
Fast and SNP-tolerant detection of complex variants and
splicing in short reads
Thomas D. Wu∗and Serban Nacu
Department of Bioinformatics, Genentech, Inc., 1 DNA Way, South San Francisco, California, USA

ABSTRACT
Motivation: Next-generation sequencing captures sequence diffe-
rences in reads relative to a reference genome or transcriptome,
including splicing events and complex variants involving multiple mis-
matches and long indels. We present computational methods for fast
detection of complex variants and splicing in short reads, based on
a successively constrained search process of merging and filtering
position lists from a genomic index. Our implementation GSNAP can
align both single-end and paired-end reads as short as 14 nt and of
arbitrarily long length. It can detect short- and long-distance splicing,
including interchromosomal splicing, in individual reads using proba-
bilistic models or a database of known splice sites. Our program also
permits SNP-tolerant alignment to a reference space of all possible
combinations of major and minor alleles, and can align reads from
bisulfite-treated DNA for the study of methylation state.
Results: In comparison testing, GSNAP has speeds comparable to
existing programs, especially in reads of 70 nucleotides or more, and
is fastest in detecting complex variants with 4 or more mismatches
or insertions of 1–9 nucleotides and deletions of 1–30 nucleotides.
Although SNP tolerance does not increase alignment yield substan-
tially, it affects alignment results in 7–8% of transcriptional reads,
typically by revealing alternate genomic mappings for a read. Simulati-
ons of bisulfite-converted DNA show a decrease in identifying genomic
positions uniquely in 6% of 36-nt reads and 3% of 70-nt reads.
Availability: Source code in C and utility programs in Perl are
freely available for download as part of the GMAP package at
http://share.gene.com/gmap.
Contact: twu@gene.com

1 INTRODUCTION
Numerous programs have been developed to date for the alignment
of short reads from next-generation sequencing technologies, such
as Illumina/Solexa (Hayward, CA) and ABI/SOLiD (Foster City,
CA), to a reference genome or transcriptome. Because of the large
numbers of short reads that can be produced from a given sample,
much emphasis has placed on speed. Accordingly, recent programs,
such as Bowtie (Langmead et al., 2009), BWA (Li and Durbin, 2009),
and SOAP2 (Li et al., 2009), have shown how suffix arrays (Manber
and Myers, 1990), compressed using a Burrows-Wheeler Transform
(BWT) (Burrows and Wheeler, 1994), can rapidly map reads that

∗to whom correspondence should be addressed

are exact matches or have a few mismatches or short insertions or
deletions (indels) relative to the reference.

In addition to speed, it is also important to broaden the range
of possible variants that can be detected in reads, since interest-
ing biology is likely to be revealed not merely as single nucleotide
polymorphisms or mutations from the reference, but also as more
complex phenomena, such as multiple mismatches, long indels, and
combinations thereof. Such complex variants represent a substantial
source of genetic diversity. For example, indels represent 7–8% of
human polymorphisms, with 25% of coding indels being longer than
3 nt (Weber et al., 2002; Bhangale et al., 2005). Long indels that
affect multiple amino acids may have significant biological conse-
quences. Moreover, as reads continue to lengthen, from their original
≈30 nt to their current range of 75–100 nt, they are more likely to
have multiple or complex differences from the reference, making
detection of complex variants even more critical.

Another important source of biological phenomena are splicing
events, which provide insights into gene structure, alternative spli-
cing, gene fusions, and chromosomal rearrangements. Although
splicing can be determined readily in long EST and cDNA sequences
using general-purpose genomic mapping and alignment programs
such as BLAT (Kent, 2002) or GMAP (Wu and Watanabe, 2005),
short reads pose a challenge because they often align to nume-
rous places in a genome, and because they often lack insufficient
sequence specificity on one or both ends of the exon–exon junction
to accurately define the junction.

One solution for detecting splicing in short reads has been to
align them to a reference transcriptome, possibly augmented with
artificially constructed exon–exon segments (Wang et al., 2008).
However, such an approach will identify only known or predicted
combinations of exons, and not unexpected exon pairs that occur
through exon skipping, cryptic splicing, or gene fusions. Another
approach, taken by the TopHat program (Trapnell et al., 2009),
analyzes an entire dataset of mapped reads to identify splice site
junctions between exons in a given neighborhood. However, that
approach requires exons to have sufficiently high expression and will
miss splicing events that are spanned by individual reads at a low
level. A third approach, provided by the QPALMA program (Bona
et al., 2008), can align individual reads across exon–exon junctions
using Smith–Waterman-type alignments and a specifically trained
splice site model. All of these approaches are limited to identify-
ing only local exon–exon junctions and not unanticipated distant or
interchromosomal gene fusion events.

1© The Author(s) 2010. Published by Oxford University Press.

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/
by-nc/2.5/uk/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Associate Editor: Dr. Limsoon Wong

 Bioinformatics Advance Access published February 10, 2010

http://share.gene.com/gmap
http://creativecommons.org/licenses/

Wu and Nacu

To expand the range of biological phenomena that can be infer-
red from short reads, we have developed fast and memory-efficient
methods for detecting complex variants and splicing in individual
reads. Our methods are implemented in GSNAP (Genomic Short
Nucleotide Alignment Program), which can align single-end and
paired-end reads as short as 14 nucleotides and as long as desi-
red. Our program can detect splicing, multiple mismatches, long
indels, and combinations thereof, up to a user-specified point total
(Figure 1A), limited to a single splice or indel per read, provided
the read (or parts of the read on each end of the indel or splice)
has a consecutive stretch of 14 nucleotides that match the reference
sequence.

Our program can identify splicing within short reads using two
types of evidence. First, it can evaluate the surrounding genomic
sequence using probabilistic models of donor and acceptor splice
sites (Figure 1B). Second, it can utilize a user-provided database
of known exon–intron boundaries, which avoids false positive and
negative results from probabilistic models (Figure 1C). Known splice
sites will reveal most alternative splicing and gene fusion events,
which generally occur through exon skipping and crossovers bet-
ween introns. GSNAP can rely upon either or both of these types
of evidence to identify splicing events, including those with mis-
matches, as well as partial splicing or “half intron” events, where one
end has enough sequence to align to one exon, but the other end lacks
enough sequence to identify the other exon (Figure 1C). Splicing
events may span not only the short distances seen in normal or alter-
native splicing, but also long-distance intrachromosomal deletions
or inversions, and interchromosomal translocations (Figure 1D).

Our program also implements the ability to align reads not just
to a single reference sequence, but to a reference “space” of all
possible combinations of major and minor alleles from databases
like dbSNP (Sherry et al., 2001). By aligning to a reference space
instead of a single reference sequence, our program avoids treating
minor alleles as mismatches and thereby penalizing those genotypes
in the alignment process. The utility of SNP-tolerant alignment is
illustrated by an example which initially suggested a splice junction
specific to one sample (Figure 1E), but was actually due to two
minor alleles nearby causing the read to fail to align. In SNP-tolerant
alignment, minor alleles are treated as matches to a reference space,
rather than as mismatches to a reference sequence. This idea has
been implemented elsewhere Manske and Kwiatkowski (2009), but
in a way that requires 29 GB of memory for SNP-tolerant alignment
to the human genome. In this paper, we show how this feature can
be performed instead with a much smaller memory requirement.

