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ABSTRACT

Motivation: Microarray designs have become increasingly probe-
rich, enabling targeting of specific features, such as individual exons
or single nucleotide polymorphisms. These arrays have the potential
to achieve quantitative high-throughput estimates of transcript
abundances, but currently these estimates are affected by biases
due to cross-hybridization, in which probes hybridize to off-target
transcripts.
Results: To study cross-hybridization, we map Affymetrix exon
array probes to a set of annotated mRNA transcripts, allowing a
small number of mismatches or insertion/deletions between the two
sequences. Based on a systematic study of the degree to which
probes with a given match type to a transcript are affected by
cross-hybridization, we developed a strategy to correct for cross-
hybridization biases of gene-level expression estimates. Comparison
with Solexa ultra high-throughput sequencing data demonstrates
that correction for cross-hybridization leads to a significant improve-
ment of gene expression estimates.
Availability: We provide mappings between human and mouse
exon array probes and off-target transcripts and provide software
extending the GeneBASE program for generating gene-level
expression estimates including the cross-hybridization correction
http://biogibbs.stanford.edu/∼kkapur/GeneBase/.
Contact: whwong@stanford.edu
Supplementary information: Supplementary data are available at
Bioinformatics online.

1 INTRODUCTION
Microarrays are a widely used tool for conducting high-throughput
analyses in many areas of biological research. They have been
used in many different applications including to query mRNA
transcript abundance, determine transcription factor binding sites or
characterize genomic sequences (Gresham et al., 2008; Stoughton,
2005). The technology is based on attaching DNA fragments,
or probes, to microarray slides, with each probe having exact
nucleotide sequence complementarity to a specific transcript. Once
labeled and amplified transcripts are hybridized to the array,
transcript abundances are estimated using the fluorescent intensities
of matching probes.

An important source of noise in microarray probe signals is
due to artifacts of cross-hybridization. Although gene expression
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microarray probes are designed with perfect complementarity to
target mRNA transcripts, they may also share sequence similarity
with additional transcripts. As a result, probes may hybridize
to specific off-target transcripts (Eklund et al., 2006). Gene-
level summarization algorithms, which combine multiple probe
intensities to generate an overall expression estimate for the gene,
can suffer from biases of probe cross-hybridization. Such biases
have been found to adversely affect downstream analysis based
on correlation of gene expression profiles (Casneuf et al., 2007;
Okoniewski and Miller, 2006).

Several methods for estimation of gene-level expression indexes
have been proposed to reduce the effects of cross-hybridizing probes.
In dChip (Li and Wong, 2001), an outlier removal procedure removes
probes with intensities which differ substantially from the remaining
set of probes. Methods which use robust estimation procedures to
protect against outlier probes, such as Robust Multichip Average
(RMA) (Irizarry et al., 2003) may also mitigate the effects of
a small number of cross-hybridizing probes. Additionally, probe
selection strategies (Xing et al., 2006), in which a subset of probes
which show highly correlated intensities across multiple samples
are selected for summarization of overall expression, guards against
cross-hybridization biases originating from a minority of probes.

While the above approaches work well when only a minority
of probes are affected by cross-hybridization, these methods
are unlikely to be able to generate reliable estimates in the
case where a large percentage of probes bind to off-target
transcripts. Gene sequences which are closely related to each other
may have a substantial number of potentially cross-hybridizing
probes. Additionally, with the increasing oligonucleotide density on
microarray chips, specific features are targeted by a small number
of probes. For example, the Affymetrix exon array has, on average
four probes to interrogate each exon. The analysis of alternative
splicing on exon arrays, which is based on exon-level expression
of individual probe intensities (Clark et al., 2007; Xing et al.,
2008; Yeo et al., 2007), will be improved through consideration
of cross-hybridization. A recent study (Xing et al., 2008) showed
that cross-hybridization is a major cause of false predictions of
differential alternative splicing. Therefore, to improve estimates of
gene-level expression and to take advantage of emerging probe-rich
microarray designs, it is important to understand cross-hybridization
behavior and to develop methods to correct for cross-hybridization
biases.

