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DNA microarrays enable researchers to monitor the

expression of thousands of genes simultaneously.

However, the current technology has several limitations.

Here we discuss problems related to the sensitivity,

accuracy, specificity and reproducibility of microarray

results. The existing data suggest that for relatively

abundant transcripts the existence and direction (but

not the magnitude) of expression changes can be

reliably detected. However, accurate measurements of

absolute expression levels and the reliable detection of

low abundance genes are difficult to achieve. The main

problems seem to be the sub-optimal design or choice of

probes and some incorrect probe annotations. Well-

designed data-analysis approaches can rectify some of

these problems.
Introduction

Since its introduction in 1995 [1], DNA microarray
technology has evolved rapidly. Although all DNA
microarrays are based on hybridization of nucleic acid
strands, the available technical choices differ widely
between platforms [2]. An important distinction is the
length of the probes. Microarrays can be categorized as
either: (i) cDNA arrays, usually using probes constructed
with PCR products of up to a few thousands base pairs; or
(ii) oligonucleotide arrays, using either short (25–30mer)
or long oligonucleotide (60–70mer) probes. The probes can
be either contact-spotted, ink-jet deposited or directly
synthesized on the substrate. Each of these approaches
has its own requirements in terms of the amount of RNA
needed, data acquisition, and transformation and normal-
ization techniques [3]. These requirements together with
the differences in types and composition of probes,
deposition technologies, and labeling and hybridization
protocols, frequently result in poor reproducibility of
results from one platform to another. Here, we discuss
these issues and the extent to which they can affect the
outcome of a microarray experiment.
What is expected from microarrays?

Searching for determinants of a phenotype using gene
expression levels requires suitable coverage of the genome
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coupled with reasonable reproducibility, accuracy (Box 1)
and sensitivity in the technology employed. These
limitations matter less if microarrays are used for screen-
ing because changes in gene expression can be verified
independently. However, the stakes were raised when
microarrays were suggested as a diagnostic tool in
molecular disease classification [4,5] (Box 2), because
regulatory agencies, such as the Food and Drug Adminis
tration (FDA), require solid, empirically supported data
about the accuracy, sensitivity, specificity, reproducibility
and reliability of diagnostic techniques (http://www.fda.
gov/cdrh/oivd/guidance/1210.pdf). As it will become appar-
ent, the first decade of microarray technology produced
rather limited data pertinent to these issues.
Basic considerations of microarray measurements

There have been few methodologies in molecular biology
where expectations were raised to such a high level, with
so little evidence for the actual capabilities of the
technology. For the first six years during which micro-
arrays were available commercially, probe sequence
information was not available. End users had to trust
the manufacturer that a given probe actually quantified a
specific transcript. In reality, many cDNA microarrays
used a substantial number of incorrect probes [6–9] and a
surprisingly large portion of Affymetrix microarray probes
(up to 30–40% depending on the actual chip) were not
present in high-quality sequence databases such as Refseq
[10,11]. To its credit, Affymetrix (http://www.affymetrix.
com) subsequently released its probe sequences, but few
competitors followed. This situation seems to be changing,
in no small part because of a community-wide microarray-
validation project initiated and led by FDA researchers:
the MicroArray Quality Control Project (http://www.fda.
gov/nctr/science/centers/toxicoinformatics/maqc/index.
htm). Apart from probe design issues, the discrepancies
between an intended probe sequence and the actual
sequence synthesized or deposited on the microarray
also deserve some attention. The synthesis of nucleotide
chains performed on solid surfaces, such as the technology
used by Affymetrix, Agilent (http://www.agilent.com),
Combimatrix (http://www.combimatrix.com) and Nimble-
Gen (http://www.nimblegen.com) is not 100% accurate.
This means that microarray probes directly synthesized
on substrates will contain a significant number of
nucleotide chains that are different from the design
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Box 1. Definitions

Accuracy: can be defined as the degree of conformity of the measured

quantity to its actual (true) value. Usually, measurements are affected

by a bias, which makes the mean depart from the actual value. Given a

set of measurements, the accuracy of the instrument or technique is

usually measured by comparing some measure of central tendency of

the measurements (e.g. mean and median) to the actual value. An

ideally accurate technique would have the mean exactly equal to the

actual value.

Precision: (also called reproducibility or repeatability) is the degree

to which repeated measurements of the same quantity will show the

same or similar results. Usually, measurements are affected by an

error that makes repeated measurements differ from each other. Given

a set of measurements, the precision is usually measured by

comparing some measure of dispersion (e.g. variance or standard

deviation) with zero. An ideally precise technique would have all

measurements exactly equal (zero variance).

