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Abstract 

Careful analysis of microarray probe design should be an obligatory component of 
MicroArray Quality Control (MACQ) project [Patterson et al., 2006; Shi et al., 2006] 
initiated by the FDA (USA) in order to provide quality control tools to researchers of 
gene expression profiles and to translate the microarray technology from bench to 
bedside. The identification and filtering of unreliable probesets are important 



preprocessing steps before analysis of microarray data. These steps may result in an 
essential improvement in the selection of differentially expressed genes, gene clustering 
and construction of co-regulatory expression networks. We revised genome localization 
of the Affymetrix U133A&B GeneChip initial (target) probe sequences, and evaluated 
the impact of erroneous and poorly annotated target sequences on the quality of gene 
expression data. We found about 25% of Affymetrix target sequences overlapping with 
interspersed repeats that could cause cross-hybridization effects. In total, discrepancies in 
target sequence annotation account for up to ~30% of 44692 Affymetrix probesets. We 
introduce a novel quality control algorithm based on target sequence mapping onto 
genome and GeneChip expression data analysis. To validate the quality of probesets we 
used expression data from large, clinically and genetically distinct groups of breast 
cancers (249 samples). For the first time, we quantitatively evaluated the effect of repeats 
and other sources of inadequate probe design on the specificity, reliability and 
discrimination ability of Affymetrix probesets. We propose that only functionally reliable 
Affymetrix probesets that passed our quality control algorithm (~86%) for gene 
expression analysis should be utilized. The target sequence annotation and filtering is 
available upon request. 

Keywords: U133 microarray, target sequences, noise signals, cross-hybridization, human 
genome, gene expression, sense-antisense gene pairs, interspersed repeats, breast cancer  

 
 

Introduction 

Insufficient reliability of expression measurements is one of the key problems facing 
microarray experiments [Patterson et al., 2006; Shi et al., 2006]. In expression profiling 
studies, the quality of probesets is an essential piece of information in data analysis and 
data interpretation. The quality of probesets is therefore important for scientific research, 
clinical diagnostics and predictions. The problem could originate from poor gene 
identification by the probe sequences, whose design may not take into account the actual 
complexity of the transcriptome. Microarray sequence probes are designed to match 
particular mRNA transcripts often based on ESTs or incomplete cDNAs and also using 
imperfectly aligned sequences. As result, the relations between the probes and genes can 
change as sequence data are updated. Therefore, the problem of re-annotation and re-
mapping of probes is common for all microarray platforms. In this work, we focused on 
Affymetrix Chips since this platform is widely used in gene expression profiling. 
Methods that can effectively extract reliable information from probe sets analysis in 
previous and future studies based on Affymetrix platforms are of considerable practical 
interest. 

Affymetrix Corporation (http://www.affymetrix.com) provides one of the well 
established microarray technologies. In situ synthesized oligonucleotide microarray 
GeneChip uses a set (so called probeset) of 11-20 oligonucleotide probes, each 25 bases 
long, to represent a gene or a gene transcript. Affymetrix uses initial (target) sequences of 



~150-450 nt of each gene to locate the probes. The perfect match probe comes together 
with a mismatch probe designed to measure non-specific cross-hybridization (CH) 
(Affymetrix, 2004, http://www.affymetrix.com/support/). The expression level for a gene 
is a summary of the data from the entire probesets. 

Improper microarray probe design can influence expression analysis starting from 
hybridization signal measurements and ending in identification of differentially expressed 
genes and gene clustering. This has often been the norm and studies of the same 
biological samples have led, in many cases, to contradictory results [Gautier et al., 2004; 
Harbig et al., 2005; Zhang et al., 2005]. In particular, high complexity of genome loci 
and diversity of transcriptome sequences (ESTs, mRNAs) could be the sources of 
incorrect annotation in databases. Probeset (and individual probes) design based on such 
incomplete or even erroneous annotation has a clear potential to generate downstream 
problems for correct interpretation of microarray experiments. In some cases, several 
probesets can specifically target a single genic sequence coding for protein (and thus 
allow to better define transcripts), in other cases a probeset is capable to hybridize more 
than one transcript (and provide uncertainty in transcript detection) [Stalteri and Harrison, 
2007]. The "multiply targeting" probesets have a common component in expression 
signals, i. e. these probesets can lead to an increased number of spurious positive 
correlations between expressed genes [Okoniewski and Miller, 2006; Orlov et al., 2006]. 

Recent papers [Gautier et al., 2004; Mecham et al., 2004; Dai et al., 2005; Harbig et al., 
2005; Leong et al., 2005] report re-evaluation of Affymetrix array probes using BLAST 
comparison of probe sequences to the "complete" human genome. The problem of 
accurate Affymetrix target sequence annotation is related to the complexity of multiple 
"gene models" based on (often old) ESTs without further validation. Reported re-
identification using different genome database releases may affect 30-50% of probesets 
[Harbig et al., 2005; Okoniewski and Miller, 2006]. 

The problem of multiple matching is not solved, although Affymetrix probeset names are 
supposed to identify probesets that are associated with multiple transcripts. In particular, 
those marked "_x_at" are identified as being "non-specific". Similarly, "_s_at" probesets 
are identified as potentially targeting different gene family members or splice variants. 
However, genome mapping shows that many of the probesets associated with multiple 
genomic loci are not identified correctly and the majority of them are not indicated by 
name convention [Okoniewski and Miller, 2006]. 

There are several basic quality control criteria for verification of the target sequence. 
These sequences (1) should detect a unique locus in the human genome; (2) should 
perfectly match a transcript; (3) should correspond to the sequence from the transcribed 
strand of the genome at the locus (correct strand orientation of original target sequence); 
(4) should not overlap with any other non-gene sequence that could cross-hybridize or 
even be independently transcribed (segmental duplications, interspersed repeats, 
microRNAs); (5) should correspond to mature RNA (not intronic sequences that are 
spliced). These basic criteria have not been well controlled, partly because transcript 
databases undergo continual growth and change. 



