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Chapter 1

Introduction

This course is part of the curriculum of the master of science in bioinformatics at the Johannes
Kepler University Linz. Machine learning has a major application in biology and medicine and
many fields of research in bioinformatics are based on machine learning. For example one of the
most prominent bioinformatics textbooks “Bioinformatics: The Machine Learning Approach” by
P. Baldi and S. Brunak (MIT Press, ISBN 0-262-02506-X) sees the foundation of bioinformatics
in machine learning.

Machine learning methods, for example neural networks used for the secondary and 3D struc-
ture prediction of proteins, have proven their value as essential bioinformatics tools. Modern mea-
surement techniques in both biology and medicine create a huge demand for new machine learning
approaches. One such technique is the measurement of mRNA concentrations with microarrays,
where the data is first preprocessed, then genes of interest are identified, and finally predictions
made. In other examples DNA data is integrated with other complementary measurements in order
to detect alternative splicing, nucleosome positions, gene regulation, etc. All of these tasks are per-
formed by machine learning algorithms. Alongside neural networks the most prominent machine
learning techniques relate to support vector machines, kernel approaches, projection method and
belief networks. These methods provide noise reduction, feature selection, structure extraction,
classification / regression, and assist modeling. In the biomedical context, machine learning algo-
rithms predict cancer treatment outcomes based on gene expression profiles, they classify novel
protein sequences into structural or functional classes and extract new dependencies between DNA
markers (SNP - single nucleotide polymorphisms) and diseases (schizophrenia or alcohol depen-
dence).

In this course the most prominent machine learning techniques are introduced and their math-
ematical foundations are shown. However, because of the restricted space neither mathematical or
practical details are presented. Only few selected applications of machine learning in biology and
medicine are given as the focus is on the understanding of the machine learning techniques. If the
techniques are well understood then new applications will arise, old ones can be improved, and
the methods which best fit to the problem can be selected.

Students should learn how to chose appropriate methods from a given pool of approaches for
solving a specific problem. Therefore they must understand and evaluate the different approaches,
know their advantages and disadvantages as well as where to obtain and how to use them. In
a step further, the students should be able to adapt standard algorithms for their own purposes
or to modify those algorithms for specific applications with certain prior knowledge or special
constraints.

1
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Chapter 2

Basics of Machine Learning

The conventional approach to solve problems with the help of computers is to write programs
which solve the problem. In this approach the programmer must understand the problem, find
a solution appropriate for the computer, and implement this solution on the computer. We call
this approach deductive because the human deduces the solution from the problem formulation.
However in biology, chemistry, biophysics, medicine, and other life science fields a huge amount
of data is produced which is hard to understand and to interpret by humans. A solution to a
problem may also be found by a machine which learns. Such a machine processes the data and
automatically finds structures in the data, i.e. learns. The knowledge about the extracted structure
can be used to solve the problem at hand. We call this approach inductive, Machine learning is
about inductively solving problems by machines, i.e. computers.

Researchers in machine learning construct algorithms that automatically improve a solution
a problem with more data. In general the quality of the solution increases with the amount of
problem-relevant data which is available.

Problems solved by machine learning methods range from classifying observations, predicting
values, structuring data (e.g. clustering), compressing data, visualizing data, filtering data, select-
ing relevant components from data, extracting dependencies between data components, modeling
the data generating systems, constructing noise models for the observed data, integrating data from
different sensors,

Using classification a diagnosis based on the medical measurements can be made or proteins
can be categorized according to their structure or function. Prediction support the current action
through the knowledge of the future. A prominent example is stock market prediction but also
prediction the outcome of therapy helps to choose the right therapy or to adjust the doses of the
drugs. In genomics identifying the relevant genes for a certain investigation (gene selection) is
important for understanding the molecular-biological dynamics in the cell. Especially in medicine
the identification of genes related to cancer draw the attention of the researchers.

2.1 Machine Learning in Bioinformatics

Many problems in bioinformatics are solved using machine learning techniques.

Machine learning approaches to bioinformatics include:

Protein secondary structure prediction (neural networks, support vector machines)

3
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Gene recognition (hidden Markov models)

Multiple alignment (hidden Markov models, clustering)

Splice site recognition (neural networks)

Microarray data: normalization (factor analysis)

Microarray data: gene selection (feature selection)

Microarray data: prediction of therapy outcome (neural networks, support vector machines)

Microarray data: dependencies between genes (independent component analysis, clustering)

Protein structure and function classification (support vector machines, recurrent networks)

Alternative splice site recognition (SVMs, recurrent nets)

Prediction of nucleosome positions

Single nucleotide polymorphism (SNP)

Peptide and protein arrays

Systems biology and modeling

For the last tasks like SNP data analysis, peptide or protein arrays and systems biology new
approaches are developed currently.

For protein 3D structure prediction machine learning methods outperformed “threadingt’t’
methods in template identification (Cheng and Baldi, 2006).

Threading was the golden standard for protein 3D structure recognition if the structure is
known (almost all structures are known).

Also for alternative splice site recognition machine learning methods are superior to other
methods (Gunnar Rätsch).

2.2 Introductory Example

In the following we will consider a classification problem taken from “Pattern Classification”,
Duda, Hart, and Stork, 2001, John Wiley & Sons, Inc. In this classification problem salmons must
be distinguished from sea bass given pictures of the fishes. Goal is that an automated system is
able to separate the fishes in a fish-packing company, where salmons and sea bass are sold. We
are given a set of pictures where experts told whether the fish on the picture is salmon or sea
bass. This set, called training set, can be used to construct the automated system. The objective
is that future pictures of fishes can be used to automatically separate salmon from sea bass, i.e. to
classify the fishes. Therefore, the goal is to correctly classify the fishes in the future on unseen
data. The performance on future novel data is called generalization. Thus, our goal is to maximize
the generalization performance.
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Figure 2.1: Salmons must be distinguished from sea bass. A camera takes pictures of the fishes
and these pictures have to be classified as showing either a salmon or a sea bass. The pictures must
be preprocessed and features extracted whereafter classification can be performed. Copyright c©
2001 John Wiley & Sons, Inc.
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Figure 2.2: Salmon and see bass are separated by their length. Each vertical line gives a decision
boundary l, where fish with length smaller than l are assumed to be salmon and others as sea bass.
l∗ gives the vertical line which will lead to the minimal number of misclassifications. Copyright
c© 2001 John Wiley & Sons, Inc.

Before the classification can be done the pictures must be preprocessed and features extracted.
Classification is performed by the extracted features. See Fig. 2.1.

The preprocessing might involve contrast and brightness adjustment, correction of a brightness
gradient in the picture, and segmentation to separate the fish from other fishes and from the back-
ground. Thereafter the single fish is aligned, i.e. brought in a predefined position. Now features
of the single fish can be extracted. Features may be the length of the fish and its lightness.

First we consider the length in Fig. 2.2. We chose a decision boundary l, where fish with length
smaller than l are assumed to be salmon and others as sea bass. The optimal decision boundary l∗

is the one which will lead to the minimal number of misclassifications.

The second feature is the lightness of the fish. A histogram if using only this feature to decide
about the kind of fish is given in Fig. 2.3.

For the optimal boundary we assumed that each misclassification is equally serious. However
it might be that selling sea bass as salmon by accident is more serious than selling salmon as sea
bass. Taking this into account we would chose an decision boundary which is on the left hand side
of x∗ in Fig. 2.3. Thus the cost function governs the optimal decision boundary.

As third feature we use the width of the fishes. This feature alone may not be a good choice to
separate the kind of fishes, however we may have observed that the optimal separating lightness
value depends on the width of the fishes. Perhaps the width is correlated with the age of the fish
and the lightness of the fishes change with age. It might be a good idea to combine both features.
The result is depicted in Fig. 2.4, where for each width an optimal lightness value is given. The
optimal lightness value is a linear function of the width.
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Figure 2.3: Salmon and see bass are separated by their lightness. x∗ gives the vertical line which
will lead to the minimal number of misclassifications. Copyright c© 2001 John Wiley & Sons, Inc.
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Figure 2.4: Salmon and see bass are separated by their lightness and their width. For each width
there is an optimal separating lightness value given by the line. Here the optimal lightness is a
linear function of the width. Copyright c© 2001 John Wiley & Sons, Inc.
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Figure 2.5: Salmon and see bass are separated by a nonlinear curve in the two-dimensional space
spanned by the lightness and the width of the fishes. The training set is separated perfectly. A new
fish with lightness and width given at the position of the question mark “?” would be assumed to
be sea bass even if most fishes with similar lightness and width were previously salmon. Copyright
c© 2001 John Wiley & Sons, Inc.

Can we do better? The optimal lightness value may be a nonlinear function of the width or the
optimal boundary may be a nonlinear curve in the two-dimensional space spanned by the lightness
and the width of the fishes. The later is depicted in Fig. 2.5, where the boundary is chosen that
every fish is classified correctly on the training set. A new fish with lightness and width given
at the position of the question mark “?” would be assumed to be sea bass. However most fishes
with similar lightness and width were previously classified as salmon by the human expert. At
this position we assume that the generalization performance is low. One sea bass, an outlier, has
lightness and width which are typically for salmon. The complex boundary curve also catches
this outlier however must assign space without fish examples in the region of salmons to sea bass.
We assume that future examples in this region will be wrongly classified as sea bass. This case
will later be treated under the terms overfitting, high variance, high model complexity, and high
structural risk.

A decision boundary, which may represent the boundary with highest generalization, is shown
in Fig. 2.6.

In this classification task we selected the features which are best suited for the classification.
However in many bioinformatics applications the number of features is large and selecting the
best feature by visual inspections is impossible. For example if the most indicative genes for a
certain cancer type must be chosen from 30,000 human genes. In such cases with many features
describing an object feature selection is important. Here a machine and not a human selects the
features used for the final classification.

Another issue is to construct new features from given features, i.e. feature construction. In
above example we used the width in combination with the lightness, where we assumed that
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FIGURE 1.6. The decision boundary shown might represent the optimal tradeoff be-
Figure 2.6: Salmon and see bass are separated by a nonlinear curve in the two-dimensional space
spanned by the lightness and the width of the fishes. The curve may represent the decision bound-
ary leading to the best generalization. Copyright c© 2001 John Wiley & Sons, Inc.

the width indicates the age. However, first combining the width with the length may give a better
estimate of the age which thereafter can be combined with the lightness. In this approach averaging
over width and length may be more robust to certain outliers or to errors in processing the original
picture. In general redundant features can be used in order to reduce the noise from single features.

Both feature construction and feature selection can be combined by randomly generate new
features and thereafter select appropriate features from this set of generated features.

We already addressed the question of cost. That is how expensive is a certain error. A related
issue is the kind of noise on the measurements and on the class labels produced in our example
by humans. Perhaps the fishes on the wrong side of the boundary in Fig. 2.6 are just error of the
human experts. Another possibility is that the picture did not allow to extract the correct lightness
value. Finally, outliers in lightness or width as in Fig. 2.6 may be typically for salmons and sea
bass.

2.3 Supervised and Unsupervised Learning

In previous example a human expert characterized the data, i.e. supplied the label (the class).
Tasks, where the desired output for each object is given, are called supervised and the desired
outputs are called targets. This term stems from the fact that during learning a model can obtain
the correct value from the teacher, the supervisor.

If data has to be processed by machine learning methods, where the desired output is not given,
then the learning task is called unsupervised. In supervised task one can immediately measure
how good the model performs on the training data, because the optimal outputs, the targets, are
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given. Further the measurement is done for each single object. That is the model supplies an error
value on each object. In contrast to supervised problems, the quality of models on unsupervised
problems is mostly measured on the cumulative output on all objects. Typically measurements
for unsupervised methods include the information contents, the orthogonality of the constructed
components, the statistical independence, the variation explained by the model, the probability
that the observed data can be produced by the model (later introduced as likelihood), distances
between and within clusters, etc.

Typical fields of supervised learning are classification, regression (assigning a real value to
the data), or time series analysis (predicting the future). An examples for regression is to predict
the age of the fish from above examples based on length, width and lightness. In contrast to
classification the age is a continuous value. In a time series prediction task future values have
to be predicted based on present and past values. For example a prediction task would be if we
monitor the length, width and lightness of the fish every day (or every week) from its birth and
want to predict its size, its weight or its health status as a grown out fish. If such predictions are
successful appropriate fish can be selected early.

Typical fields of unsupervised learning are projection methods (“principal component analy-
sis”, “independent component analysis”, “factor analysis”, “projection pursuit”), clustering meth-
ods (“k-means”, “hierarchical clustering”, “mixture models”, “self-organizing maps”), density es-
timation (“kernel density estimation”, “orthonormal polynomials”, “Gaussian mixtures”) or gener-
ative models (“hidden Markov models”, “belief networks”). Unsupervised methods try to extract
structure in the data, represent the data in a more compact or more useful way, or build a model of
the data generating process or parts thereof.

Projection methods generate a new representation of objects given a representation of them as a
feature vector. In most cases, they down-project feature vectors of objects into a lower-dimensional
space in order to remove redundancies and components which are not relevant. “Principal Com-
ponent Analysis” (PCA) represents the object through feature vectors which components give the
extension of the data in certain orthogonal directions. The directions are ordered so that the first
direction give the direction of maximal data variance, the second the maximal data variance or-
thogonal to the first component, and so on. “Independent Component Analysis” (ICA) goes a step
further than PCA and represents the objects through feature components which are statistically
mutual independent. “Factor Analysis” extends PCA by introducing a Gaussian noise at each
original component and assumes Gaussian distribution of the components. “Projection Pursuit”
searches for components which are non-Gaussian, therefore, may contain interesting informa-
tion. Clustering methods are looking for data cluster and, therefore, finding structure in the data.
“Self-Organizing Maps” (SOMs) are a special kind of clustering methods which also perform a
down-projection in order to visualize the data. The down-projection keeps the neighborhood of
clusters. Density estimation methods attempt at producing the density from which the data was
drawn. In contrast to density estimation methods generative models try to build a model which
represents the density of the observed data. Goal is to obtain a world model if the density of the
data points produced by the model matches the observed data density.

The clustering or (down-)projection methods may be viewed as feature construction methods
because the object can now be described via the new components. For clustering the description of
the object may contain the cluster to which it is closest or a whole vector describing the distances
to the different clusters.
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Figure 2.7: Example of a clustering algorithm. Ozone was measured and four clusters with similar
ozone were found.

Figure 2.8: Example of a clustering algorithm where the clusters have different shape.
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Figure 2.9: Example of a clustering where the clusters have a non-elliptical shape and clustering
methods fail to extract the clusters.

Figure 2.10: Two speakers recorded by two microphones. The speaker produce independent
acoustic signals which can be separated by ICA (here called Blind Source Separation) algorithms.
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Figure 2.11: On top the data points where the components are correlated: knowing the x-
coordinate helps to guess were the y-coordinate is located. The components are statistically de-
pendent. After ICA the components are statistically independent.

2.4 Reinforcement Learning

There are machine learning methods which do not fit into the unsupervised/supervised classifica-
tion.

For example, with reinforcement learning the model has to produce a sequence of outputs
based on inputs but only receives a signal, a reward or a penalty, at sequence end or during the se-
quence. Each output influences the world in which the model, the actor, is located. These outputs
also influence the current or future reward/penalties. The learning machine receives information
about success or failure through the reward and penalties but does not know what would have been
the best output in a certain situation. Thus, neither supervised nor unsupervised learning describes
reinforcement learning. The situation is determined by the past and the current input.

In most scenarios the goal is to maximize the reward over a certain time period. Therefore, it
may not be the best policy, that is the model in reinforcement learning, to maximize the immediate
reward but to maximize the reward on a longer time scale. Many reinforcement algorithms build a
world model which in then used to predict the future reward which in turn can be used to produce
the optimal current output. In most cases the world model is a value function which estimates the
expected current and future reward based on the current situation and the current output.

Most reinforcement algorithms can be divided into direct policy optimization and policy / value
iteration. The former does not need a world model and in the later the world model is optimized
for the current policy (the current model), then the policy is improved using the current world
model, then the world model is improved based on the new policy, etc. The world model can only
be build based on the current policy because the actor is part of the world.

Another problem in reinforcement learning is the exploitation / exploration trade-off. This
addresses the question: is it better to optimize the reward based on the current knowledge or is it
better to gain more knowledge in order to obtain more reward in the future.
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Figure 2.12: Images of fMRI brain data together with EEG data. Certain active brain regions are
marked.

The most popular reinforcement algorithms are Q-learning, SARSA, Temporal Difference
(TD), and monte carlo estimation.

Reinforcement learning will not be considered in this course because it has no application in
bioinformatics until yet.

2.5 Feature Extraction, Selection, and Construction

As already mentioned in our example with the salmon and sea bass, features must be extracted
from the original data. To generate features from the raw data is called feature extraction.

In our example features were extracted from images. Another example is given in Fig. 2.12
and Fig. 2.13 where brain patterns have to be extracted from fMRI brain images. In these figures
also temporal patterns are given as EEG measurements from which also features can be extracted.
Features from EEG patterns would be certain frequencies with their amplitudes whereas features
from the fMRI data may be the activation level of certain brain areas which must be selected.

In many applications features are directly measured such features are length, weight, etc. In
our fish example the length may not be extracted from images but is measured directly.

However there are task for which a huge number of features is available. In the bioinformat-
ics contents examples are the microarray technique where 30,000 genes are measured simulta-
neously with cDNA arrays, peptide arrays, protein arrays, data from mass spectrometry, “single
nucleotide” (SNP) data, etc. In such cases many measurements are not related to the task to be
solved. For example only a few genes are important for the task (e.g. detecting cancer or predic-
tion the outcome of a therapy) and all other genes are not. An example is given in Fig. 2.14, where
one variable is related to the classification task an the other is not.
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Figure 2.13: Another image of fMRI brain data together with EEG data. Again, active brain
regions are marked.
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Figure 2.14: Simple two feature classification problem, where feature 1 (var. 1) is noise and
feature 2 (var. 2) is correlated to the classes. In the upper right figure and lower left figure only
the axis are exchanged. The upper left figure gives the class histogram along feature 2 whereas
the lower right figure gives the histogram along feature 1. The correlation to the class (corr) and
the performance of the single variable classifier (svc) is given. Copyright c© 2006 Springer-Verlag
Berlin Heidelberg.
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Figure 2.15: The design cycle for machine learning in order to solve a certain task. Copyright c©
2001 John Wiley & Sons, Inc.

The first step of a machine learning approach would be to select the relevant features or chose
a model which can deal with features not related to the task. Fig. 2.15 shows the design cycle for
generating a model with machine learning methods. After collecting the data (or extracting the
features) the features which are used must be chosen.

The problem of selecting the right variables can be difficult. Fig. 2.16 shows an example where
single features cannot improve the classification performance but both features simultaneously
help to classify correctly. Fig. 2.17 shows an example where in the left and right subfigure the
features mean values and variances are equal for each class. However, the direction of the variance
differs in the subfigures leading to different performance in classification.

There exist cases where the features which have no correlation with the target should be se-
lected and cases where the feature with the largest correlation with the target should not be se-
lected. For example, given the values of the left hand side in Tab. 2.1, the target t is computed
from two features f1 and f2 as t = f1 + f2. All values have mean zero and the correlation
coefficient between t and f1 is zero. In this case f1 should be selected because it has negative
correlation with f2. The top ranked feature may not be correlated to the target, e.g. if it contains
target-independent information which can be removed from other features. The right hand side
of Tab. 2.1 depicts another situation, where t = f2 + f3. f1, the feature which has highest
correlation coefficient with the target (0.9 compared to 0.71 of the other features) should not be
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Figure 2.17: The left and right subfigure shows each two classes where the features mean value
and variance for each class is equal. However, the direction of the variance differs in the subfigures
leading to different performance in classification.
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f1 f2 t f1 f2 f3 t

-2 3 1 0 -1 0 -1
2 -3 -1 1 1 0 1

-2 1 -1 -1 0 -1 -1
2 -1 1 1 0 1 1

Table 2.1: Left hand side: the target t is computed from two features f1 and f2 as t = f1 + f2.
No correlation between t and f1.

selected because it is correlated to all other features.

In some tasks it is helpful to combine some features to a new features, that is to construct fea-
tures. In gene expression examples sometimes combining gene expression values to a meta-gene
value gives more robust results because the noise is “averaged out”. The standard way to combine
linearly dependent feature components is to perform PCA or ICA as a first step. Thereafter the
relevant PCA or ICA components are used for the machine learning task. Disadvantage is that
often PCA or ICA components are no longer interpretable.

