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Abstract
Motivation: DNA microarray experiments generating
thousands of gene expression measurements, are being
used to gather information from tissue and cell sam-
ples regarding gene expression differences that will
be useful in diagnosing disease. We have developed a
new method to analyse this kind of data using support
vector machines (SVMs). This analysis consists of both
classification of the tissue samples, and an exploration of
the data for mis-labeled or questionable tissue results.
Results: We demonstrate the method in detail on samples
consisting of ovarian cancer tissues, normal ovarian
tissues, and other normal tissues. The dataset consists
of expression experiment results for 97 802 cDNAs for
each tissue. As a result of computational analysis, a
tissue sample is discovered and confirmed to be wrongly
labeled. Upon correction of this mistake and the removal
of an outlier, perfect classification of tissues is achieved,
but not with high confidence. We identify and analyse a
subset of genes from the ovarian dataset whose expression
is highly differentiated between the types of tissues. To
show robustness of the SVM method, two previously
published datasets from other types of tissues or cells are
analysed. The results are comparable to those previously
obtained. We show that other machine learning methods
also perform comparably to the SVM on many of those
datasets.
Availability: The SVM software is available at http://www.
cs.columbia.edu/∼bgrundy/svm.
Contact: booch@cse.ucsc.edu

Introduction
Microarray expression experiments allow the recording of
expression levels of thousands of genes simultaneously.

∗To whom correspondence should be addressed.

These experiments primarily consist of either monitoring
each gene multiple times under many conditions (Spell-
man et al., 1998; Chu et al., 1998; DeRisi et al., 1997;
Wen et al., 1998; Roberts et al., 2000), or alternately eval-
uating each gene in a single environment but in different
types of tissues, especially cancerous tissues (DeRisi et
al., 1996; Alon et al., 1999; Golub et al., 1999; Perou et
al., 1999; Zhu et al., 1998; Wang et al., 1999; Schum-
mer et al., 1999; Zhang et al., 1997; Slonim et al., 2000).
Those of the first type have allowed for the identification
of functionally related genes due to common expression
patterns (Brown et al., 2000; Eisen et al., 1998; Wen et al.,
1998; Roberts et al., 2000), while the latter experiments
have shown promise in classifying tissue types (diagno-
sis) and in the identification of genes whose expressions
are good diagnostic indicators (Golub et al., 1999; Alon
et al., 1999; Slonim et al., 2000). In order to extract in-
formation from gene expression measurements, different
methods have been employed to analyse this data includ-
ing SVMs (Brown et al., 2000; Mukherjee et al., 1999)
clustering methods (Eisen et al., 1998; Spellman et al.,
1998; Alon et al., 1999; Perou et al., 1999; Ben-Dor et al.,
2000; Hastie et al., 2000), self-organizing maps (Tamayo
et al., 1999; Golub et al., 1999), and a weighted correla-
tion method (Golub et al., 1999; Slonim et al., 2000).

Support vector machines (SVMs), a supervised machine
learning technique, have been shown to perform well in
multiple areas of biological analysis including evaluating
microarray expression data (Brown et al., 2000), detect-
ing remote protein homologies (Jaakkola et al., 1999), and
recognizing translation initiation sites (Zien et al., 2000).
We have also recently become aware of another effort that
uses SVMs in analyzing expression data (Mukherjee et al.,
1999). SVMs have demonstrated the ability to not only
correctly separate entities into appropriate classes, but also
to identify instances whose established classification is not
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supported by the data. Expression datasets contain mea-
surements for thousands of genes which proves problem-
atic for many traditional methods. SVMs, though, are well
suited to working with high dimensional data such as this.

Here a systematic and principled method is introduced
that analyses microarray expression data from thousands
of genes tested in multiple tissue or cell samples. The
primary goal is the proper classification of new samples.
We do this by training the SVM on samples classified
by experts, then testing the SVM on samples it has not
seen before. We demonstrate how SVMs can not only
classify new samples, but can also help in the identification
of those which have been wrongly classified by experts.
SVMs are not unique among classification methods in this
regard, but we show they are effective. Our method is
demonstrated in detail on data from experiments involving
31 ovarian cancer, normal ovarian and other normal
tissues. We are able to identify one tissue sample as mis-
labeled, and another as an outlier, which is shown in
the Results Section and illustrated in Figure 1. Though
perfect classification is finally achieved in one instance,
this performance is not consistently shown in multiple
tests and, therefore, cannot be considered too significant.