Accuracy and precision are completely independent. A technique

can be accurate but not precise (the mean of several measurements

is close to the actual value but the individual measurements vary

considerably), precise but not accurate (the individual measure-

ments are close to each other but their mean is far from the actual

value) neither or both. If a result is both accurate and precise, it

is valid.

Specificity: in the context of DNA microarrays, refers to the ability of

a probe to bind to a unique target sequence. A specific probe will

provide a signal that is proportional to the amount of the target

sequence only. A non-specific probe will provide a signal that is

influenced by the presence of other molecules. The specificity of a

probe can be diminished by cross-hybridization, a phenomenon in

which sequences that are not strictly complementary according to the

Watson–Crick rules bind to each other. Cross-hybridization is also

called non-specific hybridization.
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sequence, owing to base skipping [12]. Microarray plat-
forms using probes that are purified by high-performance
liquid chromatography (HPLC) and then deposited on the
solid surface, such as the CodeLink Arrays from GE
healthcare (http://www.gehealthcare.com), have the
advantage of containing an almost homogeneous popu-
lation of probes, which increases the specificity of
hybridization [13]. Unfortunately, these probes need to
be deposited after synthesis, a process often marred by
inconsistent feature shape and size. However, perhaps the
most important concern related to microarrays is that all
current technologies are based on the fundamental
assumption that most microarray probes produce specific
Box 2. Gene expression microarrays in clinical research and diag

The concept of disease classifiers based on gene expression assumes

that a particular disease state is associated with the expression levels

of a given set of genes. In principle, microarrays can be used for either

the identification of multi-genic disease classifiers or they could be

directly applied to clinical samples as a diagnostic tool. The use of

microarrays in clinical diagnostics will depend on several factors,

including the number of genes in a given multi-genic classifier and

whether accurate, robust and platform-independent quantification of

the appropriate gene markers can be achieved by microarrays. As we

outline, achieving the second criteria will require careful optimization

of microarray technology.

Studies based on expression profiling of human cancer samples

with various clinical outcomes usually produce gene-expression

classifiers involving ten to 100 genes [4,5,57–59], although micro-

array-based classifiers with as few as two genes have also been

published [60,61]. However, the multi-genic disease classifiers

published so far do not seem to be consistent across studies used to

predict the clinical outcome for the same type of cancer. For example,

two groups attempted to develop a prognostic signature to predict

survival in diffuse large B-cell lymphoma using different microarray

platforms. The studies produced two completely different gene

classifiers with 13 and 17 genes each, without a single overlapping

gene between them [57,58]. Similar inconsistencies were found in

studies that aimed to develop gene-expression classifiers to predict

the likelihood of distant metastasis in breast cancer [4,59]. It seems,

however, that these inconsistencies are due, in part, to the methods by

which the classifiers are extracted from the microarray data. There is

evidence that a multi-genic classifier based on prior biological

knowledge and extracted from the literature can be predictive in a

given microarray data set, but the same classifier could not be

identified from the same microarray data owing to the associated

www.sciencedirect.com
signals under a single, rather permissive hybridization
condition. As we will see, this is probably not true [14].
Sensitivity

The sensitivity threshold of microarray measurements
defines the concentration range in which accurate
measurements can be made. In an attempt to assess the
dynamic range of microarrays, Holland measured the
range of transcript abundance for 275 genes in yeast,
using kinetically monitored reverse-transcribed PCR
(kRT–PCR) [15], and compared the results with data
from cDNA and oligonucleotide arrays. The results from
cDNA and Affymetrix arrays were reasonably consistent
nostics

computational difficulties. For example, it was shown that survival in

diffuse large-B-cell lymphoma can be predicted based on the PCR-

quantified expression levels of six genes that were selected from a

larger set of genes that were previously known to be associated with

disease outcome [62]. The same six-gene classifier was also predictive

in microarray data sets, although it could not be derived from the same

data sets [57,58].

If reliable disease classifiers will involve, for example, a few tens of

genes, then well-established technologies for gene expression

quantification, such as real time quantitative RT–PCR, are probably a

better alternative to microarrays.

However, the diagnostic application of microarrays could be still

considered in some cases. There is an implicit assumption that

various cancer states are defined by the complex interaction of a

non-trivial number of genes, therefore a large number of diagnostic

marker genes are better suited to microarrays than alternative

technologies that have a lower throughput. Therefore, if the reliable

prediction of a clinical outcome requires O100 genes, optimized

microarrays might be a viable option for clinical diagnostics.