Using kernel methods the original features can be mapped into another space where implicitly
new features are used. In this new space PCA can be performed (kernel-PCA). For constructing
non-linear features out of the original one, prior knowledge on the problem to solve is very helpful.
For example a sequence of nucleotides or amino acids may be presented by the occurrence vector
of certain motifs or through their similarity to other sequences. For a sequence the vector of
similarities to other sequences will be its feature vector. In this case features are constructed
through alignment with other features.

Issues like missing values for some features or varying noise or non-stationary measurements
have to be considered in selecting the features. Here features can be completed or modified.

2.6 Parametric vs. Non-Parametric Models

An important step in machine learning is to select the methods which will be used. This addresses
the third step in Fig. 2.15. To “choose a model” is not correct as a model class must be chosen.
Training and evaluation then selects an appropriate model from the model class. Model selection
is based on the data which is available and on prior or domain knowledge.

A very common model class are parametric models, where each parameter vector represents
a certain model. Parametric models are neural networks, where the parameter are the synaptic
weights between the neurons, or support vector machines, where the parameters are the support
vector weights. For parametric models in many cases it is possible to compute derivatives of
the models with respect to the parameters. Here gradient directions can be used to change the
parameter vector and, therefore, the model. If the gradient gives the direction of improvement
then learning can be realized by paths through the parameter space.

Disadvantages of parametric models are: (1) one model may have two different parameteriza-
tions and (2) defining the model complexity and therefore choosing a model class must be done via
the parameters. Case (1) can easily be seen at neural networks where the dynamics of one neuron
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can be replaced by two neurons with the same dynamics each and both having outgoing synaptic
connections which are half of the connections of the original neuron. Disadvantage is that not all
neighboring models can be found because the model as more than one location in parameter space.
Case (2) can also be seen at neural networks where model properties like smoothness or bounded
output variance are hard to define through the parameters.

The counterpart of parametric models are nonparametric models. Using nonparametric mod-
els the assumption is that the model is locally constant or and superimpositions of constant mod-
els. Only by selecting the locations and the number of the constant models according to the data
the models differ. Examples for nonparametric models are “k-nearest-neighbor”, “learning vec-
tor quantization”, or “kernel density estimator”. These are local models and the behavior of the
model to new data is determined by the training data which was close to this location. “k-nearest-
neighbor” classifies the new data point according to the majority class of the k nearest neighbor
training data points. “learning vector quantization” classifies a new data point according to the
class assigned to the nearest cluster (nearest prototype). “kernel density estimator” computes the
density at a new location proportional to the number and distance of training data points.

Another non-parametric model is the “decision tree”. Here the locality principle is that each
feature, i.e. each direction in the feature space, can split but both half-spaces obtain a constant
value. In such a way the feature space can be partitioned into pieces (maybe with infinite edges)
with constant function value.

However the constant models or the splitting rules must be a priori selected carefully using
the training data, prior knowledge or knowledge about the complexity of the problem. For k-
nearest-neighbor the parameter k and the distance measure must be chosen, for learning vector
quantization the distance measure and the number of prototypes must be chosen, and for kernel
density estimator the kernel (the local density function) must be adjusted where especially the
width and smoothness of the kernel is an important property. For decision trees the splitting rules
must be chosen a priori and also when to stop further portioning the space.

2.7 Generative vs. descriptive Models

In the previous section we mentioned the nonparametric approach of the kernel density estimator,
where the model produces for a location the estimated density. And also for a training data point
the density of its location is estimated, i.e. this data point has a new characteristic through the
density at its location. We call this a descriptive model. Descriptive models supply an additional
description of the data point or another representation. Therefore projection methods (PCA, ICA)
are descriptive models as the data points are described by certain features (components).

Another machine learning approach to model selection is to model the data generating process.
Such models are called generative models. Models are selected which produce the distribution
observed for the real world data, therefore these models are describing or representing the data
generation process. The data generation process may have also input components or random
components which drive the process. Such input or random components may be included into the
model. Important for the generative approach is to include as much prior knowledge about the
world or desired model properties into the model as possible in order to restrict the number of
models which can explain the observed data.
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A generative model can be used predict the data generation process for unobserved inputs,
to predict the behavior of the data generation process if its parameters are externally changed, to
generate artificial training data, or to predict unlikely events. Especially the modeling approaches
can give new insights into the working of complex systems of the world like the brain or the cell.

2.8 Prior and Domain Knowledge

In previous section we already mentioned to include as much prior and domain knowledge as
possible into the model. Such knowledge helps in general. For example it is important to define
reasonable distance measures for k-nearest-neighbor or clustering methods, to construct problem-
relevant features, to extract appropriate features from the raw data, etc.

For kernel-based approaches prior knowledge in the field of bioinformatics include alignment
methods, i.e. kernels are based on alignment methods like the string-kernel, the Smith-Waterman-
kernel, the local alignment kernel, the motif kernel, etc. Or for secondary structure prediction with
recurrent networks the 3.7 amino acid period of a helix can be taken into account by selecting as
inputs the sequence elements of the amino acid sequence.

In the context of microarray data processing prior knowledge about the noise distribution can
be used to build an appropriate model. For example it is known that the the log-values are more
Gaussian distributed than the original expression values, therefore, mostly models for the log-
values are constructed.

Different prior knowledge sources can be used in 3D structure prediction of proteins. The
knowledge reaches from physical and chemical laws to empirical knowledge.

2.9 Model Selection and Training

Using the prior knowledge a model class can be chosen appropriate for the problem to be solved.
In the next step a model from the model class must selected. The model with highest generalization
performance, i.e. with the best performance on future data should be selected. The model selection
is based on the training set, therefore, it is often called training or learning. In most cases a model
is selected which best explains or approximates the training set.

However, as already shown in Fig. 2.5 of our salmon vs. sea bass classification task, if the
model class is too large and a model is chosen which perfectly explains the training data, then
the generalization performance (the performance on future data) may be low. This case is called
“overfitting”. Reason is that the model is fitted or adapted to special characteristics of the training
data, where these characteristics include noisy measurements, outliers, or labeling errors. There-
fore before model selection based on the best training data fitting model, the model class must be
chosen.

On the other hand, if a low complex model class is chosen, then it may be possible that the
training data cannot be fitted well enough. The generalization performance may be low because
the general structure in the data was not extracted because the model complexity did not allow to
representing this structure. This case is called “underfitting”. Thus, the optimal generalization is
a trade-off between underfitting and overfitting. See Fig. 2.18 for the trade-off between over- and
underfitting error.
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Figure 2.18: The trade-off between underfitting and overfitting is shown. The left upper subfigure
shown underfitting, the right upper subfigure overfitting error, and the right lower subfigure shows
the best compromise between both leading to the highest generalization (best performance on
future data).
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The model class can be chosen by the parameter k for k-nearest-neighbor, by the number of
hidden neurons, their activation function and the maximal weight values for neural networks, by
the value C penalizing misclassification and kernel (smoothness) parameters for support vector
machines.

In most cases the model class must be chosen a priori to the training phase. However, for some
methods, e.g. neural networks, the model class can be adjusted during training, where smoother
decision boundaries correspond to lower model complexity.

In the context of “structural risk minimization” (see Section 3.6.4) the model complexity issue
will be discussed in more detail.

Other choices before performing model selection concern the selection parameters, e.g. the
learning rate for neural networks, the stopping criterion, precision values, number of iterations,
etc.

Also the model selection parameters may influence the model complexity, e.g. if the model
complexity is increased stepwise as for neural networks where the nonlinearity is increased during
training. But also precision values may determine how exact the training data can be approximated
and therefore implicitly influence the complexity of the model which is selected. That means also
with a given model class the selection procedure may not be able to select all possible models.

The parameters controlling the model complexity and the parameters for the model selection
procedure are called “hyperparameters” in contrast to the model parameters for parameterized
models.

2.10 Model Evaluation, Hyperparameter Selection, and Final Model

In previous section we mentioned that before training/learning/model selection the hyperparame-
ters must be chosen – but how? The same questions holds for choosing the best number of feature
if feature selection was performed and a ranking of the features is provided.

For special cases the hyperparameters can be chosen with some assumptions and global train-
ing data characteristics. For example kernel density estimation (KDE) has as hyperparameter the
width of the kernels which can be chosen using an assumption about the smoothness (peakiness)
of the target density and the number of training examples.

However in general the hyperparameters must be estimated from the training data. In most
cases they are estimated by n-fold cross-validation. The procedure of n-fold cross-validation first
divides the training set into n equal parts. Then one part is removed and the remaining (n−1) parts
are used for training/model selection whereafter the selected model is evaluated on the removed
part. This can be done n times because there are n parts which can be removed. The error or
empirical risk (see definition eq. (3.161) in Section 3.6.2) on this n times evaluation is the n-fold
cross-validation error.

The cross-validation error is supposed to approximate the generalization error by withholding
a part of the training set and observing how well the model would have performed on the with-
hold data. However, the estimation is not correct from the statistical point of view because the
values which are used to estimate the generalization error are dependent. The dependencies came
from two facts. First the evaluation of different folds are correlated because the cross validation
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training sets are overlapping (an outlier would influence more than one cross validation training
set). Secondly the results on data points of the removed fold on which the model is evaluated are
correlated because they use the same model (if the model selection is bad then all points in the
fold are affected).

A special case of n-fold cross-validation is leave-one-out cross validation, where n is equal to
the number of data points, therefore, only one data point is removed and the model evaluated on
this data point.

Coming back to the problem of selecting the best hyperparameters. A set of specific hyperpa-
rameters can be evaluated by cross-validation on the training set. Thereafter the best performing
hyperparameters are chosen to train the final model on all available data.

We evaluated the hyperparameters on a training set of size n−1
n of the final training set. There-

fore, methods which are sensitive to the size of the training set must be treated carefully.

In many cases the user wants to know how well a method will perform in future or wants to
compare different methods. Can we use the performance of our method on the best hyperparame-
ters as an estimate of the performance of our method in the future? No! We have chosen the best
performing hyperparameters on the n-fold cross validation based on the training set which do in
general not match the performance on future data.

To estimate the performance of a method we can use cross-validation, but for each fold we
have to do a separate cross-validation run for hyperparameter selection.

Also for selection of the number of features we have to proceed as for the hyperparameters.
And hyperparameter selection becomes a hyperparameter-feature selection, i.e. each combination
of hyperparameters and number of features must be tested. That is reasonable as hyperparameters
may depend on the input dimension.

A well know error in estimating the performance of a method is to select features on the whole
available data set and thereafter perform cross-validation. However features are selected with the
knowledge of future data (the removed data in the cross-validation procedure). If the data set
contains many features then this error may considerably increase the performance. For example,
if genes are selected on the whole data set then for the training set of a certain fold from all features
which have the same correlation with the target on the training set those features are ranked higher
which also show correlation with the test set (the removed fold). From all genes which are up-
regulated for all condition 1 and down-regulated for all condition 2 cases on the training set those
which show the same behavior on the removed fold are ranked highest. In practical applications,
however, we do not know what will be the conditions of future samples.

If comparing different methods it is important to test whether the observed differences in the
performances are significant or not. The tests for accessing whether one method is significantly
better than another may have two types of error type I error and type II error. Type I errors detect
a difference in the case that there is no difference between the methods. Type II errors miss a
difference if there was a difference. Here it turned out that a paired t-test has a high probability of
type I errors. The paired t-test is performed by multiply dividing the data set into test and training
set and training both methods on the training set and evaluating them on the test set. The k-fold
cross-validated paired t-test (instead of randomly selecting the test set cross-validation is used)
behaves better than the paired t-test but is inferior to McNemar’s test and 5x2CV (5 times two fold
cross-validation) test.
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Another issue in comparing methods is their time and space complexity. Time complexity is
most important as main memory is large these days. We must distinguish between learning and
testing complexity – the later is the time required if the method is applied to new data. For training
complexity two arguments are often used.

On the one hand, if training last long like a day or a week it does not matter in most applications
if the outcome is appropriate. For example if we train a stock market prediction tool a whole week
and make a lot of money, it will not matter whether we get this money two days earlier or later.
On the other hand, if one methods is 10 times faster than another method, it can be averaged over
10 runs and its performance is supposed to be better. Therefore training time can be discussed
diversely.

For the test time complexity other arguments hold. For example if the method is used online or
as a web service then special requirements must be fulfilled. For example if structure or secondary
structure prediction takes too long then the user will not use such web services. Another issue is
large scale application like searching in large databases or processing whole genomes. In such
cases the application dictates what is an appropriate time scale for the methods. If analyzing a
genome takes two years then such a method is not acceptable but one week may not matter.
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Chapter 3

Theoretical Background of Machine
Learning

In this chapter we focus on the theoretical background of learning methods.

First we want to define quality criteria for selected models in order to pin down a goal for
model selection, i.e. learning. In most cases the quality criterion is not computable and we have
to find approximations to it. The definition of the quality criterion first focuses on supervised
learning.

For unsupervised learning we introduce Maximum Likelihood as quality criterion. In this con-
text we introduce concepts like bias and variance, efficient estimator, and the Fisher information
matrix.

Next we revisit supervised learning but treat it as an unsupervised Maximum Likelihood ap-
proach using an error model. Here the kind of measurement noise determines the error model
which in turn determines the quality criterion of the supervised approach. Here also classification
methods with binary output can be treated.

A central question in machine learning is: Does learning from examples help in the future?
Obviously, learning helps humans to master the environment they live in. But what is the math-
ematical reason for that? I might be that task in the future are unique and nothing from the past
helps to solve them. Future examples may be different from examples we have already seen.

Learning on the training data is called “empirical risk minimization” (ERM) in statistical learn-
ing theory. ERM results that if the complexity is restricted and the dynamics of the environment
does not change, learning helps. “Learning helps” means that with increasing number of training
examples the selected model converges to the best model for all future data. Under mild conditions
the convergence is uniform and even fast, i.e. exponentially. These theoretical theorems found the
idea of learning from data because with finite many training examples a model can be selected
which is close to the optimal model for future data. How close is governed by the number of
training examples, the complexity of the task including noise, the complexity of the model, and
the model class.

To measure the complexity of the model we will introduce the VC-dimension (Vapnik-Chervo-
nenkis).

Using model complexity and the model quality on the training set, theoretical bounds on the
generalization error, i.e. the performance on future data, will be derived. From these bounds the

27
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principle of “structural risk minimization” will be derived to optimize the generalization error
through training.

The last section is devoted to techniques for minimizing the error that is techniques for model
selection for a parameterized model class. Here also on-line methods are treated, i.e. methods
which do not require a training set but attempt at improving the model (selecting a better model)
using only one example at a certain time point.

3.1 Model Quality Criteria

Learning in machine learning is equivalent with model selection. A model from a set of possible
models is chosen and will be used to handle future data.

But what is the best model? We need a quality criteria in order to choose a model. The quality
criteria should be such that future data is optimally processed with the model. That would be the
most common criterion.

However in some cases the user is not interested in future data but only want to visualize the
current data or extract structures from the current data, where these structures are not used for
future data but to analyze the current data. Topics which are related to the later criteria are data
visualization, modeling, data compression. But in many cases the model with best visualization,
best world explanation, or highest compression rate is the model where rules derived on a subset
of the data can be generalized to the whole data set. Here the rest of the data can be interpreted as
future data. Another point of view may be to assume that future data is identical with the training
set. These considerations allow also to treat the later criteria also with the former criteria.

Some machine learning approaches like Kohonen networks don’t possess a quality criterion
as a single scalar value but minimize a potential function. Problem is that different models cannot
be compared. Some ML approaches are known to converge during learning to the model which
really produces the data if the data generating model is in the model class. But these approaches
cannot supply a quality criterion and the quality of the current model is unknown.

The performance on future data will serve as our quality criterion which possesses the advan-
tages of being able to compare models and to know the quality during learning which gives in turn
a hint when to stop learning.

For supervised data the performance on future data can be measured directly, e.g. for clas-
sification the rate of misclassifications or for regression the distance between model output, the
prediction, and the correct value observed in future.

For unsupervised data the quality criterion is not as obvious. The criterion cannot be broke
down to single examples as in the supervised case but must include all possible data with its
probability for being produced by the data generation process. Typical, quality measures are
the likelihood of the data being produced by the model, the ratio of between and within cluster
distances in case of clustering, the independence of the components after data projection in case
of ICA, the information content of the projected data measured as non-Gaussianity in case of
projection pursuit, expected reconstruction error in case of a subset of PCA components or other
projection methods.
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3.2 Generalization error

In this section we define the performance of a model on future data for the supervised case. The
performance of a model on future data is called generalization error. For the supervised case an
error for each example can be defined and then averaged over all possible examples. The error on
one example is called loss but also error. The expected loss is called risk.

3.2.1 Definition of the Generalization Error / Risk

We assume that objects x ∈ X from an object set X are represented or described by feature
vectors x ∈ Rd.

The training set consists of l objects X =
{
x1, . . . , xl

}
with a characterization yi ∈ R like

a label or an associated value with must be predicted for future objects. For simplicity we assume
that yi is a scalar, the so-called target. For simplicity we will write z = (x, y) and Z = X ×R.

The training data is
{
z1, . . . ,zl

}
(zi = (xi, yi)), where we will later use the matrix of

feature vectors X =
(
x1, . . . ,xl

)T , the vector of labels y =
(
y1, . . . , yl

)T , and the training
data matrixZ =

(
z1, . . . ,zl

)
(“ T ” means the transposed of a matrix and here it makes a column

vector out of a row vector).

In order to compute the performance on the future data we need to know the future data and
need a quality measure for the deviation of the prediction from the true value, i.e. a loss function.

The future data is not known, therefore, we need at least the probability that a certain data
point is observed in the future. The data generation process has a density p (z) at z over its data
space. For finite discrete data p (z) is the probability of the data generating process to produce z.
p (z) is the data probability.

The loss function is a function of the target and the model prediction. The model prediction is
given by a function g(x) and if the models are parameterized by a parameter vector w the model
prediction is a parameterized function g(x;w). Therefore the loss function is L(y, g(x;w)).
Typical loss functions are the quadratic loss L(y, g(x;w)) = (y − g(x;w))2 or the zero-one
loss function

L(y, g(x;w)) =
{

0 for y = g(x;w)
1 for y 6= g(x;w)

. (3.1)

Now we can define the generalization error which is the expected loss on future data, also
called risk R (a functional, i.e. a operator which maps functions to scalars):

R(g(.;w)) = Ez (L(y, g(x;w))) . (3.2)

The risk for the quadratic loss is called mean squared error.

R(g(.;w)) =
∫
Z
L(y, g(x;w)) p (z) dz . (3.3)
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In many cases we assume that y is a function of x, the target function f(x), which is disturbed
by noise

y = f(x) + ε , (3.4)

where ε is a noise term drawn from a certain distribution pn(ε), thus

p(y | x) = pn(y − f(x)) . (3.5)

Here the probabilities can be rewritten as

p (z) = p (x) p(y | x) = p (x) pn(y − f(x)) . (3.6)

Now the risk can be computed as

R(g(.;w)) =
∫
Z
L(y, g(x;w)) p (x) pn(y − f(x)) dz = (3.7)∫

X
p (x)

∫
R
L(y, g(x;w)) pn(y − f(x)) dy dx ,

where

R(g(x;w)) = Ey|x (L(y, g(x;w))) = (3.8)∫
R
L(y, g(x;w)) pn(y − f(x)) dy .

The noise-free case is y = f(x), where pn = δ can be viewed as a Dirac delta-distribution:∫
R
h(x)δ(x)dx = h(0) (3.9)

therefore

R(g(x;w)) = L(f(x), g(x;w)) = L(y, g(x;w)) (3.10)

and eq. (3.3) simplifies to

R(g(.;w)) =
∫
X
p (x)L(f(x), g(x;w))dx . (3.11)

Because we do not know p (z) the risk cannot be computed; especially we do not know p(y |
x). In practical applications we have to approximate the risk.

To be more precise w = w (Z), i.e. the parameters depend on the training set.
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3.2.2 Empirical Estimation of the Generalization Error

Here we describe some methods how to estimate the risk (generalization error) for a certain model.

3.2.2.1 Test Set

We assume that data points z = (x, y) are iid (independent identical distributed) and, therefore
also L(y, g(x;w)), and Ez (|L(y, g(x;w))|) < ∞.

The risk is an expectation of the loss function:

R(g(.;w)) = Ez (L(y, g(x;w))) , (3.12)

therefore this expectation can be approximated using the (strong) law of large numbers:

R(g(.;w)) ≈ 1
m

l+m∑
i=l+1

L
(
yi, g(xi;w)

)
, (3.13)

where the set of m elements
{
zl+1, . . . ,zl+m

}
is called test set.

Disadvantage of the test set method is, that the test set cannot be used for learning because w
is selected using the training set and, therefore, L(y, g(x;w)) is not iid for training data points.
Intuitively, if the loss is low for some training data points then we will expect that the loss will
also be low for the following training data points.

