevant relationships
from superimpositions arising by chance, we assess the
statistical significance of the alignments through the Z-
score of the PSI, which measures the difference between
observed and average PSI for optimal superimposition of
unrelated pairs of structures, in units of standard devia-
tion.

Since the PSI of a pair of unrelated structures strongly
depends on their lengths, we computed its mean and
standard deviation as a function of the length of the
shorter chain in each alignment using a set of 31284 align-
ments of pairs of non-related structures. The resulting PSI
is represented in Fig. 4 versus length of the shorter chain.
As expected from statistical reasoning, the plot shows that
the PSI decreases for longer chain lengths, as described in
[20,21]. This is rather intuitive since the same PSI corre-
sponds to shorter aligned length for short chains, and it is
more likely to get this aligned length by chance. The fitting
of the parameters used in the Z-score computation is
described in detail in the Methods section, the fits are
shown in Fig. 5.

dth
refine

Three-dimensional Superposition of 'd1cd9b2' vs. 'd1bpv__' after SABERTOOTH AlignmentFigure 3
Three-dimensional Superposition of 'd1cd9b2' vs. 
'd1bpv__' after SABERTOOTH Alignment. The align-
ment of 'd1cd9b2' vs. 'd1bpv__' as computed by SABER-
TOOTH including the refinement routine is shown in all-
atoms form on the left hand side and in backbone form on 
the right hand side. The profiles corresponding to this align-
ment are shown in Fig. 2b.
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To verify that the Z-scores produced by our algorithm give
an intrinsic and meaningful measure of the significance of
the structural alignments, we tested whether they agree
with those that result from other well-known algorithms
(see Methods).

We performed this test by computing correlations
between the Z-scores obtained through different algo-
rithms for pairs of related proteins, finding correlation
coefficients up to cc1 = 0.90 for SABERTOOTH vs. DaliLite
and cc2 = 0.84 for SABERTOOTH vs. MAMMOTH. These
high correlations show that the different algorithms are
sensitive to the same 'signals' even though their individual
accuracy is different. We show this pairwise correlation in
Table 1. From this table, we furthermore learn that the
correlation of all other tested algorithms with the algo-
rithm CE is rather low, compared to the mutual correla-
tions of these algorithms among each other. This seems to
be a direct result of CE's peculiar behaviour, since the PSI
obtained from CE alignments correlates rather weakly
with those produced by all other algorithms assessed here.

For this analysis the Z-scores are obtained directly from
the output of each program, in contrast to all other scores
that are computed through our own assessment algorithm
using the alignment merely as an input. This is necessary
since the Z-score depends on the statistical properties of
the optimal superimposition of unrelated pairs as com-
puted through the very algorithm. Moreover, different
programs can take care of the dependence on chain length
in different ways. SHEBA does not output a  Z-score but
from its high PSI correlation we expect comparable recog-
nition behaviour in the sense of the above.

Alignment Quality Assessment
Since our algorithm compares protein structures using a
representation that embodies the overall topology of a
protein chain, it is expected to be largely tolerant in cases
where local distortions tend to hide structural similarities.
In fact, SABERTOOTH assigns PSI > 40% in nearly 95% of
the alignments from the test set which consists of distant
relatives that are related on superfamily level having less
than 40% sequence identity. This proves a high recogni-
tion rate of the common core of distantly related proteins.
The alignment is very accurate in the details as well. Figure
6 shows the superposition of the backbones of the struc-
tures with ASTRAL-IDs 'd3sdha__ ' and 'd2gdm__' after
optimal rotation according to the SABERTOOTH align-
ment. A RASMOL script file for this example can be found
in Additional File 1.

Fits of Mean PSI and Standard Deviation for the Z-scoreFigure 5
Fits of Mean PSI and Standard Deviation for the Z-
score. The upper figure shows the log-log scatter plot of the 
PSI versus the length of the shorter chain for the Z-score set 
together with the power-law fit for the mean PSI that 
resulted in �PSI� = 494·min (N1, N2)-0.712. The lower plot 
shows the log-linear plot of binned PSIs' standard deviations. 
The exponential fit resulted in σPSI = 25.00 - [3.896·log (min 
(N1,N2))].
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Scatter Plot PSI over Norm for Z-score DeterminationFigure 4
Scatter Plot PSI over Norm for Z-score Determina-
tion. The scatter plot shows the PSI over shorter chain 
length for the 31284 alignments of unrelated pairs in the Z-
score set. Considerably high PSI values are found even for 
alignments with MAMMOTH and DaliLite Z-scores < 3.
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Aligned amino acid pairs that are closer in space than 4Å
are coloured in green, marking the common core, whose
size corresponds to the PSI, sections coloured in yellow
are aligned but they are further in space than the PSI
threshold. Light blue and light red chain sections are
opposite to gaps. It can be seen that yellow parts point to
local distortions that are correctly aligned, while gaps are
introduced before the N- and after the C-terminus of the
first chain and in loops of different lengths in the two
chains.