Our methods can be generalized for other tasks, such as map-
ping reads from DNA treated with sodium bisulfite (BS) for the
study of methylation state (Lister and Ecker, 2009). Bisulfite con-
verts each unmethylated cytosine in genomic DNA to uracil, which
appears subsequently as thymine in reads. Reads from BS-converted
DNA have a high error rate, which provides additional motivation
for efficient detection of multiple mismatches. Although existing
alignment programs can be adapted to handle such data, by conver-
ting all cytosines to thymines in both the reference sequence and
reads (Deng et al., 2009), one subtle problem is that this approach
obscures mismatches between reference thymines and read cytosi-
nes. The data structures in GSNAP allow it to align BS-seq reads
with explicit detection of genomic-T to read-C mismatches, against
either a reference sequence or a SNP-tolerant reference space.

HOXA9 (NM_152739), chr

exon 1 donor prob 1.00

TTGATAGAGAAAAAC
TTGATAGAGAAAAACAA

GGCGGCGCCGGACGGCAG
CGGCGCCGGACGGCAG

173 nt acceptor prob 1.00GT AG

B. Splicing identified using probabilistic models

exon 2exon 1

KLK3 (NM_001648), chr +19

GtGCTGCaCCCCTCATC
GcGCTGCgCCCCTCATC

Sample 1: TCCGTGACGTGGATTG
Sample 2: TCCGTGACGTGGATTG

1238 nt

rs11573 (CT) rs1135766 (AG)

E. SNP-tolerant alignment

C. Splicing identified using a database of known splice sites
TSTA3 (NM_003313), chr

exon 10 (acceptor prob 0.03)exon 9 (donor prob 0.13)

...
TTTGATACAACCAA
TTTGATACAACCAAGTCGG
TTTGATACAACCAAGTCGGATGGGCAG

GCCATGGACTTCCATGGGGAAGTCACC
CTTCCATGGGGAAGTCACC

ATGGGGAAGTCACC
...

228 nt
GT AG

A. Long deletion of 17 nt plus mismatches

TCCTTGCCTAGACCATTCTCCCCACCAGATGGACTTCTCCTCCAGGGAGCCCACCCTGAC

TCCTgGCCTAGACCATTCTCC-----------------CCTCCAGGGAGC

 CCTTGCCgAGACCATTCTCC-----------------CCTCCAGGGAGCC

 TTGCCTAGACCATTCTCC-----------------CCTCCAGGGAGCagA

 CTAGACCATTCTCC-----------------CCTCCAGGGAGCCCACCCT

 tACCATTCTCC-----------------CCTCCAGGGAGCCCACCCTGAC

 rs60255495

C1QC (NM_172369), 3' UTR, chr +1

D. Interchromosomal splicing revealing a gene fusion

exon 23exon 1

BCAS4 (NM_017843), chr +20

GTACCTTTGACAGGAGCGTGACCCT
GTACCTTTGACAGGAGCGTGACCCTGCTGGAG

CCTGACCCCCGATCCTGGGGCCGAG
CCCGATCCTGGGGCCGAG

BCAS3 (NM_017679), chr +17

Fig. 1. Examples of complex variants detected by GSNAP. (A) A 17-
nt indel with mismatches in reads (below) relative to a genomic region
(above), matching a known polymorphism in dbSNP. (B) Splicing found
using probabilistic models reveals an intron within exon 1 of HOXA9, found
experimentally (Dintilhac et al., 2004). (C) Splicing found using known
splice sites, despite low probabilistic model scores. Ellipses indicate “half
intron” alignments, where reads have insufficient sequence to determine the
distal exon. (D) Interchromosomal splicing between BCAS4 and BCAS3
found in the MAQC universal human reference RNA sample and observed
in MCF7 cell lines (Hampton et al., 2009). (E) SNP-tolerant alignment near
a splice site allows both genotypes to align equally well.

2 METHODS
2.1 Overview
We view alignment as a search problem over a space of genomic regions
in the reference sequence, or combinations of regions if gaps are allowed.
(Although a reference sequence may consist of chromosomes, contigs, trans-
cripts, or artificial segments, we simplify our discourse by referring to it as a
“genome”.) Searching involves the steps of generating, filtering, and verify-
ing candidate genomic regions, and its efficiency depends on designing the
generation and filtering steps to produce as few candidates as possible. Several
alignment programs, including MAQ (Li et al., 2008a), RMAP (Smith et al.,
2008), SeqMap (Jiang and Wong, 2008), and RazerS (Weese et al., 2009),
pre-process the reads and then generate and filter candidate genomic regions
by scanning a read index against the genome.

For large genomes, it is more efficient to pre-process the genome rather
than the reads to create genomic index files, which provide genomic posi-
tions for a given oligomer. Genomic indexing also permits parts of reads
to be aligned to arbitrary genomic regions, needed for long-distance splice
detection. Indexing need be done only once for each reference sequence, with

2

Complex variants and splicing in reads

the resulting index files usable by each new dataset. Oligomers of all lengths
can be indexed using a suffix array or its compressed BWT equivalent, as
used in Bowtie, BWA, and SOAP2, which can represent a reference sequence
compactly, in 2 GB for a human-sized genome of 3 billion nt.

However, when only a single oligomer length q is needed by an algorithm,
a simple hash table (Ning et al., 2001) or q-gram index (Rasmussen et al.,
2006) applied to the genome will suffice (Figure 2A). This data structure
consists of an offset file (or lookup table) of all possible q-mers, with pointers
to a position file (or occurrence table) containing a list of genomic positions
for each q-mer. For our search algorithm to work most efficiently, it is
important that each position list in the position file be pre-sorted, which
allows intersections to be computed quickly among multiple q-mer lookups.
The intersection process also requires the positions in each position list to be
adjusted at run time for its location in the given read, so they correspond to the
diagonals in an alignment matrix between genome and read. Although our
alignment algorithm could potentially work with another data structure that
provides genomic positions for a given q-mer, a suffix array would require
the additional step of sorting each position list at run time.

A set of n sorted lists can be merged in time O(l log n), where l is the sum
of list lengths, by using a heap-based multiway merging procedure (Knuth,
1973). A merging procedure can produce not only a list of candidate genomic
regions, but also information about the count and read location of the position
lists that support each region. This support information can provide evidence
about the number of mismatches in the read and can therefore be used to
filter out candidate regions.

To use multiway merging effectively, our algorithm depends on another
idea, that of successive score constraints. For a given read, our program
is designed to report the “best” alignment or alignments, those with the
lowest score based on mismatches plus an opening gap penalty for an indel
or a splice. Therefore, our search process is constrained successively by an
increasing score level K , starting from K = 0 for an exact match, and ending
either with a successful alignment at some K or at a maximum score level
specified by the user. In addition to finding the best alignment, a constrained
search process can also find suboptimal alignments, by continuing the search
at successive score levels beyond the first, or optimal, one that yields an
alignment. Our algorithm could also find an exhaustive set of alignments up
to a given score level by searching at that score level and reporting all results.

Depending on the score constraint K and the read length L, a multiway
merging process can be run in two different ways to generate and filter
genomic regions. For low values of K involving none or a few mismatches
relative to L, we apply a merging procedure based on a spanning set of
oligomers, which filters genomic regions based on the count of q-mers that
support the region. For higher levels of K involving more mismatches, we
apply a merging procedure based on a complete set of oligomers, which filters
genomic regions based on the pattern of q-mers that support the region. Both
the count- and pattern-based criteria provide lower bounds on the number of
mismatches present in a read or part of a read. If a lower bound exceeds the
given score constraint K of allowed mismatches, the read may be filtered out
and need not be verified against the genome to determine the actual number
of mismatches.