However, the identification of classifiers with more than ten genes

suffers from the same problems observed in cancer-based gene-

expression-profiling studies. The number of genes (usually thou-

sands) that needs to be evaluated does not permit the reliable

extraction of complex classifiers from the 200–300 clinical samples

(or fewer) that most studies contain [63]. This is a well-known

difficulty when the number of alternative hypotheses is too large

relative to the number of samples [64]. Furthermore, the quantifi-

cation of certain clinically relevant genes, such as ERBB2, by RT–PCR

was shown to be difficult in clinical samples [65]. Microarray

hybridization might not be affected by the mechanism interfering

with PCR in these examples.
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* Usually but not always, see, for example, the loop designs proposed by M.K. Kerr
et al. [21], G.A. Churchill [22] and S. Draghici [23].
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with those from kRT–PCR, down to the level of two copies
per cell. However, the microarrays failed to produce
meaningful measurements below that threshold. Cze-
chowski et al. also obtained similar results when
comparing RT–PCR profiling of O1400 Arabidopsis
transcription factors with the 22K Arabidopsis Affymetrix
array [16]. Although 83% of those genes could be reliably
quantified by RT–PCR, Affymetrix GeneChips could detect
!55% of the 1400 transcription factors, which are usually
expressed at the lower end of the dynamic range of the
transcriptome (most are present at !100 copies per cell).
Finally, Kane et al. compared the sensitivity of 50mer
oligonucleotide probes with that of PCR products [17].
These results showed that for rat liver RNA, microarrays
had a minimum reproducible detection limit of approxi-
mately ten mRNA copies per cell.

It was expected that varying the probe length would
provide various trade-offs among sensitivity, signal
strength and specificity. Signal strength increases with
probe length in a certain range. For example, 30mers
provide twice the intensity of a 25mer probe [18]. A
comparison of the CodeLink (30 nt) and Affymetrix
platforms (25 nt) also suggested a tenfold greater
sensitivity of the former platform [19]. Therefore, in
theory, the sensitivity issue can be addressed by simply
using longer probes. However, it is not a simple as this.
A further increase in probe length produced only a
limited enhancement, whereas the specificity of probes,
as quantified by the relative intensity of perfect match
versus single base pair mismatch probes, actually
decreased [18].

In summary, the detection limit of current microarray
technology seems to be between one and ten copies of
mRNA per cell. This sensitivity threshold is probably
lower for cell types with a more-limited concentration
range of transcripts, such as yeast [15]. Although this
sensitivity is impressive, it might still be insufficient to
detect relevant changes in low abundance genes, such as
transcription factors [15,16]. It remains to be seen
whether novel technological developments, such as
labeling with quantum dots [20], will further increase
the sensitivity of microarray platforms.

Accuracy

Microarrays can be used to measure either absolute
transcript concentrations or relative transcript concen-
trations (i.e. expression ratios). In principle, accurate
absolute concentration measurements will also provide
accurate measurements of expression ratios but the
reverse does not necessarily hold true. Estimating ratios
requires a less detailed understanding of how the signal
intensity of a given microarray probe is related to the
concentration of the measured transcript. As long as a
probe binds to its target specifically and the produced
signal intensity is proportional to the amount of tran-
scripts bound (up to a multiplicative constant), the
expression ratios will reflect the reality to a significant
extent. However, estimating absolute concentrations,
particularly at the current insufficient level of under-
standing of DNA and RNA hybridization, requires careful
calibration with known concentrations of the transcripts.
www.sciencedirect.com
Traditionally, two-channel, cDNA array data (e.g. using
Cy3 and Cy5 dyes) are usually used to measure ratios*,
whereas single channel, oligonucleotide array data (e.g.
Affymetrix) are intended to represent absolute expression
values. However, some important issues become apparent
when examining the signal intensities produced by two
different Affymetrix probes of the same probe set that are
targeted against closely placed or overlapping sequences
on a given transcript. These are likely to hybridize to the
same labeled RNA fragment and still can produce signals
varying by orders of magnitude (Figure 1). This suggests
that the same transcript concentration can produce rather
different probe signal intensities depending on the specific
probes representing each gene, which, in turn, means that
interpreting the measured signals as proportional to the
absolute concentrations is not necessarily advisable.

Ratios can be measured with a greater accuracy [16],
which is reflected by the fact that probes in a given
Affymetrix probe set (i.e. probes designed to recognize the
same gene transcript) not only produce significantly
different intensity but also produce consistent ratio values
across the same probe set when two RNA samples are
compared with each other (Figure 2).