With respect to the set of unrelated pairs used to fit the Z-
score, SABERTOOTH assigns high PSI values to a number
of alignments, even though the set consists of pairs from
different folds that were checked to have MAMMOTH and
DaliLite Z-score < 3.

Visual inspection of these alignments confirms that these
high PSI values do not arise by chance but due to truly rec-
ognized similarities. In fact, the pairs with highest scores
share a common module consisting of large portions of
correctly aligned secondary structure elements, whereas
tilted helices, twisted beta-sheets, and large insertions (or
deletions) demand to assign them to different folds.

RASMOL script files for some examples from the test set
can be found as supplementary material in Additional File
2.

Some specific problems of the algorithm are revealed by
looking at alignments of related pairs from the test set that
yield very small PSI values. The eight worst such cases con-
sist of alignments between members of the SCOP super-
family 'Riboflavin synthase domain-like' (sf = 63380).
These have barrel structure and are built up by anti-paral-
lel beta sheets known also as the 'Greek key' motif. A
rather complicated case from this superfamily is the chain
with ASTRAL-ID 'd1ddga1'. Despite being considered as
single-domain in the SCOP classification, it actually con-
sists of two structural domains, the Greek key domain and
an additional all-alpha domain, the latter built up from a
number of loosely connected short helices. In some align-
ments with this structure, our algorithm fails to align the
domains correctly, which seems to result partly from the
structural representation used.

When comparing the results to those computed using the
revised PE instead of the EC profile, some of the formerly
problematic structures show very good results, i.e. the
worst combination using the EC ('d1fdr_1' vs. 'd1ddga1')
improves to PSI= 76% when using the revised PE as struc-

Three-dimensional Superposition of 'd3sdha_' and 'd2gdm__' after SABERTOOTH Alignment; Colour-coded for Quality AssessmentFigure 6
Three-dimensional Superposition of 'd3sdha_' and 
'd2gdm__' after SABERTOOTH Alignment; Colour-
coded for Quality Assessment. The alignment of 
'd3sdha_' and 'd2gdm__' is shown after SABERTOOTH align-
ment and optimal rotation. Aligned regions that are closer in 
space than 4 Å are marked in green, aligned regions further 
apart are marked in yellow, and regions that are opposite to 
gaps in the alignment are marked in light blue and light red.

Table 1: Correlation Coefficients for PSI and Z-score

SABERT. (EC profile) MAMMOTH MAMMOTH mult DaliLite TM-align CE SHEBA

SABERTOOTH 1 0.79 0.84 0.86 0.85 0.61 0.81
MAMMOTH 0.84 1 0.85 0.84 0.81 0.64 0.80

MAMMOTH-mult 0.84 1.00 1 0.90 0.89 0.63 0.85
DaliLite 0.90 0.87 0.87 1 0.94 0.67 0.89

TM-align 0.53 0.59 0.59 0.62 1 0.66 0.88
CE 0.57 0.64 0.64 0.62 0.52 1 0.63

Correlation coefficients of rPSI values over the test set for the different algorithms are shown above the diagonal. The highest value of 0.94 
between DaliLite and TM-align proves the very high level of agreement in the results. SABERTOOTH reaches 0.86 and 0.85 correlation with 
DaliLite and  TM-align, respectively.
The correlation of rPSI values translates to the Z-score as shown below the diagonal. MAMMOTH's Z-score obviously takes advantage of its more 
sophisticated Z-score fitting procedure using extreme value distribution methods to determine mean value and standard deviation of the PSI as 
functions of chain length.  SHEBA does not output comparable Z-scores.
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tural representation. But still, the abundance of anti-par-
allel beta structures in the problematic cases is obvious.
Anti-parallel beta sheets are highly connected through
hydrogen bonds of relatively short range along the
sequence, a fact that is not explicitly considered in the pro-
files. This suggests that the structural representation used
in the alignment routine might be improved through ade-
quate incorporation of the hydrogen bonding network or
secondary structure information.

Another negative influence on alignment performance
could result from the symmetry in the structures of the
above-mentioned superfamily that contain two opposing
Greek key motifs. Alignment of structures with high sym-
metry leads to scoring functions with multiple solutions
having very similar score.

