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ABSTRACT

Motivation: In microarray experiments, probe design is critical to the

specific and accurate measurement of target concentrations.

Current designs select suitable probes through in silico scanning

of transcriptome/genome based on first principles. However, due to

lack of tools, the observed microarray data have not been used

to assess the performance of individual probes to provide feedback

to improve future designs.

Result: In this study, we describe a probe performance assessment

method based on the concordance of the observed signals from

probes that share common targets. Using this method, we found that

probes containing multiple guanines in a row (G-stacks) have

abnormal binding behavior compared with other probes, both in

gene expression assays and genotyping assays using Affymetrix

microarrays. These probes are less likely to covary with other probes

that interrogate the same genes. Moreover, we found that these

probes are much more likely to produce outliers when fitting the

observed signals according to the positional dependent nearest

neighbor model, which gives reasonable estimates of binding affinity

for most other probes. These results suggest that probes containing

G-stacks tend to have increased cross hybridization signals and

reduced target-specific hybridization signals, presumably due

to multiplex binding forming G-quartet structures. Our findings are

expected to be useful in microarray design and data analysis.

Availability: URL: http://odin.mdacc.tmc.edu/�zhangli/Perfect

Match/contains the computer program for calculating correlations

of neighboring probes.

Contact: lzhangli@mdanderson.org

Supplementary information: Bioinformatics online or http://odin.

mdacc.tmc.edu/�zhangli/G-stack

1 INTRODUCTION

Microarray technology has become widely used as a tool
in biological research (Lander, 1999; Lockhart and

Winzeler, 2000; Olson, 2004). A critical problem of this
technology is ensuring that the signals observed from individual
probes come from specific genes as designed, since thousands

or tens of thousands of genes are measured simultaneously
on an array. Typically, microarray probe design is based on

a computational search of the transcriptome/genome, which
considers uniqueness in the transcriptome/genome to avoid

cross hybridization. The design also tries to limit the variation
of binding affinity and melting temperature among different
probes, and avoid secondary structure of target DNA

(or RNA), which may interfere with binding (Li and Stormo,
2001; Matveeva et al., 2003; Mei et al., 2003; Rouillard et al.,

2003). However, because computational models have limited
accuracy, actual probe performance varies. Thus, it would be

highly desirable to utilize observed microarray data to optimize
probe design and improve probe performance. However, this
task is not trivial because the true content of the observed

signals, which are mixtures of target-specific and cross
hybridization, is not known. Through spike-in experiments,

cross hybridization signals have been quantified on occasion
(Wu et al., 2005) and spike-in data have been used in array
design (Mei et al., 2003). However, such experiments are

suitable only for a small set of probes because of experimental
cost. Consequently, the bulk of observed microarray data have

not been used to assess and improve probe design.
In this study, we propose a way to use the concordance

of observed probe signals to evaluate probe performance.

We studied data produced by short oligonucleotide arrays
commercialized by Affymetrix, Inc. These arrays use in situ

synthesized 25 mer DNA oligonucleotides as probes (Lockhart
et al., 1996). By design, multiple probes are used to target each

gene to reduce cross hybridization effects. A group of probes
targeted to the same gene is called a probe set. Ideally, the
probes in a probe set should change concordantly as the target

concentration varies between samples. However, a number*To whom correspondence should be addressed.
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of factors, such as random noise, cross hybridization and

alternative splicing, can reduce the observed correlation

between probes. We first searched for the probes in a probe

set that were repeatedly found to be less concordant than their

neighboring probes. We then searched for sequence motifs

in these discordant probes to learn how to avoid such probes

in array design. Such analysis led us to discover that probes

that contain multiple guanines in a row (or G-stacks) display

abnormal binding behavior compared with other probes.