We also experimented with the method introduced in
(Golub et al., 1999) to focus the analysis on a smaller
subset of genes that appear to be the best diagnostic
indicators. This amounts to a kind of dimensionality
reduction on the dataset. If one can identify particular
genes that are diagnostic for the classification one is
trying to make, e.g. the presence of cancer, then there
is also hope that some of these genes may be found to
be of value in further investigations of the disease and
in future therapies. Here we find that this dimensionality
reduction does not significantly improve classification
performance. It does reveal some genes that may be of
interest in ovarian cancer. However, further work needs
to be carried out to identify the most effective feature
selection/dimensionality reduction methods for this kind
of data.

To test the generality of the approach, we also ran
experiments using leukemia data from Golub et al. (1999)
(72 patient samples) and colon tumor data from (Alon et
al., 1999) (62 tissue samples). Our results are comparable
to other methods used by the authors of those papers.
Since no special effort was made to tune the method to
these other datasets, this increases our confidence that our
approach will have broad applications in analyzing data of
this type.

It is difficult to show that one diagnostic method is
significantly better than another with small data sets
such as those we have examined. We have conducted a
full hold-one-out cross-validation (jackknife) evaluation
of the classification performance of the methods we
tested. These include both SVM methods and variants

of the perceptron algorithm. No single classification
technique has proven to be significantly superior to all
others in the experiments we have performed. Indeed,
the different kernels we tried performed nearly equally
well and variations of the perceptron algorithm are shown
to perform comparably to the SVM on all tests. It
is unfortunate that typical diagnostic gene expression
datasets today involve only a few tissue samples. As more
datasets become available with larger numbers of samples,
we predict that our method will continue to demonstrate
good performance.

Methods
In recent years, several methods have been developed for
performing gene expression experiments. Measurements
from these experiments can give expression levels for
genes (or ESTs) in tissue or cell samples. For more in
depth discussions of these techniques, see Lockhart et
al. (1996) and Schummer et al. (1999). Datasets used
for our experiments consist of a relatively small number
of tissue samples (less than 100) each with expression
measurements for thousands of genes.

Previous methods used in the analysis of similar datasets
start with a procedure to extract the most relevant features.
Most learning techniques do not perform well on datasets
where the number of features is large compared to
the number of examples. SVMs are believed to be an
exception. We are able to begin with tests using the full
dataset, and systematically reduce the number of features
selecting those we believe to be the most relevant. In this
way, we can show whether an improvement is made using
smaller sets, thus indicating whether these contain the
most meaningful genes.

To understand our method, a familiarity with SVMs
is required, and a brief introduction follows. We explain
below how we rank the features, and present an outline of
how we use the SVM to perform classification and error
detection.

Support vector machines
SVMs (Cristianini and Shawe-Taylor, 2000) are a
relatively new type of learning algorithm, originally
introduced by Vapnik and co-workers (Boser et al., 1992;
Vapnik, 1998) and successively extended by a number of
other researchers. Their remarkably robust performance
with respect to sparse and noisy data is making them the
system of choice in a number of applications from text
categorization to protein function prediction.

When used for classification, they separate a given
set of binary labeled training data with a hyper-plane
that is maximally distant from them (known as ‘the
maximal margin hyper-plane’). For cases in which no
linear separation is possible, they can work in combination
with the technique of ‘kernels’, that automatically realizes
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a non-linear mapping to a feature space. The hyper-plane
found by the SVM in feature space corresponds to a non-
linear decision boundary in the input space.

Let the j th input point x j = (x j
1 , . . . , x j

n ) be the
realization of the random vector X j . Let this input point
be labeled by the random variable Y j ∈ {−1,+1}.