Comprehensive reassessment of Affymetrix probesets is of great importance when 
considering the use of experimental data for analysis of differential expression of 
particular genes and especially when inferring expression networks. In the present study, 
we recomputed genomic mappings of the Affymetrix U133A and U133B GeneChip 
initial target sequences, reassessed mapping problems and annotations corresponding to 
those sequences, and evaluated the impact of erroneous and poorly-annotated initial 
probe target sequences. We developed novel quality control procedures based on 
sequence alignment, genome mapping, annotation and statistical analysis of GeneChip 
expression data from large and well-characterized clinical groups [Miller et al., 2005; 
Ivshina et al., 2006] as well as the treated and untreated human cells [Shames et al., 
2006]. We compared the good- and poor-quality probesets for their discriminating ability 
of biologically and clinically distinct cancer subtypes and the statistics of correlations 
between hybridization signals within these good- and poor-quality probesets for the same 
patient groups. 

 
 

Method 

 
Sequence data 

Affymetrix sequence data for the U133A and U133B chips were downloaded from the 
NetAffx web site (http://www.affymetrix.com/analysis/index.affx). These sequences, 
intended to represent genes, are referred to as initial target sequences of the Affymetrix 
probesets. We used these target sequences to survey possible transcripts that each 
probeset might detect. To study target sequences assignment, we used BLAT 
(http://genome.ucsc.edu/cgi-bin/hgBlat), UCSC Genome Browser tools, and our own 
programs developed at GIS (http://www.gis.a-star.edu.sg/internet/site/) and BII 
(http://www.bii.a-star.edu.sg/). We used BLAT search at 90% similarity level to match 
each Affymetrix target sequence to the genome. Then we annotated overlaps with exonic 
region(s) of RefSeq, mRNA and spliced EST variants on the NCBI Build 35 and 36.1 
(hg17 and hg18) assemblies. 

We mapped Affymetrix probesets to gene sequence blocks based on the initial target 
sequences, not based on the individual 25-mers in the probesets. The results of mapping 
(chromosome coordinates, orientation, details of overlapping with exons and repeats etc.) 
were stored in a local database associated with unique Affymetrix probesets ID. 

 
Mapping onto human genome 

An Affymetrix target sequence is defined as problematic if it (1) does not align by BLAT 
at 90% similarity criterion in the human genome; (2) shows more than one BLAT match 
at different loci of the human genome; and/or (3) shows an orientation opposite to the 



intended gene sequence (perfect match of all the gene exons and the Affymetrix target 
sequence blocks, but on opposite strands). In complex cases of overlapping transcripts we 
consequently checked perfect matching of target sequence to antisense transcript for 
RefSeq gene annotation, then for mRNA, then for spliced EST corresponding to the 
intended target. 

In addition, for each target sequence, we checked for exonic repetitive elements using 
RepeatMasker. We constructed a table of repeats found by family and repeat types 
(DNA, LTR, LINE, SINE, simple and low complexity repeats, etc.) indicating the length 
of the Affymetrix target sequence covered by the each type of repeats. 

Some of the Affymetrix target sequences exactly or partially match a gene by mapped 
transcript blocks in opposite orientation (see Figure 9B, 232550_at probeset). Such a 
target sequence could be considered as wrongly selected sequence not representing the 
gene. Alternatively, such a target sequence could correspond to a mRNA or an EST 
located on the opposite strand of the given gene. We found that a large fraction of 
Affymetrix target sequences maps transcripts whose expression could be affected by 
transcription from a cis-antisense transcript of the opposite strand. A target sequence 
could completely or partially overlap a transcript mapped on the opposite strand and thus 
to be considered as wrongly designed. But such a cis-antisense transcript also could be an 
artifact of wrong EST mapping. However, substantial numbers of mRNAs and ESTs in 
cis-antisense loci represent natural antisense transcripts (NAST) derived from opposite 
strand of the given gene [Yelin et al., 2003; Katayama et al., 2005; Zhang et al., 2006]. 

In order to distinguish the Affymetrix target sequences matching NAST from the 
Affymetrix target sequences having wrong orientation to transcript, we developed a 
pipeline and constructed the local United Sense-Antisense Pairs (USAP) database 
[Kuznetsov et al., 2006b] collecting genomic information about sense-antisense (SA) 
gene pairs and Affymetrix target sequences matching such pairs. The database annotates 
and classifies SA pairs by three annotation tracks (RefSeq, mRNA and EST) using latest 
human genome release (hg18). USAP contains two times more SA transcript pairs than 
previously reported for the human genome by [Zhang et al., 2006] 

 
Data for expression validation 

 
Cancer data and microarrays 

To study functional usefulness of the problematic probesets, we analyzed the expression 
patterns of approximately 23,000 gene transcripts (represented by 44,928 probesets on 
Affymetrix U133A and U133B arrays) in 249 primary breast tumors (NCBI Gene 
Expression Omnibus (GEO), http://www.ncbi.nlm.nih.gov/geo/; data sets GSE4922). The 
cancer samples were split into four groups (G1, G2a, G2b, G3): G1 and G3 groups 
correspond to histologic grades I and III tumors, respectively; G2a and G2b groups are 
the sub-types of histologic grade II tumors, which have been identified based on genetic 



re-classification of the grade II breast cancer tissues resulting in computational pattern 
recognition of small and robust prognostic gene signatures [Ivshina et al., 2006]. The 
order of G1, G2a, G2b and G3 corresponds to aggressiveness of breast cancer. The 
number of samples in G1, G1-like, G3-like and G3 was 68, 83, 43, and 55, respectively; 
for details, see [Miller et al., 2005; Ivshina et al., 2006]. 

In addition, we used U133A&B expression data from several normal and cancerous brain 
tissues (GEO data set: GDS1962) and lung cancer (GEO ID: GSE5816). 29 Affymetrix 
microarrays represent several human lung cancer cell lines before and after treatment 
with promoter hypermethylation agent 5-aza-2'-deoxycytidine (5-aza) [Shames et al., 
2006]. Expression pattern of 5-aza-treated lung cancer cells was associated with switch-
on and switch-off for 132 tumor-specific promoter-hypermethylated genes and up- or 
down- expression of many other hundreds genes in the cancerous genome [Shames et al., 
2006]. 

All data passed the quality control of the expression signals on microarrays and MAS5 
normalization was applied [MAS 5.0 algorithm. Affymetrix, 2002]. We then performed a 
global mean normalization to ln(500) to provide a standardization of signals of expressed 
genes across microarrays and to compare the frequency distributions of the signal within 
entire dynamical range of the signal in microarray transcriptome samples. 

 
Analysis of the empirical frequency distribution function of hybridization signal for 
microarray transcriptome sub-sets 

We constructed the empirical frequency distribution function of normalized hybridization 
signal (representing gene expression level) for individual microarrays. We also 
constructed the empirical distribution function for different classes of problematic target 
sequences (see below). To evaluate the quality of the problematic signals, we also 
constructed the distribution functions using non-problematic (well defined and high 
specific) target sequences collected by chance into a class of samples of the same size as 
we did for the problematic target sequences. 