In this article, we describe how matches between short
oligonucleotide probes and off-target transcripts can affect
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probe intensities. Using a detailed matching between probes and
off-targets, we propose a correlation-based filtering method to detect
and remove probes showing sequence-specific cross-hybridization
to off-target transcripts. This method takes advantage of the tiling
of probes across all transcribed regions to compare the observed
probe intensity with the expression pattern of the putative cross-
hybridizing transcript. Probes which follow the off-target expression
pattern are removed while the remaining probes are retained.
This strategy allows us to include as many informative probes as
possible for summarization of gene-level expression. We validate
our predictions of gene-level expression resulting from the cross-
hybridization correction using ultra high-throughput sequencing
data. Our results show that cross-hybridization modeling improves
estimates for gene-level expression and can be used for exon-level
analysis.

2 METHODS

2.1 Description of Affymetrix exon arrays
We use Affymetrix exon array data to illustrate our cross-hybridization
modeling methods. Exon arrays are a high-density microarray platform
with ∼6.5 million probes designed to target all annotated and predicted
exons in the genome. A probeset, consisting of four probes, is designed to
target a single putative exonic region (Affymetrix, 2005b). Furthermore, each
exonic region is classified based on the supporting type of annotation. Probes
targeting exons with full-length mRNA evidence, such as RefSeq mRNAs
are regarded as the most confident and are referred to as ‘core probes’, probes
targeting exons with partial mRNA evidence such as ESTs have intermediate
evidence and are referred to as ‘extended probes’, and probes targeting exons
supported solely by computational predictions have the least annotational
confidence and are referred to as ‘full probes’. For further details, see the
Affymetrix documentation (Affymetrix, 2005a).

Due to the placement of four probes targeting each exonic region,
genes have variable numbers of overall probes. However, each RefSeq
sequence corresponds to a median of 30–40 core probes. In general, the core
probes, which correspond to the well-annotated exonic regions, are used for
summarization of gene-level expression.

2.2 Assessing probe-level cross-hybridization
We analyzed exon array data for a panel of mouse tissues, (brain, embryo,
heart, kidney, liver, lung, muscle, ovary, spleen, testes and thymus), each with
three replicates http://www.affymetrix.com/support/technical/sample_data/
exon_array_data.affx. We applied a probe sequence-specific background
correction (Johnson et al., 2006; Kapur et al., 2007) and normalized the
data using a multiplicative normalization factor, chosen to set the median of
core probe intensities on each array to a predefined value (100).

Genes on exon arrays, called transcript clusters, are mapped to RefSeq
mRNA transcripts based on the overlap of the transcript cluster start and
stop coordinates and RefSeq transcription start and transcription stop sites
(see Supplementary Material). A total of 16 767 mouse transcript clusters are
annotated to a RefSeq transcript.

To search for transcripts with a large degree of sequence similarity to
each of the more than 6 million probes on Affymetrix exon arrays, we use the
SeqMap software (Jiang and Wong, 2008). SeqMap is used to match multiple
short sequences to a query transcript, allowing up to a small number of
mismatches or insertion/deletions (Fig. 1). Next, a local alignment algorithm
is used for the candidate probes to determine the final set of probes with the
required type of match to the query transcript.

We matched probes to a set of transcribed regions, which consists of core
probe selection regions (psrs), RefSeq mRNA transcripts, and ribosomal
RNA sequences. Core probe selection regions (psrs), described in Affymetrix

C C T G A C C A GT A C A C G T T A C C G T T A

C C T G A C C A GA A C A C G T T A C C G T T AA C ......

A
X

A

A

Fig. 1. Shown here is an illustration of a probe (top sequence) matching
a transcript (bottom sequence) with a 1-bp mismatch and a 1-bp
insertion/deletion.

annotation files, consist of transcribed exonic regions supported by full-
length mRNA annotations. We use the subset of RefSeq mRNA transcripts
(release 26, December 3, 2007) which are mapped to transcript clusters
on exon arrays. Additionally, we match probes to ribosomal RNAs, with
sequences listed in the Supplementary Material, none of which map directly
to transcript clusters. We consider only those matches between probes and
off-target transcripts.

Probes are classified according to the type of match between the probe
and transcript sequence. We define the match edit distance as the sum of
mismatches and indels between the two sequences, which is also referred to
as the Levenshtein distance.