A hash table is relatively large, requiring 12 GB to represent a human-sized
genome if every overlapping oligomer is indexed. Accordingly, SOAP (Li
et al., 2008b) requires 14 GB of memory to process a human-sized genome.
Although modern computers generally have sufficient physical memory to
query such large hash tables, smaller data structures can speed up programs
by using memory paging and caching resources more effectively. We can
reduce the size of a hash table by sampling the genomic oligomers that are
indexed in the table. In our program, we index 12-mers every 3 nt in the
genome, which reduces the size of a human genomic hash table to 4 GB. As
a result, our algorithm is designed to use a 3-nt-sampled hash table and still
achieve full sensitivity as if every overlapping oligomer were indexed.

A hash table indexing scheme can be extended to align major and minor
alleles equally well in SNP-tolerant alignment. (For ease of discussion, we

position

position

position
position�

list

412

0
Offset file Position file

12-mer offset 12-mer with
major allele

offset

412

0
Offset file Position file

12-mer with
minor allele

position

position

position
position�

list

offset

position

position

position
position�

list

duplication

Reference genome�
(with major alleles)

Known SNPs

Sample 12-mers
every 3 nt

Compress

Compressed genome
with major alleles

Compressed genome
with minor alleles

Substitute
combinations of

major/minor alleles

Substitute minor
alleles

A. Hash table indexing of a reference sequence B. Hash table indexing of a reference space

C. Compressed genomes

Fig. 2. Representing a reference sequence and a reference space for genomic
alignment. (A) A hash table consists of an offset file of possible 12-mers and
a position file containing a sorted list of genomic positions for each 12-mer.
(B) SNPs in a genomic 12-mer is represented by duplicating the position in
the lists for all combinations of major and minor alleles within the 12-mer.
(C) Major alleles are represented in one compressed genome, while minor
alleles are represented in another compressed genome.

refer to the alleles in the reference sequence as “major” and their correspon-
ding alternate versions as “minor”, regardless of their actual frequencies in
a population.) Because a hash table represents the genome in q-mer pieces,
it can represent the enormous space of all combinations of major and minor
alleles in a relatively straightforward way.

To construct a SNP-tolerant hash table, we scan the genome and process
each sampled genomic q-mer that contains one or more SNPs, by generating
each possible combination of the major and minor alleles contained within
and duplicating this genomic position for each generated q-mer. Finally,
we re-sort the position list for each q-mer (Figure 2B). A lookup in this
hash table of any combination of major and minor alleles in a q-mer at a
given genomic position will all contain the desired position. Our experience
shows that a SNP-tolerant hash table is only slightly larger than the original.
When we incorporate the 12 million SNPs from dbSNP version 129 into
human genome version 36, the hash table increases in size from 3.8 GB to
4.0 GB. Our construction algorithm requires that the computer have sufficient
memory to store the hash table, thereby requiring 4 GB for a human-sized
genome. Verification in a SNP-tolerant manner is discussed in Section 2.4.

2.2 Spanning set generation and filtering
A spanning set is a minimal set of 12-mers that covers the read (Figure 3). This
structure exploits the pigeonhole principle that the number of non-supporting
12-mers—those that fail to contain a given position in their corresponding
position list—provides a lower bound on the number of mismatches in the
read. However, implementation of this pigeonhole principle is complicated
by our use of sampling in the hash table, which creates uncertainty about the
phase of the aligned read relative to the sampled genomic 12-mers. Therefore,
the program must construct six spanning sets, one for each shift of 0, 1, or
2 nt in both the forward and reverse complement directions (Figure 3A).
In addition, sampled hash tables cause genomic position information to be

3

Wu and Nacu

Overlap

11..22 23.340..10 [11-mer]

Union
Intersection

35..46

38..49

0..61

50..61

O
ve

rh
an

g

Check for�
support Check for�

support

Support

Support

No support

Overlap

Shift 1 10..21 22..33 34..45 46..570..9 [10-mer]

52..61 [10-mer]

Overlap
Shift 0

0..11 12..23

39..50 51..61 [11-mer]27..3815..26

Shift 2

Query
A. Three spanning sets

Overhanging
12-mer

B.

C. Overlapping
12-mers

Filtering
elements

E. Generating
elements

D.

Fig. 3. Spanning set method for generating and filtering mismatch candi-
dates. (A) A read of length 62 nt is analyzed at a shifts of 0, 1, and 2 nt,
with spanning sets each consisting of 5 elements. Elements at the ends may
overhang the ends by 1 or 2 nt. Spanning set elements are shown in detail for
the shift of 2. (B) An overhanging 12-mer is represented by a union of lists
obtained from hash table lookups of all possible substitutions for the over-
hang. (C) Overlapping 12-mers are represented by taking the intersection
of their position lists. (D) Elements used for generating candidates (gray).
(E) Elements used for filtering candidates. A candidate region (shown in
black) is shown to be supported by two of the generating elements, and is
checked for support in the remaining filtering elements.

available only at intervals of 3 nt, thereby causing information to incomplete
for 12-mers that overhang past read boundaries. To handle such cases, the
program computes the position list for a 12-mer that overhangs the end of the
read by 1 or 2 nt by substituting all possible nucleotides in the overhanging
positions and taking the union of the resulting position lists (Figure 3B).

Another complication is that a spanning set will often contain 12-mers that
overlap. To address this issue, we consider an overlapping pair of 12-mers
to be a single “element” in the spanning set, with a position list equal to the
intersection of the two constituent position lists (Figure 3C). The resulting
set of elements is non-overlapping, so the pigeonhole principle now holds
where k non-supporting elements implies a lower bound of k mismatches,
and the region may be filtered out if k > K . There may be several choices
for the pair of 12-mers that overlap to create a single element; our program
heuristically selects the 12-mer with the longest position list or union of
position lists as the site of the overlap, because the intersection operation
on that 12-mer is likely to eliminate the largest number of positions from
subsequent consideration.

Although we could use all spanning set elements to generate candidates
and then proceed to the verification step, we can make our algorithm faster
if we use only some elements to generate candidates (Figure 3D) and set
aside others for a separate filtering step (Figure 3E). This division of labor
is intended to reduce the O(l log n) complexity for a heap-based priority
queue, which is linear in l. If we check a sorted list of length li for the
presence of a given position in a filtering step, this can be done in logarithmic
time O(log li) through a binary search process. Consequently, our method
performs a heap-based merge of some position lists (the generating elements),
and counts the number of elements that support each of the resulting candidate
regions. If this count is high enough to allow the possibility that K or fewer
total elements will be non-supporting, then the candidate region undergoes
a filtering step that checks each of the filtering elements for support. The
algorithm eliminates the candidate if more than K total elements show non-
support; otherwise the region undergoes a verification step to determine the
actual number of mismatches.

(8+6)/12 =
1 mismatch

p3=11 p4=29

(18+6)/12 =
2 mismatches

0..50

pn+1=42

(13+6)/12 =
1 mismatch

8 18 13
p2=8p1=5

3 3
L=51p0=

B

Single mismatch Two close mismatches

Two distant mismatches

A

Fig. 4. Complete set method for generating and filtering mismatch candida-
tes. (A) Patterns of supporting (gray) and non-supporting (white) 12-mers
induced by a single mismatch, two close mismatches, and two distant mis-
matches (crosses). These patterns indicate a lower bound of b(1p + 6)/12c
mismatches, where 1p is the distance between start locations of consecutive
supporting 12-mers. (B) Pattern-based lower bound calculation for a read of
51 nt, shown on top with actual mismatches. Supporting 12-mers (gray) start
at read locations 5, 8, 11, and 29, with end locations at −3 and L − 9 = 42.
The lower bound formula is summed over successive supporting 12-mers to
give a total lower bound of 4 mismatches.