 
Discrimination ability of a set of Affymetrix probesets derived from a problematic class 
of target sequences 

We evaluated the ability of a set of Affymetrix probesets derived from a given 
problematic class of target sequences to discriminate the biologically and clinically 
defined subtypes of tissue samples. In particular, we used tumor samples of histological 
grades I and III of breast cancer, which can be strongly discriminated by ~4000 
differentially expressed genes [Chua et al., 2006] and by patient disease free survival 
time (DFS) [Ivshina et al., 2006]. 

To perform that evaluation quantitatively, we used Statistical Analysis of Microarrays 
software, SAM 3.1 [Tusher et al., 2001]. This software provides the estimates of the 



"significant differences" between two groups of samples by calculating a so-called "false 
discovery rate" value (SAM q-value). Taken a fixed q-value cut-off, the SAM program 
identified a set of Affymetrix IDs that have differentially expressed signals which 
discriminate two groups. Then, taken a fixed q-value cut-off, we obtained a set of 
Affymetrix IDs providing differentially expressed genes (represented by hybridization 
signals). We estimated the number of non-problematic target sequences expected by 
chance in a set of this size. The discrimination ability of Affymetrix probesets derived 
from a given problematic class of target sequences was estimated based on the statistical 
significance of the difference between expected and observed numbers of such probesets 
in the set of differentially expressed Affymetrix IDs. 

 
Analysis of the correlations in the distinct groups of Affymetrix probesets 

In a group of microarrays (representing tumor sub-type), we calculated the Kendall τ (tau) 
correlation coefficients matrix between all Affymetrix GeneChip signals. For every pair 
of Affymetrix probesets we calculated the Kendall τ correlation coefficient between their 
expression signals. We then counted the numbers of positive and negative correlation 
coefficients for Affymetrix probesets associated with the problematic classes of target 
sequences. We calculated the Kendall τ correlation coefficients for U133 Affymetrix 
probesets in microarrays representing tumors with G1, G2a, G2b, and G3 sub-types. 
Briefly, we calculated the Kendall τ rank order correlation coefficients between all pairs 
of probesets using data for 68, 43, 83 and 55 patients with G1, G2a, G2b, and G3 sub-
types of breast cancer grades, respectively. Thus, for each of the four subtypes, we 
calculated symmetric matrices of size 44692 × 44692 (common probesets in array U133A 
and array U133B were used only once). To avoid noise correlations we calculated a 
number of positive and negative correlation coefficients at P<0.05 and P<0.01 (For 
example, for sample size 55 (G3 sample) only correlations higher than 0.31 are 
significant at 5% level, and higher than 0.409 are significant at 1% level, etc.). We did 
the same analysis for all the groups of probesets derived from problematic target 
sequences. For each problematic group we compared the number of observed correlation 
coefficients and the number of correlation coefficients expected by chance. The expected 
number we estimated by Monte Carlo sampling procedure using the same number of 
Affymetrix probesets that we have in the problematic group. 

 
Statistical software 

For group comparison Mann-Whitney U-test statistics were used for continuous variables 
and one-sided Fisher's exact test used for categorical variables (Statistica-6 and StatXact-
6 software). We also used SAM 3.1 (Statistical Analysis of Microarrays) software 
[Tusher et al., 2001] to estimate the number of differentially expressed Affymetrix 
probesets. 

 
 



Results 

 
Problematic classes of target sequences 

We believe that target sequences of purportedly human microarray probes which, by 
BLAT, are completely absent in the human genome (sequences to which we hereafter 
refer to as Tag0 sequences) and target sequences which match multiple loci in the 
genome are sources of uncertainties in gene identification and cross-hybridization effects. 
They should be excluded from analysis of microarray experiments. We checked BLAT 
(hg18) mappings for all 44,692 sequences on U133A and U133B arrays, except the 
control sets. 

We found: (i) 1212 (2.7%) initial target sequences which do not match any location in the 
human genome (Tag0 or mismatched sequences, see Tab. 1); (ii) 42708 (95.5%) target 
sequences with a single mapping (Tag1 / reliable target sequences); (iii) 772 (1.7%) 
target sequences with multiple locations in the human genome (Tag2+). 

Tag2+ is defined as sum of Tag2, Tag3, Tag4 etc., based on the number of their BLAT-
matched loci. Tag 0 and Tag2+ might cause noise and/or cross-hybridization signals. 
Tag0 probesets are related mostly to mRNA and EST, but not genomic DNA and were 
associated with poorly-designed target sequences, poorly-annotated transcripts, and non-
human sequences which are mistakenly labeled "human" in GenBank (Affymetrix clearly 
designed probesets from those sequences without ever verifying by BLAST that the 
sequences are really human). For instance, about 45% of Tag0 were classified as "xeno-
sequence/non-human" (mouse, cow, pathogens, rat etc; 224340_at is mouse c-myc with 
extra TGA insertion; 217283_at strongly maps mouse short stature homeobox; 217255_at 
100% is cow SQSTM1); about 27% of Tag0 do not bring up any human sequences 
(207726_at falls to GeneCards estrogen-related receptor beta (ESRRB)); about 17% of 
Tag 0 were classified as low-accuracy sequences. Others belong to small groups of 
poorly-defined sequences (for instance, 222196_at falls to random (not assembled) 
chromosome parts). 

 

Table 1:  Statistics of Affymetrix target sequence matches in human 
genome. 

# locations(Hg18) Tag1 Tag2 Tag3 Tag4 Tag5 Tag6+ Tag0 Total 

#Affymetrix IDs 42708 450 129 67 42 84 1212 44692 

% 95.56 1.0 0.28 0.14 0.09 0.18 2.71 100 
 

Standard assignment of Affymetrix target sequences to genome provided by UCSC 
Genome Browser using default BLAT parameters partially missed problematic probesets 



or has no hit indicated. Location of target sequences should correspond to mapping of the 
gene, but the latter may change from database releases and be not resolved. For example, 
208303_s_at falls onto different chromosomes: X and Y following the mapping of 
CRLF2 (cytokine receptor-like factor 2 isoform 1). The CDS of the gene is not complete. 
Another example is 207353_s_at probeset. Its target sequence mapped to the not 
assembled part of chromosome 4 (chr4_random) corresponding to the location of the 
HMX1 gene (homeo box H6 family 1). The Affymetrix target sequence 221715_at is not 
mapped on neither human genome hg17 nor hg18 releases. 