To estimate the extent to which the expression of an off-target transcript
explains the matching probe intensity, we model the background-corrected,
normalized probe intensity, yij , of probe j in sample i, as

yij =φj θ̂i +εij (1)

motivated by (Li and Wong, 2001). Here, θ̂i is the expression of the off-
target transcript in sample i, φj represents the affinity of probe j to the
off-target transcript and εij is a random error term. The R2 statistic of this
model represents the proportion of the probe intensity variance which can
be explained by cross-hybridization to the off-target transcript. We report R2

statistics for full probes which match a single off-target transcript allowing
up to 3-bp mismatches or indels. We used the set of full probes to study cross-
hybridization instead of the set of background probes due to the larger number
of full probes on the array and because these probes were not specifically
chosen by Affymetrix to avoid potential cross-hybridization as is the case
with the set of background probes (Affymetrix, 2005b). Gene expression was
estimated using GeneBASE (Kapur et al., 2007) on the set of core probes
which uniquely map to the transcript, allowing an edit distance of up to 3 bp.

2.3 Detecting genes enriched for non-unique probes
We calculate the proportion p3 of core probes matching one or more off-
target transcripts, allowing an edit distance of 3. For each gene k, we define
a standardized residual statistic,

rk = ok −nkp3√
(nk p3(1−p3)(N−nk )

N−1

(2)

where ok is the observed number of non-unique probes, nk is the number of
core probes associated with gene k and N is the total number of core probes
on the array. This statistic gives the observed minus expected number of
non-unique probes divided by the SD of a hypergeometric distribution.

Paralog information was derived using the Ensembl compara homology
database version 49 (Hubbard et al., 2007). We mapped transcript clusters to
Ensembl gene ids by first mapping transcript clusters to RefSeq transcripts
and subsequently mapping RefSeq transcripts to Ensembl genes. For mouse,
a total of 16 636 transcript clusters were mapped to Ensembl genes. We
classified each mapped gene as belonging to a paralog family provided it has
at least one predicted paralog Ensembl gene.

2.4 Correcting cross-hybridization biases: strategy and
validation

We developed the following strategy to correct for cross-hybridization.
Start with GeneBASE expression estimates using all core probes (Kapur
et al., 2007). Exclude each core probe matching an off-target transcript with
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up to 2-bp mismatches or indels and with correlation between the probe
intensity and off-target expression estimate above 0.7. Set probe and off-
target SD to be the maximum of 100 and the observed value to guard
against high correlation due to low SD. Re-calculate expression estimates
using only the included probes. Iterate until gene-level expression estimates
stabilize. We label this strategy GeneBASE-xhyb. To compare GeneBASE
with GeneBASE-xhyb, we use our own implementation of GeneBASE to
reduce implementation effects.

To study whether the cross-hybridization correction improves expression
estimates, we compare GeneBASE and GeneBASE-xhyb to estimates
obtained by Solexa sequencing of RNA sequences for mouse liver, skeletal
muscle and brain samples. The publicly available samples, described in
Mortazavi et al. (2008), consist of independent samples pooled from adult
mouse tissues. Each tissue library resulted in 10–30 million 25-bp reads
mapping to unique sites in the mouse genome. In our analysis, we combine
the two independent libraries generated for each source tissue. We generated
estimates of gene-level expression from sequencing reads by counting the
reads per kilobase gene exon per million mapped reads (RPKM) (Mortazavi
et al., 2008). Here, we use only those reads which have an exact match
to genic regions or exon–exon junctions. Reads which map to multiple
locations, multireads, were re-assigned proportional to the number of unique
reads per kilobase gene exon. In the case where neither gene contains any
unique reads, the reads are divided equally. For each RefSeq transcript,
we generate an expression estimate by counting the number of normalized
reads which fall in exonic regions. Gene expression estimates are included
provided the gene has at least one assigned read. To map between gene-level
estimates from the sequencing data to exon array data, we use the mapping
between RefSeq transcripts and exon array transcript clusters. Using quantile
normalization, we transform microarray estimates, taking the median across
sample replicates, to have the same distribution as the sequencing estimates.
To compare the agreement with sequencing for each strategy we use the
statistic,

T =
∣∣sgb −s

∣∣−∣∣sgbx −s
∣∣

(1/2)(
∣∣sgb −s

∣∣+∣∣sgbx −s
∣∣) (3)

where sgb is the transformed expression estimate from GeneBASE, sgbx is
the transformed expression estimate from GeneBASE-xhyb and s is the
expression estimate from sequencing. If the GeneBASE-xhyb estimates
are no more concordant with sequencing estimates than the GeneBASE
estimates, then we would expect T to be centered at 0. If GeneBASE-
xhyb tends to show smaller deviations from the sequencing estimates than
GeneBASE, then we expect T to be shifted to the right. Using the set of genes
with expression estimates changed from the cross-hybridization correction,
we carry out a statistical test of the null that T is centered at 0 versus the
alternative that T is centered at some positive value. We use a one-sided
Wilcoxon signed rank test.