3.2.2.2 Cross-Validation

If we have only few data points available we want to use them all for learning and not for estimating
the performance via a test set. But we want to estimate the performance for our final model.

We can divide the available data multiple into training data and test data and average over the
result. Problem here is that the test data is overlapping and we estimate with dependent test data
points.

To avoid overlapping test data points we divide the training set into n parts (see Fig. 3.1).
Then we make n runs where for the ith run part no. i is used for testing and the remaining parts
for training (see Fig. 3.2). That procedure is called n-fold cross-validation. The cross-validation
risk Rn−cv(Z) is the cumulative loss over all folds used for testing.

A special case of cross-validation is leave-one-out cross-validation (LOO CV) where n = l
and a fold contains only one element.

The cross-validation risk is a nearly (almost) unbiased estimate for the risk.

Unbiased means that the expected cross-validation error is equal the expected risk, where the
expectation is is over training sets with l elements.

We will write Zl := Z as a variable for training sets with l elements. The j fold of a n-fold
cross-validation is denoted by Zj or Zj

l/n to include the number l/n of elements of the fold. The
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training set

fold

Figure 3.1: Cross-validation: The data set is divided into 5 parts for 5-fold cross-validation —
each part is called fold.

evaluation training

1.

evaluation

training

2.

5.

evaluationtraining

...

Figure 3.2: Cross-validation: For 5-fold cross-validation there are 5 iterations and in each iteration
a different fold is omitted and the remaining folds form the training set. After training the model
is tested on the omitted fold. The cumulative error on all folds is the cross-validation error.
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n-fold cross-validation risk is

Rn−cv(Zl) =
1
n

n∑
j=1

n

l

∑
z∈Zj

l/n

(
L
(
y, g

(
x;wj

(
Zl \Zj

l/n

))))
, (3.14)

where wj is the model selected when removing the jth fold and

Rn−cv,j(Zl) =
n

l

∑
z∈Zj

l/n

(
L
(
y, g

(
x;wj

(
Zl \Zj

l/n

))))
(3.15)

is the risk for the jth fold.

The statement that the “cross-validation estimate for the risk is almost unbiased” (Luntz and
Brailovsky) means

EZl(1−1/n)

(
R
(
g
(
.;w

(
Zl(1−1/n)

))))
= EZl (Rn−cv (Zl)) . (3.16)

The generalization error on training size l without one fold l/n, namely l− l/n = l(1− 1/n)
can be estimated by cross-validation on training data of size l by n-fold cross-validation. For large
l the training size l or l(1−1/n) should lead similar results, that is the estimate is almost unbiased.

The following two equations will prove eq. (3.16).

The left hand side of eq. (3.16) can be rewritten as

EZl(1−1/n)

(
R
(
g
(
.;w

(
Zl(1−1/n)

))))
= (3.17)

EZl(1−1/n)∪z
(
L
(
y, g

(
x;w

(
Zl(1−1/n)

))))
=

EZl(1−1/n)
EZl/n

n
l

∑
z∈Zl/n

(
L
(
y, g

(
x;w

(
Zl(1−1/n)

)))) .

The second equations stems from the fact that the data points are iid, therefore Ez (f(z)) =
1
k

∑k
i=1 Ez

(
f(zi)

)
= EZk

(
1
k

∑k
i=1 f(zi)

)
.

The right hand side of eq. (3.16) can be rewritten as

EZl (Rn−cv (Zl)) = (3.18)

EZl

 1
n

n∑
j=1

n

l

∑
(x,y)∈Zj

l/n

(
L
(
y, g

(
x;wj

(
Zl \Zj

l/n

)))) =

1
n

n∑
j=1

EZl

n
l

∑
(x,y)∈Zj

l/n

(
L
(
y, g

(
x;wj

(
Zl \Zj

l/n

)))) =

EZl(1−1/n)
EZl/n

n
l

∑
(x,y)∈Zl/n

(
L
(
y, g

(
x;w

(
Zl(1−1/n)

)))) .
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The first equality comes from the fact that sum and integral as interchangeable. Therefore it does
not matter whether first the data is drawn and then the different folds are treated or the data is drawn
again for treating each fold. The second equality comes from the fact that E

(
Zj
l/n

)
= E

(
Zl/n

)
.

Therefore both sides of eq. (3.16) are equal.

The term “almost” addresses the fact that the estimation is made with l(1− 1/n) training data
using the risk and with l training data using n-fold cross-validation.

However the cross-validation estimate has high variance. The high variance stems from the
fact that the training data is overlapping. Also test and training data are overlapping. Intuitively
speaking, if data points are drawn which make the task very complicated, then these data points
appear in many training sets and at least in one test set. These data points strongly increase the
estimate of the risk. The opposite is true for data points which make learning more easy. That
means single data points may strongly influence the estimate of the risk.

3.3 Minimal Risk for a Gaussian Classification Task

We will show an example for the optimal risk for a classification task.

We assume that we have a binary classification task where class y = 1 data points come from
a Gaussian and class y = −1 data points come from a different Gaussian.

Class y = 1 data points are drawn according to

p(x | y = 1) ∝ N (µ1,Σ1) (3.19)

and Class y = −1 according to

p(x | y = −1) ∝ N (µ−1,Σ−1) (3.20)

where the Gaussian N (µ,Σ) has density

p(x) =
1

(2 π)d/2 |Σ|1/2
exp

(
−1

2
(x− µ)T Σ−1(x− µ)

)
. (3.21)

x is the d-dimensional feature vector, µ is the mean vector, Σ is the d×d-dimensional covariance
matrix.

As depicted in Fig. 3.3, the linear transformationA leads to the GaussianN (ATµ,ATΣA
)
.

All projections P of a Gaussian are Gaussian. A certain transformation Aw = Σ−1/2 (“whiten-
ing”) leads to a Gaussian with the identity matrix as covariance matrix. On the other hand each
Gaussian with covariance matrix Σ can be obtained from a Gaussian with covariance matrix I by
the linear transformation Σ1/2.

Affine transformation (translation and linear transformation) allow to interpret all Gaussians
as stemming from a Gaussian with zero mean and the identity as covariance matrix.
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Figure 3.3: Linear transformations of the Gaussian N (µ,Σ). The linear transformation A leads
to the Gaussian N (ATµ,ATΣA

)
. All projections P of a Gaussian are Gaussian. A certain

transformationAw (“whitening”) leads to a Gaussian with the identity matrix as covariance matrix.
Copyright c© 2001 John Wiley & Sons, Inc.
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In this two-dimensional two-category classifier, the probability densities
Figure 3.4: A two-dimensional classification task where the data for each class are drawn from
a Gaussian (black: class 1, red: class -1). The optimal decision boundaries are two hyperbolas.
Here ω1 ≡ y = 1 and ω2 ≡ y = −1. In the gray regions p(y = 1 | x) > p(y = −1 | x) holds
and in the red regions the opposite holds. Copyright c© 2001 John Wiley & Sons, Inc.

At a certain point x in the feature space the probability p(x, y = 1) of observing a point from
class y = 1 is the probability p(y = 1) of choosing class y = 1 multiplied by the Gaussian density
for class y = 1

p(x, y = 1) = p(x | y = 1) p(y = 1) . (3.22)

Fig. 3.4 shows a two-dimensional classification task where the data for each class are drawn
from a Gaussian (black: class 1, red: class -1). The discriminant functions are are two hyperbolas
forming the optimal decision boundaries.

The probability of observing a point at x not depending on the class is

p(x) = p(x, y = 1) + p(x, y = −1) . (3.23)

Here the variable y is “integrated out”.

The probability of observing a point from class y = 1 at x is

p(y = 1 | x) =
p(x | y = 1) p(y = 1)

p(x)
. (3.24)

This formula is obtained by applying the Bayes rule.

We define the regions of class 1 as

X1 = {x | g(x) > 0} (3.25)
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and regions of class -1 as

X−1 = {x | g(x) < 0} . (3.26)

and the loss function as

L(y, g(x;w)) =
{

0 for y g(x;w) > 0
1 for y g(x;w) < 0

. (3.27)

The risk of eq. (3.3) is for the zero-one loss

R(g(.;w)) =
∫
X1

p (x, y = −1) dx +
∫
X−1

p (x, y = 1) dx = (3.28)∫
X1

p (y = −1 | x) p(x) dx +
∫
X−1

p (y = 1 | x) p(x) dx =∫
X

{
p (y = −1 | x) for g(x) > 0
p (y = 1 | x) for g(x) < 0

}
p(x) dx .

In the last equation it obvious how the risk can be minimized by choosing the smaller value of
p (y = −1 | x) and p (y = 1 | x). Therefore, the risk is minimal if

g(x;w)
{
> 0 for p (y = 1 | x) > p (y = −1 | x)
< 0 for p (y = −1 | x) > p (y = 1 | x)

. (3.29)

The minimal risk is

Rmin =
∫
X

min{p (x, y = −1) , p (x, y = 1)} dx = (3.30)∫
X

min{p (y = −1 | x) , p (y = 1 | x)} p(x) dx .

Because at each point either class y = 1 or class y = −1 will be misclassified we classify the
point a belonging to the class with higher probability. This is demonstrated in Fig. 3.5 where at
each position x either the red or the black line determines the probability of misclassification. The
ratio of misclassification is given by integrating along the curve according to eq. (3.28). The min-
imal integration value is obtained if one chooses the lower curve as misclassification probability
that is classifying the point as belonging to the class of the upper curve.

For a linear classifier there is in one dimension only a point x, the decision point, where values
larger than x are classified to one class and values smaller than x are classified into the other class.
The optimal decision point minimizes the misclassification rate. Fig. 3.6 shows such an example.

We call function g a discriminant function if it has a positive value if at x point are classified
as belonging to the positive class and vice versa. Such functions are also called classification
functions. The class estimation ŷ(x) (̂ indicates estimation), i.e. the classifier is

ŷ(x) = signg(x) . (3.31)
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Figure 3.5: Posterior densities p(y = 1 | x) and p(y = −1 | x) as a function of x. If using the
optimal discriminant function the gray region is the integral eq. (3.28) and gives the probability
misclassifying a data point. Modified figure with copyright c© 2001 John Wiley & Sons, Inc.
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FIGURE 2.17. Components of the probability of error for equal priors and (nonoptimal)

Figure 3.6: x∗ is a non-optimal decision point because for some regions the posterior y = 1 is
above the posterior y = −1 but data is classified as y = −1. The misclassification rate is given by
the filled region. However the misclassification mass in the red triangle can be saved if using as
decision point xB . Copyright c© 2001 John Wiley & Sons, Inc.
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A discriminant function which minimizes the future risk is

g(x) = p(y = 1 | x) − p(y = −1 | x) = (3.32)
1

p(x)
( p(x | y = 1) p(y = 1) − p(x | y = −1) p(y = −1) ) ,

where only the difference in the last brackets matters because p(x) > 0. Note, that the optimal
discriminant function is not unique because the difference of strict monotone mappings of p(y =
1 | x) and p(y = −1 | x) keep the sign of discriminant function and lead to the same classification
rule.

Using this fact we take the logarithm to obtain a more convenient discriminant function which
also minimized the future risk:

g(x) = ln p(y = 1 | x) − ln p(y = −1 | x) = (3.33)

ln
p(x | y = 1)
p(x | y = −1)

+ ln
p(y = 1)
p(y = −1)

.

For our Gaussian case we obtain

g(x) = −1
2

(x− µ1)T Σ−1
1 (x− µ1) − d

2
ln 2π − (3.34)

1
2

ln |Σ1| + ln p(y = 1) +

1
2

(x− µ−1)T Σ−1
−1(x− µ−1) +

d

2
ln 2π +

1
2

ln |Σ−1| − ln p(y = −1) =

−1
2

(x− µ1)T Σ−1
1 (x− µ1) − 1

2
ln |Σ1| + ln p(y = 1) +

1
2

(x− µ−1)T Σ−1
−1(x− µ−1) +

1
2

ln |Σ−1| − ln p(y = −1) =

−1
2
xT
(
Σ−1

1 − Σ−1
−1

)
x + xT

(
Σ−1

1 µ1 − Σ−1
−1µ−1

) −
1
2
µT1 Σ−1

1 µ1 +
1
2
µT−1Σ

−1
−1µ−1 − 1

2
ln |Σ1| +

1
2

ln |Σ−1| +

ln p(y = 1) − ln p(y = −1) =

−1
2
xTAx + wTx + b .

The function g(x) = 0 defines the class boundaries which are hyper-quadrics (hyper-ellipses or
hyper-hyperbolas).

If the covariance matrices of both classes are equal, Σ1 = Σ−1 = Σ, then the discriminant
function is

g(x) = xTΣ−1 (µ1 − µ−1) + (3.35)

µT−1Σ
−1µ−1 − µT1 Σ−1µ1 + ln p(y = 1) − ln p(y = −1) =

wTx + b .
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The boundary function g(x) = 0 is a hyperplane in the d-dimensional space. See examples for
d = 1, d = 2, and d = 3 in Fig. 3.7.

For the general case, where Σ1 6= Σ−1 the boundary functions can be hyperplanes, hyper-
ellipsoids, hyper-paraboloids etc. Examples for the 2-dim. case are given in Fig. 3.8.

3.4 Maximum Likelihood

So far we only considered the supervised task, where we have a label y which should be predicted
correctly for future data. We were able to define the loss via the distance between the predicted
value and the true value.

In unsupervised task defining a loss function and a risk is not as straight forward as in super-
vised learning.

3.4.1 Loss for Unsupervised Learning

3.4.1.1 Projection Methods

Unsupervised task include projection of the data into another space in order to fulfill desired
requirements. Fig. 3.9 depicts a projection model.

For example with “Principal Component Analysis” (PCA) the data is projected into a lower
dimensional space. Here a trade-off between losing information and low dimensionality appears.
It is difficult to define a loss function which takes both the dimension and the information loss into
account.

For example with “Independent Component Analysis” (ICA) the data is projected into a space
where the components of the data vectors are mutually independent. As loss function may serve
the minimal difference of the actual distribution of the projected data to a factorial distribution (a
distribution where the components are independent from each other).

Often only characteristics of a factorial distribution are optimized such as entropy (factorial
distribution has maximal entropy under constant variance), cummulants (some are maximal and
some are zero for factorial distributions), and other.

For some cases a prototype factorial distribution (e.g. the product of super-Gaussians) is used
and the projected data should be aligned to this prototype distribution as good as possible.

For example with “Projection Pursuit” the components have to be maximally non-Gaussian.
Here the ideas as for ICA hold, too.

3.4.1.2 Generative Model

One of the most common unsupervised task is to build a generative model that is a model which
simulates the world and produces the same data as the world. Fig. 3.10 depicts a generative model.

The data generation process of the world is assumed to be probabilistic. Therefore, the ob-
served data of the world are only random examples and we do not want to exactly reproduce the
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Figure 3.8: Two classes with arbitrary Gaussian covariance lead to boundary functions which are
hyperplanes, hyper-ellipsoids, hyperparaboloids etc. Copyright c© 2001 John Wiley & Sons, Inc.
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Figure 3.9: Projection model, where the observed data x is the input to the model u = g(x;w).
The model output distribution should match a target distribution or the output distribution should
fulfill some constraints. The later can be replaced by the distribution which fulfills the constraints
and is closest to the target distribution.
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Figure 3.10: Generative model, where the data x is observed and the model x = g(u;w) should
produce the same distribution as the observed distribution. The vectors u are random vectors
supplied to the model in order to drive it, i.e. to make it a data generation process.

observed data (that can be done by storing the data in data bases). However, we assume that the
data generation process produces the data according to some distribution.

The generative model approach attempt at approximation the distribution of the data genera-
tion process as good as possible. As loss function the distance between the distribution of the data
generation process and the model output distribution is suitable.

Generative models include “Factor Analysis”, “Latent Variable Models”, and Boltzmann Ma-
chines.

3.4.1.3 Parameter Estimation

In another approach to unsupervised learning we assume that we know the model which produces
the data but the model is parameterized and the actual parameters are not known. The task of the
unsupervised learning method is to estimate the actual parameters.

Here the loss would be the difference between the actual (true) parameter and the estimated
parameter. However we have no future data points. But we can evaluate the estimator through the
expected difference, where the expectation is made over the training set.

In the next sections we will focus on parameter estimation and will evaluate estimation meth-
ods based on expectation over the training set.
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3.4.2 Mean Squared Error, Bias, and Variance

In unsupervised tasks the training data is
{
z1, . . . ,zl

}
, where zi = xi and, therefore, it is

{x} =
{
x1, . . . ,xl

}
for which we will often simply writeX (the matrix of training data).

The true parameter vector is denoted by w and its estimate by ŵ.

An estimator is unbiased if

EXŵ = w , (3.36)

i.e. on the average the estimator will yield the true parameter.

The bias is

b(ŵ) = EXŵ − w . (3.37)

The variance of the estimator is defined as

var(ŵ) = EX
(

(ŵ − EX(ŵ))T (ŵ − EX(ŵ))
)
. (3.38)

An evaluation criterion for unsupervised methods is the mean squared error (MSE) in the text
after eq. (3.2). The MSE in eq. (3.2) was defined as an expectation over future data points.

Here we define the MSE as expectation over the training set, because we deal with unsuper-
vised learning and evaluate the estimator. The MSE gives the expected error as squared distance
between the estimated parameter and the true parameter.

mse(ŵ) = EX
(

(ŵ − w)T (ŵ − w)
)
. (3.39)

We can reformulate the MSE:

mse(ŵ) = EX
(

(ŵ − w)T (ŵ − w)
)

= (3.40)

EX
(

((ŵ − EX(ŵ)) + (EX(ŵ) − w))T

((ŵ − EX(ŵ)) + (EX(ŵ) − w))) =

EX
(

(ŵ − EX(ŵ))T (ŵ − EX(ŵ)) −
2 (ŵ − EX(ŵ))T (EX(ŵ) − w) +

(EX(ŵ) − w)T (EX(ŵ) − w)
)

=

EX
(

(ŵ − EX(ŵ))T (ŵ − EX(ŵ))
)

+

(EX(ŵ) − w)T (EX(ŵ) − w) =
var(ŵ) + b2(ŵ) .
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where the last but one equality comes from the fact that only ŵ depends onX and therefore

EX
(

(ŵ − EX(ŵ))T (EX(ŵ) − w)
)

= (3.41)

(EX(ŵ) − EX(ŵ))T (EX(ŵ) − w) = 0 .

The MSE is decomposed into a variance term var(ŵ) and a bias term b2(ŵ). The variance
has high impact on the performance because large deviations from the true parameter have strong
influence on the MSE through the quadratic error term.

Note that averaging linearly reduces the variance. The average is

ˆwaN =
1
N

N∑
p=1

ŵi , (3.42)

where

ŵi = ŵi (Xi) (3.43)

Xi =
{
x(i−1) l/N + 1, . . . ,xi l/N

}
,

i.e.Xi is the i-th subset ofX and contains l/N elements. The size of the data is l and the examples
ofXi range from (i− 1) l/N + 1 to i l/N .

The average is unbiased:

EX ( ˆwaN ) =
1
N

N∑
p=1

EXiŵi =
1
N

N∑
p=1

w = w . (3.44)

The variance is linearly reduced

covarX ( ˆwaN ) =
1
N2

N∑
p=1

covarXi (ŵi) = (3.45)

1
N2

N∑
p=1

covarX,l/N (ŵ) =
1
N

covarX,l/N (ŵ) ,

where covarX,l/N (ŵ) is the estimator with l/N training points.

We used the facts:

covarX(a + b) = (3.46)

covarX(a) + covarX(b) + varX(aTb) + varX(bTa)
covarX(λ a) = λ2 covarX(a) .

For averaging it is important that the training sets Xi are independent from each other and
do not overlap. Otherwise the estimators are dependent and the covariance terms between the
estimators do not vanish.
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One approach to find an optimal estimator is to construct from all unbiased estimators the one
with minimal variance, which is called Minimal Variance Unbiased (MVU) estimator.

A MVU estimator does not always exist. However there are methods to check whether a given
estimator is a MVU estimator.

3.4.3 Fisher Information Matrix, Cramer-Rao Lower Bound, and Efficiency

In the following we will define a lower bound, the Cramer-Rao Lower Bound for the variance of
an unbiased estimator. That induces a lower bound on the MSE of an estimator.

We need the Fisher information matrix IF to define this lower bound. The Fisher information
matrix IF for a parameterized model

IF (w) : [IF (w)]ij = − Ep(x;w)

(
∂ ln p(x;w)

∂wi

∂ ln p(x;w)
∂wj

)
, (3.47)

and [A]ij = Aij selects the ijth element of a matrix and

Ep(x;w)

(
∂ ln p(x;w)

∂wi

∂ ln p(x;w)
∂wj

)
= (3.48)∫

∂ ln p(x;w)
∂wi

∂ ln p(x;w)
∂wj

p(x;w) dx .