We identified multiple genome locations of some extraordinary redundant target 
sequences. For instance, 81737_at has 22 different locations in human genome; 
213089_at also has more 11 hits to human genome. Some of these hits are presented both 
in hg17 and hg 18 maps. 

 
Repeats in Tag1 target sequences 

Surprisingly, we found up to 25% of target sequences covered by mobile elements 
(repeats) abundant in the human genome (Tab. 2). 

 

Table 2: Statistics U133A&B Affymetrix target sequences overlapping genome. 

Set of genome repeats Repeat class # in target 
sequences 

Simple repeats Simple repeat, Low complexity 3233 

Short transposons 
(<300 bp)  DNA, SINE/Alu, SINE/MIR 4347 

Long transposes (>300 
bp) 

LINE/CR1, LINE/L1, 
LTR/ERV1/ERVK/ERVL/MaLR 5420 

Non-transposons and 
satellites 

Other, RNA, rRNA, Satellite, scRNA, snRNA, 
srpRNA 80 

 

The majority of repeats in target sequences are LINE, LTR and SINE. These target 
sequences might be a significant source of erroneous detection of expressed genes and 
cross-hybridization signals. 

 
Inversely oriented target sequences 

We consider an Affymetrix target sequence as inversely oriented if it matches the 
opposite strand to any RefSeq, mRNA, or EST-supported gene (Tab. 3). These target 



sequences may refer to natural antisense transcripts (NAST), but not annotation errors 
[Harbig et al., 2005]. The large fraction of Affymetrix target sequences (29.7% 
(13260/44692)) matches RefSeq or mRNA or EST on the opposite strand of a given 
gene, but the complete genomic coordinates (complete sets of exon and intron boundary 
coordinates) for these negative-strand transcripts are different from the mapped 
Affymetrix blocks. We used only verified coordinates of antisense transcripts from USAP 
database (column "Match to NAST", Tab. 3). These results suggest that a large fraction 
of Affymetrix probesets detect cis-antisense transcripts which are putatively non-coding 
transcripts located on the opposite strand of a given gene. The percentage is consistent 
with several published studies using an exon-to-exon cis-antisense overlap definition, 
which found that ~20% of mammalian transcriptional units have cis-antisense transcripts 
[Chen et al., 2004]. 

Using our working definition of misoriented Affymetrix target sequences (see Appendix 
1), we found further 1297 Affymetrix target sequences whose complete genomic 
coordinates perfectly matched the target gene on the opposite strand (gene mapping by 
UCSC browser onto hg18 genome assembly. See Appendix 1 for examples). These 
Affymetrix target sequences probably have been designed based on poorly defined 
mRNA sequences and ESTs in which orientation had not been defined accurately (e.g. 
EST clusters, pseudogene transcripts) and, perhaps, for which a gene name had been 
assigned later. Some inversely oriented target sequences might originate from reverse-
oriented artifact singleton cDNA clones whose incorrect orientation is evident when their 
structures (complete genomic coordinates) are compared to those of newer and more 
accurate cDNA sequences mapping to the same locus. Importantly, a major fraction of 
probesets assigned to these target sequences showed low expression levels for our 
samples. This result supports our definition of these 1297 sequences as problematic 
Affymetrix targets. 370 of these 1297 problematic target sequences were found by 
manual curation and 927 by comparison of RefSeq, GenBank mRNA and EST annotation 
tracks. 

In total, 810 (1.8%) Affymetrix target sequences were defined as misoriented sequences. 
This set was defined by manual curation and automatic comparison of blocks of 
Affymetrix target sequences with exons of RefSeq or mRNA sequences in opposite 
strand (Tab. 3). 

 

Table 3: Classification of Affymetrix target sequences (Tag1) matching transcripts in 
opposite strand.  

Correct orientation Misoriented to intended transcript in as 
verified by 

Sets 
Total  Match to 

NAST 
Manual 
curation RefSeq mRNA EST 

Total in 
Tag1 

# Target 41898 13260 370 138 302 487 42708 



sequences 

% 93.74 29.66 0.82 0.3 0.67 1.08 95.65 
 

The number of Affymetrix target sequences misoriented relative to intended transcripts is 
about 2 times larger than reported by Harbig et al. [Harbig et al., 2005]. Affymetrix 
target sequences matching transcripts in both strands may refer to the natural antisense 
transcripts (NAST) [Chen et al., 2004; Harbig et al., 2005] (see column "Match to 
NAST" in Tab. 3). 

In addition, 487 (1.08%) Affymetrix target sequences perfectly match ESTs on opposite 
strand. However, we do not consider this set as a reliable set due to probable errors in 
EST annotation. 

 
Classification of different categories of problematic Affymetrix target sequences 

Tab. 4 shows the statistics of all categories of poorly-defined Affymetrix target sequences 
found using hg18 Assembly: Tag0, multiple genome matching Tag2+ (Tag2, Tag3 and 
others) targets sequences, misoriented target sequences and the target sequences covered 
by genome repeats. This table shows that only about 86% (38511/44692) U133A&B 
target sequences could be useful in expression analysis. 

We suggest not use 1984 non-Tag1 Affymetrix target sequences, 810 misoriented 
sequences, and 3387 sequences covered by genome repeats by more than 40% of the 
target sequence length. 

Tab. 4 also shows the numbers of Affymetrix target sequences covered by interspersed 
repeats grouped by percent interval of the sequence length. The number of target 
sequences that strongly overlapped with genome repeats was usually less than the number 
of partial overlaps (761 (or 1.7%) for overlap 80-100% and 1690 (3.78%) for 40-60% 
overlap). 

 

Table 4: Joint classification of problematic Affymetrix U133 target sequences.  