We have made implementation of our spanning set method efficient in
various ways. First, the program selects elements with the shortest posi-
tion lists as generating elements and the longest ones for filtering elements,
because whereas every position in generating elements must be processed,
only some of those in the filtering elements need be. Second, we maintain
a pointer on each filtering element and advance that pointer only when we
check for support, by using a galloping binary search (Hwang and Lin, 1980).
Third, filtering elements that involve unions or intersections of position lists
need not have these set operations computed explicitly, but can be represented
instead by their constituent position lists, and support checked by performing
the appropriate disjunctive or conjunctive searches when needed.

Allocation of N total elements between generating and filtering purposes
depends on the constraint score level K of allowed mismatches. At least
(K +1) elements must be generating to guarantee that at least one generating
element has support for a candidate region when the K other generating ele-
ments are not. We have found empirically that for K > 1, it is more efficient
to allocate (K + 2) elements for generating purposes, because the require-
ment for two supporting elements greatly reduces the number of candidate
regions generated.

Because the spanning set method requires at least (K + 2) generating
elements (or (K + 1) for the exact and one-mismatch constraints), it can be
used to detect only a limited number of mismatches relative to read length L,
which limits the total number of elements N . Spanning set elements are non-
overlapping in all three shifts when L = 10 (mod 12), so N ≤ b(L+2)/12c.
Therefore, (K + 1) < N or (K + 2) < N indicates that the spanning set
method can be applied to constraint level K when K = 0 for 14 ≤ L ≤ 21;
K ≤ 1 for 22 ≤ L ≤ 33; and K ≤ b(L + 2)/12c − 2 for L ≥ 34.

2.3 Complete set generation and filtering
To handle greater numbers of mismatches than those detectable by the span-
ning set method, we use a method based on the complete set of overlapping
12-mers. This complete set method works for any constraint level K of allo-
wed mismatches, as long as the read and candidate region have 14 consecutive
matches (a 12-mer out of phase by as many as 2 nucleotides). One sufficient
condition for 14 consecutive matches is that the number of mismatches be

4

Complex variants and splicing in reads

less than or equal to (bL/14c − 1). Up to this level of mismatches, gsnap is
an exhaustive algorithm, meaning that it can guarantee to identify and report
all available alignments in the genome with that many mismatches.

Candidates are generated by performing a multiway merge of position
lists for all read locations in a single forward and single reverse com-
plement pass, keeping track of the read location of 12-mers that support
each candidate region. The pattern of supporting 12-mers provides a lower
bound on mismatches in the read. If the supporting 12-mers have read
locations separated by 1p, then the minimum number of mismatches
between them is b(1p + 6)/12c (Figure 4A). Over the entire read, we
can sum these lower bounds in a pattern-based lower bound calculation
(Figure 4B). Specifically, if a read of length L has a pattern of supporting
12-mers at read locations pi , i = 1, . . . , n, a lower bound on mismatches is∑n

i=0b(pi+1 − pi + 6)/12c, where p0 = −3 and pn+1 = L − 9.
To make the complete set method more efficient, we note that the merging

process must process every position from each position list, and can therefore
be slowed down by non-specific 12-mers with extremely long position lists
that do not help localize the read. We can gain efficiency by ignoring these
non-specific 12-mers, defined currently as those with position lists that are
more than 10 times the mean position list length. The lower bound formula
must be modified accordingly to compensate for the missing 12-mers, essen-
tially by assuming that they are supporting. This strategy can potentially fail
to align reads or portions of reads if the non-specific or repetitive nucleotide
patterns are necessary for mapping the read. To successfully align these reads,
the program provides an option for a greedy strategy in which non-specific
or repetitive 12-mers are initially ignored, and then subsequently included if
an alignment is not found.

2.4 Verification of candidate regions
Candidate regions that are generated and survive the filtering process have
an established lower bound on their number of mismatches. To determine
the actual number of mismatches and verify that it does not exceed the score
constraint K , we check these regions by aligning the read against the region.
To reduce memory requirements, we store the genome in a compressed format
that is created in addition to the hash table during the pre-indexing process
(Figure 2C), and testing is performed against this compressed version of
the genome. For indexing of a reference sequence, the compressed genome
contains the major alleles. For indexing of a reference space, GSNAP also
accesses a second compressed genome that contains the minor alleles. The
compressed genome format, as described in our paper on GMAP, stores each
nucleotide in 3 bits. Each 32-nucleotide block of the genome is represented
by three 32-bit words. The first two words represent the nucleotide using two
bits each, while the remaining word has 32 bits used as flags. For the major-
allele genome, the flags indicate if the genomic position has a unknown or
ambiguous nucleotide that cannot be represented as A, C, G, or T. For the
minor-allele genome, the flags indicate if the genomic position has a SNP.

Verification is performed at the bit level. Instead of decompressing the
genome, the program compresses the read and shifts it to match the genome
coordinates for a candidate region. The compressed read and genome are then
combined bitwise using an exclusive-or function, and adjacent pairs of bits
are reduced to yield bit vectors that contain the positions of mismatches. For
alignment against a reference space, the read is similarly combined bitwise
with the minor-allele genome and the two mismatch results are combined
using a logical-and function. Therefore, a mismatch occurs at a SNP only if
the read allele differs from both the major and minor alleles. Mismatch results
can be further analyzed to count the total number of mismatches, or to report
their locations from the left or right of the read. GSNAP will use the built-in
bitwise functions popcount, clz (count leading zeroes), and ctz (count
trailing zeroes) for these tasks, if they are available on a given machine, or
will use its own equivalent bitwise functions if they are not. However, our
testing reveals that built-in functions provide only a 1–2% increase in speed,
in part because the generation and filtering steps greatly limit the number of
regions that must be verified.

2.5 Detecting insertions and deletions
Our program can detect alignments containing a single insertion or deletion,
with mismatches up to a user-specified maximum. Indel alignments can be
penalized relative to gap-free alignments using a user-defined penalty G.
Therefore, as the program imposes progressively stronger constraint levels
K of allowed mismatches, it also searches for indel alignments by imposing
a constraint level of (K − G) allowed mismatches with an indel.

Indels are detected using two algorithms, one that detects indels in the
middle of the short read (between the first and last 14-mer), and one that
detects indels at the ends (within the first or last 14-mer). End indels are
constrained to have a distal short fragment that is free of mismatches and
sufficiently long (as specified by the user) to determine its alignment reliably.
For both methods, the merging step of the complete set method, but not the
filtering calculation, is executed to produce all candidate regions having 14
or more consecutive matches with the read.

The method for detecting middle indels seeks a pair of candidate regions
that co-localize within the maximum allowed deletion and insertion sizes
(Figure 5A). The position-based lower bound calculation can be applied to
both ends of the candidate pair to filter out pairs with too many mismatches.
Verification of the remaining candidate pairs at the nucleotide level identifies
the location of mismatches in each member of the pair, which can then be
analyzed to determine whether an area of possible crossovers exists within
the constraint level K of allowed mismatches (Figure 5B). The middle indel
algorithm is efficient even for long indels because the genomic distance
between the two ends specifies the gap size and allows efficient verification
of mismatches without resorting to a dynamic programming algorithm.