In addition to testing whether the entire set of genes with altered
expression between GeneBASE and GeneBASE-xhyb are more concordant
with sequencing estimates, we also perform the Wilcoxon signed rank test
using a subset of genes with large changes in expression between the two
sets of expression estimates, defined by the requirement

∣∣log2(gb+c15,gb)−log2(gbx +c15,gbx )
∣∣>1 (4)

where c15,gb and c15,gbx are the 15th quantile of gene expression from the
GeneBASE estimates gb and GeneBASE-xhyb estimates gbx , respectively.
The purpose of the addition of the moderation constants, c, is to de-emphasize
genes expressed at low levels which may have large fold-change statistics
due to minor fluctuations in expression.

2.5 Comparison of different estimates of gene
expression from Affymetrix exon arrays

We compare several methods of gene-level summarization. In addition
to the GeneBASE-xhyb strategy, described above, we also computed

GeneBASE estimates (Kapur et al., 2007). RMA, Plier and IterPlier
estimates were downloaded from the set of mouse APT results from the
Affymetrix website, http://www.affymetrix.com/support/technical/sample
_data/exon_array_data.affx.

Genes with available expression estimates from all methods and which
were mapped to sequencing estimates (requiring 1+ read) were included to
compare exon array expression estimates to ultra high-throughput sequencing
estimates.

2.6 Results for mouse and human
We present the results for mouse exon arrays and compare them to ultra high-
throughput sequencing estimates of liver, muscle and brain tissues. Results of
applying SeqMap to human exon arrays can be found in the Supplementary
Material.

3 RESULTS

3.1 Matching probes to off-target transcripts
Although microarray probes are designed to have exact nucleotide
complementarity to a corresponding target transcript, they may also
share a large degree of sequence similarity to off-target transcripts.
To determine the extent to which off-target transcripts affect the
intensities of matching probes, we carry out a detailed mapping
between each 25-bp probe on Affymetrix exon arrays and off-target
transcripts using the SeqMap algorithm (see Section 2). We search
for matches between probes and off-target transcripts which differ
by any combination of mismatches, in which the sequence has
a mismatched base-pair in a given position, or insertion/deletions
(indels), in which one sequence contains one or more nucleotides
which do not align to the complementary sequence, provided the
match edit distance between the two sequences is not more than
3 bp. An example of a match between a probe and transcript is
shown in Figure 1.

The results of the mapping in Table 1 show that most core probes
uniquely map to their target transcripts when allowing a matching
distance of up to 3 bp. A smaller percentage of probes match one or
more off-target transcripts, and for an edit distance of 3, 5.09% match
one transcript, 3.00% match two transcripts, 0.59% match three
transcripts, and 0.89% match four or more transcripts. The results for
extended and full probes are provided in the Supplementary Tables
S2–S3.

Although overall only a small number of probes match to off-
target transcripts, individual genes may have a large number of such

Table 1. The number of matches between core probes and off-target
transcripts, allowing variable matching edit distances

Distance Number matching transcripts

0 1 2 3 4+

0 839580 11312 3937 573 1069
(98.03%) (1.32%) (0.46%) (0.07%) (0.12%)

1 834693 13174 5501 1042 2061
(97.46%) (1.54%) (0.64%) (0.12%) (0.24%)

2 831059 14534 6395 1438 3045
(97.03%) (1.70%) (0.75%) (0.17%) (0.36%)

3 774502 43623 25673 5083 7590
(90.43%) (5.09%) (3.00%) (0.59%) (0.89%)
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Fig. 2. The empirical cdf of gene standardized residuals, separated by
paralog classification.

probes. We characterize the number of genes with large proportions
of non-unique probes using a standardized residual statistic, given in
Equation (2). While the majority of transcript clusters tend to have
residuals near zero, there are still a large number of transcript clusters
that are enriched for potentially cross-hybridizing probes, with 1136
transcript clusters having residuals greater than 7.0 (Supplementary
Fig. S1).