If the density function p(x;w) satisfies

∀w : Ep(x;w)

(
∂ ln p(x;w)

∂w

)
= 0 (3.49)

then the Fisher information matrix is

IF (w) : IF (w) = − Ep(x;w)

(
∂2 ln p(x;w)
∂w ∂w

)
. (3.50)
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The last equation follows from the fact that

0 = Ep(x;w)

(
∂ ln p(x;w)

∂w
dx

)
= (3.51)∫

X

∂ ln p(x;w)
∂w

p(x;w) dx

=⇒ ∂

∂w

∫
X

∂ ln p(x;w)
∂w

p(x;w) dx = 0 (3.52)

=⇒
∫
X

(
∂2 ln p(x;w)
∂w ∂w

p(x;w) + (3.53)

∂ ln p(x;w)
∂w

∂p(x;w)
∂w

)
dx = 0

=⇒
∫
X

(
∂2 ln p(x;w)
∂w ∂w

p(x;w) + (3.54)

∂ ln p(x;w)
∂w

∂ ln p(x;w)
∂w

p(x;w)
)
dx = 0

=⇒ − Ep(x;w)

(
∂2 ln p(x;w)
∂w ∂w

)
= (3.55)

Ep(x;w)

(
∂ ln p(x;w)

∂w

∂ ln p(x;w)
∂w

)
.

The Fisher information gives the amount of information that an observable random variable
x carries about an unobservable parameter w upon which the parameterized density function
p(x;w) of x depends.

Theorem 3.1 (Cramer-Rao Lower Bound (CRLB))
Assume that

∀w : Ep(x;w)

(
∂ ln p(x;w)

∂w

)
= 0 (3.56)

and that the estimator ŵ is unbiased.

Then,

covar(ŵ) − I−1
F (w) (3.57)

is positive definite:

covar(ŵ) − I−1
F (w) ≥ 0 . (3.58)

An unbiased estimator attains the bound in that covar(ŵ) = I−1
F (w) if and only if

∂ ln p(x;w)
∂w

= A(w) (g(x) − w) (3.59)

for some function g and square matrixA(w) . In this case the MVU estimator is

ŵ = g(x) with covar(ŵ) = A−1(w) . (3.60)
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Figure 3.11: The variance of an estimator ŵ as a curve of the true parameter is shown. We show
three estimators: ŵ1, ŵ2, and the minimal variance unbiased ŵMVU. Left: The MVU estimator
ŵMVU is efficient because it reaches the CRLB. Right: The MVU estimator ŵMVU does not reach
the CRLB an is not efficient.

Note that[
covar(ŵ) − I−1

F (w)
]
ii
≥ 0 , (3.61)

therefore

var(ŵi) = [covar(ŵ)]ii ≥
[
I−1
F (w)

]
ii
. (3.62)

An estimator is said to be efficient if it reaches the CRLB. It is efficient in that it efficiently
makes use of the data and extracts information to estimate the parameter.

A MVU estimator can be efficient but it also can not be as depicted in Fig. 3.11.

3.4.4 Maximum Likelihood Estimator

In many cases of unsupervised learning as parameter estimation the MVU estimator is unknown
or does not exist.

A very popular estimator is the Maximum Likelihood Estimator (MLE) on which almost all
practical estimation tasks are based. The popularity stems from the fact that it can be applied to
a broad range of problems and it approximates the MVU estimator for large data sets. The MLE
is even asymptotically efficient and unbiased. That means the MLE does everything right and this
efficiently if enough data is available.

The likelihood L of the data set {x} = {x1, . . . ,xl} is

L({x};w) = p({x};w) , (3.63)

i.e. the probability of the model p(x;w) to produce the data set. However the set {x} has zero
measure and therefore the density at the data set {x} must be used.

For iid data sampling the likelihood is

L({x};w) = p({x};w) =
l∏

i=1

p(xi;w) . (3.64)
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Instead of maximizing the likelihood L the log-likelihood lnL or the negative log-likelihood
− lnL is minimized. The logarithm transforms the product of the iid data sampling into a sum:

− lnL({x};w) = −
l∑

i=1

ln p(xi;w) . (3.65)

To motivate the use of the density in the likelihood one can assume that if p(xi;w) is written
actually p(xi;w) dx is meant, which gives the probability of observing x in a region of volume
dx around xi. In this case the likelihood gives the probability of the model to produce similar data
points as {x}, where similar means data points in a volume dx around the actual observed data
points.

However the fact that the MLE is so popular is based on its simple use and its properties (given
in the next section) especially that it is optimal for the number of training points going to infinity.

3.4.5 Properties of Maximum Likelihood Estimator

In the next subsections different properties of the MLE are given. First, MLE is invariant under
parameter change. Then, most importantly, the MLE is asymptotically unbiased and efficient, i.e.
asymptotically optimal. Finally, the MLE is consistent for zero CRLB.

3.4.5.1 MLE is Invariant under Parameter Change

Theorem 3.2 (Parameter Change Invariance)
Let g be a function changing the parameter w into parameter u: u = g(w), then

û = g(ŵ) , (3.66)

where the estimators are MLE. If g changes w into different u then û = g(ŵ) maximizes the
likelihood function

max
w:u=g(w)

p({x};w) . (3.67)

This theorem is important because for some models parameter changes simplify the expres-
sions for the densities.

3.4.5.2 MLE is Asymptotically Unbiased and Efficient

Note, that an estimator ŵ = ŵ(X) changes its properties with the size l of the training set X .
For example for reasonable estimator the variance should decrease with increasing l.

The maximum likelihood estimator is asymptotically unbiased

Ep(x;w) (ŵ) l→∞→ w (3.68)
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and it is asymptotically efficient

covar(ŵ) l→∞→ CRLB . (3.69)

These properties are derived from the following theorem

Theorem 3.3 (MLE Asymptotic Properties)
If p(x;w) satisfies

∀w : Ep(x;w)

(
∂ ln p(x;w)

∂w
dx

)
= 0 (3.70)

then the MLE which maximizes p({x};w) is asymptotically distributed according to

ŵ
l→∞∝ N (w, I−1

F (w)
)
, (3.71)

where IF (w) is the Fisher information matrix evaluated at the unknown parameter w.

This quite general theorem is the basis of the asymptotic optimal properties of the MLE.

However for practical applications the number l is finite and the performance of the MLE is
not known.

For example consider the general linear model

x = Aw + ε , (3.72)

where ε ∝ N (0,C) is an additive Gaussian noise vector.

Then the MLE is

ŵ =
(
ATC−1A

)−1
ATC−1x . (3.73)

which is also efficient and, therefore, MVU. The density of ŵ is

ŵ ∝ N
(
w ,

(
ATC−1A

)−1
)
. (3.74)

Note for factor analysis which will be considered later also C has to be estimated.

3.4.5.3 MLE is Consistent for Zero CRLB

A estimator is said to be consistent if

ŵ
l→∞→ w , (3.75)

i.e. for large training sets the estimator approaches the true value.

Later – in the empirical risk minimization treatment by V. Vapnik in 3.6.2 – we need a more
formal definition for consistency as

lim
l→∞

p (|ŵ − w| > ε) = 0 . (3.76)

The MLE is consistent if the CRLB is zero. This follows directly from the fact that MLE is
asymptotically unbiased and efficient, i.e. the variance will approach zero.
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Figure 3.12: The maximum likelihood problem. Top: the generative model which produces data
points. Bottom: in order to compute the likelihood for x all points u which are mapped to x must
be determined and then multiplied with the probability pu(u) that u is observed in the model.

3.4.6 Expectation Maximization

The likelihood can be optimized by gradient descent methods as will be described in Chapter 5.
However the likelihood must be expressed analytically to obtain the derivatives. For some models
the likelihood cannot be computed analytically because of hidden states of the model, of a many-
to-one output mapping of the model, or of non-linearities. As depicted in Fig. 3.12, to compute the
likelihood the inverse of a function – more precise, all elements u which are mapped to a certain
observed point x – must be computed in order to obtain the likelihood that the point is generated
by the model. If g is highly nonlinear, then the integral which determines the likelihood is difficult
to compute analytically. To guess the likelihood numerically is difficult as the density of the model
output at a certain point in space must be estimated.

The variables u in Fig. 3.12 can be interpreted as unobserved variables, i.e. hidden variables
or latent variables. For models with hidden variables the likelihood is determined by all possible
values of the hidden variables which can produce output x.

For many models the joint probability p({x},u;w) of the hidden variablesu and observations
{x} is easier to compute than the likelihood of the observations. If we can also estimate p(u |
{x};w) the hidden variables u using the parameters w and given the observations {x} then we
can apply the Expectation Maximization (EM) algorithm.

Let us assume we have an estimation Q(u | {x}) for p(u | {x};w), which is some density
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with respect to u. The following inequality is the basic for the EM algorithm:

lnL({x};w) = ln p({x};w) = (3.77)

ln
∫
U
p({x},u;w) du =

ln
∫
U

Q(u | {x})
Q(u | {x})p({x},u;w) du ≥∫

U
Q(u | {x}) ln

p({x},u;w)
Q(u | {x}) du =∫

U
Q(u | {x}) ln p({x},u;w) du −∫

U
Q(u | {x}) lnQ(u | {x}) du =

F(Q,w) .

where the “≥” is the application of Jensen’s inequality. Jensen’s inequality states that the value
of a convex function of an integral is smaller or equal to to the integral of the convex function
applied to the integrand. Therefore a convex function of an expectation is smaller or equal to to
the expectation of the convex function. Here the expectation with respect to Q(u | {x}) is used
and the fact that − ln is a convex function.

Above inequality states that F(Q,w) is an lower bound to the log-likelihood lnL({x};w).

The EM algorithm is an iteration between two steps, the “E”-step and the “M”-step:

E-step: (3.78)

Qk+1 = arg max
Q
F(Q,wk)

M-step:
wk+1 = arg max

w
F(Qk+1,w) .

It is important to note that in the E-step the maximal Q is

Qk+1(u | {x}) = p(u | {x};wk) (3.79)

F(Qk+1,wk) = lnL({x};wk) .

To see the last statements:

p(u, {x};wk) = p(u | {x};wk) p({x};wk) , (3.80)

therefore

F(Q,w) =
∫
U
Q(u | {x}) ln

p({x},u;w)
Q(u | {x}) du = (3.81)∫

U
Q(u | {x}) ln

p(u | {x};w)
Q(u | {x}) du + ln p({x};w) =

−
∫
U
Q(u | {x}) ln

Q(u | {x})
p(u | {x};w)

du + lnL({x};w)
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The expression
∫
U Q(u | {x}) ln Q(u|{x})

p(u|{x};w) du is the Kullback-Leibler divergence DKL(Q ‖ p)
between Q(u | {x}) and p(u | {x};w). The Kullback-Leibler divergence KL(p1, p2) is defined
as

DKL(p1 ‖ p2) =
∫
U
p1(u) ln

p1(u)
p2(u)

du (3.82)

and the cross entropy as

−
∫
U
p1(u) ln p2(u) du . (3.83)

Kullback-Leibler divergence is always larger than zero:

DKL(p1 ‖ p2) ≥ 0 (3.84)

because

0 = ln 1 = ln
∫
U
p2(u) du = (3.85)

ln
∫
U
p1(u)

p2(u)
p1(u)

du ≥∫
U
p1(u) ln

p2(u)
p1(u)

du = − DKL(p1 ‖ p2) .

Thus, ifDKL(Q ‖ p) = 0 thenF(Q,wk) is maximized because the Kullback-Leibler divergence,
which enters the equation with a negative sign, is minimal. We have Q(u | {x}) = p(u |
{x};w) and obtain

F(Q,w) = lnL({x};w) . (3.86)

In the M-step only the expression
∫
U Qk+1(u | {x}) ln p({x},u;w) du must be considered

because the other term (the entropy of Qk+1) is independent of the parameters w.

The EM algorithm can be interpreted as:

E-step: Tighten the lower bound to equality: F(Q,w) = lnL({x};w) .

M-step: Maximize the lower bound which is at the equality and therefore increase the like-
lihood. This might lead to a lower bound which is no longer tight.

The EM algorithm increases the lower bound because in both steps the lower bound is maxi-
mized.

Can it happen that maximizing the lower bound may decrease the likelihood? No! At the
beginning of the M-step we have F(Qk+1,wk) = lnL({x};wk), and the E-step does not
change the parameters w:

lnL({x};wk) = F(Qk+1,wk) ≤ (3.87)

F(Qk+1,wk+1) ≤ F(Qk+2,wk+1) = lnL({x};wk+1) ,
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where the first “≤” is from the M-step which gives wk+1 and the second “≤” from the E-step
which gives Qk+2.

The EM algorithms will later be derived for hidden Markov models, mixture of Gaussians,
factor analysis, independent component analysis, etc.

3.5 Noise Models

In this section we will make a connection between unsupervised and supervised learning in terms
of the quality measure. Towards this end we introduce additional noise on the targets, that means
we do not know the exact values of the targets. If we know the noise distribution then we can look
for the most likely target. Therefore we can apply maximum likelihood to supervised learning.

3.5.1 Gaussian Noise

We consider the case of Gaussian target noise and a simple linear model:

s = X w (3.88)

y = s + ε = X w + ε , (3.89)

where s is the true signal,X is the observed data,w is the parameter vector, y is the observed tar-
get, and ε is the Gaussian noise vector with zero mean and covariance Σ. Note, that the covariance
Σ is the noise distribution for each measurement or observation x.

The value y − X w is distributed according to the Gaussian, therefore the likelihood of
(y,X) is

L((y,X);w) = (3.90)
1

(2 π)d/2 |Σ|1/2
exp

(
−1

2
(y − X w)T Σ−1(y − X w)

)
.

The log-likelihood is

lnL((y,X);w) = (3.91)

− d

2
ln (2 π) − 1

2
ln |Σ| − 1

2
(y − X w)T Σ−1(y − X w) .

To maximize the log-likelihood we have to minimize

(y − X w)T Σ−1(y − X w) , (3.92)

because other terms are independent of w.

The minimum of this term, called least square criterion, is the linear least square estimator.
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Multiplying out the criterion gives

(y − X w)T Σ−1(y − X w) = (3.93)

yTΣ−1y − 2yTΣ−1Xw + wTXTΣ−1 X w

and the derivative with respect to w is

− 2XTΣ−1y + 2XTΣ−1 X w , (3.94)

which are called the Wiener-Hopf equations (correlation between features X and target y should
be equal to the correlation between featuresX and model predictionX w). Setting the derivative
to zero gives the least square estimator

ŵ =
(
XTΣ−1 X

)−1
XTΣ−1y (3.95)

The minimal least square criterion is

yT
(
Σ−1 − Σ−1X

(
XTΣ−1 X

)−1
XTΣ−1

)
y . (3.96)

In many cases the noise covariance matrix is

Σ−1 =
1
σ
I , (3.97)

which means that for each observation we have the same noise assumption.

We obtain

ŵ =
(
XTX

)−1
XTy , (3.98)

where
(
XTX

)−1
XT is known as the pseudo inverse or Moore-Penrose inverse of X . The

minimal value is

1
σ
yT
(
I − X

(
XTX

)−1
XT

)
y . (3.99)

Note that we can derive the squared error criterion also for other models g(X;w) instead of
the linear modelXw. However, in general the estimator must be selected by using an optimization
technique which minimizes the least square criterion

(y − g(X;w))T Σ−1(y − g(X;w)) . (3.100)

These considerations are the basis for the least square fit and also for the mean squared error
as a risk function. These approaches to loss and risk are derived from maximum likelihood and
Gaussian noise assumptions. Therefore the mean squared error in 3.2 can be justified by Gaussian
noise assumption.
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3.5.2 Laplace Noise and Minkowski Error

Even if the Gaussian noise assumption is the most widely used noise model, other noise models
may be more adequate for certain problems.

For example the loss function

‖y − g(X;w)‖1 (3.101)

corresponds to Laplace noise assumption. Or for one dimension

|y − g(x;w)| . (3.102)

For one dimensional output we obtain for the Laplacian noise model

p(y − g(x;w)) =
β

2
exp (− β |y − g(x;w)|) (3.103)

with loss function

|y − g(x;w)| . (3.104)

For the Minkowski error

|y − g(x;w)|r (3.105)

the corresponding noise model is

p(y − g(x;w)) =
r β1/r

2 Γ(1/r)
exp (− β |y − g(x;w)|r) , (3.106)

where Γ is the gamma function

Γ(a) =
∫ ∞

0
ua−1 e−u du (3.107)

Γ(n) = (n− 1)! .

For r < 2 large errors are down-weighted compared to the quadratic error and vice versa for
r > 2. That means for data with outliers r < 2 may be an appropriate choice for the noise model.
See examples of error functions in Fig. 3.13.

If random large fluctuations of the output are possible then l < 2 should be used in order to
give these fluctuations more probability in the noise model and down-weight their influence onto
the estimator.
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Figure 3.13: Different noise assumptions lead to different Minkowski error functions: r = 1
(Laplace noise), r = 2 (Gaussian noise), and r = 4.

3.5.3 Binary Models

Above noise considerations do not hold for binary y as used for classification. If the class label is
disturbed then y is assigned to the opposite class.

Also for binary y the likelihood approach can be applied.

3.5.3.1 Cross-Entropy

For a classification problem with K classes, we assume that the model output is a probability:

gk(x;w) = p(y = ek | x) . (3.108)

and that

y ∈ {e1, . . . , eK} . (3.109)

If x is in the k-th class then y = (0, . . . , 0, 1, 0, . . . , 0), where the “1” is at position k in the
vector y.

The likelihood of iid data is

L({z};w) = p({z};w) =
l∏

i=1

K∏
k=1

p(yi = ek | xi;w)[y
i]
kp(xi) (3.110)

because

K∏
k=1

p(yi = ek | xi;w)[y
i]
k = p(yi = er | xi;w) for yi = er . (3.111)
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Figure 3.14: The sigmoidal function 1
1+exp(−x) .

The log-likelihood is

lnL({z};w) =
K∑
k=1

l∑
i=1

[
yi
]
k

ln p(yi = ek | xi;w) +
l∑

i=1

ln p(xi) . (3.112)

Therefore the criterion

K∑
k=1

l∑
i=1

[
yi
]
k

ln p(yi = ek | xi;w) (3.113)

is an natural loss function which is called cross entropy. Note that
[
yi
]
k

is the observed probability
p(yi = ek) which is one if yi = ek and zero otherwise.

Therefore above formula is indeed the cross entropy as defined in eq. (3.83) for discrete
distributions.

3.5.3.2 Logistic Regression

A function g mapping x onto R can be transformed into a probability by the sigmoidal function

1
1 + e− g(x;w)

(3.114)

which is depicted in Fig. 3.14.

Note that

1 − 1
1 + e− g(x;w)

=
e− g(x;w)

1 + e− g(x;w)
. (3.115)

We set

p(y = 1 | x;w) =
1

1 + e− g(x;w)
(3.116)
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and

p(y = 0 | x;w) =
e− g(x;w)

1 + e− g(x;w)
. (3.117)

We obtain

g(x;w) = ln
(

p(y = 1 | x)
1 − p(y = 1 | x)

)
. (3.118)

According to eq. (3.65) the log-likelihood is

lnL({z};w) =
l∑

i=1

ln p(zi;w) =
l∑

i=1

ln p(yi,xi;w) = (3.119)

l∑
i=1

ln p(yi | xi;w) +
l∑

i=1

ln p(xi) .