Alignment Quality Comparison
To evaluate the quality of SABERTOOTH's alignments it is
necessary to compare it to competing algorithms. The best
way to compare structural alignments is by visual inspec-
tion, but to make the comparison objective one has to use
a quantitative score. In our opinion, the most expressive
such score for a structural alignment is the PSI. As we men-
tioned above, when using the PSI one should take care
that only truly significant superimpositions are counted
in. Hence, PSI values have to be cleared from contribu-
tions from short spatial superimpositions, which may
very likely arise by chance. Even if these matches are rele-
vant, their expressiveness in this context is arguable and
different tools deal very differently with this issue. Some
algorithms apparently enhance the PSI to some extent by
scattering tiny fragments of one to three amino acids
along the alignments. This is quantified in Fig. 7, which
shows the distribution of lengths of continuously aligned
fragments produced by different algorithms.

The DaliLite algorithm shows a kink at length four in this
distribution, with shorter fragments strongly penalized
and also MAMMOTH attenuates short fragments. In con-
trast, the TMalign and the SHEBA algorithm over-repre-
sent these fragments.

To take this into account, we use a modification of the PSI
throughout this paper that does not count in superim-
posed residues in fragments shorter than four continuous
residues. We call this value the relevant PSI (rPSI). A hint
that this treatment is reasonable follows from the compar-
ison of sequence similarities with and without short frag-
ments. Removing short fragments, sequence similarities
increase for all algorithms which indicates that the mean
sequence similarity of the removed fragments is smaller
than for longer aligned fragments, suggesting that several
of these short fragments are indeed spurious matches. A
number of assessment scores, including sequence similar-

ity based on the BloSum62 matrix, cRMSD, the number of
aligned amino acids, and the number of aligned amino
acids that are effectively close in space are listed in Table 2
for direct comparison of the algorithms.

In Fig. 8, the histograms of rPSI frequencies are plotted for
the different algorithms compared, with the PSI displayed
as shadows for the sake of completeness. Among the algo-
rithms compared only DaliLite, MAMMOTH-mult, and
TM-align perform better than SABERTOOTH. The ranking
obtained is mainly consistent for the other quality meas-
ures, even though computed on different levels of abstrac-
tion and on different levels of the structural description.
In particular, it is interesting to note that the sequence
similarity score, which is based only on protein sequence,
correlates very well with structural similarity scores when
applied to the assessment of alignments of related pro-
teins.

Alignment Speed Comparison
To assess the computation speed of the different algo-
rithms examined here, we measured the total time needed
to compute all alignments in the test set. The fastest algo-
rithm is the pairwise MAMMOTH. The slowest but most
accurate competitor is DaliLite, which needs about 26.70
times as much CPU time as MAMMOTH. SABERTOOTH
is only 4.23 times slower than MAMMOTH in the current
implementation but it is nearly as accurate as DaliLite. In
this sense, SABERTOOTH represents a good compromise

Aligned Fragment Length HistogramsFigure 7
Aligned Fragment Length Histograms. Frequency of 
lengths of aligned fragments for alignments of the test set 
obtained with the algorithms assessed here. The behaviour 
found is very different for the different schemes. The total 
number of residues in fragments of sizes smaller than four 
sums up to 1.01% for SABERTOOTH, 0.13% for MAM-
MOTH, 1.18% for MAMMTOH-mult, 0.33% for DaliLite, 
7.25% for TM-align, 2.22% for CE, and to 12.20% for SHEBA. 
Those aligned pairs are most likely not significant and should 
be omitted when the PSI is computed.
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between runtime and accuracy. A more detailed compari-
son is shown in Table 3, which lists CPU times needed for
computing all of the 3566 alignment examples from the
test set on an Intel(R) Xeon(TM) CPU 2.80 GHz. The third
column shows computation times relative to the speed
benchmark MAMMOTH.

Detailed Comparison of Established Algorithms
MAMMOTH and MAMMOTH-mult
The MAMMOTH program [22] is the fastest algorithm
assessed here. As well as the SABERTOOTH algorithm, it
is based on the idea of aligning structural profiles that rep-
resent the proteins to be aligned, but in the case of MAM-
MOTH these profiles are obtained through local
information on the dihedral angles between residues con-
secutive in the protein chain. In this sense, it may be
viewed as complementary to our approach, which uses
global profiles.

MAMMOTH was initially developed for comparison of
large numbers of theoretical models, making computa-
tional time the prime duty. In this sense it may be viewed
as a maximum speed benchmark. Due to its high speed,
MAMMOTH is applicable to very large sets of alignments
as those needed for database clustering. In contrast, its rec-
ognition rate is low. It is similar to that of SABERTOOTH's
profile alignment routine without refinement (data not
shown), which indicates that the quality of MAMMOTH
alignments can be improved through a similar post-
processing when higher accuracy is needed.