Target sequences groups Non-redundant # 
of probesets % 

Total # of non-Tag1 sequences, 
including: 1984 4.43 

  Tag0 1212 2.71 

  Tag2+ 772 1.72 



Total # misoriented target sequences, 
including: 810 1.81 

  RefSeq IDs (by blocks) 138 0.3 

  mRNA GenBank (by blocks) 302 0.67 

  Manual curation protocol 370 0.82 

Total # of target sequences overlapped with repeats, 
including: 3387 7.57 

  Overlap 80-100% of target sequence length 761 1.7 

  Overlap 60-80% 936 2.09 

  Overlap 40-60% 1690 3.78 

Total # of useful Tag1 target sequences, 
including: 38511 86.16 

  Overlaps with observed transcripts in opposite strand 13260 29.66 

  Misoriented to ESTs in Tag1 487 1.08 

  Target sequences with 20-40% of repeats 2409 5.39 

  Target sequences with <20% of repeats 1210 2.7 

TOTAL # of Affymetrix target sequences 44692 100 
 

 
Comparison of mean gene expression levels detected by different classes of 
problematic target sequences 

To study different groups of problematic Affymetrix target sequences, we used a large set 
of expression data of genetically and clinically well-separated breast cancer sub-types 
[Ivshina et al., 2006]. Here we demonstrate that misoriented target sequences and strong 
overlapping of the target sequences with genome repeats provide lower mean expression 
signals and larger noise. 

We compared average gene expression levels in these groups of problematic target 
sequences: Tag0, multiple loci matching, misoriented relative to given gene, and target 
sequences covered by repeats as 0-20%, 20-40%, 40-60%, 60-80%, 80-100% of target 
sequence length (in non-overlapping intervals of percents, i.e. [0;20), [20;40) ... and [80-
100]). For each group of target sequences, we determined mean values (in natural log 
scale) of normalized hybridization signals for tumor samples averaged by all probesets in 
the group (Fig. 1). 

 



Figure 1: Averaged expression signal of 
probesets associated with problematic groups 
of Affymetrix target sequences. Designations 
for the groups: "Tag0": the sequences do not 
match to the human genome; "Misoriented": 
Misoriented by blocks to RefSeq or mRNA 
(see the text); "Repeats<20%": repeats cover 
less than 20% of target sequence size; 
"Repeats 20-40%": genome repeats cover 
from 20% to 40% of target sequence size; 
and so on for "Repeats 40-60%", "Repeats 
60-80%", Repeats "80-100%"; "Tag1": do 
not contain problematic Affymetrix target 
sequences. Columns present averaged 
expression values in histologic Grade I and 
Grade III of breast cancer samples.  

 

Affymetrix probesets derived from target sequences Tag1 which do not exhibit any 
complication and which are covered by genome repeats over less than 20% of target 
sequence length could be designated as "Normal". Fig. 1 shows a strong negative trend of 
the mean values of the hybridization signal from Normal group to misoriented target 
sequences group. In particular, problematic probesets from target sequences with larger 
fraction of genome repeats provide lower mean expression signals than target sequences 
with smaller repeat fraction. 

Mean value of probesets from Normal group is close to 6.2 as should be in logarithmic 
scale of Fig. 1. All the problematic target sequence groups show lower average value of 
the hybridization signals. The differences between clinical sub-types (G1 or G3) exhibit 
relatively larger enrichment on differentially expressed genes represented by probesets of 
Normal group in comparison to the genes represented by problematic probesets. 

Misoriented and multiple-matching target sequences provide most poor expressed 
probesets in comparison with other problematic sequence groups (Fig. 1 and Fig. 2). This 
trend is exhibited by the lower average expression signal (Fig. 1) and by a larger 
coefficient of variation (CV) (Fig. 3). 

By our definition, misoriented Affymetrix target sequences perfectly match, but in the 
inverse orientation, the entire complete genomic coordinates of a protein-coding gene. 
Fig. 2 shows the mean expression values (in log-scale) probesets derived from wrongly 
orientated Affymetrix target sequences found in different annotation tracks. Tag1 data 
was used as a positive control. 



Figure 2: Average values of expression 
signals of probesets for misoriented 
Affymetrix target sequence groups.  

 

Fig. 2 shows that manually curated, RefSeq and GenBank mRNA derived groups of 
misoriented target sequences provide lower averaged expression signal than the EST 
derived group. We joined probesets associated with these three groups as reliably-defined 
misoriented (corresponds to "Misoriented" in Fig. 1). We conditionally defined the 
Affymetrix target sequences which perfectly matching EST in opposite strand of the 
given gene as "putatively misoriented". All the groups of probesets derived from 
misoriented sequences have less average expression than Normal group. 

In addition to the mean signal intensity value, we calculated the coefficient of variation 
(CV, ratio of standard deviation to mean) to find problematic Affymetrix probesets with 
higher noise in microarray experiments. Fig. 3 shows that among problematic groups, the 
trend of decreasing CV value reflects inversely the trend of increasing mean value 
presented in Fig. 1. Tag0 group provides the highest variability of the hybridization 
signals and lower mean value of the signal, perhaps due to low-specificity and cross-
hybridization attributes of probesets derived from this group of target sequences. 
Interestingly, the CV value of G1 tumors is reproducibly smaller than CV value of G3 
tumors among all compared groups. However, differences between clinical sub-types (G1 
or G3) exhibit relatively minor impact on the CV value in comparing the hybridization 
signals between normal and the most problematic groups (Fig. 3: "Misoriented", "Tag0", 
and "Repeats 80-100%" groups). 

 

Figure 3: Comparison of average coefficient 
of variation (CV) values for Affymetrix 
probesets derived from different problematic 
target sequence groups.  

 



 
Ability of probesets derived from repeat-overlapping target sequences to identify 
differentially expressed genes 

We compared the discrimination ability of Normal and problematic probeset groups by 
identifying differentially expressed genes in human breast tumor sub-types. Histologic 
grades G1 and G3 of breast cancer are the subtypes that associated with low- and high- 
aggressive clinical behavior of the cancer. These tumor subtypes exhibit differential 
expression for at least 4000 U133A Affymetrix probesets [Chua et al., 2006]. Assuming 
to use G1 and G3 microarray data sets in our quality control analysis of repeat-
overlapping sequence targets, we suggested that if a given type of repeat elements covers 
a subset of target sequences, then probesets corresponding to these sequences should be 
relatively under-represented in a set of differentially expressed genes, because of the 
nonspecific matching of the exonic repeat fragment by multiple transcripts. We used a 
score estimated by a ratio of the numbers of differentially expressed probesets in repeats-
overlapped and repeats-free groups of probesets. 

First, we used U133A and U133B arrays and applied a statistical test (SAM 3.1 [Tusher 
et al., 2001]), which calculated a "false discovery rate" (or SAM q-value). We selected 
6144 differentially expressed probesets which can discriminate the low- and high- 
aggressive breast cancer samples at low q-value (less than 1.5%). Then, we counted the 
number of probesets derived from target sequences which were covered by a given type 
of repeats at 10%, 20%, ..., 100%. 