Therefore maximum likelihood maximizes

l∑
i=1

ln p(yi | xi;w) (3.120)

Next we will consider the derivative of the log-likelihood. First we will need some algebraic
properties:

∂

∂wj
ln p(y = 1 | xi;w) =

∂

∂wj
ln

1
1 + e− g(xi;w)

= (3.121)

(
1 + e− g(xi;w)

)(
− e− g(xi;w)(

1 + e− g(xi;w)
)2
)

∂ g(xi;w)
∂wj

=

− e− g(xi;w)

1 + e− g(xi;w)

∂ g(xi;w)
∂wj

= − p(y = 0 | xi;w)
∂ g(xi;w)

∂wj

and

∂

∂wj
ln p(y = 0 | xi;w) =

∂

∂wj
ln

e− g(xi;w)

1 + e− g(xi;w)
= (3.122)

1 + e− g(xi;w)

e− g(xi;w)

(
e− g(xi;w)

1 + e− g(xi;w)
− e− 2 g(xi;w)(

1 + e− g(xi;w)
)2
)

∂ g(xi;w)
∂wj

=

1
1 + e− g(xi;w)

∂ g(xi;w)
∂wj

= p(y = 1 | xi;w)
∂ g(xi;w)

∂wj
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We can rewrite the likelihood as

l∑
i=1

ln p(yi | xi;w) = (3.123)

l∑
i=1

yi ln p(y = 1 | xi;w) +
l∑

i=1

(1 − yi) ln p(y = 0 | xi;w)

which gives for the derivative

∂

∂wj

l∑
i=1

ln p(yi | xi;w) = (3.124)

l∑
i=1

yi
∂

∂wj
ln p(y = 1 | xi;w) +

l∑
i=1

(1 − yi)
∂

∂wj
ln p(y = 0 | xi;w) =

l∑
i=1

− yi p(y = 0 | xi;w)
∂ g(xi;w)

∂wj
+

l∑
i=1

(1 − yi) p(y = 1 | xi;w)
∂ g(xi;w)

∂wj
=

l∑
i=1

(− yi (1 − p(y = 1 | xi;w))

(1 − yi) p(y = 1 | xi;w)
) ∂ g(xi;w)

∂wj
=

l∑
i=1

(
p(y = 1 | xi;w) − yi

) ∂ g(xi;w)
∂wj

,

where

p(y = 1 | xi;w) =
1

1 + e− g(xi;w)
(3.125)

For computing the maximum the derivatives have to be set to zero

∀j :
l∑

i=1

(
p(y = 1 | xi;w) − yi

) ∂ g(xi;w)
∂wj

= 0 . (3.126)

Note that the derivatives are products between the prediction error(
p(y = 1 | xi;w) − yi

)
(3.127)
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and the derivatives of the function g.

This is very similar to the derivative of the quadratic loss function in the regression case, where
we would have(
g(xi;w) − yi

)
instead of

(
p(y = 1 | xi;w) − yi

)
.

If a neural network h with a sigmoid output unit, the mean squared error as objective function,
and the class labels as target is trained, then the derivative is

∀j :
l∑

i=1

(
h(xi;w) − yi

) ∂ h(xi;w)
∂wj

= (3.128)

(
p(y = 1 | xi;w) − yi

)
h(xi;w) (1 − h(xi;w))

∂ g(xi;w)
∂wj

,

where

h(xi;w) = p(y = 1 | xi;w) =
1

1 + e− g(xi;w)
(3.129)

∂ h(xi;w)
∂g(xi;w)

= h(xi;w) (1 − h(xi;w)) . (3.130)

Therefore the gradient for logistic regression and neural networks differs only in the factor
h(xi;w) (1 − h(xi;w)). The effect of the factor is that the neural network does not push the
output towards 1 or 0.

Alternative formulation with y ∈ +1,−1

We now give an alternative formulation of logistic regression with y ∈ +1,−1.

We remember

p(y = 1 | x;w) =
1

1 + e− g(x;w)
(3.131)

and

p(y = −1 | x;w) =
e− g(x;w)

1 + e− g(x;w)
=

1
1 + e g(x;w)

. (3.132)

Therefore we have

− ln p(y = yi | xi;w) = ln
(

1 + e− yi g(xi;w)
)

(3.133)

and the objective which minimization maximizes the likelihood is

L = −
l∑

i=1

ln p(yi | xi;w) = −
l∑

i=1

ln
(

1 + e− yi g(xi;w)
)

(3.134)
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The derivatives of the objective with respect to the parameters are

∂L

∂wj
= −

l∑
i=1

yi
∂ g(xi;w)

∂wj

e− yi g(xi;w)

1 + e− yi g(xi;w)
= (3.135)

−
l∑

i=1

yi
∂ g(xi;w)

∂wj

(
1 − p(yi | x;w)

)
.

The last equation is similar to eq. (3.124).

In matrix notation we have

∂L

∂w
= −

l∑
i=1

yi
(
1 − p(yi | x;w)

) ∂ g(xi;w)
∂w

. (3.136)

3.5.3.3 (Regularized) Linear Logistic Regression is Strictly Convex

Following Jason D. M. Rennie, we show that linear Logistic Regression is strictly convex.

In the linear case we have

g(xi;w) = wTxi . (3.137)

For labels y ∈ +1,−1 we have

∂L

∂wj
= −

l∑
i=1

yixij
(
1 − p(yi | x;w)

)
. (3.138)

The second derivatives of the objective L that is minimized are

Hjk =
∂L

∂wj ∂wk
=

l∑
i=1

(
yi
)2

xij xik p(yi | x;w)
(
1 − p(yi | x;w)

)
, (3.139)

whereH is the Hessian.

Because p(1− p) ≥ 0 for p ≤ 1, we can define

ρij = xij

√
p(yi | x;w) (1 − p(yi | x;w)) . (3.140)
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The bilinear form of the Hessian with a vector a is

aT H a =
l∑

i=1

d∑
j=1

d∑
k=1

xij xik aj ak p(yi | x;w)
(
1 − p(yi | x;w)

)
= (3.141)

l∑
i=1

d∑
j=1

aj xij

√
p(yi | x;w) (1 − p(yi | x;w))

d∑
k=1

ak xik

√
p(yi | x;w) (1 − p(yi | x;w)) =

l∑
i=1

(
aT ρi

) (
aT ρi

)
=

l∑
i=1

(
aT ρi

)2 ≥ 0 .

Because we did not make any restriction on a, the Hessian is positive definite.

Adding a term like 1
2 w

T w to the objective for regularization, then the Hessian of the objective
is strict positive definite.

3.5.3.4 Softmax

For multi-class problems logistic regression can be generalized by Softmax.

We assume K classes with y ∈ {1, . . . ,K} and the probability of x belonging to class k is

p(y = k | x; g1, . . . , gK ,w1, . . . ,wK) =
e gk(x;wk)∑K
j=1 e

gj(x;wj)
(3.142)

which gives a multinomial distribution across the classes.

The objective which is minimized in order to maximize the likelihood is

L = −
l∑

i=1

ln p(y = yi | xi;w) =
l∑

i=1

ln

 K∑
j=1

egj(x;wj)

 − gyi(x;wyi) .(3.143)

In the following we set

p(y = k | x; g1, . . . , gK ,w1, . . . ,wK) = p(k | x;W ) . (3.144)

The derivatives are

∂L

∂wkn
=

l∑
i=1

∂ gk(xi;wk)
∂wkn

p(k | xi;W ) − δyi=k

l∑
i=1

∂ gk(xi;wk)
∂wkn

. (3.145)
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3.5.3.5 (Regularized) Linear Softmax is Strictly Convex

Following Jason D. M. Rennie, we show that linear Softmax is strictly convex.

In the linear case we have

gk(xi;wk) = wT
k x

i (3.146)

or in vector notation

g(xi;W ) = W Txi . (3.147)

The derivatives are

∂L

∂wkn
=

l∑
i=1

xinp(k | xi;W ) − δyi=k

l∑
i=1

xin . (3.148)

To compute the second derivatives of the objective, we need the derivatives of the probabilities
with respect to the parameters:

∂p(v | xi;W )
∂wvm

= xim p(k | xi;W )
(
1 − p(k | xi;W )

)
(3.149)

∂p(k | xi;W )
∂wvm

= xim p(k | xi;W ) p(v | xi;W )) .

The second derivatives of L with respect to the parameters w’s are

Hkn,vm =
∂L

∂wkn∂wvm
= (3.150)

l∑
i=1

xin xim p(k | xi;W )
(
δk=v (1 − p(k | xi;W )) −

(1 − δk=v)p(v | xi;W )
)
.

Again we define a vector a with components auj (note, the double index is considered as
single index so that a matrix is written as vector).
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We consider the bilinear from

aTH a = (3.151)∑
k,n

∑
v,m

∑
i

akn avm xin xim p(k | xi;W )
(
δk=v (1 − p(k | xi;W )) −

(1 − δk=v) p(v | xi;W )
)

=∑
k,n

∑
i

akn xin p(k | xi;W )
∑
m

xim

(
akm −

∑
v

avmp(v | xi;W )

)
=

∑
i

∑
n

xin
∑
k

akn p(k | xi;W )
∑
m

xim

(
akm −

∑
v

avmp(v | xi;W )

)
=

∑
i

−
{(∑

n

xin
∑
k

akn p(k | xi;W )

) (∑
m

xim
∑
v

avmp(v | xi;W )

)}
+{∑

n

xin
∑
k

akn p(k | xi;W )
∑
m

xim akm

}
=

∑
i

−

(∑

n

xin
∑
k

akn p(k | xi;W )

)2
 +

{∑
k

p(k | xi;W )

(∑
n

xin akn

) (∑
m

xim akm

)}
=

∑
i

−

(∑

n

xin
∑
k

akn p(k | xi;W )

)2
 +

∑
k

p(k | xi;W )

(∑
n

xin akn

)2
 .

If for each summand of the sum over i

∑
k

p(k | xi;W )

(∑
n

xin akn

)2

−
(∑

k

p(k | xi;W )
∑
n

xin akn

)2

(3.152)

≥ 0

holds, then the Hessian H is positive semidefinite. This holds for arbitrary number of samples as
each term corresponds to a sample.

In last equation the p(k | xi;W ) can be viewed as a multinomial distribution over k. The
terms

∑
n xin akn can be viewed as functions depending on k.

In this case
∑

k p(k | xi;W ) (
∑

n xin akn)2 is the second moment and the squared expecta-
tion is

(∑
k p(k | xi;W )

∑
n xin akn

)2. Therefore the left hand side of inequality (3.152) is the
second central moment, which is larger than zero.
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Alternatively inequality (3.152) can be proven by applying Jensen’s inequality with the square
function as a convex function.

We have proven that the HessianH is positive semidefinite.

Adding a term like 1
2

∑
kw

T
k wk to the objective for regularization, then the Hessian of the

objective is strict positive definite.

3.6 Statistical Learning Theory

In this section we address the question whether learning from training data that means selecting a
model based on training examples is useful for processing future data. Is a model which explains
the training data an appropriate model of the world, i.e. also explains new data?

We will see that how useful a model selected based on training data is determined by its
complexity. We will introduce the VC-dimension as complexity measure.

A main issue in statistical learning theory is to derive error bounds for the generalization error.
The error bound is expressed as the probability of reaching a certain error rate on future data if the
model is selected according to the training data.

Finally from the error bounds it will be seen that model complexity and training data mis-
match of the model must be simultaneously minimized. This principle is called “structural risk
minimization”.

This statistical learning theory is based on two simple principles (1) the uniform law of large
numbers (for inductive interference, i.e. the empirical risk minimization) and (2) complexity con-
strained models (structural risk minimization).

A first theoretical error bound on the mean squared error was given as the bias-variance formu-
lation in eq. (3.40). The bias term corresponds to training data mismatch of the model whereas the
variance term corresponds to model complexity. Higher model complexity leads to more models
which fit the training data equally good, therefore the variance is larger. However the bias-variance
formulation was derived for the special case of mean squared error. We will generalize this for-
mulation in this section. Also the variance term will be expressed as model complexity for which
measurements are available.

First we will start with some examples of error bounds.

3.6.1 Error Bounds for a Gaussian Classification Task

We revisit the Gaussian classification task from Section 3.3.

The minimal risk is given in eq. (3.30) as

Rmin =
∫
X

min{p (x, y = −1) , p (x, y = 1)} dx , (3.153)

which can be written as

Rmin = (3.154)∫
X

min{p (x | y = −1) p(y = −1) , p (x | y = 1) p(y = 1)} dx .



3.6. Statistical Learning Theory 67

For transforming the minimum into a continuous function we will use the inequality

∀a,b>0 : ∀0≤β≤1 : min{a, b} ≤ aβ b1−β . (3.155)

To proof this inequality, without loss of generality we assume a ≥ b and have to show that b ≤
aβ b1−β . This is equivalent to b ≤ (a/b)β b which is valid because (a/b)β ≥ 1.

Now we can bound the error by

∀0≤β≤1 : Rmin ≤ (p(y = 1))β (p(y = −1))1−β (3.156)∫
X

(p (x | y = 1))β (p (x | y = −1))1−β dx .

Up to now we only assumed a two class problem and did not make use of the Gaussian assumption.

The Gaussian assumption allows to evaluate above integral analytically:∫
X

(p (x | y = 1))β (p (x | y = −1))1−β dx = exp(− v(β)) , (3.157)

where

v(β) =
β(1− β)

2
(3.158)

(µ2 − µ1)T (β Σ1 + (1− β) Σ2)−1 (µ2 − µ1)

+
1
2

ln
|β Σ1 + (1− β) Σ2|
|Σ1|β |Σ2|1−β

.

The Chernoff bound is obtained by maximizing v(β) with respect to β and substituting this β
into eq. (3.156).

The optimization has to be done in an one dimensional space which is very efficient.

The bound obtained by setting β = 1
2 is called the Bhattacharyya bound:

v(1/2) =
1
4

(µ2 − µ1)T (Σ1 + Σ2)−1 (µ2 − µ1) (3.159)

+
1
2

ln

∣∣Σ1 + Σ2
2

∣∣√|Σ1| |Σ2|
.

3.6.2 Empirical Risk Minimization

The empirical risk minimization principle states that if the training set is explained by the model
then the model generalizes to future examples.

In the following considerations we need to restrict the complexity of the model class in order
to obtain statements about the empirical error.

empirical risk minimization: minimize training error
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3.6.2.1 Complexity: Finite Number of Functions

In this subsection we give an intuition why complexity matters. We restrict the definition of the
complexity to the number M of functions from which the model can be selected.

First we are interested on the difference between the training error, the empirical risk, and the
test error, the risk.

In eq. (3.2) the risk has been defined as

R(g) = Ez (L(y, g(x))) . (3.160)

We define the empirical risk Remp analog to the cross-validation risk in eq. (3.14) as

Remp(g,Z) =
1
l

l∑
i=1

L
(
yi, g

(
xi
))

. (3.161)

We will write Remp(g, l) instead of Remp(g,Z) to indicate the size of the training set.

We assume that we chose our model g from a finite set of functions

{g1, . . . , gM} . (3.162)

The difference between the empirical risk Remp and the risk R can be different for each of the
functions gi. A priori we do not know which function gi will be selected by the training procedure,
therefore we will consider the worst case that is the maximal distance between Remp and R on the
set of functions:

max
j=1,...,M

‖Remp(gj , l) − R(gj)‖ . (3.163)

We now consider the probability that the difference is large than ε:

p

(
max

j=1,...,M
‖Remp(gj , l) − R(gj)‖ > ε

)
≤ (3.164)

M∑
j=1

p (‖Remp(gj , l) − R(gj)‖ > ε) ≤

M 2 exp
(− 2 ε2 l

)
= 2 exp

((
lnM
l
− 2 ε2

)
l

)
= δ ,

where the first “≤” comes from the fact that p(a OR b) ≤ p(a) + p(b) (this is called the “union
bound”) and the second “≤” is the Chernoff inequality for each gj . The Chernoff inequality
bounds the difference between empirical mean (the average) and the expectation. The one-sided
Chernoff inequality is

p(µl − s > ε) < exp
(− 2 ε2 l

)
, (3.165)



3.6. Statistical Learning Theory 69

er
ro

r

complexity

test error

training error

Figure 3.15: Typical example where the test error first decreases and then increases with increasing
complexity. The training error decreases with increasing complexity. The test error, the risk, is the
sum of training error and a complexity term. At some complexity point the training error decreases
slower than the complexity term increases – this is the point of the optimal test error.

where µl is the empirical mean of the true value s for l trials.

Above last equation is valid for a two-sided bound. For a one-sided bound, we obtain

ε(l,M, δ) =

√
lnM − ln(δ)

2 l
. (3.166)

The value ε(l,M, δ) is a complexity term depending on the number l of training examples, the
number of possible functions M , and the confidence (1− δ).

Theorem 3.4 (Finite Set Error Bound)
With probability of at least (1 − δ) over possible training sets with l elements and for M possible
functions we have

R(g) ≤ Remp(g, l) + ε(l,M, δ) . (3.167)

Fig. 3.15 shows the relation between the test error R(g) and the training error as a function of the
complexity. The test error R first decreases and then increases with increasing complexity. The
training error decreases with increasing complexity. The test error R is the sum of training error
and a complexity term. At some complexity point the training error decreases slower than the
complexity term increases – this is the point of the optimal test error.

In order that ε(l,M, δ) converges to zero with increasing l we must assure that

lnM
l

l→∞→ 0 . (3.168)
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Because M is finite this expression is true.

However in most machine learning applications models are chosen from an infinite set of
functions. Therefore we need another measure for the complexity instead the measure based on
M , the number of functions.

3.6.2.2 Complexity: VC-Dimension

The main idea in this subsection is that on a given training set only a finite number of functions can
be distinguished from one another. For example in a classification task all discriminant functions
g which lead to the same classification function signg(.) build one equivalence class.

We will again use parametric models g(.;w) with parameter vector w.

We first want to answer the following question. Does minimizing the empirical risk with
respect to parameter vector (e.g. minimizing the training error) convergence to the best solution
with increasing training set, i.e. do we select better models with larger training sets? This question
asks whether the empirical risk minimization (ERM) is consistent or not.

We first have to define the parameter ŵl which minimizes the empirical risk as

ŵl = arg min
w

Remp(g(.;w), l) . (3.169)

The ERM is consistent if

R(g(.; ŵl))
l→∞→ inf

w
R(g(.;w)) (3.170)

Remp(g(.; ŵl), l)
l→∞→ inf

w
R(g(.;w)) (3.171)

hold, where the convergence is in probability.

The ERM is consistent if it generates sequences of ŵl, l = 1, 2, . . ., for which both the risk
evaluated with the function parameterized by ŵl and the empirical risk evaluated with the same
function converge in probability to the minimal possible risk given the parameterized functions.
The consistency is depicted in Fig. 3.16.

The ERM is strictly consistent if for all

Λ(c) =
{
w | z = (x, y),

∫
L(y, g(x;w))p(z)dz ≥ c

}
(3.172)

the convergence

inf
w∈Λ(c)

Remp(g(.;w), l) l→∞→ inf
w∈Λ(c)

R(g(.;w)) (3.173)

holds, where the convergence is in probability.

The convergence holds for all subsets of functions where the functions with risk smaller that c
are removed.
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l

R(g(.; ŵl))

Remp(g(.; ŵl), l)

infw R(g(.; w)

Figure 3.16: The consistency of the empirical risk minimization is depicted. The risk R(g(.; ŵl))
of the optimal training parameter ŵl and the empirical risk Remp(g(.; ŵl), l) for the optimal train-
ing parameter ŵl converge to the minimal possible risk infw R(g(.;w)).

In the following we only focus on strictly consistency and mean “strictly consistent” if we
write “consistent”.

The maximum likelihood method for a set of densities with 0 < a ≤ p(x;w) ≤ A < ∞
is (strictly) consistent if

∀w1 : (3.174)

inf
w

1
l

l∑
i=1

(− ln p(x;w)) l→∞→ inf
w

∫
X

(− ln p(x;w)) p(x;w1) dx .

If above convergence takes place for just one specific density p(x;w0) then maximum likelihood
is consistent.

Under what conditions is the ERM consistent?

In order to express these conditions we have to introduce new capacity measures: number
of points to be shattered, the entropy, the annealed entropy, the growth function, and finally the
VC-dimension.

For the complexity measure we first restrict ourselves to classification. Regression can be
approximated through classification by dividing the output range into intervals of length ε and
defining for each interval a class.

How many possibilities exist to label the input data xi by binary labels yi ∈ {−1, 1}? Clearly
each binary vector of length l represents a labeling, therefore we obtain 2l labelings.

Is our model class complex enough to produce any labeling vector based on the inputs? Not
all model classes can do that. Therefore we can define as a complexity measure the number of
data points a model class can assign all binary vectors. Assigning all possible binary vectors is
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Figure 3.17: Linear decision boundaries can shatter any 3 points in a 2-dimensional space. Black
crosses are assigned to -1 and white to +1.

x x

x x

Figure 3.18: Linear decision boundaries cannot shatter any 4 points in a 2-dimensional space.
Black crosses are assigned to -1 and white to +1, this label assignment cannot be represented by a
linear function.

called shattering the points. Fig. 3.17 depicts the shattering of 3 points 2-dimensional space. Fig.
3.18 shows a specific labeling of 4 points in a 2-dimensional space which cannot be represented
by a linear function. The complexity of linear functions in a 2-dimensional space is that they can
shatter 3 points.

The number of points a function class can shatter will be introduced as the VC-dimension.

However we will do it more formally.