Detection of end indels also depends upon candidate regions generated
by the complete set method, but filters single candidate regions rather than
pairs. Candidates are filtered using a variant of the position-based lower
bound calculation that ignores the first or last 14-mer of the read, which is
made non-supporting by an end indel. Candidates that pass this filtering step
are verified against the genome to count the number of mismatches in the
long part of the read. If the number of mismatches is sufficiently low, the
end region is tested across the range of possible end insertion and deletion
gap sizes for an indel. For each gap size, the program backtracks from the
end until the first mismatch is reached, and then along the main diagonal
to count the total number of mismatches near the end (Figure 5C). An end
indel is detected if the distal segment is sufficiently long and if the sum of
mismatches in the long and distal regions is sufficiently low.

2.6 Detecting splice junctions
GSNAP can align transcriptional reads that cross exon–exon junctions invol-
ving known or novel splice sites. For known splice sites, the program depends
upon a user-provided set of splice sites, which belong to one of four cate-
gories: donors and acceptors on the plus genomic strand and donors and
acceptors on the minus genomic strand. Identification of novel splice sites
is assisted by a probabilistic model, currently implemented as a maximum
entropy model (Yeo and Burge, 2004), which uses frequencies of nucleotides
neighboring a splice site to discriminate between true and false splice sites.

We use two methods for detecting splice junctions, one for short-distance
and one for long-distance splicing. Short-distance splicing involves two splice
sites that are on the same chromosomal strand, with the acceptor site being
downstream of the donor site, within a user-specified parameter (default
500,000 nt). Short-distance splice junctions can be detected using a method
similar to that for middle deletions, except that the distance allowed between
candidate regions is much longer (Figure 5B). As with middle indel detection,
the positions of mismatches in the two regions determine whether a crossover
area exists with the allowed number of mismatches (K − S), where S is the
opening gap penalty for a splice. This crossover area is searched for donor
and acceptor splice sites that are either known or supported by a splice site
model at a sufficiently high probability. The probability score required is
dependent on the length of short read sequence available for alignment in
the exon region. When the aligned exon sequence is short, on the order of
12–20 bp, a relatively high probability score is needed. But when the aligned

5

Wu and Nacu

Sense

Antisense

Donor Acceptor

Acceptor Donor

Pairings of�
splice ends

Forward

Known�
or novel�

donor

Known�
or novel�
acceptor

Reverse complement

Known�
or novel�
acceptor

Known
or novel
donor

D Detection of distant splicing

Candidate regions in ascending order

Possible
insertion

Possible deletion
or local splice pair

B Detection of middle indels and local splicing

Candidate 2

Range of crossovers with 1 mismatch

Candidate 1

Mismatches found
using bitwise operations

End region

Insertion

D
eletion

G
enom

e

Query

C Detection of end indels

Merge

Position lists

Complete set generation

Generation
of candidates

A

Fig. 5. Efficient detection of indels and splice pairs. (A) The complete
set method generates candidate regions with supporting 12-mers (in gray).
(B) Pairs of candidates within the allowed distance are tested for middle
indels and short-distance splice pairs. The constraint on number of mis-
matches (shown for the value 1) determines a range of crossover points.
(C) End indels are tested in the distal 14 nt when the long region of the read
has a sufficiently low number of mismatches. (D) Long-distance splicing is
detected by identifying known or novel splice sites in single candidate regi-
ons within areas defined by constraints on number of mismatches. Candidate
regions with donor and acceptor splice sites are then paired to reveal splice
junctions.

exon sequence is sufficiently long, more than 35 bp, probability scores are
unnecessary.

For long-distance splicing, probability scores are also used to help find
novel splice sites, although the required probability scores are higher for a
given length of aligned sequence to compensate for the larger search space
over the entire genome. To detect cases of long-distance splicing, the program
identifies known or novel splice ends within single candidate regions, in the
area delimited by the constraint level K of allowed mismatches (Figure 5D).
Candidate regions with donor and acceptor splice sites are then paired if they
have the same breakpoint on the read, and have an acceptable number of total
mismatches.

Reads that lie predominantly one one end of a splice junction may have too
little sequence at the distant end to identify the other exon. Such alignments
can still be reported by our program as partial splicing or “half intron”
alignments, if there is sufficient sequence on one end to determine a splice
site, but insufficient sequence on the other end for the other site.

2.7 Aligning paired-end reads
GSNAP can align paired-end reads, which are produced when both ends of a
nucleotide fragment are sequenced. Paired-end reads can also be generated by
circularizing a long fragment of 10,000 or more bases with a short linker, and
then cutting outside the linker to give reads at both ends of the long fragment.
Our algorithm attempts to find an optimal pair of mapping variants that are
concordant, meaning that they are within a user-defined range of expected
genomic distances and that their strand directions are consistent. Therefore,
GSNAP will favor concordant solutions involving suboptimal alignments on
one or both ends, even when better alignments can be found individually for
each end.

To consider pairs of alignments together, the program imposes successively
stronger constraint levels and attempts to align each end at the given constraint
level. For paired-end alignment, both ends of the read contribute toward the
overall score, so at a given constraint level K , the program must accumulate
alignments for each end up to that level. At each constraint level, the program
tries to pair the exhaustive set of alignments found so far at each end to see
if any pair is concordant. If so, the best alignment or alignments are those

with the lowest total score of mismatches and penalties on the two ends. If
suboptimal alignments are desired by the user, the program proceeds to find
additional alignments beyond the optimal score level. If the algorithm reaches
the maximum user-defined score limit without finding any concordant pair,
it reports the best individual alignments for each end.

2.8 Bisulfite-converted DNA
An auxiliary program processes an existing reference sequence or reference
space hash table to produce two new hash tables, both representing the
plus strand of the genome, with one having C-to-T substitutions and the
other having G-to-A substitutions. The second hash table accommodates
reads from the minus strand, whose C-to-T substitutions appear as G-to-A
substitutions on the plus strand. The auxiliary program combines and sorts
the positions for each substituted 12-mer into a single position list.

When GSNAP processes a bisulfite read, it performs a C-to-T substitution
of each 12-mer in the read to check against the C-to-T hash table, and a
G-to-A substitution of each 12-mer in the reverse complement of the read
to check against the G-to-A hash table. The generation and filtering steps
behave as before. The verification step compares the substituted read against
the substituted genomic region to identify mismatches. A special check is
made in the original read against the original genomic region for mismatches
between genomic-T and read-C, which are obscured by a C-to-T substitution.

3 RESULTS
3.1 Simulated reads
We compared GSNAP with several alignment programs that have
been benchmarked in previous studies: MAQ version 0.7.1, SOAP
version 1.11, Bowtie version 0.9.9.1, BWA version 0.4.9, and
SOAP2 version 2.19. We generated 36-, 70-, and 100-nt reads that
were sampled uniformly from the human genome (NCBI release
36) and generated datasets of different variant types by introducing
mismatches or indels at random. Short indels of 1–3 nt were requi-
red to be at least 6 nt from the ends, and long indels at least 14 nt.
Programs were run on a Linux machine with 8 dual-core AMD
8220 Opteron CPUs at 2.8 GHz and 64 GB of RAM. All programs
have a multithreaded mode, but were run in single-threaded mode in
our tests. To study each variant separately and to prevent programs
from searching for suboptimal hits, we provided each program with
parameters adequate to identify the given variant.