We show that probes that contain G-stacks are much less

likely to covary with neighboring probes that interrogate the

same genes.
Additionally, we found that probes that contain G-stacks

appear to have unexpected binding affinities. In our previous

work (Zhang et al., 2003), we developed the positional

dependent nearest neighbor (PDNN) model, which gives

reasonable estimates of the binding affinities of most probes

on the arrays. In the PDNN model, probe binding affinity is

formulated as a weighted sum of stacking free energies of

neighboring base pairs in the double helix formed by the probe

and its targeted mRNA transcript. The weights vary depending

on the position of the base pairs along the probe, hence the

naming of the PDNN model. We show that probes that contain

G-stacks are abnormal because they tend to produce signals

that are outliers far from the signals expected by the PDNN

model. We also show that the abnormal behavior of such

probes is not limited to data observed from gene expression

assays since the probes produce outlier signals on genotyping

assays (SNP detection) too. In the Discussion Section, we

suggest a possible mechanism of the abnormal behavior of

G-stacks.

2 METHODS

2.1 Sources of microarray data and processing

We obtained the gene expression data of Su et al. (Su et al., 2004).

This dataset includes 158 array images composed of 79 samples, each

of which has two replicates hybridized on the human genome

HG-U133A array. We discarded some of the samples because the

correlation coefficients between some replicates appeared to be lower

than those between others. Thus, we included 71 samples in our

consequent analysis. Only PM probes were used; MM probes were

discarded. We used the quantile normalization method (Bolstad et al.,

2003) to normalize the PM probe signals. The normalization process

made the probe signal distribution the same for all the samples included

in this study. To perform model fitting with the PDNN model, we used

the software package PerfectMatch, available at http://odin.mdacc.tmc.

edu/�zhangli/PerfectMatch.

We downloaded SNP (single nucleotide polymorphism) data from

the Affymetrix, Inc. Web site (http://www.affymetrix.com/support).

The array type is Mapping50k_xba (Matsuzaki et al., 2004). To exclude

probes that involve binding with mismatches, we used the following

probe selection criteria: (1) the SNP type must be homozygous (i.e. AA

or BB); (2) the allele type of the probe should match the SNP call

according to the GDAS algorithm (Liu et al., 2003) and (3) Probes with

complementary sequences also exist on the array. In sum, 41 044 probes

met these criteria, of which 515 contained GGGG in their probe

sequences.

2.2 Differential correlation between probe neighbors

Let X, Y, Z be three consecutive probes in a probe set that targets

a particular gene. Let Xi denote the signal of probe X on sample i,

where i¼ 1, . . . , n, and n is the total number of samples. Similarly, let Yi

denote the signal of probe Y on sample i, and Zi denote the signal of

probe Z on sample i. We compute the correlation between these

neighboring probes as
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D ¼ Rn� ðRleftþ RrightÞ=2

where D (the D score) is the differential correlation between

neighboring probes with regard to probe Y. To perform these

calculations, we use our software package PerfectMatch, available at

http://odin.mdacc.tmc.edu/�zhangli/PerfectMatch, to compute Rright,

Rleft and Rn. The rationale of D score is that, when D40, it means that

signals on probes X and Z are well correlated but signals on probe Y are

discordant with them. There are two possible causes of D40 other than

random noise. One is that Y is defective but both Z and X are

performing well. The other possibility is that Y performs well but

both X and Z are defective. And they are defective in the same way,

so that signals on Z and X are well correlated but they are discordant

with signals on Y. The second possibility is highly unlikely defective

measurements are isolated evens and they seldom behave concordantly.

Hence, we use D40 as an indicator that probe Y performs worse

than probes X and Z.

3 RESULTS

To evaluate the performance of a probe, we examined

the correlation of its observed signals with those of its

neighboring probes across many samples. A neighboring

probe is one adjacent to the one under examination according

to the ordering of the probes along the matching target gene

sequence from the 50 end to the 30 end. (In the PDNN model,

‘nearest neighboring’ refers to the consecutive base pairs in the

double helix formed in hybridization; here, ‘neighboring probe’

refers to the positions of the probes bound to the target gene.)

Using probe level data from a previously published dataset

(Su et al., 2004), we computed the correlations of the probe

signals between neighboring probes across the 71 samples.

We then computed the differential correlation D score (see

Methods Section) of each probe on the array to assess if each

probe performed better (D50) or worse (D40) than its

neighbors.