This has indeed been done for the multiple alignment
program MAMMOTH-mult [23]. It carries out all-vs-all
alignments using the pairwise MAMMOTH routine to
construct a guiding tree on the basis of which the multiple
structural alignment is deduced. Following this tree, new

structures are aligned to the groups already joined,
ordered by decreasing similarity. At this stage, after the
profile based alignment, the program applies a post-
processing routine based on a scoring function that
depends on pairwise inter-atomic distances calculated
after optimal superimposition. This post-processing rou-
tine is able to improve MAMMOTH's performance to a
level close to DaliLite while its computation times grow
by slightly more than a factor of two. This makes MAM-
MOTH-mult a very good choice even for pairwise struc-
tural alignment, and prompts at the convenience to
include a similar post-processing step also in its pairwise
version.

DaliLite
The DaliLite algorithm [24] uses a structural representa-
tion based on the distance matrices of the Cα trace, which
results in a high ability to recognize structural similarities
and in a high precision in the details. Unfortunately, the
algorithm is slow so that its applicability is very restricted.

Since DaliLite does not output any alignment when it
does not find significant similarity, the pairs for which
this happened were removed from the test set, although
this may favour DaliLite in comparison to the other pro-
grams. Surprisingly, in 31 out of 36 of the cases in ques-
tion (data not shown) SABERTOOTH finds PSI > 40% and
in 14 cases even PSI > 75%. This behaviour could be due
to a systematic weakness of the DaliLite algorithm, which
is a bit too strict when trying to sort out alignments of
unrelated structures to improve its speed on large data
sets.

Besides of this, DaliLite assigns significant PSI values in
nearly all alignments of the test set which makes it  first
choice for an accuracy benchmark.

Table 2: Various Scores for Comparison

SABERT.
(EC profile)

SABERT.
(revised PE)

MAMMOT
H

MAMMOTH 
mult

DaliLite TM-align CE SHEBA

rPSI/% 67.8 ± 1.1 67.0 ± 1.1 51.3 ± 0.9 71.0 ± 1.2 73.6 ± 1.2 71.5 ± 1.2 64.2 ± 1.1 65.1 ± 1.1
PSI/% 68.2 ± 1.1 67.4 ± 1.1 51.3 ± 0.9 71.6 ± 1.2 73.7 ± 1.2 75.3 ± 1.3 64.6 ± 1.1 73.5 ± 1.2
cRMSD/Å 5.75 ± 0.10 5.84 ± 0.10 8.82 ± 0.15 5.63 ± 0.09 4.95 ± 0.08 2.85 ± 0.05 4.15 ± 0.07 5.12 ± 0.09
cRMSD/Å (core only) 1.90 ± 0.03 1.91 ± 0.03 1.91 ± 0.03 1.90 ± 0.03 1.86 ± 0.03 1.84 ± 0.03 1.91 ± 0.03 1.81 ± 0.03
aligned residues 395537 392528 410541 399948 392515 379196 340586 373857
contact overlap 57.3 ± 0.9 56.3 ± 0.9 44.7 ± 0.7 57.8 ± 1.0 61.0 ± 1.0 58.7 ± 1.0 50.3 ± 0.8 54.2 ± 0.9
rseqSim 8.0 ± 0.1 7.3 ± 0.1 -8.8 ± 0.1 6.4 ± 0.1 14.1 ± 0.2 15.4 ± 0.3 9. ± 0.1 15.8 ± 0.2
seqSim 8.1 ± 0.1 7.3 ± 0.1 -8.9 ± 0.1 6.0 ± 0.1 13.5 ± 0.2 11.2 ± 1.0 8.4 ± 0.1 9.4 ± 0.2
alignments rPSI< 40% 268/7.5% 262/7.3% 1014/28.4% 150/4.2% 18/0.5% 56/1.6% 483/13.5% 232/6.5%

Scores for the alignments of the different algorithms for quality assessment and comparison. All values are computed over the test set of 3566 
alignments and are weighted by chain length. Shorter chain lengths from all alignments sum up to 434027 amino acids. Error values are shown under 
condition of statistically independent experiments.
The ranking of the algorithms agrees well over the different scores, even though they describe features on different levels of abstraction from the 
underlying proteins. Note that the rank correlation coefficient of rPSI with contact overlap is one while it is smaller than one for PSI with contact 
overlap. This constitutes another argument supporting that the treatment of small aligned fragments is reasonable.
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TM-align
The TM-align algorithm [25], at first glance, shows even
higher accuracy than DaliLite in combination with a
speed that is only 1.5 times slower than MAMMOTH. But
if one looks closer at the results one finds that the high PSI
results from a very high number of aligned fragments of
short length. For TM-align more than 7% of its aligned
residues are member of fragments shorter than four
amino acids. This is more than seven times more than for
SABERTOOTH. Looking at the rPSI distribution instead,
TM-align's recognition rate is slightly worse than
DaliLite's and the mean value is only 3.7% higher than
that of SABERTOOTH.