Let φ : I ⊆ �n → F ⊆ �N be a mapping
from the input space I ⊆ �n to a feature space F . Let
us assume that we have a sample S of m labeled data
points: S = {(x1, y1), . . . , (xm, ym)}. The SVM learning
algorithm finds a hyper-plane (w, b) such that the quantity

γ = min
i

yi {〈w, φ(xi )〉 − b} (1)

is maximized, where 〈, 〉 denotes an inner product, the
vector w has the same dimensionality as F , ||w||2 is
held constant, b is a real number, and γ is called the
margin. The quantity (〈w, φ(xi )〉 − b) corresponds to the
distance between the point xi and the decision boundary.
When multiplied by the label yi , it gives a positive value
for all correct classifications and a negative value for
the incorrect ones. The minimum of this quantity over
all the data is positive if the data is linearly separable,
and is called the margin. Given a new data point x to
classify, a label is assigned according to its relationship
to the decision boundary, and the corresponding decision
function is

f (x) = sign(〈w, φ(x)〉 − b). (2)

It is easy to prove (Cristianini and Shawe-Taylor, 2000)
that, for the maximal margin hyper-plane,

w =
m∑

i=1

αi yiφ(xi ) (3)

where αi are positive real numbers that maximize

m∑
i=1

αi −
m∑

i j=1

αiα j yi y j 〈φ(xi ), φ(x j )〉 (4)

subject to
m∑

i=1

αi yi = 0, αi > 0, (5)

the decision function can equivalently be expressed as

f (x) = sign

(
m∑

i=1

αi yi 〈φ(xi ), φ(x)〉 − b

)
. (6)

From this equation it is possible to see that the αi associ-
ated with the training point xi expresses the strength with

which that point is embedded in the final decision func-
tion. A remarkable property of this alternative representa-
tion is that often only a subset of the points will be asso-
ciated with non-zero αi . These points are called support
vectors and are the points that lie closest to the separating
hyper-plane. The sparseness of the α vector has several
computational and learning theoretic consequences.

Notice that for a test point (x, y) the quantity
y
(∑m

i=1 αi yi 〈φ(xi ), φ(x)〉 − b
)

is negative if the
prediction of the machine is wrong, and a large negative
value would indicate that the point (x, y) is regarded by
the algorithm as ‘different’ from the training data.

The matrix Ki j = 〈φ(xi ),φ(x j )〉 is called the kernel
matrix and will be particularly important in the extensions
of the algorithm that will be discussed later. In the case
when the data are not linearly separable, one can use
more general functions, Ki j = K (xi , x j ), that provide
non-linear decision boundaries. Two classical choices are
polynomial kernels K (xi , x j ) = (〈xi , x j 〉 + 1)d and

Gaussian kernels K (xi , x j ) = e
−‖xi−x j ‖

σ2 , where d and
σ are kernel parameters. In our experiments, we use
K (xi , x j ) = (〈xi , x j 〉 + 1).

In the presence of noise, the standard maximum margin
algorithm described above can be subject to over-fitting,
and more sophisticated techniques are necessary. This
problem arises because the maximum margin algorithm
always finds a perfectly consistent hypothesis and does not
tolerate training error. Sometimes, however, it is necessary
to trade some training accuracy for better predictive
power. The need for tolerating training error has led
to the development of the soft-margin and the margin-
distribution classifiers (Cortes and Vapnik, 1995). One
of these techniques (Shawe-Taylor and Cristianini, 1999)
replaces the kernel matrix in the training phase as follows:

K ← K + λ1, (7)

while still using the standard kernel function in the
decision phase (6). We call λ the diagonal factor. By tuning
λ, one can control the training error, and it is possible to
prove that the risk of misclassifying unseen points can be
decreased with a suitable choice of λ (Shawe-Taylor and
Cristianini, 1999).

If instead of controlling the overall training error one
wants to control the trade-off between false positives and
false negatives, it is possible to modify K as follows:

K ← K + λD, (8)

where D is a diagonal matrix whose entries are either d+
or d−, in locations corresponding to positive and negative
examples. It is possible to prove that this technique is
equivalent to controlling the size of the αi in a way
that depends on the size of the class, introducing a
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bias for larger αi in the class with smaller d. This
in turn corresponds to an asymmetric margin; i.e. the
class with smaller d will be kept further away from the
decision boundary (Brown et al., 2000). In the case of
imbalanced data sets, choosing d+ = 1

n+ and d− =
1

n− provides a heuristic way to automatically adjust the
relative importance of the two classes, based on their
respective cardinalities.

The experiments presented in this paper were performed
using a freely available implementation of the SVM classi-
fier which can be obtained at http://www.cs.columbia.edu/
∼bgrundy/svm.† This implementation is based on that de-
scribed in Jaakkola et al. (1999) and differs slightly from
the above explanation in that it does not include a bias
term, b, forcing all decision boundaries to contain the ori-
gin in feature space.