Assessing the accuracy of microarray measurements
requires that true concentrations, or ratios, be available
for many transcripts. True concentrations can be obtained
by either spike-in or dilution experiments [24] or
measuring transcript levels by independent means, for
example, quantitative RT–PCR or northern blots. A few
spike-in or dilution data sets were provided by Affymetrix
(Affymetrix-Latin square data, http://www.affymetrix.
com/support/technical/sampledata/datasets.affx) and its
industrial partners (http://www.genelogic.com/newsroom/
studies/index.cfm). A wide variety of Affymetrix DNA chip
analysis methods were evaluated based on these data sets
(http://affycomp.biostat.jhsph.edu). However, the variance
of the average chip intensity among these spike-in data
sets is much lower than those measured in most real-life
data sets, casting doubts on the general applicability of
these data for developing analytical tools for highly
diverse, clinical gene-expression profiles. Furthermore,
the limited number of spike-in genes, 42 at most, also
makes it difficult to use this data set for the comprehen-
sive evaluation of both the technology and the data
analysis methods. Even assuming that the genes were
selected in a completely unbiased manner (i.e. assuming
that genes known to produce ‘good’ results were not
favored and problematic transcripts were not ignored),
this is still a limited number of genes. In the light of the
strong dependency of the measurements on the specific
target genes and the specific probe sequence selected,
extrapolating the accuracy measured on 42 genes to
another 10 000–30 000 genes seems more like an act of
faith than a scientific inference.

A few spike-in data sets were also produced by some
academic laboratories. Choe and co-workers produced
Affymetrix GeneChip data for Drosophila RNA samples
with w1300 spiked-in genes against a fairly well-defined
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[Gene 5162:34221_at] [T042701-4]Y Range: (0, 1997), Call: P(a)

[Gene 4840:32703_at] [T051901-1]Y Range: (0, 1061), Call: A(b)

Figure 1. Different probes meant to represent the same transcript can yield widely different signals. The left panels show the perfect match (PM, in blue) and mismatch (MM, in

green) values across the probes in the same probe set. (a) For the gene shown, probe 10 (from left to right) is close to saturation level, whereas probes 5, 9, 13, 15 and 16 are

close to the background level. Programs such as MAS 5.0 call this gene present (P) and calculate the expression level based on the average difference between PM and MM

probes. This illustrates how sensitive the actual numbers are to the choice of the specific probes. (b) Most probes corresponding to this gene are expressed at the background

level; therefore, this gene is absent (A). However, probes 2 and 3 produce high levels of signal intensity. In some cases, the PM–MM difference for some of the probes of an

absent gene can be so large that the average difference, often used to represent the expression level of the gene, can be higher for some absent genes than some of those

declared present (reproduced with permission from Ref. [23]).
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Figure 2. Probe intensity ratios are more consistent (have a smaller variance) than

absolute probe intensities. Probe-level intensities from two Affymetrix HG-U133A

arrays were log2 transformed and the standard deviation was calculated for the 11

probes in each probe set. The smoothed distribution of these standard deviations

are plotted for brain (blue), pancreas (green) and the probe-level ratios of brain to

pancreas (red). Most variances of the ratios are smaller than the variances of either

tissue. Data are from the GNF expression atlas [66].
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background of w2500 genes [25]. The agreement
between observed and actual fold changes was significant
(R2Z0.86), when the probe sets in the lowest quartile of
signal intensity were filtered out. This filtering step seems
to be the single most important preparatory step to ensure
accurate and consistent microarray measurements. Their
results also suggested that the detection of w70% of true
positives can be achieved before reaching a 10% false-
discovery rate. However, this seems to add further support
to the idea that microarray measurements are not reliable
for genes expressed at low levels. A similar, large-scale
spike-in data set for human genes would also be most
welcome for calibration purposes.

The alternative to spike-in-based validation requires
the independent quantification of transcripts by RT–PCR
or northern-blot analysis. Owing to the cost associated
with independent verifications, most such studies
measure expression levels by independent means only
for a limited number of transcripts, typically !20 genes
[26,27]. The transcripts selected for verification are
usually widely studied genes with well agreed upon
sequences [26]. For these genes, considering the good
quality of the associated annotations, one would expect a
reasonable level of accuracy. Indeed, widely used micro-
array platforms, such as the Affymetrix GeneChip,
produce verifiable differential expression calls in w85–
90% of the genes [27]. However, this applies only to the
range of expression levels that is greater than the
sensitivity threshold of the given microarray platform,
www.sciencedirect.com
effectively eliminating up to 40–50% of the transcripts
present in the RNA samples from the analysis [28].
Furthermore, the failure to detect the correct fold changes
for a highly relevant gene such as the epidermal growth
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factor receptor (EGFR) [27], a gene often implicated in
cancer diagnostics, should also encourage a pause for
reflection for those interested in the diagnostic appli-
cations of microarrays.