Second, we compared observed ratio of the differentially expressed probesets for which 
the corresponding target sequences were overlapped with repeat sequences in the human 
genome and the ratio expected by chance using the formula: 

f = (RS / R) / (NS / N) (1) 

where N is the total numbers of probesets, R is the total number of probesets with repeats-
overlapped target sequences, NS is the number of statistically significant probesets in 
SAM test; RS is the number of statistically significant probesets derived from repeats-
overlapped target sequences in SAM test. Note that even though theoretically this ratio 
could be larger than 1, in our analyses we found only smaller values indicating under-
representation of problematic probesets in the G1 and G3 discriminating set. 

 



Figure 4: Index f as a function of percent of 
corresponding target sequence span covered 
by genome repeats. Shown are the results for 
all repeats (black diamonds), short repeats 
(SINE, DNA, Alu; white circles) and long 
repeats (LINE, LTR; gray triangles).  

 

We found that simple repeats and low-complexity sequences do not affect the ability of 
corresponding probesets to discriminate tumor-type specific signals. As a general trend, 
probesets derived from target sequences with larger repeat overlap have progressively 
worsening proportions among differentially expressed genes, especially for longer repeats 
(LTR and LINE). 

 
Cross-hybridization within groups of problematic probesets 

We calculated Kendall τ rank correlation coefficients between probeset expression values 
on the breast cancer samples. We calculated the number of significant correlations (at the 
significance levels P<0.01 and P<0.05). We compared the number of such correlations 
within problematic groups and within randomly selected groups of the same size from 
Normal probesets (using Monte Carlo simulations). In general, whole array and random 
control groups have an approximately equal number of positive and negative correlation 
coefficients (around 50%). A fraction of significant positive correlations for Normal 
probesets group was slightly larger than a fraction of significant negative correlations (at 
P<0.01 and P<0.05). However, the fractions of significant positive correlation 
coefficients between probesets in the problematic Affymetrix target sequence groups 
were higher than in control groups. For example, the fraction of significant (at P<0.05) 
positive correlations between probesets derived from target sequences with repeat 
coverage of more than 80% is about 0.07 as compared with 0.05 for target sequences 
with repeat coverage of less than 20%. Fig. 5 shows that a fraction of significant 
correlation coefficients in G1 tumors has positive increment for the positive correlations 
and negative increment for the negative correlations when the fraction of repeats in a 
given target sequence becomes larger. Similar trends were observed for G2a, G2b, and 
G3 tumors (not presented). 

 



Figure 5: Fraction of significant positive and 
significant negative Kendall τ correlation 
coefficients (at levels P<0.05 and P<0.01) for 
Affymetrix probesets depends on the percent 
of the target sequence covered by genome 
repeats. The groups are from Tag1, target 
sequences with correct orientation. No simple 
and low complexity repeats were taken into 
account. Grade I breast cancer samples. Red 
and black lines show positive and negative 
trends, respectively.  

 

These results support our assumption that problematic Affymetrix target sequences (in 
particular, the sequences which are mostly covered by genome repeats) can be an 
essential source of (positive) spurious correlations between many probesets (and 
respectively, genes) in microarray experiments. 

Since the observed ratio of positive correlations versus negative correlations between 
probesets on Affymetrix U133A and U133B microarrays was about 1 (as expected by 
chance), the ratio between the number of positive and negative significant correlations in 
the samples also could be equal to 1. Indeed this ratio equals to approximately 1 in 
random samples taken from all probesets for each tumor sub-type (not shown). But for 
target sequences covered by genome repeats this ratio increases with repeat coverage up 
to 2 times (Fig. 6). The fraction of positive significant correlations within problematic 
groups monotonously increases when the covering of the target sequence by repeats 
becomes larger. However, there is no trend in the positive correlation proportion for the 
same size sub-groups of the probesets chosen randomly from Tag1 Normal group. The 
difference between the proportions of positive correlations expected by chance and 
observed becomes detectable when genome repeats cover on average more than 40% of 
original target sequence (Fig. 6). Fig. 6 shows the results for G1 tumors. Similar results 
were obtained for genetic grades G2a, G2b and histologic G3 breast cancer sub-types. 

 

Figure 6: Ratio of significant positive 
Kendall τ correlation coefficients (at the 
significance level P<0.05) within problematic 
groups of probesets derived from target 
sequences covering by repeats and within 
samples of the same size chosen randomly 
from the Tag1 Normal group. Grade I breast 
cancer samples.  

 



Comparison of the numbers and values of correlation coefficients of probesets derived 
from multiple matching target sequences with random samples from Normal group 
reveals similarly poor quality of these problematic groups. Our analysis of expression 
data for different sub-types of breast cancer samples reveals that a larger number of 
genome loci for the target sequence correlates with 1) higher expression noise (defined 
by CV-value), 2) lower average signal level, and 3) higher number of spurious positive 
correlations. This is what we expect for nonspecific hybridization of cDNA sequences. 

 
Comparison of the signals on GeneChip U133A and U133B arrays 

Arrays U133A and U133B show different statistical properties of sequence quality. Tab. 
5 shows that the fraction of target sequences passed our QC (quality control, i.e. tag1, 
correct orientation on chromosome, and repeat coverage is less than 40% of target 
sequence length) on array U133A is a larger in comparison to array U133B. In general 
array U133A is better annotated and shows higher expression level than array U133B 
(about 89% of non-problematic probesets are in U133A vs ~83% for U133B). Fig. 7 
shows that the density of signal intensity values averaging on 10 lung cancer cell line 
samples for arrays A and B are distinct. In particular, Fig. 7 shows that the fraction of 
noisy signals is significantly larger on array U133B (left side of the distributions), while 
array U133A exhibits much higher specific hybridization signal (right side). The effect of 
QC filtering is presented on both arrays. 

 

Table 5: Comparison of genome annotation quality for U133 A and U133B arrays. 

 # 
Probesets 

# Correct probesets 
(passed QC) 

% of correct probesets 
(passed QC) 

A and B 100 98 98.0 

Service probesets 68 N.A. N.A. 

Array U133A 22115 19753 89.3 

Array U133B 22477 18660 83.0 
 
 
 

 



Figure 7: Signal intensity value distribution 
for Affymetrix U133A and U133B arrays 
(dots indicate density of the distribution in 
intervals [0;0.5), [0.5;1.0), [1.0;1.5), etc.) 
Probesets filtered by quality control (QC) 
have slightly higher average signals for both 
arrays U133A and U133B. MAS5 
normalized and log-transformed data on lung 
cancer cell samples (GEO ID: GSE5816) 
[Shames et al. 2006].  