Simple observation of the correlations between neighboring

probes led to the discovery that probes that contain G-stacks

tend to have poorer performance than other probes. To search

for probes with poor performance, we examined the probes that

had correlations less than 0.5 with their left neighbors and right

neighbors (see Methods Section), but whose neighbors had

correlations greater than 0.85, i.e. probes that did not correlate

well with their neighbors but whose neighbors correlated well
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with each other. Of the 362 probes that met these criteria,

30% (120) contained GGGG in their sequences. Considering

that only 6.8% of the 250 000 probes on the array have GGGG

in their sequences, this association is clearly significant

(P-value¼ 2� 10�16, �2 test) and suggests that the G-stack is

not a desirable sequence motif for probe design.

To generally evaluate which sequence motifs may be poor

choices for probe design, we stratified the probes according to

their central bases from position 11 to 14. We examined the

distribution of D scores in each group and found that G-rich

probes were the worst performers. Figure 1a lists the most

significant motifs that resulted from this analysis. On average,

probes that contain GGGG had a D score of 0.16, which is

significantly greater than 0 (P-value¼ 1.1� 10�8, t-test). Most

motifs in Figure 1a are G-rich; the exception is CCCC. Similar

results were obtained when the probes were stratified according

to the central five bases from position 11 to 15 (Fig. 1b),

from which the most significant motif was found to be

GGGGC (P¼ 0.00016, t-test).
To further examine the cause of poor performance of probes

that contain G-stacks, we compared the observed signals

(PMobs) on these probes with the model fitted values (PMfit)

according to PDNN model (Zhang et al., 2003). From the

distribution of residuals [defined as ln (PMfit)� ln (PMobs)],

we saw heavier tails from probes that contain GGGGG or

CCCCC, compared with those from all probes (Fig. 2a). This

implies that CCCCC and GGGGG probes tend to create more

outliers. In contrast, probes that contain TTTTT or AAAAA

demonstrated behavior similar to the group that included all

probes. Interestingly, when the G-stack is interrupted, as in

probes with GGNGGG or GGGNGG, where N is a base other

than G, the probes behave rather normally (black dots in

Fig. 2a). It means that it is the G-stack rather than the

individual Gs that causes the poor performance.
From Figure 2a, we can also see that the observed signals

from probes containing GGGGG tend to be greater than
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Fig. 1. Worst performing probes in gene expression assays. The vertical

axis represents the average differential performance score in a group of

probes. Each error bar shows the SD of the mean. A positive score

means that the probe is less concordant than its neighboring probes.

The probes are grouped according to (a) the central four bases from

position 11 to 14 along the probe; or (b) central five bases from position

11 to 15. The P-values were estimated from t-test.
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Fig. 2. Distributions of residuals. All distribution curves were normal-

ized to have area of 1. The residuals were obtained from model fitting

on one array HG-U133A [data from (Su et al., 2004)], using PDNN

model (Zhang et al., 2003). (a) The black line includes all probes and the

red includes 3538 probes containing GGGGG in their sequences;

the blue for 2134 CCCCC probes; the green for 2028 AAAAA probes;

the brown for 7213 TTTTT probes and the black dots for 4863 probes

containing GGNGGG or GGGNGG, where N is a nucleotide other

than G. (b) Probes were stratified by the G-stack length except that the

red line includes probes that do not contain GGG and the black line

includes all probes. G3, G4, G5 and G6 represent probes with G-stack

length of 3, 4, 5 and 6, respectively.
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expected from PDNN model as the residual distribution