A few studies produced independent measurements by
RT–PCR for a more comprehensive set of transcripts from
w50 to 1400 [15,16,29]. The Microarray Quality Control
Project is currently producing the first such comprehen-
sive data set for human RNA, containing w1000 genes.
Based on these studies, the picture emerging for the most
widely used microarray platforms such as cDNA micro-
arrays and Affymetrix GeneChips seems to warrant the
following conclusions:

† Above their sensitivity threshold, microarray measure-
ments accurately reflect the existence and direction of
expression changes in w70–90% of the genes. However,
the magnitude of such expression changes as reflected
by microarray data tends to be different from the
magnitude of the changes measured with other
technologies such as RT–PCR.

† Microarrays (both single and dual channel) tend to
measure ratios more accurately than absolute
expression levels. For example, in the most compre-
hensive data set [16] that quantified 1400 genes by
RT–PCR, Czechowski et al. found a poor correlation
between normalized raw data produced by RT–PCR
and normalized raw data produced by Affymetrix
arrays in the same RNA sample. However, when RNA
from shoots and roots of Arabidopsis were compared, a
more promising result emerged. The ratios between
these two RNA samples extracted from RT–PCR and
array measurements produced a Pearson correlation of
0.73 for the most highly expressed set of 50 genes.
However, one should note that a correlation of w0.7 is
not impressive for two platforms that are expected to
measure the abundance of given transcripts in the
same samples.

† The relatively good correlation between microarray-
based and RT–PCR-based gene expression ratios does
not necessarily mean that the microarray technology
directly produces accurate estimates of gene expression
ratios. In fact, it has been well known that microarray-
based expression ratios are compressed [29] (i.e. the
ratios of mRNA expression levels are consistently
underestimated). It seems that the ratio compression
is a significantly more consistent phenomenon for
cDNA microarrays than for short oligonucleotide
chips [29].

In conclusion, a handful of independent validation
studies and spike-in data sets have enabled an empirical
assessment of the accuracy of microarray technology.
Although an accurate measurement of absolute transcript
levels by microarrays is probably beyond the current
capabilities of the technology, ratios can be estimated
reasonably well, particularly when the significant level of
ratio compression is taken into consideration and
corrected for. However, this favorable assessment applies
only to the measurement of transcripts that are expressed
well above the sensitivity level of microarrays, rendering
www.sciencedirect.com
perhaps half of the transcriptome beyond the reach
of microarrays.

Reproducibility

Reproducibility is the most readily assessable character-
istic of any microarray platform. Unfortunately, a plat-
form can have an excellent reproducibility without
necessarily producing measurements that are accurate
or consistent with other platforms. This is because
reproducibility only requires that a given probe binds to
the same number of labeled transcripts in repeated
measurements of the same sample. Badly designed probes
that cross-hybridize with several other transcripts, can
easily provide highly reproducible and yet useless data.
Therefore, reproducibility is a necessary but not sufficient
requirement. In their appropriate sensitivity range, most
microarray platforms produce highly reproducible
measurements. Some oligonucleotide arrays (Affymetrix,
Agilent and Codelink) [30,31] provide correlation coeffi-
cients of O0.9. For other platforms, such as cDNA
microarrays or the Mergen platform (http://www.mer-
gen-ltd.com/company.htm), the reported Pearson corre-
lation coefficient between technical replicates can range
between the disappointing level of 0.5 and the reassuring
level of 0.95 [7,31,32]. It is, therefore, not surprising, as we
discuss in the following section, that these platforms show
poor correlation with commercial oligonucleotide-based
platforms [31,33].

Cross-platform consistency

If microarray data were highly reproducible across
various platforms and if they provided information about
the absolute transcript levels, one could use appropriately
normalized gene expression data without regard to the
platform on which the data was obtained. This in turn
would reduce the need to replicate experiments and would
enable researchers to build universal gene-expression
databases that would compile many different data sets
from a variety of experimental conditions. This consider-
ation is particularly relevant for clinical samples with
limited amounts of mRNA.