 

There are many examples of problematic patterns distinguishing Tag1 U133A and 
U133B probesets corresponding to the same gene. For example, the c-myc gene is 
matched by three Affymetrix probesets: A.202431_s_at is from U133A array, 
B.239931_at and B.244089_at probesets are from U133B array. However, expression 
signals from these three probesets do not correlate to each other. 244089_at even is in 
opposite orientation to the gene. Probeset A.202431_s_at exhibits higher expression level 
7.45-7.49 and appears in the right (most specific) side of the empirical frequency 
distribution of signal intensity value. Two other probesets exhibit much lower expression 
levels (4.387-4.388 and 3.404-3.569, respectively), they are located in left (non-specific, 
noisy) side of the frequency distribution of the gene expression value (Fig. 7, Fig. 8). The 
probesets B.239931_at and B.244089_at do not correspond to exons of c-myc gene, but 
correspond to ESTs located in the intron. These two target sequences perhaps were 
designed using incomplete mRNAs sequences and should be considered as noisy. 

Note that the frequency distribution of signal intensity values in Fig. 7, Fig. 8 can be 
described by the mixture of additive and non-linear multiplicative noise-signal functions 
[Chua et al., 2006]. Based on goodness-of-fit analysis of this model, signal intensity 
values of less than 6.2 (6.2=ln(500) is the mean value of the normalized signal on a 
microarray) are described by log-normal probability function and could be considered as 
mostly additive noise signals. By contrast, signals higher than 6.2 are distributed by the 
convolution of the (true) Generalized Pareto probability function with the (noise) gamma 
probability function. This convolution function can serve as a descriptor of the 
distribution of multiplicative noise-modulated true signals. In the case of data showed on 
Fig. 7, a fraction of additive noise on microarray U133A is significantly smaller than on 
microarray U133B: 41% and 60% for U133A and U133B microarrays, respectively. We 
calculated these numbers as the fractions of cumulative signals obtained between 0 and 
6.2 for the frequency distributions in Fig. 7. 

We found similar large differences between the quality of hybridization signals on 
U133A and U133B arrays for several different types of human cells (breast cancer cells, 
brain cells (not shown)). 



To compare changes in signal intensity value distributions between U133A and U133B 
arrays and between different biological conditions on the same cell lines we constructed 
normalized distributions in untreated (10 control samples) and 5-aza treated (11 samples) 
human lung adenocarcinoma cells. It was shown that 5-aza treatment induces 
hypermethylation and higher expression of large number of genes [Shames et al., 2006]. 
Fig. 8 shows that "technical" differences (between U133A and U133B arrays) are 
reproducibly larger than "biological" differences (control and treated samples). Moreover 
effect of QC filtering on signal intensity value distribution could be comparable with 
biological variation (Fig. 7 and Fig. 8). These results suggest a much better quality of the 
probesets on U133A versus U133B and also indicate that inadequate normalization of 
data on these arrays might be additional source of artifacts in analysis and interpretation 
of expression data. 

 

Figure 8: Signal intensity value distribution 
for two groups of lung cancer cell samples: 
control and treated by 5-aza groups measured 
on Affymetrix U133A and U133B arrays. 
(MAS5 normalization, log-transformed data). 
Curves present averages of 10 microarrays in 
control group and 11 microarrays in high-
dose 5-aza treatment group.  

 

 
 

Discussion and conclusion 

Since the sources of noise in microarray experiments may be numerous [Harbig et al., 
2005; Wu et al., 2005], the researchers try to minimize the influence of noise and/or 
estimate it through various quality control, normalization and outlier filtering procedures. 
One source of variation is cross-hybridization, which occurs when unintended sequences, 
along with the intended target, hybridize to the same probe, due to sequence homology 
and/or physicochemical reasons favoring such hybridization. In the case of Affymetrix 
microarrays, which use a set of short (typically 25-mer) oligonucleotide probes to target a 
transcript, hybridization conditions are carefully controlled with the aim of minimizing 
the effect of cross-hybridization due to non-specific binding [Wu et al., 2005]. In 
addition, each Perfect Match (PM) probe is accompanied by a Mismatch probe (MM), in 
which the middle residue has been changed. The intention of the PM/MM system is to 
measure the level of CH associated with each PM probe. A more detailed discussion of 
cross-hybridization in short oligo microarrays may be found in [Gautier et al., 2005; 
Harbig et al., 2005]. Affymetrix also displays brief summaries of cross-hybridization 



within their own NetAffx service [Liu et al., 2003]. Rather than using homology 
comparison of every individual probe in our study, we have analyzed only whole target 
sequences presented by Affymetrix. Further analysis of individual probes can only 
increase the number of non-reliable probesets. 

The evolution of gene definitions has altered Affymetrix target sequence annotation from 
one genome release to another since U133 GeneChip was designed in 2001 [Dai et al., 
2005]. It could increase exact number of unreliable probesets presented in our tables. Our 
approach for the probesets validation provides necessary background for further quality 
control filtering. 

Decreased reliability of probesets containing or partially containing interspersed 
repetitive elements was suggested earlier, but statistical estimates from comprehensive 
datasets have been lacking. Here we presented quantitative estimations of the influence of 
the repeats on the mean signal intensity value, the CV, the structure of correlation matrix 
and on the definition of differentially expressed genes in distinct and relatively large 
groups of samples (from 10 to 83 microarrays per group). 

The number of positive correlation coefficients increases as repeat coverage increases. 
There is a linear trend between repeat coverage and fraction of correlations, increasing 
for positive and decreasing for negative correlations. The existence of this trend implies 
that a large number of spurious positive correlations arises in Affymetrix probesets 
derived from target sequences that have repeats due to hybridization of transcript 
sequences to more than one probeset. These extra false correlations in the groups do not 
correspond to real gene co-regulation but solely to sub-optimal design of target 
sequences. Similarly, Tag2+ and Tag0 can be also a significant source of spurious 
correlations of signals of probesets (and representative genes) on microarrays. 
Methodologies such as hierarchical clustering, principal component analysis and 
relevance networks make direct use of the correlation coefficient of expression signal 
values between probesets, others methods (such as general linear models) are ultimately 
based on correlation-like principles. In all these cases, the spurious correlations can lead 
to serious erroneous interpretation of the microarray results. 