curve is tilted to the left. From probes that contain

GGGGG in their sequences, we found 218 probes had

ln (PMfit)� ln (PMobs)5�0.5, but only 39 probes had

ln (PMfit)� ln (PMobs)40.5. Interestingly, we found that the

former group of probes is associated with low gene expression

values, but the latter group is associated with high gene

expression values. Using the signals from probes that are in the

same probe sets as the probes that contain G-stacks, we

estimated the gene expression values according to PDNN

model. For the probe sets (genes) associated with the 218

probes, the average gene expression value� SD¼ 5.85� 0.12

(values presented on natural logarithm scale), while for the

probe sets associated with the 39 probe, the average gene

expression value �SD¼ 6.41� 0.45 (on natural logarithm

scale as well). This difference is statistically significant

(P-value¼ 3� 10�13, t-test). These results indicate that probes

that contain G-stacks tend to get extra signals when target

concentration is low but miss signals when target concentration

is high. We also examined CCCCC probes in detail to look for

the same pattern. We found 226 probes with ln (PMfit)� ln

(PMobs)5�0.5, the associated average gene expression

�SD¼ 5.86� 0.30. We also found 80 probes with

ln (PMfit)� ln (PMobs)40.5, the associated average gene

expression �SD¼ 5.95� 0.33. Thus, CCCC probes also tend

to have higher than expected signals, but there is no significant

association with the gene expression values as that observed in

GGGG probes. These results suggest that GGGG probes and

CCCC probes may have different mechanisms that lead to

their poor performance on the microarrays.
To study the effects of G-stack length, we stratified the

probes according to the length of consecutive Gs in their

sequences and examined the distribution of the residuals.

As Figure 2b shows, the residual distribution starts to show

deviation from normal probes only when the G-stack length

is more than 3. When the G-stack length is 6, the deviation

becomes quite obvious.

We found that the unusual binding behavior of probes that

contain G-stack is not limited to gene expression assays. We

examined data produced from genotyping arrays for SNP

detection (Kennedy et al., 2003). The measurement mechanism

on this type of arrays differs from that of gene expression

arrays because the target molecules used in genotyping assays

are double-stranded, end-labeled DNA molecules as opposed

to the single-stranded, internally labeled RNA molecules used

in gene expression assays. For simplicity, we collected probes

signals that involved no mismatches based on genotype calls

determined by the GDAS algorithm (Liu et al., 2003)

(see Methods Section for details). Because the target molecules

are double stranded, both sense and antisense sequences are

adopted to design the probes. Consequently, a pair of probes

with sequences complementary to each other should bind to the

same target molecules. Because the same double helix forms for

each probe in the probe pair upon binding to the targets,

we expect probes with complementary sequences to have

similar binding affinity. Therefore, we used the ratio of

observed signals between complementary sequences (cPM/

PM) to examine the binding affinity of the probes.

Again, we found that probes that contain G-stacks appear to

be outliers in terms of cPM/PM ratios. Figure 3a shows the

average cPM/PM ratios for probes stratified by the central

three bases on the PM probes. Probes that contain GGG at the

center of the probe sequence have much lower signals than

their complementary probes, which have CCC at the center of

the probe sequences (the average ratio is �1.7). Similar results

were obtained when the probes were stratified according to the

central four bases (data not shown).
From our previous study, we found that the assumption that

complementary probes ought to have the same binding affinity

does not hold exactly (Zhang et al., 2007). A possible cause

is interaction between target molecules and the microarray

surface, which is not equivalent for complementary probes.

We performed regression analysis of cPM/PM ratios in terms

Fig. 3. Signal ratio between of complementary probe pairs. Two probes

that have reverse complementary sequences to each other are called

complementary probe pair. The vertical axes in the figures represent the

average of complementary probe signals (cPM) divided by the average

of PM probe signals. (a) The probes were stratified according to the

central three bases on the sense probe. All 41044 probes on Mapping

50 k-Xba met homozygous criteria were included; (b) the probes

included are a subset of that in (a) by requiring that the number of As

and Ts are equal in a probe sequence; (c) the probes were the same as

that in (a) but the probes stratified according to the first three bases on

a probe and (d) the probes were the same as that in (a) but the probes

stratified according to the bases 11, 13 and 15 on a probe.
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of A, T, C, G composition of the probes. We have found that

the cPM/PM ratio depends to some extent on the number of

As minus the number of Ts in the probe sequence (Zhang et al.,

2007). Consequently, we examined probes with equal number

of As and Ts in their sequences (Fig. 3b). For probes in

Figure 3b, the surface effects are supposed to be similar for PM

and cPM probes. Interestingly, with these probes, cPM/PM

ratio is close to 1 mostly, and the GGG probes as a group of

outliers become even more striking. This result suggests that

when the surface effect is corrected for, the abnormality of

probes containing G-stacks is more prominent. Furthermore,

to find out if it is the G-stacks or the individual Gs that lead

to the abnormal cPM/PM ratios, we stratified the probes

according to the bases 11, 13 and 15 instead of the central three

bases (Fig. 3d). In Figure 3d, the probes with three Gs at these

bases did not result in abnormal cPM/PM ratios. Thus, similar

to that found in the gene expression arrays, G-stacks seemed to

be the cause rather than the individual Gs.