The shattering coefficient of a function class F with respect to inputs xi, 1 ≤ i ≤ l is the
cardinality ofF if restricted to the l input vectors xi, 1 ≤ i ≤ l (on input vectors distinguishable
functions in F). The shattering coefficient is denoted by

NF (x1, . . . ,xl) . (3.175)

The entropy of a function class is

HF (l) = E(x1,...,xl) lnNF (x1, . . . ,xl) . (3.176)
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The annealed entropy of a function class is

Hann
F (l) = ln E(x1,...,xl) NF (x1, . . . ,xl) . (3.177)

Until now we defined entropies, which are based on a probability measure on the observations
in order to have a well-defined expectation.

The next definition avoids any probability measure. The growth function of a function class is

GF (l) = ln sup
(x1,...,xl)

NF (x1, . . . ,xl) . (3.178)

Note that

HF (l) ≤ Hann
F (l) ≤ GF (l) , (3.179)

where the first inequality comes from Jensen’s inequality and the second is obvious as the supre-
mum is larger than or equal to the expectation.

Theorem 3.5 (Sufficient Condition for Consistency of ERM)
If

lim
l→∞

HF (l)
l

= 0 (3.180)

then ERM is consistent.

For the next theorem we need to define what fast rate of convergence means. Fast rate of
convergence means exponential convergence. ERM has a fast rate of convergence if

p

(
sup
w
|R(g(.;w)) − Remp(g(.;w), l)| > ε

)
< b exp

(− c ε2 l) (3.181)

holds true.

Theorem 3.6 (Sufficient Condition for Fast Rate of Convergence of ERM)
If

lim
l→∞

Hann
F (l)
l

= 0 (3.182)

then ERM has a fast rate of convergence.

The last two theorems were valid for a given probability measure on the observations. The
probability measure enters the formulas via the expectation E. The growth function however does
not use a probability measure.
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Figure 3.19: The growth function is either linear or logarithmic in l.

Theorem 3.7 (Consistency of ERM for Any Probability)
The condition

lim
l→∞

GF (l)
l

= 0 (3.183)

is necessary and sufficient for the ERM to be consistent and also ensures a fast rate of convergence.

As can be seen from above theorems the growth function is very important as it is valid for
arbitrary distributions of the x.

We define dVC as the largest integer for which GF (l) = l ln 2 holds:

dVC = max
l
{l | GF (l) = l ln 2} . (3.184)

If the maximum does not exists then we set dVC = ∞. The value dVC is called the VC-dimension
of the function class F . The name VC-dimension is an abbreviation of Vapnik-Chervonenkis
dimension. The VC-dimension dVC is the maximum number of vectors that can be shattered by
the function class F .

Theorem 3.8 (VC-Dimension Bounds the Growth Function)
The growth function is bounded by

GF (l)

{
= l ln 2 if l ≤ dVC

≤ dVC

(
1 + ln l

dVC

)
if l > dVC

. (3.185)

Fig. 3.19 depicts the statement of this theorem, that the growth function GF (l) is either linear
in l or logarithmic in l.

It follows immediately that a function class with finite VC-dimension is consistent and con-
verges fast.
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However the VC-dimension allows to derive bounds on the risk as we already have shown for
function classes with finite many functions.

We now want to give examples for the VC dimension of some function classes.

Linear functions: The VC dimension of linear discriminant functions g(x;w) = wTx
is dVC = d, where d is the dimension of the input space. The VC dimension of linear
discriminant functions g(x;w) = wTx + b with offset b is

dVC = d + 1 . (3.186)

Nondecreasing nonlinear one-dimensional functions: The VC dimension of discriminant
functions in 1D of the form

∑k
i=1

∣∣ai xi∣∣ signx + a0 is one. These functions are nonde-
creasing in x, therefore they can shatter only one point: dVC = 1. The VS-dimension is
independent of number of parameters.

Nonlinear one-dimensional functions: The VC dimension of discriminant functions in 1D
of the form sin(w z) defined on [0, 2π] is infinity: dVC = ∞. This can be seen because
there exist l points x1, . . . , xl for which a w0 exists for which sin(w0 z) is a discriminant
function.

Neural Networks: dVC ≤ 2 W log2(e M) for multi-layer perceptions, where M are the
number of units, W is the number of weights, e is the base of the natural logarithm (Baum
& Haussler 89, Shawe-Taylor & Anthony 91). dVC ≤ 2 W log2(24 e W D) according to
Bartlett & Williamson (1996) for inputs restricted to [−D;D].

In the following subsections we will report error bound which can be expressed by the VC-
dimension instead of the growth function, which allows to compute the actual bounds for some
functions classes.

3.6.3 Error Bounds

The idea of deriving the error bounds is to define the set of distinguishable functions. This set has
cardinality of NF , the number of different separations of inputs.

Now we can proceed as in 3.6.2.1, where we had a finite set of functions. In eq. (3.164)
we replace the maximum by the sum over all functions. For finite many functions the supremum
reduces to the maximum and we can proceed as in eq. (3.164) and using NF as the number of
functions in the class.

Another trick in the proof of the bounds is to use two half-samples and their difference

p

(
sup
w

∣∣∣∣∣ 1
l

l∑
i=1

L
(
yi, g

(
xi;w

)) − 1
l

2l∑
i=l+1

L
(
yi, g

(
xi;w

))∣∣∣∣∣ > ε − 1
l

)
≥

1
2
p

(
sup
w

∣∣∣∣∣ 1
l

l∑
i=1

L
(
yi, g

(
xi;w

)) − R(g(.;w)

∣∣∣∣∣ > ε

)
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The probability that the difference of half samples exceeding a threshold is a bound on the
probability that the difference of one half-sample to the risk exceeds a threshold (“symmetriza-
tion”). The symmetrization step reduced the risk which is defined on all possible samples to finite
sample size. The difference on the half-samples counts how the loss on the first sample half differs
from the second sample half.

Above considerations clarify why in the following bounds values derived from NF (finite
distinguishable functions) will appear and appear with arguments 2l (two half-samples).

Before we report the bounds, we define the minimal possible risk and its parameter:

w0 = arg min
w

R(g(.;w)) (3.187)

Rmin = min
w

R(g(.;w)) = R(g(.;w0)) . (3.188)

Theorem 3.9 (Error Bound)
With probability of at least (1 − δ) over possible training sets with l elements, the parameter wl

(more precisely wl = w (Zl)) which minimizes the empirical risk we have

R(g(.;wl)) ≤ Remp(g(.;wl), l) +
√
ε(l, δ) . (3.189)

With probability of at least (1 − 2δ) the difference between the optimal risk and the risk of wl is
bounded by

R(g(.;wl)) − Rmin <
√
ε(l, δ) +

√
− ln δ
l

. (3.190)

Here ε(l, δ) can be defined for a specific probability as

ε(l, δ) =
8
l

(Hann
F (2l) + ln(4/δ)) (3.191)

or for any probability as

ε(l, δ) =
8
l

(GF (2l) + ln(4/δ)) (3.192)

where the later can be expressed though the VC-dimension dVC

ε(l, δ) =
8
l

(dVC (ln(2l/dVC) + 1) + ln(4/δ)) . (3.193)

The complexity measures depend all on the ratio dVC
l , the VC-dimension of the class of func-

tion divided by the number of training examples.

The bound above is from [Schölkopf and Smola, 2002], whereas an older bound from Vapnik
is

R(g(.;wl)) ≤ Remp(g(.;wl), l) + (3.194)

ε(l, δ)
2

(
1 +

√
1 +

Remp(g(.;wl), l)
ε(l, δ)

)
.
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Figure 3.20: The error bound is the sum of the empirical error, the training error, and a com-
plexity term. The complexity increases with increasing VC dimension whereas the training error
decreases with increasing complexity.

It can be seen that the complexity term decreases with 1√
l
. If we have zero empirical risk then

the bound on the risk decreases with 1√
l
.

Later in Section 4.5 we will see a bound on the expected risk which decreases with 1
l for the

method of support vector machines.

The bound on the risk for the parameter wl which minimized the empirical risk has again the
form

R ≤ Remp + complexity . (3.195)

This sum is depicted in Fig. 3.20, where it is also shown that the complexity term increases with
the VC-dimension whereas the empirical error decreases with increasing VC-dimension.

Note that we again arrived at a bound which is similar to the bias-variance formulation from
eq. (3.40), where the means squared error was expressed as bias term and a variance term. Bias
corresponds to Remp and variance to the complexity term. With increasing complexity of a func-
tion class the number of solutions with the same training error increases, that means the variance
of the solutions increases.

In many practical cases the bound is not useful because only for large number of training ex-
amples l the bound gives a nontrivial value (trivial values are for example that the misclassification
rate is smaller equal 1). In Fig. 3.21 the bound is shown as being far above the actual test error.
However in many practical cases the minimum of the bound is close (in terms of complexity) to
the minimum of the test error.

For regression instead of the shattering coefficient covering numbers can be used. The ε-
covering number of F with respect to metric d is N (ε,F , d) which is defined as the smallest
number which ε-cover F using metric d. Usually the metric d is the distance of the function on
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Figure 3.21: The bound on the risk, the test error, is depicted. However the bound can be much
larger than the test error because it is valid for any distribution of the input.

the data set X . For example the maximum norm on X , that is the distance of two functions is
the maximal difference of these two on the setX , defines the covering numberN (ε,F ,X∞) The
ε-growth function is the defined as

G(ε,F , l) = ln sup
X
N (ε,F ,X∞) . (3.196)

We obtain similar bounds on the generalization error like

R(g(.;wl)) ≤ Remp(g(.;wl), l) +
√
ε(ε, l, δ) , (3.197)

where

ε(ε, l, δ) =
36
l

(ln(12 l) + G(ε/6,F , l) − ln δ) . (3.198)

Instead to minimizing the empirical risk it would be better to minimize the risk or at least a
bound on them.

3.6.4 Structural Risk Minimization

The Structural Risk Minimization (SRM) principle minimizes the guaranteed risk that is a bound
on the risk instead of the empirical risk alone.

In the SRM a nested set of function classes is introduced:

F1 ⊂ F2 ⊂ . . . ⊂ Fn ⊂ . . . , (3.199)
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F2 FnF1 . . .

Figure 3.22: The structural risk minimization principle is based on a structure on a set of functions
which is nested subsets Fn of functions.

where class Fn possesses VC-dimension dnVC and

d1
VC ≤ d2

VC ≤ . . . dnVC ≤ . . . , (3.200)

holds.

One realization of the SRM principle is the minimum description length [Rissanen, 1978] or
minimum message length [Wallace and Boulton, 1968] principle. In the minimum description
length principle a sender transmits a model and the inputs x1,x2, . . . ,xl and the receiver has to
recover the labels y1, y2, . . . ,yl from the model and the inputs. If the model does not supply the
exact y from the input x then the sender has also to transmit the error. Goal is to minimize the
transmission costs, i.e. the description length.

For fixed l the error is Remp and if the model complexity corresponds to the number of bits to
describe it, then the risk R is analog to the transmission cost:

transmissioncosts = Remp + complexity . (3.201)

Minimizing the transmissions costs is equivalent to minimizing the risk for appropriate error
(coding the error) and appropriate model coding which defines the complexity.

If the model codes main structures in the data, then for many training examples (assume large
l) the error description can be reduces. If however the model codes specific values for one or few
training points which may even correspond to random noise then is should not be transmitted via
the model. Transmitting the specific values through the error would be more efficient in terms of
bits than coding these values into the model. That means the model should contain rules which
apply to as many data points as possible whereas data point specific variations or noise should be
contained in the error.

Is the SRM principle consistent? How fast does it converge?

The SRM is always consistent and even supplies a bound on the rate of convergence. That
means the SRM procedure converges to the best possible solution with probability one as the
number of examples l goes to infinity.

The asymptotic rate of convergence is

r(l) = |Rnmin − Rmin| +

√
dnVC ln l

l
, (3.202)
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R

γ

Figure 3.23: Data points are contained in a sphere of radius R at the origin. A linear discriminant
function with a boundary having distance γ to all data points is depicted.

where Rnmin is the minimal risk of the function class Fn. Asymptotic rate of convergence means
that

p

(
lim
l→∞

sup r−1(l)
∣∣∣R(g (. ; wFnl

))
− Rmin

∣∣∣ < ∞) = 1 . (3.203)

We assume that n = n(l) increases with the number of training examples so that for large

enough training examples |Rnmin − Rmin| l→∞→ 0.

If the optimal solution belongs to some class Fn then the convergence rate is

r(l) = O

(√
ln l
l

)
. (3.204)

3.6.5 Margin as Complexity Measure

The VC-dimension can be bounded by different restrictions on the class of functions. The most
famous restriction is that the zero isoline of the discriminant function (the boundary function),
provided it separates the classes properly, has maximal distance γ (this distance will later be
called “margin”) to all data points which are contained in a sphere with radiusR. Fig. 3.23 depicts
such a discriminant function. Fig. 3.24 gives an intuition why a margin reduces the number of
hyperplanes and therefore the VC-dimension.

The linear discriminant functionswTx + b can be scaled (scalingw and b) and give the same
classification function sign

(
wTx + b

)
. Of the class of discriminant functions leading to the same

classification function we can choose one representative.
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1/A

||w|| < A

Figure 3.24: Margin means that hyperplanes must keep outside the spheres. Therefore the possible
number of hyperplanes is reduced. Copyright c© 1997 [Osuna et al., 1997].

The representative is chosen with respect to the training data and is called the canonical form
w.r.t. the training dataX . In the canonical form w and b are scaled that

min
i=1,...,l

∣∣wTxi + b
∣∣ = 1 . (3.205)

Theorem 3.10 (Margin Bounds VC-dimension)
The class of classification functions sign

(
wTx + b

)
, where the discriminant functionwTx +b is

in its canonical form versus X which is contained in a sphere of radius R, and where ‖w‖ ≤ 1
γ

satisfy

dVC ≤ R2

γ2
. (3.206)

This gives with the fact from eq. (3.186)

dVC ≤ min{
[
R2

γ2

]
, d} + 1 , (3.207)

where [.] is the floor of a real number.

Remark: The VC-dimension is defined for a model class and should not depend on training
set.
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Figure 3.25: The offset b is optimized in order to obtain the largest ‖w‖ for the canonical form
which is ‖w∗‖ for the optimal value b∗. Now there exist points x1 and x2 withwT∗ x1 + b∗ = 1
and wT∗ x2 + b∗ = −1. The distance of x1 to the boundary function wT∗ x2 + b∗ = 0
is γ = 1

‖w∗‖ . In the figure also
(
x1
)p (
(
x2
)p), the projection of x1 (x2) onto the boundary

functions is depicted.

If at least one data point exists for which the discriminant function wTx + b is positive and
at least one data point exists for which it is negative, then we can optimize b and re-scale ‖w‖ in
order to obtain the smallest ‖w‖ for discriminant function in the canonical form.

This gives the tightest bound 1
γ on ‖w‖ and therefore the smallest VC-dimension.

The optimization of b leads to the result that there exists an data point, without loss of gen-
eralization we denote it by x1, for which wTx1 + b = 1, and a data point without loss of
generalization we denote it by x2, for which wTx2 + b = −1.

Fig. 3.25 depicts the situation.

To see above result, we consider (without loss of generalization) the case that the distance to
the negative class is larger than 1:

wTx1 + b = 1 (3.208)

and

wTx2 + b = −1 − δ , (3.209)

where δ > 0, then

wT (x1 − x2) = 2 + δ . (3.210)

We set

wT
∗ =

2
2 + δ

w (3.211)
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which gives

‖w∗‖ < ‖w‖ . (3.212)

Further we set

b∗ = 1 − 2
2 + δ

wTx1 . (3.213)

We obtain

wT
∗ x

1 + b∗ =
2

2 + δ
wTx1 + 1 − 2

2 + δ
wTx1 = 1. (3.214)

and

wT
∗ x

2 + b∗ =
2

2 + δ
wTx2 + 1 − 2

2 + δ
wTx1 = (3.215)

− 2
2 + δ

wT
(
x1 − x2

)
+ 1 = − 2

2 + δ
(2 + δ) + 1 = − 1 .

We can generalize above example. Without loss of generalization assume that

x1 = arg min
xi: yi=1

{wTxi} and (3.216)

x2 = arg max
xi: yi=−1

{wTxi} .

Then we set

wT
∗ =

2
wT (x1 − x2)

w (3.217)

which gives

‖w∗‖ < ‖w‖ (3.218)

because both x1 and x2 have at least a distance of 1 to the boundary functions which guarantees
that wT (x1 − x2) > 2. Further we set

b∗ =
2

wT (x1 − x2)

(
− 1

2
wT (x1 + x2)

)
= (3.219)

− w
T (x1 + x2)

wT (x1 − x2)
.
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This gives

wT
∗ x

1 + b∗ =
2

wT (x1 − x2)

(
wTx1 − 1

2
(x1 + x2)

)
= (3.220)

2
wT (x1 − x2)

(
1
2
wTx1 − 1

2
wTx2

)
= 1

and similarly

wT
∗ x

2 + b∗ = −1 . (3.221)

We see that

wT
∗ (x1 − x2) = wT

∗ x
1 + b∗ − wT

∗ x
2 + b∗ = 2 . (3.222)

For ‖w‖ = α ‖w∗‖ with 0 < α < 1 we would obtain wT (x1 − x2) < 2 and either x1 or x2

is closer than 1 to the boundary function which contradicts that the discriminant function is in the
canonical form.

Therefore the optimal w∗ and b∗ are unique.

We want to compute the distance of x1 to the boundary function. The projection of x1 onto
the boundary function is

(
x1
)p = x1 − αw∗ and fulfills

wT
∗
(
x1
)p + b∗ = 0 (3.223)

⇒ wT
∗
(
x1 − αw∗

)
=

wT
∗ x

1 − α ‖w∗‖2 + b∗ = 1 − α ‖w∗‖2 = 0

⇒ α =
1

‖w∗‖2

⇒ (
x1
)p = x1 − 1

‖w∗‖2
w∗

The distance of x1 to the boundary function is

∥∥x1 − (
x1
)p∥∥ =

∥∥∥∥x1 − x1 − 1
‖w∗‖2

w∗

∥∥∥∥ =
1
‖w∗‖ = γ . (3.224)

Similar the distance of x2 to the boundary function is

1
‖w∗‖ = γ . (3.225)
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Theorem 3.11 (Margin Error Bound)
The classification functions sign

(
wTx + b

)
are restricted to ‖w‖ ≤ 1

γ and ‖x‖ < R. Let ν
be the fraction of training examples which have a margin (distance to wTx + b = 0 ) smaller
than ρ

‖w‖ .

With probability at least of (1 − δ) of drawing l examples, the probability to misclassify a
new example is bounded from above by

ν +

√
c

l

(
R2

ρ2 γ2
ln2 l + ln(1/δ)

)
, (3.226)

where c is a constant.

The probability (1 − δ) is the confidence in drawing appropriate training samples whereas
the bound is on the probability of drawing a test example. The bound is from Bartlett and Shawe-
Taylor.

Again the bound is of the order ν + 1√
l
.

In the next chapter we will introduce support vector machines as the method for structural risk
minimization, where the margin is maximized.
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Chapter 4

Support Vector Machines

In this chapter we focus on supervised learning with a method called “support vector machine”
(SVM).

The SVM is based directly on the results from the end of previous chapter and realizes the
principle of structural risk minimization (SRM).

SVM minimize the empirical risk simultaneously with a bound on the complexity, namely the
margin.

Since the mid 90s with the papers of Cortes and Vapnik [Cortes and Vapnik, 1995] and Boser,
Guyon, and Vapnik [Boser et al., 1992] and the book [Vapnik, 1995] by V. Vapnik, “Support Vector
Machines” (SVMs) became very popular in the machine learning community.

Because SVMs allow for bounds on the future error, the risk, and have been proven very
successful in different applications they were preferred of neural networks or other supervised
learning methods. In contrast to neural networks the SVMs have an unique solution and can be
solved by a convex quadratic optimization problem.

4.1 Support Vector Machines in Bioinformatics

Machine learning methods are the best performing methods in various bioinformatics domains.

For protein 3D structure prediction support vector machines showed better performance than
“threading” methods in template identification (Cheng and Baldi, 2006).

Threading was the golden standard for protein 3D structure recognition if the structure is
known (almost all structures are known).

Support vector machines were applied to the recognition of alternative splice sites and pro-
vided the so far best results (Gunnar Rätsch).