Ivshina et al., 2006, and Kuznetsov et al., 2006a, imported Uppsala cohort expression 
data starting from the feature selection process for all original target sequences, and used 
the statistically weighted syndrome (SWS) method: a robust class prediction algorithm 
which discriminated patients with G1 and G3 breast cancers based on a statistically 
significant and biologically informative 264 gene signature. Interestingly enough, by the 
criteria presented here, almost all of these 264 probesets (with only two exceptions) were 
classified as Tag1. Hence, the automatic statistical selection procedure of the SWS 
method confirms results of Affymetrix probeset selection based on target sequence 
quality control. 

Multiple-locus, non-human, misoriented, and nonspecific probe targets are a significant 
attribute of the U133A&B GeneChip probesets. The ability of probesets to hybridize to 
more than one gene product can lead to false positives when analyzing gene expression 



data. The apparent artifacts in the data exist because the original target sequence 
annotations do not accurately reflect the transcripts bound by the targets' probes. For the 
first time, we quantitatively evaluated the influence of genome repeats and several other 
sources of inadequate probe sequence design on specificity, reliability and discrimination 
ability of individual Affymetrix probesets hybridization signals. We also evaluated the 
influence of probe design and annotation errors on generation of false-positive 
correlations, which may be an important source of errors in gene co-expression networks 
constructed using correlation/co-expression matrices. 

In conclusion, we recapitulate our principal findings as follows: 

2.7% of original Affymetrix target sequences don't match reliably any location in the 
human genome; 

Another 1.7% of the target sequences have multiple locations (up to 10 times and more); 

About 7.5% of the remaining Affymetrix target sequences are covered by repeat elements 
abundant in the human genome completely or over more than 40% of the target sequence 
length, yielding noisy expression signal; 

1.8% of Affymetrix target sequences have wrong orientation relative to the transcript 
they are alleged to detect. 

Identification and removal of the probesets derived from inaccurate target sequences can 
significantly improve the specificity, sensitivity and reliability of GeneChip technology. 

Despite numerous wrongly designed and poorly annotated target sequences, we argue 
that Affymetrix U133A&B microarrays could show reproducible and quantitative 
hybridization signals, but about 14% of these signals need filtering based on robust 
criteria, genome re-annotation and statistical methods described in this paper. We 
recommend to restrict all analyses of Affymetrix U133A&B probesets to the 86% of 
artifact-free Tag1 probes with minimal repeat content. The Affymetrix probes annotation 
and mapping database is available by request to the authors. 

Finally, we would like to conclude that careful re-analysis of microarray probe design for 
different microarray platforms (Affymetrix, Illimina, Agilent, etc) should be an essential 
component of MicroArray Quality Control (MACQ) project [Patterson et al., 2006; Shi et 
al., 2006]. This re-analysis would allow the evaluation of performance characteristics as 
well as of comparability between gene expression microarray techniques. 
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APPENDIX. Procedure for selection of misoriented sequences 



We consider a target sequence as misoriented relative to the intended gene if the 
sequence:  

1. is aligned perfectly in complete genomic coordinates, block by block (allowed 
shift is not more than 8 bp except of leftmost and rightmost block) to the 
transcript mapped to the opposite DNA strand;  

2. has a number of blocks greater than one;  
3. does not match any RefSeq gene in the same locus on the same strand;  
4. perfectly matches, block by block, a majority of GenBank mRNAs in the locus 

which are located on the opposite strand, while there are none or only a single 
mRNA perfectly matching the Affymetrix target sequence blocks on the same 
strand.  

We did not use the target gene names provided by Affymetrix. Instead, we independently 
attempted to determine the transcript whose expression is supposed to be measured by 
each Affymetrix probeset. Examples are given in Fig. A1. 

Since several UCSC annotation tracks generally describe one gene, we checked 
orientation of Affymetrix target sequences hierarchically: first relative to RefSeq, then to 
GenBank mRNA, finally relative to EST annotations. We treated 3'ESTs separately from 
5'ESTs to define correct transcript direction on chromosome, and assumed that 3'ESTs 
have a genomic orientation opposite to that of the transcript which they represent. To 
select correct representative strand we compared first orientation of RefSeq genes in the 
same locus (if any) orientation, then orientation of mRNA (if any), and only then EST. 

Manual curation in UCSC Genome Browser revealed 370 probesets derived from target 
sequences misoriented relative to the genes at their loci. 

Then, using an automated pipeline, we found 138 additional Affymetrix target sequences 
misoriented relative to RefSeq transcripts, 302 Affymetrix target sequences misoriented 
relative to transcripts with GenBank mRNA (but no RefSeq) support, and 487 target 
sequences misoriented relative to EST-supported transcripts with neither GenBank nor 
RefSeq support. If two different mRNAs were in the same locus and had the same 
mapped blocks in opposite strands, we selected the correct representative strand based on 
which of the two mRNAs had a matching RefSeq (if only one of two had it). 

In total, we found 810 misoriented Affymetrix target sequences with complete genomic 
coordinates perfectly matching a transcript on the opposite strand. 

After selecting Affymetrix target sequences wrongly oriented relative to intended genes, 
we also searched for target sequences located in regions of natural antisense transcription, 
i.e. real transcription from the opposite strand in the same locus. Natural antisense 
transcripts only partially overlap Affymetrix target sequences and have genomic 
coordinate sets (intron/exon boundaries) distinct from those of the Affymetrix targets. To 
avoid errors in mRNA/EST mapping, we used only verified transcript IDs stored in the 
sense-antisense transcript database developed at GIS. 



 

A 
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Figure A1: (A) Example of Affymetrix 
target sequence perfectly matching RefSeq in 
opposite strand. 200908_s_at matches RPLP2 
gene by blocks. This target sequence is 
marked as "Misoriented". In contrast, 
probeset 200909_s_at matches the gene 
correctly. (B) Example of Affymetrix target 
sequence matching a gene in opposite strand. 
Probeset 217861_s_at corresponds to PREB 
gene, probeset 236461_at corresponds to 
ABHD1 gene. The genes overlap each other 
by 3'UTRs forming natural antisense 
transcript pair. Corresponding target 
sequences should be marked as matching 
antisense transcript. Probeset 232550_at has 
target sequence in wrong orientation to the 
PREB gene. It is marked as "misoriented as 
verified by manual curation".  

 
 
 