To further characterize the set of genes enriched for non-uniquely
matching probes, we investigated whether the set of genes with
the largest residuals are enriched for genes belonging to paralog
families. Using the Ensembl compara homology database of paralog
predictions, we classified each gene as belonging to a paralog family
if it has one or more predicted paralogs in the compara database.
Overall, 65.29% of genes were classified as belonging to a paralog
family. Among the top 1% and 10% of transcript clusters ranked
according to standardized residuals (n = 166,1664), the percent
of genes belonging to paralog families increased to 92.13% and
89.76%, respectively. Plots of the empirical cumulative distribution
function (cdf) separately for non-paralogs and paralogs are shown
in Figure 2 and a one-sided Kolmogorov–Smirnov test that the
distribution function of the non-paralog residuals lies above the
distribution function of the paralog residuals is significant (P <

2.2e−16). This analysis indicates that genes belonging to paralog
gene families are enriched for probes with sequence similarity to
off-target transcripts.

3.2 Effects of match type on probe cross-hybridization
behavior

The matching between probes and off-target transcripts can be used
to study how probe behavior is affected by the corresponding off-
target transcript expression pattern. We compute estimates of gene-
level expression using GeneBASE from the set of core probes which
uniquely match the target transcript when allowing an edit distance
of up to 3 bp. These estimates were generated to be robust to artifacts
of cross-hybridization (see Section 2).

The set of full probes are ideal for studying cross-
hybridization because they target exonic regions supported purely
by computational predictions, and are therefore less likely to target
truly transcribed regions. Furthermore, full probes do not influence
gene-level expression estimates. Through the Affymetrix annotation
pipeline, a subset of full probes are assigned to nearby genes.
However, the majority of such full probes have weak correlations
with the assigned gene expression, shown by the distribution of R2

Fig. 3. R2 statistics modeling full probe intensities by corresponding
matching off-target gene expression levels, separated by the number of
mismatches and insertion/deletions.

statistics modeling full probe intensities using the assigned gene
expression estimates (Supplementary Fig. S2).

Due to the lack of correlation between full probes and their target
transcripts, we can study how full probes behave when they have a
given type of match to an off-target transcript. We find that the type
of match between full probes and off-target transcripts has a large
effect on the extent of cross-hybridization. For each full probe we
compute an R2 statistic representing the proportion of the full probe
intensity which can be explained by cross-hybridization to an off-
target transcript [see Equation (1)]. To avoid complications from
probes matching multiple off-target transcripts, we only consider
probes which match exactly one off-target transcript. Probes are
classified according to the match type in terms of number of
mismatches and indels. We show in Figure 3 that for full probes
with fewer mismatches/indels to a given transcript, their intensities
can be better explained by cross-hybridization than for probes with
a larger number of mismatches/indels. As the edit distance between
probe and transcript increases a smaller proportion of probes show
strong correlations with the off-target patterns of expression.

3.3 Implications for gene-level analysis
Cross-hybridization mapping has implications for gene-level
analysis. Although probes are designed to hybridize to a target
transcript, off-target transcripts which share sequence similarity to
the probe may also bind to the probes. The response of probes which
share sequence similarity to off-target transcripts may subsequently
bias the resulting gene-level estimates.

For example, Figure 4 shows the probe intensities across the 33
tissue panel experiments for the pair of genes Scd3 and Scd1. In
each plot, probes are partitioned into two groups—those probes
which match uniquely to the target transcript and those probes which
match to the corresponding off-target. Probes matching uniquely
to the gene Scd3 show a different expression pattern than the
probes matching Scd1, whereas for the gene Scd1, the probes
either matching uniquely to Scd1 or those which also match Scd3
show the same expression patterns. This plot suggests that some of
the Scd3 probes are cross-hybridizing to the Scd1 transcript. The
resulting gene-level expression pattern changes depends on the set
of probes used for summarization. By identifying potentially cross-
hybridizing probes, we are able to remove the cross-hybridization
bias and use the uniquely matching probes to estimate the expression
level of Scd3. This example shows that cross-hybridizing probes can