Protein Homology Detection. For protein homology detection SVMs were used in differ-
ent was. First, the SVM-Fisher method [Jaakkola et al., 1999, 2000] couples an iterative HMM
training scheme with the SVM. For the same task SVMs used the mismatch-kernel [Leslie et al.,
2004b,a] The mismatch kernel measures sequence similarity through amino acid identities be-
tween the sequences where the frequency of almost identical subsequences is taken into account.
The mismatch-kernel is related to the BLAT alignment algorithm [Kent, 2002]. The SVM-pairwise
method according to [Liao and Noble, 2002] use as the feature vector the Smith-Waterman align-
ment scores to all other training sequences. In the SW-kernel the SW-pairwise scores are used as

87
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kernel [Vert et al., 2004] (note, that this is not a valid kernel because it is not ensured to produce
positive semi-definite kernels and the SVM-optimization is not well defined). Then local align-
ment (LA) kernel [Vert et al., 2004] which is similar to a local Smith-Waterman score and is based
on gap-penalties and the BLOSUM similarity matrix. Recently the oligomer based distance SVM
approach [Lingner and Meinicke, 2006] was proposed. The “HMMSTR” from [Hou et al., 2004]
PSI-BLAST against SwissProt to generate a PSSM and thereafter uses a HMM and finally a SVM
to classify sequences. In [Kuang et al., 2005] the mismatch kernel is generalized to process pro-
files obtained by PSI-BLAST applied to the NR data base and in [Rangwala and Karypis, 2005]
profiles (“position-specific scoring matrix”, PSSM) are used for local alignment-based and other
kernels in connection to the SVM.

Logan et al. [Logan et al., 2001] propose kernels which are based on motifs as are the kernels
by Ben-hur and Brutlag (2003) which use the eBLOCKS database (http://motif.stanford.
edu/eblocks).

Gene Classification. Pavlidis et al. [Pavlidis et al., 2001] utilize the Fisher kernel for classify-
ing genes according to the characteristics of their switching mechanisms. SVMs are successfully
used to classify co-regulated genes in yeast. Zien et al. [Zien et al., 2000] use SVMs for gene
finding.

Splice Sites. Degroeve et al. [Degroeve et al., 2002] recognize the starts of introns by SVMs.

Phylogenetic. Vert [Vert, 2002c,b] uses kernels and SVMs to mark phylogenetic profiles.

Protein Classification. Hua and Sun [Hua and Sun, 2001b] classify proteins according to
their subcellular localization by SVMs.

Zavaljevski and Reifman [Zavaljevski and Reifman, 2002] apply SVMs to classify human
antibody light chains into benign or pathogenic categories.

Vert [Vert, 2002a] uses an SVMs approach to recognizing the position at which a signal peptide
is cleaved from the main protein.

RNA Processing. Carter et al. [Carter et al., 2001] identified functional RNAs in genomic
DNA by SVMs.

Protein Secondary Structure Prediction. For example Hua and Sun [Hua and Sun, 2001a]
used SVMs instead of the typically used neural networks for protein secondary structure predic-
tion.

Microarrays and Gene Expression Profiles. SVMs are used for prognosis or therapy out-
come prediction based on microarray data. SVM are first used for gene selection and then again
for classification and prognosis.

The first SVM applications are by Golub et al. [Golub et al., 1999] and Mukherjee et al.
[Mukherjee et al., 1999, 2000] who apply SVMs to leukemia data of the AML and ALL kind.

Pomeroy [Pomeroy et al., 2002] predicts the outcome of a therapy of embryonal brain tumors
according to tissue samples analyzed by microarrays. Brown et al. [Brown et al., 2000] classify of
yeast genes into functional categories based on SVMs. Moler et al. [Moler et al., 2000] use SVMs
for the recognition of colon cancer described by microarrays. Segal et al. [Segal et al., 2003]
apply SVMs to the analysis of a tumor called “clear cell sarcoma”. The outcome of a breast cancer
radiation or chemotherapy was predicted by van’t Veer et al. [van’t Veer et al., 2002] which was
improved by [Hochreiter and Obermayer, 2004] by SVM-techniques. Gene expression changes

http://motif.stanford.edu/eblocks
http://motif.stanford.edu/eblocks
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in Drosophila embryos were investigated by Myasnikova et al. [Myasnikova et al., 2002] using
SVMs. Further publications where SVM are used to analyze microarray data include [Komura
et al., 2005, Huang and Kecman, 2005, Zhang et al., 2006, Wang et al., 2006, Tang et al., 2006,
Shen and Tan, 2006].

Gene Selection form Gene Expression Profiles. Furey et al. [Furey et al., 2000] focus on
gene selection for AML/ALL leukemia and colon cancer. Guyon et al. [Guyon et al., 2002]
developed a method called “recursive feature elimination (RFE)” for support vector machines and
applied it to microarray data for gene selection. Su et al. [Su et al., 2003] offers a package called
“RankGene” for gene ranking. In [Vert and Kanehisa, 2003] graph-driven feature extraction based
on kernel methods are proposed. The breast cancer data published in [van’t Veer et al., 2002]
were overestimated because of a selection bias which comes from choosing relevant genes prior to
cross-validation. This error was reported by Ambroise and McLachlan [Ambroise and McLachlan,
2002] and by Tibshirani and Efron [Tibshirani and Efron, 2002].

Methylation Data. Model et al. [Model et al., 2001] use SVMs for feature selection and
classification on methylation arrays instead of cDNA microarrays.

Protein-Protein Interactions. Bock and Gough [Bock and Gough, 2001] apply SVM for
protein-protein interaction tasks.

Mass Spectrometry. In tandem mass spectrometry samples of unknown proteins are frag-
mented into short sequences, called “peptides” which are measured according to mass and charge.
Anderson et al. [Anderson et al., 2003] improved the determination of the peptides from data
bases by using SVMs.

In above Bioinformatics applications support vector machines improved previous results. There-
fore SVMs are one of the standard techniques in Bioinformatics. Further applications of SVMs
are given under

http://www.clopinet.com/isabelle/Projects/SVM/applist.html.

SVM web-sites with tutorials and software are

http://www.kernel-machines.org,

http://www.support-vector-machines.org/SVM_stat.html, and

http://kernelsvm.tripod.com.

4.2 Linearly Separable Problems

First we consider classification tasks which are linearly separable.

As in previous chapter we assume that objects x ∈ X from an object set X are represented or
described by feature vectors x ∈ Rd.

The training set consists of l objects X =
{
x1, . . . , xl

}
with a label yi ∈ {−1, 1} for

classification and yi ∈ R for regression. The matrix of feature vectors is X =
(
x1, . . . ,xl

)
and

the vector of labels y =
(
y1, . . . , yl

)T .

http://www.clopinet.com/isabelle/Projects/SVM/applist.html
http://www.kernel-machines.org
http://www.support-vector-machines.org/SVM_stat.html
http://kernelsvm.tripod.com
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Figure 4.1: A linearly separable problem, where data points of class 1 (the circles) are on one side
of the hyperplane (a line in two dimensions) and data points of class 2 (the triangles) are on the
other side of the hyperplane.

Figure 4.2: Different solutions for linearly separating the the classes.

Linear separable means, for the training data a discriminant function wTx + b exists which
defines a classification function sign

(
wTx + b

)
for which

yi = sign
(
wTxi + b

)
, 1 ≤ i ≤ l . (4.1)

That means all positive examples are of one side of the boundary functionwTx + b = 0 and
all negative examples are on the other side. Fig. 4.1 shows a two-dimensional example for a linear
separable problem.

However the data can be separated by different hyperplanes as shown in Fig. 4.2 for the two-
dimensional example. Which is the best separating hyperplane?

Our theoretical considerations in last chapter suggest to use the classification function with the
lowest complexity. For the complexity measure we will use the margin. Fig. 4.3 gives an intuition
why larger margin is desirable as data points can be noise without jumping over the boundary
function.
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Figure 4.3: Intuitively, better generalization is expected from separation on the right hand side than
from the left hand side because larger distance to the data points allows for noisy data. Copyright
c© 1997 [Osuna et al., 1997].

4.3 Linear SVM

We are looking for the separating hyperplane with the largest margin, because it has the tightest
bound on the VC-dimension.

The margin was defined in Section 3.6.5 as the minimal distance of the boundary function
wTx + b = 0 to all data points. As in Section 3.6.5 we assume that the classification function is
described by a discrimination function in the canonical form (remember that scalingw and b with
the same factor does not change the classification function), that means

min
i=1,...,l

∣∣wTxi
∣∣ = 1 . (4.2)

In Section 3.6.5 we saw that optimizing b in order to obtain the smallest w of vectors having
the same directions as w leads to at least one point exists for which wTx + b = 1 and at least
one point exists for which wTx + b = −1. We then showed in Section 3.6.5 that the margin is
given by

γ =
1
‖w‖ . (4.3)

The situation is depicted in Fig. 4.4.

In Section 3.6.5 we optimized b and the length ofw but not the direction ofw. We will to this
now.

If we assume correct classification and the canonical form then

wTxi + b ≥ 1 for yi = 1 and (4.4)

wTxi + b ≤ −1 for yi = −1 . (4.5)
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wTx + b = 1

wTx + b = −1

wTx + b = 0

w

margin γ = 1
‖w‖

Figure 4.4: For the hyperplane described by the canonical discriminant function and for the opti-
mal offset b (same distance to class 1 and class 2), the margin is γ = 1

‖w‖ . At least one point
exists for which wTx + b = 1 and at least one point exists for which wTx + b = −1.

The values 1 and −1 are due to the canonical form.

To maximize the margin γ, we have to maximize 1
‖w‖ which means we have to minimize ‖w‖

or equivalently wTw = ‖w‖2.

To realize the structural risk minimization principle we maximize the margin but ensure correct
classification. This leads to the support vector optimization problem:

min
w,b

1
2
‖w‖2 (4.6)

s.t. wTxi + b ≥ 1 for yi = 1
wTxi + b ≤ −1 for yi = −1 .

This can be rewritten as

min
w,b

1
2
‖w‖2 (4.7)

s.t. yi
(
wTxi + b

) ≥ 1 .

This optimization problem is well defined becausewTw = ‖w‖2 is positive definite and the
constraints are linear. The problem is a convex quadratic optimization task with has one unique
solution.

Above formulation is in the primal space. If we use Lagrange multipliers then we can solve
this problem in the dual space.
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The Lagrange function is

L(w, b,α) =
1
2
‖w‖2 −

l∑
i=1

αi
(
yi
(
wTxi + b

) − 1
)
, (4.8)

where αi ≥ 0 are Lagrange multipliers which are larger than zero because the constraints are
inequalities.

The solution of the optimization problem is a saddle point of the Lagrangian. To find the
saddle point the minimization has to be done over w and b and the maximization over αi ≥ 0.

For the minimum the derivatives of L(w, b,α) are zero:

∂L(w, b,α)
∂w

= w −
l∑

i=1

αi y
i xi = 0 and (4.9)

∂L(w, b,α)
∂b

=
l∑

i=1

αi y
i = 0 . (4.10)

We can solve the first equation for w and obtain

w =
l∑

i=1

αi y
i xi . (4.11)

And the second equation gives an equality constraint

l∑
i=1

αi y
i = 0 . (4.12)

The expression for w in eq. (4.11) can be substituted into the Lagrangian:

L(w, b,α) =
1
2

(
l∑

i=1

αi y
i
(
xi
)T)( l∑

i=1

αi y
i xi

)
− (4.13)

l∑
i=1

αi y
i

 l∑
j=1

αj y
j
(
xj
)Txi − b

l∑
i=1

αi y
i +

l∑
i=1

αi =

1
2

∑
i,j

αi αj y
i yj

(
xj
)T
xi −

∑
i,j

αi αj y
i yj

(
xj
)T
xi +

l∑
i=1

αi =

− 1
2

∑
i,j

αi αj y
i yj

(
xj
)T
xi +

l∑
i=1

αi .

The Lagrangian has to be maximized with respect to the dual variables, therefore we can minimize
the negative Lagrangian

1
2

∑
i,j

αi αj y
i yj

(
xj
)T
xi −

l∑
i=1

αi . (4.14)
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The dual formulation is of the optimization problem is

min
α

1
2

∑
i,j

αi αj y
i yj

(
xj
)T
xi −

l∑
i=1

αi (4.15)

s.t. αi ≥ 0
l∑

i=1

αi y
i = 0 .

The dual formulation has only box constraints and one linear equality constraint and is therefore
simpler to solve than the primal formulation.

The dual formulation in vector notation is

min
α

1
2
αTY TXTX Y α − 1Tα (4.16)

s.t. α ≥ 0

αTy = 0 ,

where Y = diag(y) is the diagonal matrix of the labels.

We can now solve the dual formulation to obtain the optimal vector α. From the primal α the
dual vector w can be computed via

w =
l∑

i=1

αi y
i xi . (4.17)

For classification we do not need an explicit representation ofw but only the dot products between
the new vector x and the vectors xi:

wTx + b =
l∑

i=1

αi y
i
(
xi
)T
x + b . (4.18)

The Karush-Kuhn-Tucker (KKT) conditions require that the product of Lagrange multipliers
and constraint is zero for the optimal w and b:

αi
(
yi
(
wTxi + b

) − 1
)

= 0 (4.19)

It follows that either

αi = 0 or (4.20)

yi
(
wTxi + b

)
= 1 . (4.21)

The xi for which αi > 0 are called support vectors.

That means the w is only described by support vectors because the terms with αi = 0 vanish.
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The value of b can be determined from each support xi vector because

yi
(
wTxi + b

)
= 1 (4.22)

therefore

b = yi − wTxi . (4.23)

If the solutions α are not exact then b can be computed by averaging the computed b values
over all support vectors.

Note that for the optimal α

b

l∑
i=1

αi y
i = 0 (4.24)

holds. We have for the optimal solution

wTw =
l∑

i=1

αi y
i wTxi = (4.25)

l∑
i=1

αi y
i wTxi + b

l∑
i=1

αi y
i −

l∑
i=1

αi +
l∑

i=1

αi =

l∑
i=1

αi
(
yi
(
wTxi + b

) − 1
)

+
l∑

i=1

αi =

l∑
i=1

αi ,

where we used the KKT conditions eq. (4.19).

The margin γ can be expressed by support vector weights αi for the optimal solution:

γ =
1√∑l
i=1 αi

. (4.26)

4.4 Linear SVM for Non-Linear Separable Problems

In previous section we assumed that the classification problem is linearly separable. However in
many tasks this assumption is not true. See Fig. 4.6 for a non-linear separable task.

In Fig. 4.7 on the top line two problems are depicted which are not linearly separable. However
if data points can be moved then these problems are again linear separable.
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Figure 4.5: Two examples for linear SVMs. The class of points is given by their color. The
circled points are support vectors and the color of the regions correspond to the class points in
this region would be classified. Screen-shots from http://www.eee.metu.edu.tr/~alatan/

Courses/Demo/AppletSVM.html.

Figure 4.6: Left: linear separable task. Right: a task which is not linearly separable, where the
filled point marked with a cross is in the region of the non-filled points. Circled points are support
vectors. Copyright c© 1998 [Burges, 1998].

http://www.eee.metu.edu.tr/~alatan/Courses/Demo/AppletSVM.html
http://www.eee.metu.edu.tr/~alatan/Courses/Demo/AppletSVM.html
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w

margin γ = 1
‖w‖

ξ
ξ

ξξ
ξ

ξ

Figure 4.7: Two problems at the top line which are not linearly separable. If data points can be
moved then the problem would be linear separable as shown in the bottom line.
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What does moving mean? If the data point is moved orthogonal to a separating hyperplane in
the direction of its class. With δi > 0 we can express that by(

xi
)moved = xi + yi δi w (4.27)

wT
(
xi
)moved = wTxi + yi δi ‖w‖2 (4.28)

and obtain

yi
(
wT

(
xi
)moved + b

)
≥ 1 (4.29)

⇔ yi
(
wTxi + b

) ≥ 1 − δi ‖w‖2 . (4.30)

If we set ξi = δi ‖w‖2 then we obtain

yi
(
wTxi + b

) ≥ 1 − ξi . (4.31)

The new introduced variables ξi are called slack variables.

The movements expressed by the slack variables should be minimized. How strong move-
ments are penalized is expressed by a new hyper-parameter C.

We obtain a optimization problem with slack variables as

min
w,b,ξ

1
2
‖w‖2 + C

l∑
i=1

ξi (4.32)

s.t. yi
(
wTxi + b

) ≥ 1 − ξi

ξi ≥ 0 .

The Lagrange function is

L(w, b,α, ξ,µ) =
1
2
‖w‖2 + C

l∑
i=1

ξi − (4.33)

l∑
i=1

αi
(
yi
(
wTxi + b

) − 1 + ξi
) − l∑

i=1

µi ξi ,

where αi, µi ≥ 0 are Lagrange multipliers.

At the minimum the derivatives of L(w, b,α, ξ,µ) are zero:

∂L
∂w

= w −
l∑

i=1

αi y
i xi = 0 (4.34)

∂L
∂b

=
l∑

i=1

αi y
i = 0 (4.35)

∂L
∂ξ

= 1C − α − µ = 0 . (4.36)
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Again be obtain

w =
l∑

i=1

αi y
i xi . (4.37)

and

l∑
i=1

αi y
i = 0 . (4.38)

Additionally, from the last derivative we obtain

αi ≤ C (4.39)

because µi ≥ 0.

The expression for w can be again substituted into the Lagrangian:

L =
1
2

(
l∑

i=1

αi y
i
(
xi
)T)( l∑

i=1

αi y
i xi

)
+ C

l∑
i=1

ξi − (4.40)

l∑
i=1

αi y
i

 l∑
j=1

αj y
j
(
xj
)Txi − b

l∑
i=1

αi y
i +

l∑
i=1

αi −

l∑
i=1

αi ξi +
l∑

i=1

αi −
l∑

i=1

µi ξi =

− 1
2

∑
i,j

αi αj y
i yj

(
xj
)T
xi +

l∑
i=1

ξi (C − αi − µi) +
l∑

i=1

αi =

− 1
2

∑
i,j

αi αj y
i yj

(
xj
)T
xi +

l∑
i=1

αi .

We again minimize the negative Lagrangian

1
2

∑
i,j

αi αj y
i yj

(
xj
)T
xi −

l∑
i=1

αi . (4.41)

The dual formulation is of the optimization problem with slack variables is

min
α

1
2

∑
i,j

αi αj y
i yj

(
xj
)T
xi −

l∑
i=1

αi (4.42)

s.t. 0 ≤ αi ≤ C
l∑

i=1

αi y
i = 0 .
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The dual formulation with slack variables differs from the dual without slack variables in eq. (4.42)
only through the upper bound C on αi.

min
α

1
2
αTY TXTX Y α − 1Tα (4.43)

s.t. 0 ≤ α ≤ C1

αTy = 0 ,

where Y = diag(y) is the diagonal matrix of the labels.

The Karush-Kuhn-Tucker (KKT) conditions require:

αi
(
yi
(
wTxi + b

) − 1 + ξi
)

= 0 (4.44)

µi ξi = 0 . (4.45)

From the last equality it follows that if ξi > 0 then µi = 0. Because of the condition
C − αi − µi = 0 (derivative of Lagrangian with respect to ξi is zero) we obtain αi = C and
therefore ξi = 1 − yi

(
wTxi + b

)
.

If µi > 0 then ξi = 0 and either yi
(
wTxi + b

)
= 1 or αi = 0.

From αi = 0 follows that µi = C and ξi = 0 therefore

That means

αi > 0 : (4.46)

⇒
{
ξi = yi

(
wTxi + b

) − 1 > 0 and αi = C
yi
(
wTxi + b

)
= 1 and 0 < αi < C

αi = 0 : (4.47)

⇒ ξi = 0 and yi
(
wTxi + b

)
> 1 .

Data points which are moved (ξi > 0) have αi = C and data points on the boundary have
0 < αi < C. The data points classified correctly with absolute discriminant functions value
larger than 1 have αi = 0.

kind of data point αi ξi
xi moved αi = C ξi > 0
xi on the boundary 0 < αi < C ξi = 0
xi classified correctly αi = 0 ξi = 0

The vectors xi with αi > 0 are the support vectors. The situations is depicted in Fig. 4.8.

Again only support vectors determine the discriminant function. Data points with α = 0 do
not influence the solution – even if they would be removed from the training set, the results remains
the same.
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ξ > 0, α = C

ξ = 0, α = 0

ξ = 0, α = 0

0 < α < C
ξ = 0

wTx + b = 1

wTx + b = −1

Figure 4.8: Typical situation for the C-SVM. The slack variables for data points within the bound-
aries wTxi + b = 1 and wTxi + b = −1 are ξ > 0 with α = C, for data points on the
boundaries ξ = 0, 0 < α < C, and for all other data points ξ = 0, alpha = 0. Support
vectors are data points with α > 0.

4.5 Average Error Bounds for SVMs

The following theorems are proved by using the Leave-One-Out Cross Validation (LOO CV)
estimator which was shown in Subsection 3.2.2.2 to be almost unbiased.

The complexity of the SVM is described by the margin which in turn can be expressed through
the support vector weights αi > 0.

Essential support vectors are the support vectors for which the solution changes if they are
removed from the training set. Fig. 4.9 shows essential and non-essential support vectors for a
two-dimensional problem.