Alignment results (Table 1) show that programs could generally
align reads correctly with up to 3 mismatches, with SOAP2 limi-
ted to 2 mismatches, and with misses observed in 36-nt reads by
GSNAP and SOAP and in 70-nt reads by SOAP. Misses of 2 and 3
mismatches in 36-nt reads by GSNAP were cases where the number
of mismatches exceeded the guarantee condition of (bL/14c−1) for
exhaustiveness, essentially because mismatches were spaced evenly
enough to prevent a consecutive stretch of 14 nucleotides to match
between the read and genome. Exact alignments were identified
most quickly by Bowtie and 1-mismatch alignments by SOAP2.
Alignments of 2 and 3 mismatches 70- and 100-nt reads were iden-
tified at comparable speeds by BWA and GSNAP, and GSNAP was
fastest at identifying 4 or 5 mismatches. For short indels, GSNAP
showed perfect sensitivity, while BWA and SOAP showed a miss rate
of up to 5%. SOAP2 was unable to detect indels in the single-end
reads in our dataset, although it can detect short indels in paired-end
reads. In all but one dataset, GSNAP was fastest at identifying short
indels. For long indels, GSNAP was the only program able to detect
the alignments, except that long indels in 36-nt reads could also be
detected by SOAP at a much slower rate. Detection of long indels
by GSNAP occurred at speeds comparable to those for short indels,

6

Complex variants and splicing in reads

Table 1. Results of read alignment algorithms on simulated reads.

(Percent misses) Time in sec.
Variant GSNAP BWA Bowtie SOAP2 SOAP MAQ
36-nt reads
exact 51 17 9 70 869 2248
1 mm 55 60 33 11 1157 2106
2 mm (1.0) 304 64 46 39 (2.9) 1470 6008
3 mm (11.9) 405 551 544 − (15.6) 1369 19523
ins, 1–3 640 (4.9) 767 − − (5.1) 5534 −
del, 1–3 653 (3.3) 1016 − − (3.7) 4308 −
ins, 4–9 (0.1) 507 − − − 31420 −
del, 4–30 (0.1) 887 − − − − −

70-nt reads
exact 15 23 9 13 1205 2180
1 mm 23 25 15 12 (0.1) 1564 2120
2 mm 45 33 48 67 (0.9) 2363 6175
3 mm 95 83 542 − (3.3) 2272 20316
4 mm 325 373 − − (7.8) 2098 (2.4) 20002
ins, 1–3 245 (2.0) 323 − − (4.3) 15516 −
del, 1–3 263 (1.3) 425 − − (4.7) 14645 −
ins, 4–9 (0.1) 288 − − − − −
del, 4–30 (0.1) 292 − − − − −

100-nt reads
exact 15 29 11 10 − 2211
1 mm 21 30 16 13 − 2168
2 mm 33 35 56 73 − 6330
3 mm 50 52 620 − − 20697
4 mm 82 137 − − − (0.5) 20503
5 mm 155 543 − − − (2.1) 20283
ins, 1–3 269 (1.3) 218 − − − −
del, 1–3 273 (0.8) 360 − − − −
ins, 4–9 (0.1) 335 − − − − −
del, 4–30 (0.1) 312 − − − − −

Times are for each set of 100,000 reads. For BWA, times include conversion to genomic
coordinates (≈8 sec per dataset). For SOAP2, times exclude loading of indices (≈35
sec per dataset). Sensitivity was computed over reads that were unique (mapping to one
location in the genome) and non-upgradeable (not mapping to another genomic location
with a better variant type than the expected alteration). Misses, if any, are represented
by percentages in parentheses after the corresponding running time. Dashes indicate
variant types that could not be detected by the corresponding program. Variants: mm =
mismatch(es), ins = insertion, del = deletion. Parameter flags used, where n is number
of mm in dataset: GSNAP (mm): -t 1 -m n. GSNAP (indel): -t 1 -m 0 -i 0. BWA (mm):
aln -o 0 -n n. BWA (indel): aln -n 3 -o 1 -O 1 -E 1. Bowtie: -f -k 10 –quiet -p 1 -v n.
SOAP2: -r 2 -v n. SOAP (mm): -s 12 -r 2 -w 10 -v n. SOAP (indel): -s 12 -r 2 -w 10 -v 0
-g 3. MAQ: map -C 10 -e 200 -n n. For the 3-mismatch dataset, Bowtie was also run in its
MAQ mode, by removing the -v flag for limiting the number of mismatches and adding
“-e 200” to permit more mismatches. In that mode, times for the 36-nt, 70-nt, and 100-nt
datasets were 46, 142, and 750 seconds, but miss rates were 57.2%, 13.4%, and 6.4%.

and showed a miss rate of 0.1%, all due to repetitive regions on one
end of the indel, which the program is designed to ignore.

We measured the amount of heap memory used by the programs
using the Valgrind Massif tool (Nethercote and Steward, 2007).
GSNAP used a peak of 86 MB on the exact match datasets, 101 MB
on the mismatch datasets, and 170 MB on the indel datasets, with
memory usage varying from read to read. However, these values
do not measure memory used by GSNAP for its hash table position
file of size 3.8 GB and the compressed genome of size 1.15 GB,

which are accessed using memory mapping when available on the
host computer. In memory mapping, our program will run fastest
when sufficient physical memory is available to hold relevant parts
of the index files. Therefore, for optimum performance on a human-
sized genome, GSNAP should have access to 5 GB of physical
memory, although the program can still run, albeit more slowly, if
less memory is available. One advantage of memory mapping is that
multiple instances of GSNAP can run on the same computer simul-
taneously and share the system memory that is mapped to the index
files, without each process having to allocate that memory sepa-
rately. For comparison, BWA used 2.2 GB on all datasets; Bowtie
used 1.1 GB on the exact match datasets and 2.2 GB on the mismatch
datasets; and MAQ used 302 MB on all datasets, and SOAP used
14 GB on all datasets. Memory usage of SOAP2 could not be deter-
mined because source code is not available and the binary program
was compiled without the flag necessary for memory profiling.

We also evaluated the ability of GSNAP to detect intragenic
and intergenic exon–exon junctions in simulated reads, using either
known splice sites from RefSeq or only novel splice site detection.
Simulated reads were based upon RefSeq splice sites, and GSNAP
achieved perfect sensitivity when it had access to that information,
but missed 0.1% of intragenic events and 5% of intergenic events
when it relied solely upon probabilistic splice site models. Missed
splice events were due to known splice sites with model scores below
the default probability threshold of 0.90. The differences in sensiti-
vity between intragenic and intergenic splice detection was due to
the different criteria in GSNAP for short-distance splicing, which
permits a lower probability threshold (default 0.50) for the second
splice site. Running times on datasets of 100,000 reads were 48, 114,
and 183 seconds for 36-, 70-, and 100-nt intragenic reads, and 122,
211, and 287 seconds for intergenic reads. These running times are
faster than those for the benchmarking of mismatches and indels,
because the spliced reads were generated from the coding part of the
genome, which is less repetitive.

3.2 Transcriptional reads
We measured the impact of complex variant detection and SNP
tolerance by GSNAP on actual data taken from universal human
reference RNA (UHR, Stratagene catalog number 740000), used in
the MAQC (MicroArray Quality Control) project (Canales et al.,
2006) and assayed by Illumina on their Solexa Genome Analyzer.
From this dataset, we sampled 100,000 reads uniformly among the
dataset of 50-nt reads. Unlike simulated reads, actual reads lack
information about their original genomic location, so we determined
the performance of programs using alignment yield, which is the per-
centage of reads that could be aligned by each program with various
settings of mismatches, splicing, or indels. We tested GSNAP against
NCBI human genome version 36 and also against a reference space
that covered 12 million SNPs from dbSNP version 129.