2890



Affymetrix exon arrays

0 5

0 5 0 5

0 510 15 20 25 30

0
10

00
0

20
00

0
30

00
0

6869918:  Unique Matches

Sample

In
te

ns
ity

n = 23

10 15 20 25 30

0
10

00
0

20
00

0
30

00
0

6869918:  Off Target Matches

Sample

In
te

ns
ity

n = 10

10 15 20 25 30

0
10

00
0

25
00

0

6873271:  Unique Matches

Sample

In
te

ns
ity

n = 36

10 15 20 25 30

0
10

00
0

25
00

0

6873271:  Off Target Matches

Sample

In
te

ns
ity

n = 8

Fig. 4. Plots of probe intensities from genes Scd3 (transcript cluster
6869918) and Scd1 (transcript cluster 6873271), separated by those
which uniquely match the target transcripts and those which match the
corresponding off-target transcript. Unique probes from Scd3 show a
different intensity patterns from those which match Scd1, suggesting a
cross-hybridization bias.

result in large biases of gene-level expression estimates with only a
relatively small number of cross-hybridizing probes.

We design a strategy for generating gene-level expression
estimates which removes probes showing strong evidence of cross-
hybridization, while retaining probes which have matches to off-
target transcripts but show little evidence of cross-hybridization.
Probes with up to 2-bp mismatches or indels and correlation above
0.7 with the off-target transcript expression level are excluded
from gene-level summarization (see Section 2 for details). We
label this strategy for generating gene-level expression estimates
as GeneBASE-xhyb.

For the majority of transcript clusters, the set of GeneBASE and
GeneBASE-xhyb estimates agree well. However, after excluding
probes which have high correlation to off-target transcripts, some
genes have fewer than five probes. Due to the small number of
probes targeting the transcript, gene expression estimates are likely
to suffer from a large amount of variation, and as a result we
do not output gene-level expression estimates. We refer to the
genes with insufficient numbers of probes for estimating gene-
level expression as a result of the cross-hybridization correction
as masked. The GeneBASE-xhyb method results in 129 transcript
clusters with masked expression estimates. In general, a transcript
cluster will have altered expression between GeneBASE and
GeneBASE-xhyb if at least one selected probe is excluded from
gene-level summarization. As a result, the transcript cluster will
have altered expression between GeneBASE and GeneBASE-xhyb
in all samples. Comparing the set of transcript clusters with available
expression estimates from the two methods, the number with altered
expression is 612.

To compare GeneBASE and GeneBASE-xhyb strategies of
estimating gene expression, we use an independent set of expression
estimates derived from ultra high-throughput sequencing data. Using
Solexa sequencing reads of mouse liver, muscle and brain samples,
we generated estimates of gene expression for each RefSeq transcript
provided the transcript had at least one mappable read (see Section 2

(a) (b)

Fig. 5. Histogram of T -values to compare the concordance of the two sets
of exon array expression estimates, GeneBASE and GeneBASE-xhyb, with
sequencing in liver. Histogram of (a) all genes with altered estimates between
GeneBASE and GeneBASE-xhyb and (b) genes with absolute log moderated
fold-change between GeneBASE and GeneBASE-xhyb estimates above 1.

for details). We then map RefSeq transcripts to exon array transcript
clusters.

To compare the concordance between GeneBASE or GeneBASE-
xhyb and sequencing estimates, we transform exon array expression
estimates so that they have the same distribution as sequencing
estimates (quantile transformation). We use the statistic, T defined
in Equation (3) to compare the agreement with sequencing. In the
liver, muscle and brain samples, a total of 410, 413 and 422 genes
with altered expression between GeneBASE and GeneBASE-xhyb
estimates are mapped to sequencing estimates, respectively, with
each gene giving rise to a separate value of T . Under the assumption
that GeneBASE and GeneBASE-xhyb are equally concordant with
sequencing estimates, the distribution of T values will be centered
at zero. On the other hand, if GeneBASE-xhyb is more concordant
with sequencing estimates, we would expect positive values of T .
Therefore, we carry out a Wilcoxon signed rank non-parametric
test of the null hypothesis T =0 against the alternative, T >0.
From the distribution of T values, we see enrichment of T values
above zero. The corresponding P-values in liver, muscle and brain
are 0.0006314, 0.002495 and 0.01994, respectively. Furthermore,
we select a subset of genes with large changes in expression
comparing GeneBASE and GeneBASE-xhyb estimates, selected
for large absolute log moderated fold-change values, described
in Equation (4). Using the T -values corresponding to this subset
of genes (n = 93,89,72), the distribution is dramatically skewed
right and the statistical test of T =0 against T >0 yields P-values
of 2.502e−09, 4.107e−06 and 7.865e−06 in liver, muscle and
brain, respectively. The two histograms for the liver sample are
given in Figure 5 and histograms for the remaining samples can
be found in Supplementary Figures S3–S4. We find that, among
the genes showing large changes in expression as a result of the
cross-hybridization correction, the expression estimates are more
concordant with sequencing expression.