Feature selection
Our feature selection criterion is essentially that used in
Golub et al. (1999) and Slonim et al. (2000). We start
with a dataset S consisting of m expression vectors xi =
(xi

1, . . . , xi
n), 1 ≤ i ≤ m, where m is the number of tissue

or cell samples and n is the number of genes measured.
Each sample is labeled with Y ∈ {+1,−1} (e.g. cancer
vs normal). For each gene x j , we calculate the mean µ+j
(resp. µ−j ) and standard deviation σ+i (resp. σ−i using
only the tissues labeled +1 (resp. −1). We want to find
genes that will help discriminate between the two classes,
therefore we calculate a score‡

F(x j ) =
∣∣∣∣µ
+
j − µ−j

σ+J + σ−j

∣∣∣∣ (9)

which gives the highest score to those genes whose
expression levels differ most on average in the two classes
while also favoring those with small deviations in scores
in the respective classes. We then simply take the genes
with the highest F(x j ) scores as our top features.

Complete SVM method
The complete SVM method can be described as follows:
we begin by choosing a kernel, starting with the simple
dot-product kernel, and tune the diagonal factor to achieve
the best performance on hold-one-out cross-validation
tests using the full dataset. The SVM tuning procedure is
then repeated with a specified number of the top-ranked
features. In these cases, for each individual hold-one-out
test, the features are ranked based on (9) using the scores

† We use default values set in the software except for the diagonal factor,
which varies, the convergence threshold, which we set to 10−11, and using
the ‘noconstraint’ option.
‡ This score is closely related to the Fisher criterion score for the j th feature,
F( j) = (µ+j − µ−j )2/((σ+j )2 + (σ−j )2) (Bishop, 1995).

from only the known samples, some number of the top
features are extracted, and then these are then used to train
the SVM and classify the unknown sample. Examples
which have been consistently misclassified in all tests are
identified. These examples can then be investigated by the
biologist, and if it is determined that the original label is
incorrect, a correction is made, and the process is repeated.
Alternatively, an example may be deemed an outlier that
is very different from the rest, and is therefore removed.

In the SVM tests reported here, only the simple dot-
product kernel is used.§ A more complex kernel is not
required. As possibly more complex datasets become
available providing more examples, higher-order kernels
may become necessary (Mukherjee et al., 1999).

Results
Our method is tested in detail using a previously unpub-
lished ovarian tissue dataset. A short analysis of the fea-
ture selection is included. To demonstrate the generality
of our method, we also performed experiments using pre-
viously published datasets. The first dataset contains ex-
amples of patients with human acute leukemia, originally
analysed by Golub et al. (1999) with further results re-
ported by Slonim et al. (2000). The dataset can be ob-
tained at http://waldo.wi.mit.edu/MPR/cancer class.html.
The second dataset is comprised of human tumor and nor-
mal colon tissues. Alon et al. (1999), originally analysed
this data which is available on their website, http://www.
molbio.princeton.edu/colondata.

Ovarian dataset
Microarray expression experiments are performed using
97 802 DNA clones, each of which may or may not corre-
spond to human genes, for 31 tissue samples. These sam-
ples are either cancerous ovarian tissue, normal ovarian
tissue, or normal non-ovarian tissue. For the purpose of
these experiments, the two types of normal tissue are con-
sidered together as a single class. The expression values
for each of the genes are normalized such that the distri-
bution over the samples had a zero mean and unit variance.

Hold-one-out cross-validation experiments are per-
formed. The SVM is trained using data from all but one of
the tissue samples. The sample not used in training is then
assigned a class by the SVM. A single SVM experiment
consists of a series of hold-one-out experiments, each
sample being held out and tested exactly once.