CE
The CE algorithm [26] seems to over-represent short frag-
ments of length one, but not longer ones. In spite of that,
PSI and rPSI values found are nearly identical. There is a
high number of alignments for which the CE algorithm
does not recognize significant similarity, visible in Fig. 8
as a hump of small rPSI values that contains more than
13% of the test set. This difficulty in recognizing distant
similarity is also evident from the fact that PSI (and Z-
score) values obtained with the CE algorithm are signifi-
cantly less correlated with those of the other algorithms
than those are between each other, as shown in Table 1.

SHEBA
The SHEBA algorithm [27], like TM-align, shows high PSI
values that drop by more than 8% in the mean when look-
ing at the rPSI. This results from the extremely high
number of more than 12% of aligned amino acid pairs in
fragments below four amino acids in length. Besides of
this, SHEBA shows good agreement with the other algo-
rithms.

Conclusion
We present a new approach to protein structural align-
ments. We could show that structure representations in
form of vectorial profiles based on the global topology of

Table 3: Computation Times for Comparison

Algorithm CPU time/s time rel.

SABERTOOTH 1726.3 4.23
MAMMOTH 408.4 1.00
MAMMOTH-mult 832.7 2.04
DaliLite 10902 26.70
TM-align 611.7 1.50
CE 2353 5.76
SHEBA 3533 8.65

Computation times for computing all of the 3566 alignment examples 
from the test set on an Intel(R) Xeon(TM) CPU 2.80 GHz are show 
as absolut values and relative to the speed benchmark MAMMOTH 
(pairwise).

rPSI Comparison Histograms, Differences to SABERTOOTHFigure 8
rPSI Comparison Histograms, Differences to SAB-
ERTOOTH. In the left column we report the histograms of 
the rPSI found by the different algorithms over the test set, 
the PSI (i.e. including short aligned fragments) are shown as 
shadows. The influence of short fragments is most dramatic 
for TM-align and SHEBA, as expected from Fig. 7. In the right 
column, differences to the results of SABERTOOTH are 
shown for direct comparison. Positive values connote higher 
rPSI for SABERTOOTH. Mean values may be found in Table 
2.
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protein structure allow structural alignments of a quality
comparable to other state-of-the-art methods. The SABER-
TOOTH structural alignment server implements this
alignment framework. It performs comparably to algo-
rithms based on coordinate derived descriptions and rep-
resents a good compromise between alignment accuracy
and computational speed. We could show this by statisti-
cal analyses and comparison to established competitors
which we use as objective references.

One of the strengths of our alignment scheme is its gener-
ality, since it can be applied to different vectorial structure
representations and, hence, allows for incorporation of
more elaborated structural profiles developed in the
future. Even more interesting is the possibility to utilize
structural profiles predicted from sequences in future uses
of the framework. Doing so, all flavours of protein align-
ments, i.e. structure-to-structure, sequence-to-sequence,
and sequence-to-structure, can be carried out within the
same scheme. Furthermore, extension to multiple align-
ments using mixed sets of sequence and structure profiles
is possible.

We are positive that when doing so our approach can help
to better exploit available protein structure and sequence
data by allowing for analyses of correlations between dif-
ferent vectorial structure representations derived from
structure on the one hand and from sequences on the
other hand. This might assist in gaining deeper insight
into protein folding.

Methods
Structural Profiles
Principal Eigenvector of the Contact Matrix
The contact matrix Cij of a protein structure is a binary
symmetric matrix with elements Cij = 1 if amino acids at
positions i and j are in contact and Cij = 0, otherwise [9].
Two residues are defined to be in contact if at least one
pair of heavy atoms, one belonging to each amino acid,
are less than 4.5Å apart.

Other contact definitions, e.g. based on Cα distances, are
possible [9]. Additionally, only residues separated by at
least three positions along the chain are considered to be
in contact, i.e. Cij = 0 if |i - j| < 3, to ignore trivial short
range contacts.