Although we chose specific parameters for the GeneBASE-xhyb
strategy to strike a balance between keeping the total number of
genes with altered expression estimates low and removing many true
cross-hybridization biases, other choices of parameters are possible.
A histogram of the liver T values from a simple filter which excludes
probes matching off-targets with up to 2-bp mismatches or indels,
with no requirement of correlation between probe intensities and off-
target expression is shown in Figure 6. The test of T =0 against T >0
in liver is not significant when considering the entire set of genes
with altered expression between GeneBASE and the estimates from
the simple filter (P = 0.5198). However, the test still gives a very low
P-value of 9.137e−14 when considering the genes with the absolute
log moderated fold-changes above 1. The simple filtering procedure
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(a) (b)

Fig. 6. Histogram of T -values to compare the concordance of the two sets
of exon array expression estimates, GeneBASE and GeneBASE-xhyb-Filter,
with sequencing. Histogram of (a) all genes with altered estimates between
GeneBASE and GeneBASE-xhyb-Filter and (b) genes with absolute log
moderated fold-change between GeneBASE and GeneBASE-xhyb-Filter
estimates above 1.

Table 2. Spearman correlation between exon array estimates of gene
expression and ultra high-throughput sequencing estimates for different
summarization methods

GeneBASE-xhyb GeneBASE RMA Plier IterPlier

Liver
(N = 12 339) 0.8539 0.8521 0.8064 0.8198 0.8125
Muscle
(N = 13 136) 0.8500 0.8481 0.8072 0.8109 0.8080
Brain
(N = 13 783) 0.7542 0.7535 0.7443 0.7275 0.7132

may be able to detect more genes affected by cross-hybridization
biases, but has the drawback of introducing additional variation to
gene expression estimates, especially among those genes with small
numbers of uniquely matching probes. Additionally, more transcript
clusters will have masked expression resulting from the simple filter,
with 599 masked from the simple filter compared with the 129
masked from GeneBASE-xhyb.

3.4 Comparison of competing methods to estimate gene
expression

Although a comprehensive comparison of competing methods of
gene expression on exon arrays is beyond the scope of this article,
we believe it is important to point out that GeneBASE-xhyb
and GeneBASE are competitive with other methods. We compare
several gene expression indexes with the sequencing data using the
Spearman rank correlation. The results, presented in Table 2, show
that GeneBASE-xhyb and GeneBASE perform slightly better than
competing methods RMA, Plier and IterPlier.

3.5 Implications for exon-level analysis
The cross-hybridization biases which we observed to affect gene-
level expression are even more likely to affect exon-level expression,
due to the smaller number of probes targeting exonic regions. For
example, on Affymetrix exon arrays there are only four probes
for each putative exonic region. Incorporating cross-hybridization
information will be useful for exon-level analysis to reduce false
positive predictions of differential splicing and for novel exon
discovery (Xing et al., 2008).

3.6 Available software/mappings
We provide mappings between human and mouse exon array
probes and off-target transcripts and provide software to run
GeneBASE-xhyb http://biogibbs.stanford.edu/∼kkapur/GeneBase/.
Additionally, we include an option to output several variables
relating to the correlation between probes and off-target transcripts
which can be used to remove effects of cross-hybridization
from exon-level analysis http://biogibbs.stanford.edu/∼yxing/
MADS/.