Alignment yields were 70% for 2 mismatches and 74% for 3 mis-
matches (Table 2). Alignment yield increased when programs were
allowed to identify more complex variants. The addition of splicing
involving known splice sites to GSNAP increased alignment yields
by 8–9%, and the further addition of novel splice sites increased
alignment yields by another 0.3–0.6%. Allowing indels increased
alignment yield by a further 1%.

The introduction of SNP tolerance resulted in only a minor incre-
ase in alignment yields. However, 7–8% of alignment results were

7

Wu and Nacu

Table 2. Effect of splicing, indels, and SNP tolerance on transcriptional dataset.

Alignment yields (%) SNP effect on alignment (%) Time (sec.)
Variants allowed Non-SNP SNP New Same Superset Subset Diff Total Non-SNP SNP
≤ 2 mismatches 69.7 70.2 0.5 1.7 4.9 0.4 0.1 7.5 52 57
above plus known splicing 78.7 79.1 0.5 1.8 4.8 0.3 0.2 7.6 381 457
above plus novel splicing 79.0 79.5 0.5 1.9 4.8 0.2 0.3 7.7 457 522
above plus indels 80.2 80.7 0.5 1.8 4.9 0.2 0.5 8.0 725 905
≤ 3 mismatches 73.9 74.3 0.4 2.0 5.2 0.4 0.1 8.1 161 214
above plus known splicing 82.2 82.6 0.4 2.1 5.1 0.3 0.2 8.0 530 668
above plus novel splicing 82.8 83.1 0.4 2.2 5.1 0.3 0.3 8.3 624 755
above plus indels 83.8 84.2 0.4 2.1 5.1 0.3 0.6 8.5 949 1262

Table 3. Effect of simulated bisulfite treatment.

Alignment uniqueness (%)
Length Variant Genomic Bisulfite Difference

36 exact 87.1 81.6 5.5
1 mismatch 86.7 80.6 6.0
2 mismatches 85.3 78.7 6.5

70 exact 95.0 92.4 2.6
1 mismatch 94.9 92.1 2.8
2 mismatches 94.7 91.7 3.0

100 exact 96.6 95.3 1.3
1 mismatch 96.6 95.2 1.4
2 mismatches 96.5 95.1 1.4

affected in some way by a SNP. SNP tolerance gave an alignment
where none was previously found in only 0.4–0.5% of cases. In 5%
of cases, known SNPs revealed additional genomic locations for a
given read beyond the original locations, resulting in a superset of
the original results. In 0.2–0.4% of cases, SNP tolerance yielded a
subset of genomic locations, meaning that some of the mismatches
in the original alignments could be resolved in favor of known SNPs.
In 1–2% of cases, all mismatches in the original alignments were
at known SNP locations, leaving the genomic locations the same,
but allowing nucleotide differences to be interpreted as matches to
minor alleles rather than as mismatches. In a small fraction of cases,
SNP tolerance gave a significantly different set of results compared
with the original.

3.3 Bisulfite-converted reads
We used the simulated datasets from Section 3.1 with mismatches
of 0, 1, and 2 nt, and substituted thymine for cytosine with a pro-
bability of 95%, ignoring sequence contexts, such as non-island
CG dinucleotides in eukaryotes (Goll and Bestor, 2005) or in CG,
CHG, and CHH patterns in plants (Cao and Jacobsen, 2002), where
methylcytosines occur more often. We aligned the original reads
with the standard version of GSNAP and the substituted reads with
the methylation flag turned on. Results show that thymine substi-
tution had a minor effect on the ability of GSNAP to identify the
original genomic position, due to increased ambiguity in aligning
some reads (Table 3). The fraction of additional reads giving non-
unique positions in the genome was 5.5% of 36-nt reads, 2.6% of

70-nt reads, and 1.3% of 100-nt reads, in the exact match datasets,
and slightly higher fractions in the datasets with 1 or 2 mismatches.

4 DISCUSSION
The methods described in this paper expand the scope of variants
that can be detected in reads and should therefore increase the utility
of next-generation sequencing data. The ability to recognize a wide
range of variants should also improve mapping accuracy by reco-
gnizing the correct genomic origin of variant reads. Likewise, the
SNP-tolerance feature implemented in our program should also help
resolve mappings in certain genomic regions. The utility of this fea-
ture should be measured not just by the 7–8% of reads affected, but by
its contribution towards making correct biological inferences in the
subsequent analysis pipeline. Other researchers (Manske and Kwiat-
kowski, 2009) have also found cases where SNP-tolerant alignment
facilitates the alignment of reads with minor alleles.

We have developed an algorithm to meet the specific needs of
short-read sequence analysis for both speed and sensitivity in detec-
ting complex variants and splicing. The strength of our algorithm is
its successively constrained search strategy for generating candidate
genomic regions by merging position lists from oligomers across the
entire read, and filtering them using count-based or pattern-based
lower bound calculations. Our search procedure operates at the oli-
gomer level, which differs from the nucleotide-level backtracking
procedures used in BWT-based programs to identify mismatches
and short indels.

By filtering the set of candidate regions, our intersection process
represents a significant efficiency improvement over the seed-and-
extend strategy, used in BLAT, which finds genomic regions based
on a single q-mer and then tests each of those regions in a time-
consuming verification step. Some programs, such as ELAND,
further restrict the seed to be at the beginning of the short read.
The use of seeds can be a highly effective heuristic, and BWA can
run faster by using a seeding mode that allows a certain number of
mismatches in the initial part of the short read. Our method can be
thought of as trying all possible seeds simultaneously over the entire
short read, and therefore has the feature of not favoring one part of
the read over another.

Our intersection procedure also provides an efficient alternative to
the q-gram procedure, used in SHRiMP (Rumble et al., 2009) and
RazerS, which scans the entire genome using a sliding window and

8

Complex variants and splicing in reads

counts q-mers within bins to find candidate genomic regions (Ras-
mussen et al., 2006). The q-gram procedure allows for two or more
indels in a single read, which is not currently allowed by GSNAP,
although our algorithm could be modified to identify them. Another
difference is that the q-gram procedure defines alignment diffe-
rences as an edit distance, where each nucleotide in a gap counts
as a difference, so longer indels are considered more distant. In
contrast, GSNAP uses only an opening gap penalty in scoring indel
alignments, so it can identify long indels more readily.

Our program also differs from several alignment programs, inclu-
ding MAQ, RMAP, SHRiMP, Bowtie, BWA, and SOAP2, which
have the ability to use quality scores to rank alignments. Although
quality scores could be applied in the validation step of our algo-
rithm, it remains unclear to us how best to make tradeoffs between
quality scores and alignment results, for example, how to choose
between an alignment with one mismatch at a high quality score or
one with two mismatches at lower quality scores. Color space reads
produced by ABI SOLiD technology require some extensions to our
algorithm, and we are working to implement this capability in our
program.

Although our results and experience indicate that our program
has practical utility for analyzing next-generation sequencing data,
our research is ongoing. In particular, longer reads will require
more flexibility in alignment and may require the enhancement of
more general cDNA–genomic alignment programs, such our GMAP
program. Future biological research should benefit from having a
diversity of bioinformatics methods and programs to meet the various
needs of sequence analysis.

ACKNOWLEDGMENTS
We thank our colleagues Colin Watanabe for valuable discussion
and Sekar Seshagiri for collaboration on next-generation sequencing
projects. We appreciate feedback on early versions of our program
from Andrew Farmer and Ernie Retzel at the National Center for
Genome Resources. We also thank Irina Khrebtukova and Gary
Schroth at Illumina for access to transcriptional read data.