We found that the effects of G-stacks seem to depend on the

position on the probe. When the probes were stratified

according to the first three bases (i.e. the 50 end. The 30 end

of the probe is tethered to the microarray surface.) instead of

the central three bases, the contrast between GGG probes

and CCC probes diminished (Fig. 3c). In Figure 4, we show all

probes that have GGGGG in the sequences. It is striking to

note that 98% of the 324 cases shown in this figure, have

cPM/PM ratios greater than 1. The cPM/PM ratio appears to

be smaller when GGGGG is at either ends of a probe. These

results are consistent with existing models (Held et al., 2006;

Mei et al., 2003; Zhang et al., 2003), which find that the ends

of the probes contribute less to binding affinity.

4 DISCUSSION

We have developed a method to evaluate probe performance

according to concordance of probe signals between neighboring

probes in the same probe sets. It should be noted that the

method is only applicable for comparing large groups of

probes. If we look at only three consecutive probes, it is not

clear which probe signals are closer to the true expression

values, although the correlation between two of them may be

higher than that of the other pairing. Only in large groups

can we expect probes that are well correlated with their

neighboring probes to be more trustworthy than those that are

not well correlated with their neighbors. In this study, we

searched for sequence motifs that are associated with poor

performance and found that probes that contain G-stacks tend

to be poorly correlated with other probes. Of the 250 000

probes on the HG-U133A array, 16 743 contain GGGG in their

sequences; of those, 3538 contain GGGGG in their sequences.

These probes provide ample sample size to determine the

statistical significance of our results. The abnormal behavior of

the probes containing G-stack seemed to be general on

Affymetrix microarrays, as we observed that the probes

containing G-stacks also had discordant signals (See Fig. S1

in Supplementary Material) with other probes from a different

dataset, which used a denser probe design (the array type is

HG-U133 Plus 2.0).
There are multiple causes of poor correlation between

probes. Among the 362 probes with the highest D scores, 1/3

of them contained G-stacks. The causes of the remaining 2/3 of

the probes are not clear. We examined one of such probes in

detail. Its target gene is tyrosine phosphatase, non-receptor

type 6. The probe’s sequence is ‘CCTATCCCCCAGCCATGA

AGAATGC’. The probe’s signal is discordant (r� 0.2) with

other probes in the probe set (206687_s_at). If this bad probe is

removed from the probe set, the correlations between other

probes are around 0.8. From residual analysis using PDNN

model, we found the bad probe had signals that were 3 times

higher than that expected from the model fitted values.

Interestingly, we also found 51 probes on the HG-U133A

array that had a fragment of the bad probe, ‘CCCCCAGC’,

in their sequences. Most of these 51 probes have D40

(mean¼ 0.09; SD¼ 0.2; P-value¼ 0.003). These results highly

suggest that CCCCCAGC is a magnet for attracting cross

hybridization.
In general, the possible causes of high D-scores are random

noise (Naef et al., 2002), alternative splicing and cross

hybridization, saturation (Naef et al., 2003), target–target or

probe–probe interaction (Forman et al., 1998), degradation of

target samples (Auer et al., 2003) and secondary structure

formed by targets and probes (Mir and Southern, 1999;

Shchepinov et al., 1997). Use of incorrect gene sequencing in

probe design also could lead to uncorrelated probe signals

(Dai et al., 2005; Sliwerska et al., 2006). Figure 1 suggested the

probes with C-stacks may also result in poor performance.