Owing to the relative scarcity of comprehensive, large-
scale, spike-in or independently measured gene
expression data sets, cross-platform consistency has
been used as a surrogate measure of microarray
reliability. In this approach, aliquots from the same RNA
sample, or RNA isolated from the same biological source
are profiled on different microarray platforms. The
consistency of these results is considered an indication of
the reliability of all platforms compared. Lack of consist-
ency can be caused by the inferior performance of at least
one of the platforms, without a clear indication of the
relative merit of each platform. Interpreting the cross-
platform consistency as a proof of accuracy and reliability
is not necessarily warranted because highly similar
results across platforms could be simply caused by
consistent cross-hybridization patterns without either
platform measuring the true level of expression. Never-
theless, a high level of cross-platform consistency is
desirable, because, if both platforms performed accurate
measurements, cross-platform consistency would

http://www.mergen-ltd.com/company.htm
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automatically follow. Cross-platform consistency is a
necessary but insufficient requirement to validate the
technology. Despite this limitation, cross-platform con-
sistency studies produced several useful lessons for
microarray users.

Cross-platform comparison of various microarray plat-
forms depends on the availability of data sets based on
same RNA aliquots profiled on different microarray
platforms. Until recently there were only two such data
that were widely available: the NCI60 cell-line panel
profiled using cDNA microarray [34] and the Affymetrix
platform [35]. These data sets were reanalyzed several
times for cross-platform consistency with gradually
improving results, highlighting the importance of probe
sequence verification. One of the difficulties in the cross-
platform comparison of microarray data is to ascertain
that probes on the various platforms aimed at the same
gene do in fact quantify the same mRNA transcript. The
various strategies to match probes between different
platforms can be constrained by the amount of infor-
mation provided by the manufacturers of the given
microarray. Before actual probe sequence information
was released, probe matching could be based only on gene
identifiers such as the Unigene ID [36]. This is known to
produce a significant number of incorrect pairings [37,38].
Therefore, it is not surprising that in an early study, while
comparing the two NCI60 data sets using this microarray
probe matching strategy, Kuo et al. found an
alarming level of inconsistencies (a Pearson correlation
!0.34) [36]. While measuring the extent of within-array
cross-hybridization, Kuo. et al. observed that the genes
represented by cDNA probes with a greater number of
cross-matches to other genes (defined as sequence
similarity using BLAST) have less correlation with the
oligonucleotide data. This suggested that cross-hybridiz-
ation is a possible cause for the poor cross-platform
consistency. They also found low correlations for genes
with low intensity values on cDNA arrays and low average
difference in the Affymetrix arrays (Pearson coefficient
was 0.03 and Spearman coefficient was 0.02), indicating
that the low-abundance transcripts were not measured
reliably on either platform. As partial or complete probe
sequence data have become available, more-accurate
strategies could be implemented. Probes could be matched
across the various platforms on the basis of whether they
can be sequence-mapped to the same transcript. When
microarray probe pairs across the platforms that obviously
mapped to different transcripts, while still sharing,
erroneously, the same UniGene ID, were filtered out, the
mean correlation of gene expression between the two
previously described NCI60 data sets increased to 0.6 [37].
Similar results were obtained in a study when RNA
aliquots were profiled and compared across several
Affymetrix platforms and the Agilent Human 1 cDNA
microarray platform [38]. UniGene-matched probes that
failed the direct sequence-mapping test showed signifi-
cantly lower expression correlation across the two
microarray platforms [38].

Finally, probe sequences can be used to ascertain that
microarray probes on different platforms are targeted
against the same region of a given transcript. This ensures
www.sciencedirect.com
that the two platforms are quantifying the same splice
variants but also increases the chance of similar undesired
cross-hybridization patterns. For the two NCI60 data sets,
probes targeting the same region of the transcripts
showed the greatest correlation (mean Pearson coefficient
of w0.7) [39]. This relatively high correlation was
obtained only after filtering out, again, the genes yielding
low intensity signals. The rigorous sequence-mapping
strategy employed in this article also ensured that only
those Affymetrix probes that could be verified by high-
quality sequence databases were used in the final
analysis. By the application of an appropriate common
reference produced in silico, the two data sets (Affymetrix
and cDNA microarray) could be pooled, and hierarchical
cluster analysis produced meaningful results on the
combined gene expression profiles [39]. The results of
this study seem to answer positively the important
question regarding whether microarray data from differ-
ent laboratories and different platforms can be assembled
into a coherent unique database. However, this study also
shows that if such a ‘universal database’ is to ever be
constructed, this should not be done by merely storing
expression data reported by the various platforms in a
common database, but rather revisiting the biochemical
foundations of the technology and using such knowledge
to interpret and filter the numerical data generated by
the arrays.