Initially, experiments are carried out using all expression
scores with diagonal factor settings of 0, 2, 5 and 10. The
genes are then ranked in the manner described previously,
and datasets consisting of the top 25, 50, 100, 500

§ We experimented with polynomial and radial basis kernels on the ovarian
data, and found that on data containing the mis-labeled point, they performed
worse than the linear kernel, but on the correctly labeled data, performance
is similar to the linear kernel.
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Table 1. Error rates for ovarian cancer tissue experiments

Kernel DF Feature FP FN TP TN

Dot-product 0 25 5 4 10 12
Dot-product 2 25 5 2 12 12
Dot-product 5 25 4 2 12 13
Dot-product 10 25 4 2 12 13

Dot-product 0 50 4 2 12 13
Dot-product 2 50 3 2 12 14
Dot-product 5 50 3 2 12 14
Dot-product 10 50 3 2 12 14

Dot-product 0 100 4 3 11 13
Dot-product 2 100 5 3 11 12
Dot-product 5 100 5 3 11 12
Dot-product 10 100 5 3 11 12

Dot-product 0 97 802 17 0 14 0
Dot-product 2 97 802 9 2 12 8
Dot-product 5 97 802 7 3 11 10
Dot-product 10 97 802 5 3 11 12

For each setting of the SVM consisting of a kernel and
diagonal factor (DF), each tissue was classified.
Column 2 is the number of features (clones) used.
Reported are the number of normal tissues misclassified
(FP), tumor tissues misclassified (FN), tumor tissues
classified correctly (TP), and normal tissues classified
correctly (TN).

and 1000 features are created. Experiments using similar
diagonal factors to those above are performed using these
smaller feature sets. Table 1 displays the most significant
results from these experiments. The best classification is
done using the top 50 features with a diagonal factor of 2
or 5. Though the smaller datasets achieve slightly better
scores compared to using all features, we do not believe
this improvement to be significant.

An analysis of the misclassified examples reveals that
one normal ovarian tissue sample, N039, is misclassified
in all instances. In addition, the margin of misclassifi-
cation, calculated using (6), is relatively large meaning
the SVM strongly believes it to be cancerous. Figure 1
shows classification margins for experiments using the top
50 features and a diagonal factor of 2. Upon investigation,
it is discovered that this tissue had been mistakenly
labeled and is, in fact, cancerous.

With a corrected label, the above experiments are run
again, but disappointingly, classification results do not
improve. A second tissue, called HWBC3, is consistently
misclassified by a large margin in these new tests, and
was also strongly misclassified in the original tests, as
shown in Figure 1. This non-ovarian normal tissue is the
only tissue of its type, and an SVM trained on tissues
with little similarity might give spurious classification
results. Therefore, we remove this tissue and repeat the
experiments. Perfect classification is achieved using all
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Fig. 1. SVM classification margins for ovarian tissues. When
classifying, the SVM calculates a margin which is the distance of
an example from the decision boundary it has learned. In this graph,
the margin for each tissue sample calculated using (6) is shown.
A positive value indicates a correct classification, and a negative
value indicates an incorrect classification. The most negative point
corresponds to tissue N039. The second most negative point
corresponds to tissue HWBC3.

features and a diagonal factor of 0. No other setting is
able to make fewer than three mistakes and most make
at least four, therefore we can not place much confidence
in one perfect experiment.

After ranking the features using all 31 samples, we
attempt to sequence the ten top-ranked genes to determine
if they are biologically significant. Three of these did
not yield a readable sequence, and two are repetitive
sequences which occur naturally at 3’ ends of messenger
RNAs and do not correspond to actual genes. Therefore,
only five represent expressed genes for which cancer-
relatedness information is thus available, either by its
homology to a known or assumed tumor gene, or its
presence in cDNA libraries from tumor tissues in the case
of ESTs. Indeed, three of these five are cancer-related
(Ferritin H and two cancer-library ESTs), and one is
related to the presence of white blood cells in the tumor.
This analysis seems to suggest that the feature selection
method is able to identify clones that are cancer-related,
and rank them highly. Some clones however, obtain a
high ranking while not having a meaningful biological
explanation. Random sequencing of some of the bottom-
ranked clones also reveal some known tumor genes which
would be expected to be ranked highly. Given this and the
inability of this feature selection method to significantly
improve classification performance, we conclude that
additional effort is needed to develop ways of identifying
meaningful features in these types of datasets. From a
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tumor biologist’s point of view however, the accumulation
of tumor-related genes at the top is a very useful feature.