Since Cij is a symmetric matrix, all its eigenvalues are real

and it has a complete orthonormal set of real eigenvectors.
The principal eigenvector ci (PE), i.e. the eigenvector asso-

ciated with the largest eigenvalue, is a structural profile
that embodies the most relevant properties of protein
structure. Its components are all of the same sign, which
we chose to be positive. The PE maximizes the quadratic

form ∑ij Cij cicj under the normalization constraint

. In this sense, ci can be interpreted as the effec-

tive connectivity of the amino acid at position i embedded
in the structure, since positions with large ci are in contact

with as many as possible positions j with large cj.

As shown in [3] the PE contains sufficient information to
reconstruct its contact matrix and, hence, describes an
equivalent representation of protein structure itself. But its
applicability is restricted to single-domain protein struc-
tures with low internal modularity because the contact
matrix of multi-domain structures splits up into a number
of modules and the structural information is distributed
over the whole eigensystem. In general, the principal
eigenvector of such a matrix describes the most densely
packed domain, only.

Revised Principal Eigenvector

An 'ad hoc' generalization of the principal eigenvector,
introduced in [10], extends the applicability of structural
profiles to multi-domain protein folds. This is achieved by
modifying the contact matrix so that pairs of residues not

in contact are assigned the small value ε(N) = min{εmax,

ε0/(log N - ε1)} with εmax = 0.01, ε0 = 0.02, and ε1 = 2,

instead of zero. The principal eigenvector of this revised

contact matrix  is subsequently transformed in such a

way that the transformed components show the same dis-
tribution as those of the original PE. The empirically
derived parameters are adjusted to be just large enough to

connect the different modules of a contact matrix ,

resulting in non-zero values in nearly all components of

the revised principal eigenvector .

This revised definition permits consistent description of
single- and multi-domain protein structures, keeping cru-
cial properties of the original definition.

Effective Connectivity Profile
Another approach to define a vectorial representation for
single- and multi-domain protein structures is described
in [2] (UB, A.R.Ortíz, MP, FT: Effective Connectivity: A
structural profile for multi-domain proteins, submitted).
This more general definition includes the PE, the revised
PE [10], and structural profiles derived from protein
sequences into a family of profiles called the 'generalized
effective connectivity' family (GEC).

All members of the GEC family share the properties that
(a) they maximize the quadratic form Q = ∑ij Cijcicj, (b)
their mean value is fixed to �c� = 1 to choose a normaliza-

cii
2 1∑ =

Cij

Cij

ci
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tion of the GEC components, (c) their mean square com-
ponent is fixed to �c2� = B > 1.

For the special choice of  with conti =

∑j Cij, the contact vector, we obtain the effective connectiv-

ity profile EC that is used in this paper. This profile can be
expressed as a weighted sum of the vectors of the eigensys-
tem of the contact matrix Cij, with weights gradually intro-

ducing contributions from more eigenvectors from Cij's

eigensystem when structures described get more modular.

It was also shown that the EC is nearly identical to the PE
for small single-domain structures with low internal mod-
ularity, and that for all structures it is highly correlated
with the revised PE. The significant correlation between
the hydrophobicity profile of the protein sequence HP
and the PE, valid for small single-domain proteins, is
translated to multi-domain structures when using EC or
revised PE profiles.

Set of Structures Used
For training and testing the algorithm and for fitting the
Z-score, we used a set of structures derived from the
'29SCOPsf' set described in more detail in [29]. The set
consists of 525 structures from 29 SCOP [30] super-
families (release 1.69) that constitute a representative col-
lection of common structural motifs. All superfamilies are
from different folds of the SCOP classification and cover
the four major SCOP classes all alpha, all beta,
alpha+beta, and alpha/beta.

Cost Function
The penalties that build up the path cost function are
divided into three terms.

1. Aligned components of the structural profiles, corre-
sponding to position i in the first profile and position j in
the second profile, are penalized by a term that grows with
their absolute difference,

with palign,exp as a tuneable parameter that will be referred
to as scaling exponent.

2. Breaking chain s between residue i and i + 1 is penalized
by

with parameters pbreak,fac and pbreak,exp. This is based on the
expectation that it is less likely to break a chain at a
strongly constrained position with large components ci
and ci+1.

3. An insertion of length nj in chain s at position j + 1

opposite to a gap in the other chain, consisting of the

components  is penalized by

with parameters pinsert,fac and pinsert,exp and with s = {1, 2}
selecting the chain. This is based on the expectation that
strongly connected residues are less likely to form part of
an insertion, or to be deleted from the other chain.

As a result, the complete path cost function is given by

where  is the set of all aligned pairs of amino acids, 
the set of all positions i after which chain s is broken, and

 the set of all insertions of length n after position j in
chain s.