It may be interesting to explore further in the remaining 2/3 of

the probes for common patterns. But regardless of its causes,

poor correlation is always an undesirable trait in probe

performance because the desired behavior is that the signal

linearly responds to the target concentration without
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interference from other factors. Therefore, linear correlation
between neighboring probes appears to be a reasonable index
to reflect probe performance.

Why are probes that contain G-stacks problematic on
microarrays? Nucleotides rich in Gs are known to form
quadruplex bundles involving G-quartets (Dapic et al., 2003;

Keniry, 2000; Mergny et al., 2005), but their role in microarrays
is not widely recognized. On microarrays, probes containing
G-stacks may form quadruplex bundles with target molecules.
Because the probes are immobilized on the Affymetrix arrays,

it is not possible for them to form the quadruplexes among
themselves. The target molecules, on the other hand, may form
quadruplex among themselves in solution. The target molecules

may quadruplexes among themselves. Mei et al. (Mei et al.,
2003) suggested that probes that contain GGGG in their
sequences may invoke quadruplex binding, but did not

determine if GGGG sequences harm or help probe perfor-
mance. Consequently, probes manufactured by Affymetrix,
Inc. still contain G-stacks. The longest G-stack in a probe on

the HG-U133A array is nine guanines.
The G-quartet quadruplex hypothesis may not be the

only explanation to our results. To form stable G-quartets in

solution, the guanines need not to be contiguous (Dapic et al.,
2003). However, our results show that probes with GGGNGG
sequences behaved very differently from probes with GGGGG

sequences. It is not clear why GGGNGG sequences would not
form quadruplexes on the microarrays. Besides quadruplex
formation, difficulties in synthesizing the probes containing

G-stacks may also be a cause of poor performance. Our current
study only analyzed data collected from Affymetrix micro-
arrays. It would be interesting to see if the same phenomena

can be observed on microarrays using other techniques.
Apparently, future experiments are needed to reveal how
quadruplex formation may hinder microarray hybridization.

Based on our analysis, we assert that probes that contain
G-stacks perform poorly on microarrays, because G-stacks
tend to increase cross hybridization and reduce target-specific

hybridization. This poor performance is not likely to be caused
by saturation because it can apparently happen at low target
concentration. Probe and target molecules that contain

G-stacks could form intra- and/or inter-molecular G-quartets.
When target concentration is zero or low, the probe signal
is dominated by cross hybridization, so contributions from

off-target, G-rich molecules bound to probes with G-stacks
could be identifiable. As the target concentration increases, the
content of gene specific hybridization in the probe signal

increases so that the effects of cross hybridization are less
obvious. At very high target concentrations, the availability
of the target molecules may be reduced by target–target

interactions. Target molecules with C-stacks can cross hybri-
dize to molecules with G-stacks forming duplexes.
Alternatively, molecules with C-stacks can also form i-motifs.

These interactions hinder hybridization so that fewer than
expected targets are accessible on the microarray surface.
This mechanism can explain our residual analysis results

(Fig. 2). It may also explain the data observed from genotyping
assays, in which the target molecules are nearly always present,
so that probes with G-stacks generally have reduced signals

(Fig. 4). Note that for hybridization in aqueous solution, the

roles of probes and targets are symmetrical so that we expect
cPM/PM ratio to be one. However, for hybridization on the

microarrays, because the probes are immobilized, some probe–

probe interactions, such quadruplex formation, are prohibited.

Thus, when the roles of probes and targets are switched,

all types of molecular interactions cannot be symmetrically

switched. Therefore, cPM/PM can be significantly different

from one, which was observed in our data.
The fact that probes that contain G-stacks tend to have

abnormal signals both on gene expression assays and geno-

typing assays strongly suggests that they should be avoided
in probe design. In commonly used methods for microarray

data analysis (Hubbell et al., 2002; Irizarry et al., 2003;

Li and Wong, 2001; Zhang et al., 2003), the effects of outliers

are suppressed because of the use of robust estimators.

Consequently, the effects of probes that contain G-stacks

have limited scope. However, the existing algorithms cannot

reliably detect the outliers and remove their effects. Therefore,
removing probes that have poor performances in probe design

is a cleaner, more efficient solution to the problem.
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