AML/ALL dataset
Bone marrow or peripheral blood samples are taken from
72 patients with either acute myeloid leukemia (AML)
or acute lymphoblastic leukemia (ALL). Following the
experimental setup of the original authors, the data is
split into a training set consisting of 38 samples of
which 27 are ALL and 11 are AML, and a test set of
24 samples, 20 ALL and 14 AML. The dataset provided
contains expression levels for 7129 human genes produced
by Affymetrix high-density oligonucleotide microarrays.
The scores in the dataset represent the intensity of gene
expression after being re-scaled to make overall intensities
for each chip equivalent. Following the methods in Golub
et al. (1999), we normalize these scores by subtracting
the mean and dividing by the standard deviation of the
expression values for each gene.

Golub et al. perform hold-one-out cross validation
tests using a weighted voting scheme to classify the
training set¶ and also cluster this set using self-organizing
maps (SOMs). The first method correctly classifies all
samples for which a prediction is made, 36 of the
38 samples, while a two-cluster SOM produces one cluster
with 24 ALL and one AML sample, and the second with
10 AML and three ALL samples.

We also did a full hold-one-out cross-validation tests on
the training set, and our SVM method correctly classifies
all samples with a diagonal factor setting of two. Retesting
subsets containing the top-ranked 25, 250, 500, and
1000 features, perfect classification is obtained using a
diagonal factor of two in all cases.

Using an SVM trained only with examples in the
training set and the subsets of features that perform
optimally on this training set, we classify examples in the
test set producing results ranging between classifying 30
to 32 of the 34 samples correctly. Golub et al. use a
predictor trained using their weighted voting scheme on
the training samples, and classify correctly on all samples
for which a prediction is made, 29 of the 34, declining to
predict for the other five. In all tests, our SVM correctly
classifies the 29 predicted by their method, and for the
five unpredicted samples, each is misclassified in at least
one SVM test. Two samples, patients 54 and 66, are
misclassified in all SVM tests.

Lineage information, either T-cell or B-cell, is provided
for the ALL samples. Using all 47 ALL samples from
the training and test sets, the SVM achieves perfect

¶ The weighted voting scheme selects 50 genes as described in the subsection
‘Feature selection’. Each gene predicts a class for each sample. These
predictions are combined, each being weighted by the F(g) score defined
above, and if a threshold is exceeded in favor of one class over the other, a
prediction is made.

classification using the 250 and 500 top-ranked features
with multiple diagonal factor settings on hold-one-out
cross-validation tests. Using the full dataset, the SVM
misclassifies a single tissue using a zero diagonal factor.
Golub et al. uses SOMs to create four clusters containing
all training set examples, including the AML samples.
The first cluster contains 10 AML samples, the second
eight T-lineage ALL samples and one B-lineage ALL
sample, the third five B-lineage ALL samples, and the
last one 13 B-lineage ALL samples and a single AML
sample. Additional tests in Slonim et al. (2000) use the
weighted voting predictor to classify 33 samples of which
it predicted on 32, all being correct.

Lastly, the success of chemotherapy treatments for 15 of
the AML patients is available. Slonim et al. report that
they were able to create a predictor which made only
two mistakes using a single gene, HOXA9, but that other
predictors using more than this gene generally had error
rates above 30%. On hold-one-out cross-validation tests,
the SVM is able to classify 10 of the 15 patients using
the top 5 or 10 ranked features and a diagonal factor
of two, thus performing only slightly better than chance.
One misclassified sample, patient 37, is consistently
misclassified by a relatively large margin.

Colon tumor dataset
Using Affymetrix oligonucleotide arrays, expression lev-
els for 40 tumor and 22 normal colon tissues are measured
for 6500 human genes. Of these genes, the 2000 with the
highest minimal intensity across the tissues are selected
for classification purposes and these scores are publicly
available. Each score represents a gene intensity derived in
a process described in Alon et al. (1999). The data is not
processed further before performing classification. Alon
et al. use a clustering method to create clusters of tissues.
In their experiments, one cluster consists of 35 tumor and
three normal tissues, and the other 19 normal and five tu-
mor tissues.

Using the SVM method with full hold-one-out cross-
validation, we classify correctly all but six tissues using all
2000 features and a diagonal factor of two. Using the top
1000 genes, the SVM misclassifies these same six samples
which correspond to three tumor tissues (T30, T33, T36)
and three normal tissues (N8, N34, N36). T30, T33, and
T36 are among the five tumor tissues in the Alon et al.
cluster with a majority of normal tissues, and N8 and
N32 are in the cluster containing a majority of the tumor
tissues.