REFERENCES
Bhangale, T. R., Rieder, M. J., Livingston, R. J., and Nickerson, D. A. (2005).

Comprehensive identification and characterization of diallelic insertion-deletion
polymorphisms in 330 human candidate genes. Human Molecular Genetics, 14,
59–69.

Bona, F. D., Ossowski, S., Schneeberger, K., and Rätsch, G. (2008). Optimal spliced
alignments of short sequence reads. Bioinformatics, 24, i174–180.

Burrows, M. and Wheeler, D. J. (1994). A block-sorting lossless data compression
algorithm. Technical Report Technical Report 124, Digital Equipment Corporation,
Palo Alto, California.

Canales, R. D., Luo, Y., Willey, J. C., Austermiller, B., Barbacioru, C. C., Boysen,
C., Hunkapiller, K., Jensen, R. V., Knight, C. R., Lee, K. Y., Ma, Y., Maqsodi, B.,
Papallo, A., Peters, E. H., Poulter, K., Ruppel, P. L., Samaha, R. R., Shi, L., Yang,
W., Zhang, L., and Goodsaid, F. M. (2006). Evaluation of DNA microarray results
with quantitative gene expression platforms. Nature Biotechnology, 24, 1115–1122.

Cao, X. and Jacobsen, S. E. (2002). Locus-specific control of asymmetric and CpNpG
methylation by the DRM and CMT3 methyltransferase genes. Proc. Natl. Acad. Sci,
99 (suppl. 4), 16491–16498.

Deng, J., Shoemaker, R., Xie, B., Gore, A., LeProust, E. M., Antosiewicz-Bourget, J.,
Egli, D., Maherali, N., Park, I.-H., Yu, J., Daley, G. Q., Eggan, K., Hochedlinger, K.,
Thomson, J., Wang, W., Gao, Y., and Zhang, K. (2009). Targeted bisulfite sequencing

reveals changes in DNA methylation associated with nuclear reprogramming. Nature
Biotechnology, 27, 353–360.

Dintilhac, A., Bihan, R., Guerrier, D., Deschamps, S., and Pellerin, I. (2004). A
conserved non-homeodomain Hoxa9 isoform interacting with CBP is co-expressed
with the ’typical’ Hoxa9 protein during embryogenesis. Gene Expression Patterns,
4, 215–222.

Goll, M. G. and Bestor, T. H. (2005). Eukaryotic cytosine methyltransferases. Annu.
Rev. Biochem., 74, 481–514.

Hampton, O. A., Hollander, P. D., Miller, C. A., Delgado, D. A., Li, J., Coarfa, C.,
Harris, R. A., Richards, S., Scherer, S. E., Muzny, D. M., Gibbs, R. A., Lee, A. V.,
and Milosavljevic, A. (2009). A sequence-level map of chromosomal breakpoints
in the MCF-7 breast cancer cell line yields insights into the evolution of a cancer
genome. Genome Research, 19, 167–177.

Hwang, F. K. and Lin, S. (1980). A simple algorithm for merging two disjoint linearly
ordered sets. SIAM Journal on Computing, 1, 31–39.

Jiang, H. and Wong, W. H. (2008). SeqMap: mapping massive amount of
oligonucleotides to the genome. Bioinformatics, 24, 2395–2396.

Kent, W. J. (2002). BLAT–the BLAST-like alignment tool. Genome Research, 12,
656–664.

Knuth, D. E. (1973). The Art of Computer Programming: Sorting and Searching,
volume 3. Addison-Wesley.

Langmead, B., Trapnell, C., Pop, M., and Salzberg, S. (2009). Ultrafast and memory-
efficient alignment of short dna sequences to the human genome. Genome Biology,
10, R25.

Li, H. and Durbin, R. (2009). Fast and accurate short read alignment with Burrows-
Wheeler Transform. Bioinformatics, 25, 1754–1760.

Li, H., Ruan, J., and Durbin, R. (2008a). Mapping short DNA sequencing reads and
calling variants using mapping quality scores. Genome Research, 18, 1851–1858.

Li, R., Li, Y., Kristiansen, K., and Wang, J. (2008b). SOAP: short oligonucleotide
alignment program. Bioinformatics, 24, 713–714.

Li, R., Yu, C., Li, Y., Lam, T.-W., Yiu, S.-M., Kristiansen, K., and Wang, J. (2009).
SOAP2: an improved ultrafast tool for short read alignment. Bioinformatics, 25,
1966–1967.

Lister, R. and Ecker, J. R. (2009). Finding the fifth base: Genome-wide sequencing of
cytosine methylation. Genome Research, 19, 959–966.

Manber, U. and Myers, G. (1990). Suffix arrays: A new method for on-line string
searches. In Symposium on Discrete Algorithms, pages 319–327.

Manske, H. M. and Kwiatkowski, D. P. (2009). Snp-o-matic. Bioinformatics, 25,
2434–2435.

Nethercote, N. and Steward, J. (2007). Valgrind: a framework for heavyweight dynamic
binary instrumentation. In Proceedings of the 2007 ACM SIGPLAN Conference on
Programming Language Design and Implementation, pages 89–100.

Ning, Z., Cox, A. J., and Mullikin, J. C. (2001). SSAHA: a fast search method for large
DNA databases. Genome Research, 11, 1725–1729.

Rasmussen, K. R., Stoye, J., and Myers, E. W. (2006). Efficient q-gram filters for
finding all ε-matches over a given length. Journal of Computational Biology, 13,
296–308.

Rumble, S. M., Lacroute, P., Dalca, A. V., Flume, M., Sidow, A., and Brudno, M.
(2009). SHRiMP: accurate mapping of color-space reads. PLoS Computational
Biology, 5, e1000386.

Sherry, S. T., Ward, M.-H., Kholodov, M., Baker, J., Phan, L., Snigielski, E. M., and
Sirotkin, K. (2001). dbSNP: the NCBI database of genetic variation. Nucleic Acids
Research, 29, 308–311.

Smith, A. D., Xuan, Z., and Zhang, M. Q. (2008). Using quality scores and longer reads
improves accuracy of Solexa read mapping. BMC Bioinformatics, 9, 128.

Trapnell, C., Pachter, L., and Salzberg, S. L. (2009). TopHat: discovering splice
junctions with RNA-Seq. Bioinformatics, 25, 1105–1111.

Wang, E. T., Sandberg, R., Luo, S., Khrebtukova, I., Zhang, L., Mayr, C., Kingsmore,
S. F., Schroth, G. P., and Burge, C. B. (2008). Alternative isoform regulation in
human tissue transcriptomes. Nature, 456, 470–476.

Weber, J. L., David, D., Heil, J., Fan, Y., Zhao, C., and Marth, G. (2002). Human
diallelic insertion/deletion polymorphisms. Am. J. Hum. Genet., 71, 854–862.

Weese, D., Emde, A.-K., Rausch, R., Döring, A., and Reinert, K. (2009). RazerS—fast
read mapping with sensitivity control. Genome Research, 19, 1646–1654.

Wu, T. D. and Watanabe, C. K. (2005). GMAP: a genomic mapping and alignment
program for mRNA and EST sequences. Bioinformatics, page bti310.

Yeo, G. and Burge, C. B. (2004). Maximum entropy modeling of short sequence motifs
with applications to RNA splicing signals. Journal of Computational Biology, 11,
377–394.

9