In a much-cited article, Tan et al. produced gene
expression profiles for technical and biological replicates
of RNA samples on three different platforms: the
oligonucleotide-based CodeLink arrays, Affymetrix Gene-
Chips and cDNA arrays from Agilent [40]. Although, the
intra-platform consistency was good for replicates within
all platforms (w0.9), the Pearson correlation coefficient
was more moderate across the various platforms. The
correlation of matched gene measurements between
oligonucleotide arrays (Affymetrix and Codelink) was the
greatest (0.59), whereas the correlation between cDNA
and oligonucleotide arrays was lower (0.48–0.50). It
should be noted, however, that owing to the lack of
comprehensive probe sequence information it was not
possible to apply rigorous sequence-mapping criteria, and
the correlation coefficients listed here were calculated
without filtering out genes that had low expression levels.
Without the application of these noise-reducing strategies,
it is not surprising that the three platforms showed a
rather disappointing level of concordance in their ability
to predict gene expression changes. Approximately two
hundred genes were predicted to be differentially
expressed by at least one platform but only four genes
were detected as differentially expressed by all three
platforms. The importance of intensity filtering and
careful probe sequence verification is further supported
by several other studies [7,26]. As a general rule, any set of
results in which probe-level sequence matching and low-
level filtering has not been performed should invite
caution. Although disappointing in terms of concordance
between the specific genes reported as differentially
regulated, this work also showed that meaningful
biological conclusions can still be obtained by a higher
level of analysis, in which the sets of differentially
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regulated genes are mapped on their associated biological
processes and cellular locations, using gene ontology (GO)
annotations. Although the specific differentially regulated
genes were very different between the platforms, all
platforms were consistent in terms of the biological
processes involved. Fortunately, several tools and tech-
niques now exist that can automate this type of analysis
for numerous genes, thus helping researchers circumvent
some of the limitations of the technology [41–45].

The performance of the platforms that are used less
frequently was also assessed recently. In their analysis of
mouse microarray platforms, Yauk et al. used the Mergen
and Agilent oligonucleotide platforms in addition to the
Affymetrix, Codelink and cDNA microarray platforms
[33]. After intensity filtering for ‘present’ calls, ratios
measured by the Affymetrix, Codelink and Agilent
oligonucleotide arrays showed a more satisfactory corre-
lation among those three technologies (O0.7), whereas the
custom cDNA microarray and the Mergen platform
showed a significantly lower correlation (correlation
coefficient of %0.5) with the other platforms. The Agilent
cDNA microarray platform was placed in between these
two groups. The Toxicogenomics Research Consortium
(http://www.niehs.nih.gov/dert/trc/home.htm) has run an
even wider comparison of the various mouse microarrays
[31]. In addition to the commercial oligonucleotide arrays
from Affymetrix, Agilent and GE Healthcare (Codelink),
they also analyzed spotted oligonucleotide arrays from
Compugen and spotted cDNA microarrays from two
different sources (The Institute for Genomics Research
http://www.tigr.org/ and National Institute for Aging
http://www.nia.nih.gov/). This project examined cross-
platform reproducibility and the bias introduced when
the same platform was used by different laboratories
analyzing aliquots from the same RNA sample. For the
500 genes represented on all platforms the cross-platform
consistency varied between 0.11 (Codelink versus spotted
cDNA) and 0.76 (two different version of spotted cDNA
microarrays.) When the same platform was used by two
different laboratories, the Affymetrix platform produced
by far the greatest correlation (0.91) across laboratories.

Sources of inaccuracy and inconsistencies in microarray

measurements

As a reasonable approximation, signals produced by any
given microarray probe can be considered as the composite
of three signals: (i) specific signal produced by the originally
targeted labeled transcript; (ii) cross-hybridization signal
produced by transcripts that have a non-perfect but still
significant sequence similarity with the probe; (iii) a non-
specific, background signal that is present in the absence of
any significant sequence similarity. On an ideal, high-
specificity microarray platform the second and third
components would be negligible relative to the targeted
specific signal. However, even under such ideal conditions,
microarray technology in its current state would face
significant limitations for several reasons as discussed in
the following paragraph.

First, the relationship between probe sequences, target
concentration and probe intensity is rather poorly under-
stood. A given microarray probe is designed as a perfect
www.sciencedirect.com
complementary strand to a given region of the transcript.
Based on the Watson–Crick pairing, the probe will capture
a certain number of the transcripts. This number is
proportional to the concentration of the transcript, but
the actual relationship between transcript concentration
and the number of molecules bound to the probe, and thus
the signal produced, also depends on the affinity of the
probe, or free energy change values, under the given
hybridization conditions. This affinity is determined to a
large extent by the actual nucleotide sequence stretch
participating in the binding. This sequence-affinity
relationship is not sufficiently understood. Although the
sequence dependence of DNA–DNA hybridization in
solutions has been studied in detail [46], DNA–RNA
hybridization has received significantly less attention.
Remarkably, the results of Sugimoto et al. [47] suggest
that the sequence dependence of DNA–RNA hybridization
can still hold surprises. For example, for certain sequences
the binding energy of a DNA–RNA duplex can be stronger
for a single mismatch than for the corresponding perfectly
complementary strands [47,48]. The kinetics of hybridiz-
ation are further complicated by the incorporation of
modified nucleotides into the target transcripts during the
most widely used labeling protocols. Furthermore, the
results obtained in solutions cannot be directly applied to
the hybridization of microarray probes attached to
surfaces [49]. Various researchers have tried to investi-
gate the dependence of affinities on the microarray probe
sequence [50–52] but no convincing model has emerged.