Alon et al. define a muscle index based on the average
intensity of ESTs that are homologous to 17 smooth
muscle genes, and hypothesize that tumor tissues should
have a smaller muscle index. In general, this proves correct
with the notable exceptions that all tumor tissues have a
muscle index less than or equal to 0.3 except for T30, T33,
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and T36, and all normal tissues have an index greater than
or equal to 0.3 except N8, N34, and N36. Two samples,
N36 and T36, are especially interesting because their
names indicate that they originate from the same patient,
both are consistently misclassified by the SVM, and N36
has a muscle index or 0.1 and T36 has a muscle index of
0.7, contrary to the proposed hypothesis.

Comparison to perceptron-like classification
algorithms
As discussed in the introduction, we do not claim that
we can prove the superiority of the SVM method over
other classification techniques on this type of dataset. The
second family of algorithms we test are generalizations of
the perceptron algorithm (Rosenblatt, 1958). This simple
algorithm considers each sample individually, and updates
its weight vector each time it makes a mistake according
to

wi+1 = wi + yi xi . (10)

The resulting decision rule is linear (no bias is used),
and classification is given by sign(〈wi , x〉). However, this
algorithm requires modification when there is no perfect
linear decision rule. Helmbold and Warmuth (1995) show
that taking a linear combination of the decision rules used
at each iteration of the algorithm is sufficient, and are able
to derive performance guarantees. The final decision rule
is sign

(∑
t 〈wi , x〉). Results for this modified perceptron

are comparable to those for the SVM, and scores using all
features in each dataset are given in Table 2.

Freund and Schapire (1998) demonstrate that kernels
other than the simple inner product can be applied effec-
tively to this algorithm, achieving performance compara-
ble to the best SVM on a benchmark test of Hand-Written
Digits. As in the case of SVMs, though, the use of a more
complex kernel did not improve performance.

We also test an algorithm known as the p-norm percep-
tron (Grove et al., 1997), using the same averaging proce-
dure. Theoretical results suggest that these algorithms will
perform well when good sparse hypotheses are available.
The p-norm perceptron, though, did not perform as well
as the theory might suggest (results not shown).

Conclusion
We have presented a method to analyse microarray
expression data for genes from several tissue or cell
types using SVMs. While our results indicate that SVMs
are able to classify tissue and cell types based on
this data, we show that other methods such as the
ones based on the perceptron algorithm are able to
perform similarly. The datasets currently available contain
relatively few examples and thus do not allow one method
to demonstrate superiority. The SVM performs well using
a simple kernel, and we believe that as datasets containing

Table 2. Results for the perceptron using all features

SVM SVM
Dataset Features FP FN FP FN

Ovarian I 97 802 4.6 4.8 5 3
Ovarian II 97 802 4.4 3.4 0 0
AML/ALL train 7 129 0.6 2.8 0 0
AML treatment 7 129 4.8 3.5 3 6
Colon 2 000 3.8 3.7 3 3

Results are averaged over five shufflings of the data as this
algorithm is sensitive to the order of the samples. The first
column is the dataset and the second is the number of
features considered. Ovarian I refers to the original full
dataset with the incorrectly labeled N039 tissue, while
Ovarian II is the dataset with the label corrected and the
HWBC3 tissue removed. The ovarian and colon datasets
show the number of normal tissues misclassified (FP) and
the number of tumor tissues misclassified (FN). The
AML/ALL training dataset report the number of AML
samples misclassified (FP) and the number of ALL
patients misclassified (FN). The AML treatment dataset
shows the number of unsuccessfully treated patients
misclassified (FP) and the number of successfully treated
patients misclassified (FN). The last two columns report
the corresponding SVM score using all features.

more examples become available, the use of more complex
kernels may become necessary and will allow the SVM
to continue its good performance. As an added feature of
our SVM method, we demonstrate that it can be used to
identify mis-labeled data.

Microarray expression experiments have great potential
for use as part of standard diagnosis tests performed in
the medical community. We have shown along with others
that expression data can be used in the identification of
the presence of a disease and the determination of its cell
lineage. In addition, there is a hope that predictions of
the success or failure of a particular treatment may be
possible, but so far, results from these types of experiments
are inconclusive.
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