For our implementation we found that the set of parame-
ters displayed in Table 4 that scale and weight the different
effects is close to optimal. The scaling exponents were
found to be valid within structures and at their termini.
Different values were found for the weighting factors for
chain insertion, as expected from sequence alignment
parameter values, even though the difference of the
parameters is much smaller than for sequence alignments.
An additional parameter for weighting the break of the
chain at a terminus, i.e. to assign gaps before or after the
chain, can trivially be omitted.

Parameter Training
As any automatic alignment procedure, the algorithm
described depends on adequate selection of its six param-
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eters for opening and extending gaps. To obtain an opti-
mal set of parameters, a Monte Carlo scheme was
conducted starting from a manually adjusted parameter
set. The decision whether to accept a preliminary parame-
ter change or not was based on the value of the sum of res-
idues close in space after optimal rotation, not using the
refinement routine.

The training set used is a randomly selected subset of the
pairs of chains from the 29SCOPsf set that are assigned to
the same superfamily. Alignments with a DaliLite [24] or
MAMMOTH [22]Z-scores smaller than four were removed
from the training set, to ensure that it only contains pairs
for which a well defined result exists. The training set con-
sists of 235 alignments.

Alignment Quality Assessment Routine
An automatic routine was set up to assess the quality of
the alignments produced by our algorithm, as well as of
alternative ones produced by well established programs.
Alignments were computed for the 3566 pairs of struc-
tures from the same SCOP superfamily in our dataset not
used in the training set, so that test and training sets are
disjoint.

For all examples, the results of the different algorithms
were inserted into our own procedure for computing the
optimal rotation using MaxSub and the scores for quality
assessment that are listed in Table 2. To make sure that the
alignments of the different algorithms are comparable,
their output was processed in order to agree in amino acid
sequence. This was mandatory, due to different behav-
iours of the algorithms in reading PDB files and display-
ing results.

Scores Computed for Quality Assessment
To allow for objective quality assessment and comparison
of the algorithms used here, the following scores were
computed.

The percentage of structural similarity (PSI) counts the
number of aligned amino acid pairs whose Cα atoms that
are closer in space then 4 Å after optimal rotation normal-
ized by the length of the shorter chain in the alignment.
rPSI discards fragments shorter than four aligned amino
acids from this value.

The root-mean-square deviation of the coordinates
(cRMSD) is computed over all aligned pairs or, in the 'core
only' case, over those pairs only that contribute to the PSI.

The contact overlap is deifned as

Where Cij and  are the aligned contact matrices of the

structures compared, obtained using the minimum dis-
tance between heavy atoms with a threshold dth = 4.5 Å.

The sequence similarity is computed using the BloSum62
similarity matrix and is normalized to a percentage. rSe-
qSim again discards aligned residues in short fragments.

The alignment test set is available as Additional File 3.

Z-score Fitting
The Z-score is generally defined as

To determine the quantities �PSI� and σPSI needed to com-
pute the Z-score we aligned 31284 pairs of unrelated
structures. We used the same set of structures introduced
above, but this time we aligned structures from different
SCOP superfamilies where pairs with DaliLite or Mam-
moth Z-score larger than 3 were sorted out to make sure
that the structures in the sample alignments are reasona-
bly unrelated. The values for �PSI� and σPSI were obtained
by fitting functions to the data shown in Fig. 4.

While the mean follows a power-law decay

�PSI� = a·min (N1 , N2)b,

the standard deviation is better matched by an exponen-
tial function

Q
CijCijij

Cijij Cijij
= ⋅

′∑

∑ ′∑( )100
min ,

′Cij

Z = −〈 〉PSI PSI

PSIσ
.

Table 4: SABERTOOTH Alignment Parameters

Parameter EC revised PE

palign,exp 1.60 1.79
pbreak,fac 1.79 3.25
pbreak,exp 1.57 0.38
pbreak,term,exp
pinsert,fac 0.43 0.83
pinsert,term,fac 0.31 0.58
pinsert,exp
pinsert,term,exp

1.77 0.89

Penalties for alignment of positions, breaking a protein chain and for 
inserting a chain fragment opposite to a gap. The same parameter 
values are used in the profile alignment as well as in the refinement 
routine. Please refer to UB, A.R.Ortíz, MP, FT: Effective Connectivity: 
A structural profile for multi-domain proteins, submitted, for the 
definition of the EC profile and to [10] for the revised PE.
Page 14 of 17
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σPSI = c - [d·log (min (N1, N2))].