Second, splice variants constitute another dimension
that can introduce difficulties in the microarray analysis.
It is estimated that at least half of the human genes are
alternatively spliced, and might have many potential
splice variants [53]. A given short oligonucleotide probe is
targeted at either a constitutive exon (present in all splice
variants) or at an exon specific for certain splice variants.
In the former case, the probe intensity will reflect the
concentration of all splice variants that are present in the
sample, therefore obscuring expression changes occurring
in certain splice variants. In the latter case, the specific
splice variant will be measured, but other splice variants
of the same gene will be ignored. Covering the various
types of exons on short oligonucleotide-based arrays is
necessary to dissect the splice variant associated compo-
site signals. cDNA microarrays usually have a unique long
probe with which the abundance of several splice variants
can be measured. This might explain some of the
discrepancies often observed between cDNA and short
oligonucleotide microarrays.

Third, folding of the target transcripts [54] and cross-
hybridization [14] can also contribute to the variation
between different probes targeting the same region of a
given transcript (Figure 1). It has been shown previously
that a large proportion of the microarray probes produce
significant cross-hybridization signals [14,55] for both
oligonucleotide and cDNA microarrays. Even a limited
stretch of sequence complementarity might be sufficient to
enable binding between two unrelated sequences. How-
ever, evaluating the overall impact of cross-hybridization
on the accuracy of microarray measurements is not easy.
For example, in Affymetrix arrays, the effect of a single
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cross-hybridizing probe can bedown-weighted by therest of
the probe set (ten other probes in HU-133 chips).
Furthermore, the impact of cross-hybridization strongly
depends on the relative concentration and the relative
affinities of the correct target and the cross-hybridizing
target(s). The latter must be present in sufficient quantities
to interfere with specific signals. Cross-hybridization, in
conjunction with splice variants, is probably a prime
candidate to explain the discrepancies in differential gene
expression calls between various microarray platforms,
although no systematic study has yet been undertaken.
Removing and/or redesigning the microarray probes prone
to cross-hybridization is a reasonable strategy to increase
the hybridization specificity and hence, the accuracy of the
microarray measurements. However, this requires a good
understanding of cross-hybridization, towards which only
limited progress has been made owing to the lack of
appropriate experimental data.

In light of the complexity of microarray signals
described, issues such as the compression of expression
ratios can be reasonably explained. The presence of cross-
hybrization signals on a given probe, for example, might
prevent the detection of large changes in gene expression
levels because a probe will always produce a certain level
of ‘false’ signal, even if the true signal is much lower or
perhaps undetectable. As our understanding of splice
variants, specific and non-specific nucleic acid hybridiz-
ation and other relevant issues deepens, we will design
probes that will quantify transcripts in an increasingly
optimal fashion. The quest for increasing microarray
performance by regularly eliminating and redesigning
probes can be easily tracked in, for example, the
Affymetrix technology. Only a small proportion of probes
are retained between successive generations of Affymetrix
arrays, even for probe sets targeting the same gene [56].
Although noble in purpose, this constant probe redesign
has the undesirable side effect that data sets obtained on
different generations of arrays cannot be combined easily.

Conclusions and future directions

Microarrays are a popular research and screening tool for
differentially expressed genes. Their ability to monitor the
expression of thousands of genes simultaneously is
unsurpassed. However, certain limitations of the current
technology exist and have become more apparent during
the past couple of years. In its appropriate sensitivity
range, the existence and direction of gene expression
changes can be reliably detected for the majority of genes.
However, accurate measurements of absolute expression
levels and the reliable detection of low abundance genes
are currently beyond the reach of microarray technology.
Therefore, the ability to detect changes in the expression
of specific individual genes might be affected. Basic
research in the areas of nucleic acid hybridization, and
technological advances in detection methods and hybrid-
ization conditions will certainly increase the measure-
ment capabilities of microarray technology.
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