4 DISCUSSION
In this work, we demonstrate that probe cross-hybridization signals
can be mapped to specific off-target transcripts. Incorporating exon
array probe mapping information, we exclude probes showing strong
correlations with corresponding off-target transcripts to remove
cross-hybridization biases from resulting gene-level expression
estimates. We evaluated our strategy for gene-level expression using
independent estimates of transcript abundances from Solexa ultra
high-throughput sequencing. We find that expression estimates for a
number of genes can be improved by removing cross-hybridization
artifacts.

Our work gives further understanding to factors affecting
microarray probe cross-hybridization. The set of exon array full
probes, designed to target computationally predicted exonic regions,
tends to have probe intensities near background levels and can
be used to study how probes respond to transcripts to which they
share sequence similarity. We found decreasing correlation between
probes and the expression patterns of matching off-target transcripts
as the match edit distance between the probe and transcript is
increased. Allowing an edit distance of 3 bp between probes and
off-target transcripts, probes may show strong signals of cross-
hybridization, compared with signals expected by chance (see also
Supplementary Fig. S5).

Matches including insertion/deletions between probe and
transcript sequences can also give rise to strong cross-hybridization
signals. Therefore, it will be important to apply sequence mapping
programs which have the ability to detect these types of alignments.
In previous work, it has been reported that probes with much shorter
alignments of 10–16 nt may be sufficient for cross-hybridization
(Wu et al., 2005). However, as the number of matches between
probes and transcripts rapidly increases with larger edit distance,
it will be important to develop more sophisticated models to
predict individual probe cross-hybridization. Future models may
incorporate factors, such as the type of probe-transcript alignment,
probe sequence (Wu et al., 2005) or transcript secondary structure.
For example, we found that the probe sequence GC-content affects
the extent of cross-hybridization and may affect cross-hybridization
in different ways, depending on the type of alignment between
probes and transcripts. For perfect matches between probes and
transcripts, probes with intermediate GC-content tend to have the
highest correlation with the transcript expression level. However, for
larger match edit distances between probes and transcripts, probes
with larger GC-content show higher correlation with the transcript
expression levels (Supplementary Fig. S6). With more detailed
knowledge of how probe sequence affects cross-hybridization,
we will be able to design probes to be more specific to target
transcripts.
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In the absence of sequence-based predictive models of cross-
hybridization, we found that the empirical data can be used to detect
cross-hybridization. For a matching probe and off-target transcript,
we use the transcript’s expression pattern to determine whether
the probe intensity reflects cross-hybridization. This approach takes
advantage of the large amount of annotation of the transcriptome
and can be used on other arrays with genome-wide coverage. The
number of samples for which the cross-hybridization correction can
improve gene expression estimates will depend on the expression
pattern of the off-target transcripts. For example, from Figure 4,
removing the cross-hybridizing probes will dramatically change
expression estimates in many different tissue types. In a few other
tissue types the estimates will not be affected because the off-target
is not highly expressed in those samples. As a result, the set of genes
which are affected by the cross-hybridization correction will tend to
overlap among the different samples. We found that our method
based on the empirical data is limited by the array design. Genes
with small numbers of probes uniquely matching the target transcript
can yield less reliable estimates of gene expression. For example,
we found that many genes where GeneBASE-xhyb estimates are
less concordant with sequencing than the GeneBASE estimates have
fewer than five uniquely matching probes.

In many microarray applications careful selection of probes to
uniquely match target transcripts can be used to eliminate cross-
hybridization biases. In future microarray designs, SeqMap (Jiang
and Wong, 2008) or similar algorithms (Li et al., 2008; Smith
et al., 2008) can be used to select probes which do not share
sequence similarity to off-target transcripts, allowing up to a certain
number of mismatches or insertion/deletions. However, there are
many microarray applications where it is unavoidable for probes
to share some sequence similarity to off-target transcripts. For
querying exon–level expression or for certain paralog gene families
there may be only a small number of probes which uniquely
match the target transcript. For probes designed to target individual
sequences which differ at a particular locus by a single nucleotide
polymorphism (SNP), each probe will have a single nucleotide
difference between the competing genomic transcripts. Additionally,
probes which target exon-exon junctions may be subject to cross-
talk from hybridization to mRNA transcript isoforms which include
only one of the exons (Boutz et al., 2007; Srinivasan et al., 2005).
In these situations detailed knowledge of cross-hybridization will
be useful to design probes with high specificity to their target
transcripts.
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