The fits resulted to

�PSI� = 494·min (N1 , N2)-0.712

and

σPSI = 25.00 - [3.896·log (min(N1, N2))].

as shown in Fig. 5.

Computational Complexity
The computational complexity of the procedure is com-
posed of that of Dijkstra's shortest path algorithm [12]
and the MaxSub routine.

We implemented the Dijkstra algorithm using a Fibonacci
heap to find the cheapest vertex in each step. In this case,
the algorithm has complexity (|E| + |V| log |V|), where
|V| is the number of vertices and |E| is the number of
edges, i.e. the elements and arrows in the alignment
matrix. For the initial profile alignment |V| = (N1 + 1)·(N2

+ 1) + 1 with N1 and N2 as the number of amino acids in

the protein chains, taking also into account the additional
first row and column that permit leading gaps.

From this we find

|E| = (N1 + N2 + 1) + 2(N1 - 1 + N2 - 1) + 3((N1 - 1)(N2 - 1)) 
+ (N1 + N2 + 1) + 2((N1 - 1)(N2 - 1))

for edges leaving the 'start' element,  leaving first row and
column elements,  from inner matrix elements,  con-
nected to 'end', and  additional double steps needed to
implement the break/insert behaviour.

The complexity of the MaxSub algorithm is ,

where NMaxSub ≤ min (N1, N2) is the number of aligned

amino acid pairs.

For the second run of Dijkstra's algorithm the refinement
routine the restrictions imposed on the possible paths
largely reduce the number of edges in the alignment
matrix. This reduces the combined run time of Dijkstra's
algorithm together with MaxSub in the second run to
approximately 20% of that of the first run, over the test set
discussed above.

The overall complexity is

with NDijkstra = N1·N2. Both algorithms can be imple-
mented very efficiently and allow for very short computa-
tion times, as discussed below.

Implementation
The current program was implemented in C++ making
extensive use of object-oriented design principles. Data
representations and algorithms from the Standard Tem-
plate Library and the Boost C++ libraries [31] were uti-
lized. Some routines from LAPACK [32] were employed as
well. The resulting code is presently optimized to allow
for flexible modification rather than computational
speed.

Other Algorithms used for Comparison
Six different alignment algorithms that are freely available
on the Internet have been used as references for compari-
son.

The MAMMOTH algorithm [22] was selected as speed ref-
erence due to its very short computation times. It is based
on the idea of aligning structural profiles that are derived
from the dihedral angles between consecutive residues in
the protein backbone.

The MAMMOTH-mult algorithm [23] uses the same
alignment routine as the pairwise version but then it
applies an additional post-processing step, similar in
spirit to the one implemented here.

The DaliLite algorithm [24] aligns Cα contact matrices in
a heuristic scheme of combining overlapping submatrices
to get the final result. This makes the algorithm the slow-
est of our references but the precise coordinate representa-
tion results in the highest accuracy found here. We
consequently use DaliLite as the accuracy benchmark.

The TM-align algorithm [25] achieves high alignment
quality in short computation times by performing a two
step algorithm. An initial alignment is computed mainly
based on secondary structure information which is fol-
lowed by a heuristic iteration scheme.

The CE algorithm [26] performs combinatorial extension
of formerly defined aligned fragments based on local
geometry in the protein structures compared.

The SHEBA algorithm [27] utilizes so-called 'environ-
mental profiles', containing primary, secondary, and terti-
ary structure information for an initial alignment which is
then iteratively refined by analysing the superimposed Cα-
traces.

Availability and Requirements
Project name: SABERTOOTH Alignment Server



( )NMaxSub
2

  ∀= ⋅ +( log ) ( ),N N NDijkstra Dijkstra MaxSub
2

Page 15 of 17
(page number not for citation purposes)



BMC Bioinformatics 2007, 8:425 http://www.biomedcentral.com/1471-2105/8/425
Project home page: http://www.fkp.tu-darmstadt.de/sab
ertooth/

Licence: The web services provided may be freely used
without any charge.
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d1bhe__d1daba__maxSub.tcl', '2-d1cd9b2 d1bpv maxSub.tcl', and '3-
d1gca__d1dbqa__maxSub.tcl' for alignments of structures from the test 
set in quality assessment colour coding. The files '4-d1k0ma2 d1de4c3 
maxSub.tcl', '5-d1gnwa2_d1dp4a__maxSub.tcl', and '6-
d1iyha2_d1cg2a1_maxSub.tcl' contain RASMOL script files in all atoms 
depiction with alignments of structures from different SCOP folds but 
from the same secondary structure classes.
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Alignment Test Set. The file 'alignment_testset.dat' contains the test set 
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