We denote the number of essential support vectors by kl and rl the radius of the sphere which
contains all essential support vectors.

First we note that kl ≤ d+ 1 (because (d+ 1) points in general position are enough to define
a hyperplane which has equal distance to all points).

Now we can give bounds for the expected risk ER(g(.;wl)), where the expectation is taken
over the training set of size l and a test data point.
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w w

Figure 4.9: Essential vectors. Left: all support vectors (the circled points) are essential. Right: the
three support vectors on the right hand side line are not essential because removing one of them
does not change the solution.

Theorem 4.1 (Average Bounds for SVMs) For the expected risk with above definitions

ER(g(.;wl)) ≤ Ekl+1

l + 1
(4.48)

ER(g(.;wl)) ≤ d+ 1
l + 1

(4.49)

ER(g(.;wl)) ≤
E
(
rl+1

γl+1

)2

l + 1
(4.50)

ER(g(.;wl)) ≤
Emin

{
kl+1 ,

(
rl+1

γl+1

)2
}

l + 1
(4.51)

ER(g(.;wl)) ≤
E
((
k∗l+1

)2∑
i∗ αi∗ + m

)
l + 1

(4.52)

C ≤ r−2
l : ER(g(.;wl)) ≤

E
(

(kl+1)2∑
i αi

)
l + 1

, (4.53)

where i∗ are the support vectors with 0 < αi∗ < C and m is the number of support vectors with
αi = C.

All of above bounds are based on the leave-one-out cross validation estimator and its property
to be almost unbiased.

It is important to note that we obtain for the expected risk a bound of the order 1
l whereas we

saw in the theoretical sections bounds (worst case bounds) for the risk of 1√
l
.

Important to know would be the variance of the expected risk.



4.6. ν-SVM 103

4.6 ν-SVM

The C-support vector machine can be reformulated in a more convenient form. Instead of the
hyper-parameter C another hyper-parameter ν can be introduced which has a more intuitive inter-
pretation.

The hyper-parameter ν will be an upper bound on the fraction of margin errors and a lower
bound on the number of support vectors.

The primal formulation of the ν-SVM is

min
w,b,ξ,ρ

1
2
‖w‖2 − ν ρ +

1
l

l∑
i=1

ξi (4.54)

s.t. yi
(
wTxi + b

) ≥ ρ − ξi

ξi ≥ 0 and ρ ≥ 0 .

Without the slack variables the margin would be scaled by ρ. Therefore the margin is max-
imized in the objective because it enters it with a negatively. However the margin can only be
maximized as long as the constraints are fulfilled.

To see the properties of this formulation we need the margin error, which is the fraction of
data points for which

yi
(
wTxi + b

)
< ρ . (4.55)

Theorem 4.2 (ν-SVM Properties)
For the solution of the ν-SVM optimization problem eq. (4.54) holds:
(i) ν is an upper bound on the fraction of margin errors.
(ii) ν is a lower bound on the fraction of support vectors.
(iii) Under mild conditions (see [Schölkopf and Smola, 2002]) ν asymptotically reaches the frac-
tion of support vectors and the fraction of margin errors with probability 1.

The Lagrangian of the ν-SVM formulation is

L(w, b,α, ξ,µ, ρ, δ) =
1
2
‖w‖2 − ν ρ +

1
l

l∑
i=1

ξi − (4.56)

l∑
i=1

αi
(
yi
(
wTxi + b

) − ρ + ξi
) − l∑

i=1

µi ξi − δ ρ .
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At the minimum the derivatives of L(w, b,α, ξ,µ, ρ, δ) are zero:

∂L
∂w

= w −
l∑

i=1

αi y
i xi = 0 (4.57)

∂L
∂b

=
l∑

i=1

αi y
i = 0 (4.58)

∂L
∂ξ

=
1
l
1 − α − µ = 0 (4.59)

∂L
∂ρ

=
l∑

i=1

αi − δ − ν = 0 . (4.60)

If we substitute these values into the Lagrangian we obtain

L = − 1
2

∑
i,j

αi αj y
i yj

(
xj
)T
xi . (4.61)

The dual is

min
α

1
2

∑
i,j

αi αj y
i yj

(
xj
)T
xi (4.62)

s.t. 0 ≤ αi ≤ 1
l

l∑
i=1

αi y
i = 0

l∑
i=1

αi ≥ ν .

In contrast to the C-SVM formulation the term
∑l

i=1 αi does not appear in the objective
function but it is lower bounded by the constant ν. This also avoids the trivial solution α = 0.

The Karush-Kuhn-Tucker (KKT) conditions require:

αi
(
yi
(
wTxi + b

) − ρ + ξi
)

= 0 (4.63)

µi ξi = 0 (4.64)

δ ρ = 0 . (4.65)

The last equation together with eq. (4.60) immediately leads to the fact that for solutions with
margin larger than zero

∑l
i=1 αi = ν.

b and ρ can be computed from support vectors with 0 < αi <
1
l because then µi > 0 and

ξi = 0 therefore yi
(
wTxi + b

)
= ρ. For two such support vectors x1 with y1 = 1 and x2
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with y2 = −1 we obtain

ρ =
1
2
(
wTx1 − wTx2

)
(4.66)

b = − 1
2
(
wTx1 + wTx2

)
(4.67)

The first equation is obtained by adding the two equations and the second by subtracting the
two equations. Analogously the values can be computed for more than two support vectors with
0 < αi <

1
l .

The constraints αi ≤ 1
l ,
∑l

i=1 αi = ν, and
∑l

i=1 αi y
i = 0 impose constraints on the ν.

First it is clear that 0 ≤ ν ≤ 1.

Let us assume that we have k < l
2 examples with yi = 1 and (l − k) examples with yi = −1,

i.e. we have fewer positive examples than negative. We are now looking for the maximal ν. It is
optimal if all k positive examples have maximal value of αi = 1

l giving in sum k
l . The negative

examples sum also up to k
l in order to fulfill

∑l
i=1 αi y

i = 0. Therefore
∑l

i=1 αi = 2 k
l . We

obtain that

ν ≤ 2 k
l
. (4.68)

If k ≥ l
2 , we can apply the above argumentation and obtain

ν ≤ 2 (l − k)
l

. (4.69)

Merging these two cases, we obtain

ν ≤ 2 min{k, (l − k)}
l

. (4.70)

The same holds if the number of negative examples are smaller than the positives.

Because ν is an upper bound on the fraction of margin errors, for very unbalanced data sets
(small k) the ν-SVM does not allow many errors of the larger set. However for some tasks many
errors of the larger set is the best solution.

ν-SVM may have problems with unbalanced data sets.

Next we will investigate the connection between the C-SVM and the ν-SVM.

Let us assume, that we have a ν-SVM solution with a specific ρ > 0 (ρ = 0 is excluded) and
the variables w, b, and ξ. We define new variables as

w∗ = w/ρ (4.71)

b∗ = b/ρ (4.72)

ξ∗ = ξ/ρ (4.73)
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and we obtain as primal for the ν-SVM with the new variables:

min
w∗,b∗,ξ∗,ρ

1
2
ρ2 ‖w∗‖2 − ν ρ + ρ

1
l

l∑
i=1

ξ∗i (4.74)

s.t. ρ yi
(
(w∗)Txi + b∗

) ≥ ρ − ρ ξ∗i
ρ ξ∗i ≥ 0 and ρ ≥ 0

that is

min
w∗,b∗,ξ∗,ρ

ρ2

(
1
2
‖w∗‖2 − ν

ρ
+

1
l ρ

l∑
i=1

ξ∗i

)
(4.75)

s.t. yi
(
(w∗)Txi + b∗

) ≥ 1 − ξ∗i
ξ∗i ≥ 0 and ρ ≥ 0 .

Because the variables are only rescaled, this formulation is equivalent to the original one.

If we now fix the optimal ρ of the ν-SVM solution and define C = 1
l ρ then the factor ρ2 is

constant as is the additive term ν
ρ and we obtain the C-SVM formulation:

min
w∗,b∗,ξ∗

1
2
‖w∗‖2 + C

l∑
i=1

ξ∗i (4.76)

s.t. yi
(
(w∗)Txi + b∗

) ≥ 1 − ξ∗i
ξ∗i ≥ 0 .

That means for each ν-SVM solution with ρ > 0 (depending on ν) there exists a C which
gives the same solution in the C-SVM formulation.

Basically the ν-SVM is more convenient for hyper-parameter selection, i.e. the selection of ν
compared to the selection of C in the C-SVM. The hyper-parameter selection is also more robust.

However for unbalanced data sets the C-SVM is to prefer because only small values of ν are
possible.

4.7 Non-Linear SVM and the Kernel Trick

Until now we only considered linear models but for some problems nonlinear models are more
appropriate.

We want to apply the nice results obtained from the linear theory. The idea is to map the
feature vectors x by a nonlinear function Φ into a feature space:

Φ : Rd → RdΦ , x 7→ xφ, xφ = Φ(x) . (4.77)

In this feature space we can apply the linear theory of SVMs. Afterwards we can project the
results back into the original space. Fig. 4.10 depicts the feature mapping. In the feature space the
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Φ(x1)
T Φ(x2)

Φ(x)

Φ−1

Figure 4.10: Nonlinearly separable data is mapped into a feature space where the data is linear
separable. The support vectors in feature space are marked by thicker borders. These vectors as
well as the boundary function are shown in the original space where the linear boundary function
becomes a nonlinear boundary function.

data is assumed to be linear separable (the VC-dimension of linear functions increases with the
dimensionality). The result can be transferred back into the original space.

For example consider

Φ(x) =
(
x2

1 , x
2
2 ,
√

2 x1 x2

)
. (4.78)

This is a mapping from a two-dimensional space into a three-dimensional space.

The four data points x1 = (1, 1),x2 = (1,−1),x3 = (−1, 1),x4 = (−1,−1) with
labels y1 = −1, y2 = 1, y3 = 1, y4 = −1 are not separable in the two-dimensional space.

Their images are

Φ(x1) = (1, 1,
√

2)
Φ(x2) = (1, 1,−

√
2)

Φ(x3) = (1, 1,−
√

2)
Φ(x4) = (1, 1,

√
2) ,

which are linearly separable in the three-dimensional space. Fig. 4.11 shows the mapping into the
three-dimensional space.

We write in the following xmn for (xm)n, the j-th component of the vector xi.

The dot product in the three-dimensional space is

ΦT (xi)Φ(xj) = x2
i1 x

2
j1 + x2

i2 x
2
j2 + 2 xi1 xi2 xj1 xj2 =

(xi1 xj1 + xi2 xj2)2 =
((
xi
)T
xj
)2

.
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Φ(x)

Figure 4.11: An example of a mapping from the two-dimensional space into the three-dimensional
space. The data points are not linearly separable in the two-dimensional space but in the three-
dimensional space.

In another example we can map the two-dimensional vectors into a 9-dimensional space by

Φ(x) =
(
x3

1 , x
3
2 ,
√

3 x2
1 x2 ,

√
3 x2

2 x1 , (4.79)
√

3 x2
1 ,
√

3 x2
2 ,
√

6 x1 x2 ,
√

3 x1 ,
√

3 x2

)
.

The dot product in the 9-dimensional space is

ΦT (xi)Φ(xj) =
x3
i1 x

3
j1 + x3

i2 x
3
j2 +

3 x2
i1 xi2 x

2
j1 xj2 + 3 x2

i2 xi1 x
2
j2 xj1 +

3 x2
i1 x

2
j1 + 3 x2

i2 x
2
j2 +

6 xi1 xi2 xj1 xj2 + 3 xi1 xj1 + 3 xi2xj2 =

=
((
xi
)T
xj + 1

)3 − 1 .

Note that the discriminant function is

wTx =
l∑

i=1

αi y
i
(
xi
)T
x = (4.80)

l∑
i=1

αi y
i
((
xi
)T
x + c

)
,

for a constant c, because we have
∑l

i=1 αi y
i = 0.

Fig. 4.12 shows the SVM architecture which maps into a feature space.

Therefore mapping into the feature space and dot product in this space can be unified by((
xi
)T
xj + 1

)3
.
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Φ(x 1) Φ(x 2)

σ ( )

Figure 4.12: The support vector machine with mapping into a feature space is depicted. Images
of digits are represented by vectors x. These vectors are mapped by Φ into a feature space in
which a dot product is performed. Certain digits are support vectors x1, . . . ,xn. A new digit x is
compared to the support vectors by mapping it into the feature space and building the dot product
with all support vectors. These dot products are combined as a weighted sum. Finally a function
σ (for two classes the sign function) predicts the class label from the weighted sum. Copyright c©
2002 [Schölkopf and Smola, 2002] MIT Press.
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A function which produces a scalar out of two vectors is called kernel k. In our example we

have k
(
xi,xj

)
=
((
xi
)T
xj + 1

)3
.

Certain kernels represent the mapping of vectors into a feature space and a dot product in this
space.

The following theorem characterizes functions which build a dot product in some space.

Theorem 4.3 (Mercer)
Let the kernel k be symmetric and from L2(X ×X) defining a Hilbert-Schmidt operator

Tk(f)(x) =
∫
X
k(x,x′) f(x′) dx′ . (4.81)

If Tk is positive semi-definite, i.e. for all f ∈ L2(X)∫
X×X

k(x,x′) f(x) f(x′) dx dx′ ≥ 0 , (4.82)

then Tk has eigenvalues λj ≥ 0 with associated eigenfunctions ψj ∈ L2(X). Further

(λ1, λ2, . . .) ∈ `1 (4.83)

k(x,x′) =
∑
j

λj ψj(x) ψj(x′) , (4.84)

where `1 is the space of vectors with finite one-norm and the last sum converges absolutely and
uniformly for almost all x and x′.

The sum may be an infinite sum for which the eigenvalues converge to zero. In this case the
feature space is an infinite dimensional space.

Here “for almost all” means “except for a set with zero measure”, i.e. single points may lead
to an absolute and uniform convergence. That the convergence is “absolutely and uniformly” is
important because the sum can be resorted and derivative and sum can be exchanged.

Note that if X is a compact interval [a, b] and k is continuous then eq. (4.82) is equivalent to
positive definiteness of k. A kernel k is positive semi-definite if for all l, all x1, . . . ,xl, and all
αi, 1 ≤ i ≤ l

l,l∑
i,j=1,1

αi αj k(xi,xj) ≥ 0 . (4.85)

We define the Gram matrixK as Kij = k(xi,xj) the above inequality is

αTK α ≥ 0 , (4.86)

which means that the Gram matrix has non-negative eigenvalues, i.e. is positive semi-definite.
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The mapping Φ can be explicitly given as

Φ(x) =
(√

λ1 ψ1(x),
√
λ2 ψ2(x), . . .

)
(4.87)

Note that Φ(x) ∈ `2, where `2 is the set of all vectors which have finite Euclidean norm.

From the fact that the sum in the theorem converges uniformly it follows that for every ε
there exists a N(ε) so that the first N(ε) components of Φ(x) are sufficient to approximate the
kernel with error smaller than ε. That means infinite dimensional feature spaces can always be
approximated by finite feature space of accuracy ε.

We express the parameter vector w by a linear weighed sum of support vectors. That means
w lives in a subspace of dimension equal or smaller than l, the number of training examples.

If new vectors contain directions orthogonal to the space spanned by the training vectors then
these directions are ignored by the classification function.

Note that in general the points in feature space are on a manifold, like a folded sheet of paper in
the three-dimensional space. On the other hand the margin in computed in the full space. Here the
margin as complexity measure may be questionable because functions are distinguished at regions
in space where no data point can appear. The same holds if the original space because features
may have dependencies between each other.

The C-SVM with slack variables in its dual form from eq. (4.42) is only expressed by dot
products. It can be written in with kernels in the feature space by just replacing

(
xi
)T
xj by

k(xi,xj). This is called the kernel trick. In any algorithm which is based only on dot products
a non-linear algorithm can be constructed by introducing the kernel at the places where the dot
products where before.

Applying the kernel trick, the problem in eq. (4.42 is now

min
α

1
2

∑
i,j

αi y
i αj y

j k(xi,xj) −
l∑

i=1

αi (4.88)

s.t. 0 ≤ αi ≤ C
l∑

i=1

αi y
i = 0 .

The discriminant function from eq. (4.18) can be formulated using a kernel as

wTx + b =
l∑

i=1

αi y
i k(xi,x) + b . (4.89)
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The most popular kernels are the following:

linear kernel: k(xi,xj) =
(
xi
)T
xj (4.90)

RBF kernel: k(xi,xj) = exp
(
− ‖x

i − xj‖2
2 σ2

)
(4.91)

polynomial kernel: k(xi,xj) =
((
xi
)T
xj + β

)α
(4.92)

sigmoid kernel: k(xi,xj) = tanh
(
α
(
xi
)T
xj + β

)
(4.93)

Comments:

The sigmoid kernel is not positive semi-definite for all α and β and is not a very popular
choice.

The RBF kernel is the most popular choice.

The RBF kernel maps to feature vectors of length 1, because k(x,x) = ΦT (x)Φ(x) = 1.
Therefore the RBF kernel maps onto a hyper-sphere. Because k(x1,x2) > 0 all vectors are
in the same octant in the feature space. The kernel basically measures the angle between the
vectors.

The Gram matrix of the RBF kernel has full rank if training examples are distinct from
each other. Thus SVMs with RBF kernels have infinite VC-dimension. Fig. 4.13 depicts the
situation that an RBF-kernel is sitting on top of each data point, therefore all training points
can be separated.

The space of an RBF kernel is infinite. However the eigenvalues of the Hilbert-Schmidt
operator decay exponentially with their number λn+1 ≤ C exp

(− c σ n1/d
)

(Schaback
& Wendland, 2002 – C and c are constants independent of n) for a bounded domain in
Rd. Thus, σ controls the decay of the eigenvalues and therefore the dimensions of the finite
dimensional space for which the kernel can be approximated ε-exact with a dot product.
Basically σ controls the dimension of the feature space approximation.

Sums and limits of positive semi-definite (p.d.) kernels are also positive semi-definite ker-
nels. If k1 and k2 are p.d. kernels then also k(x1,x2) =

∫
X k1(x1,x) k1(x2,x) dx and

k(x1,x2) = k1(x1,x2) k2(x1,x2).

Fig. 4.16 shows again the example from Fig. 4.6 but now with a polynomial kernel of degree
3. The non-linear separable problem can be separated.

The figures 4.18, 4.19, and 4.20 give SVM examples for the RBF kernel and for the polynomial
kernels.
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Figure 4.13: An SVM example with RBF kernels. If the width of the kernel is small enough an
arbitrary number of training examples can be separated, therefore the VC-dimension is infinity.

Figure 4.14: Left: An SVM with a polynomial kernel. Right: An SVM with an RBF kernel. Filled
points are support vectors. Copyright c© 1997 [Osuna et al., 1997].
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Figure 4.15: SVM classification with an RBF kernel. Support vectors are circled.Copyright
c©2002 [Schölkopf and Smola, 2002] MIT Press.

Figure 4.16: The example from Fig. 4.6 but now with polynomial kernel of degree 3. The right
task can now be separated. Copyright c© 1998 [Burges, 1998].
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Figure 4.17: SVM with RBF-kernel. Left: small σ. Right: larger σ. The class of points is given
by their color. The circled points are support vectors and the color of the regions correspond to the
class points in this region would be classified. Screen-shots from http://www.eee.metu.edu.

tr/~alatan/Courses/Demo/AppletSVM.html.

http://www.eee.metu.edu.tr/~alatan/Courses/Demo/AppletSVM.html
http://www.eee.metu.edu.tr/~alatan/Courses/Demo/AppletSVM.html
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Figure 4.18: SVM with RBF kernel with different σ. From the upper left to the lower
right σ = 0.3, 0.18, 0.16, 0.14, 0.12, 0.1. Screen shots from http://www.csie.ntu.edu.tw/

~cjlin/libsvm/.

http://www.csie.ntu.edu.tw/~cjlin/libsvm/
http://www.csie.ntu.edu.tw/~cjlin/libsvm/
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Figure 4.19: SVM with polynomial kernel with different degrees α. From the upper left to
the lower right α = 2, 3, 4, 8. Screen-shots from http://www.csie.ntu.edu.tw/~cjlin/

libsvm/.

http://www.csie.ntu.edu.tw/~cjlin/libsvm/
http://www.csie.ntu.edu.tw/~cjlin/libsvm/
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Figure 4.20: SVM with polynomial kernel with degrees α = 4 (upper left) and α = 8 (upper
right) and with RBF kernel with σ = 0.3, 0.6, 1.0 (from left middle to the bottom). Screen-shots
from http://www.csie.ntu.edu.tw/∼cjlin/libsvm/
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4.8 Other Interpretation of the Kernel: Reproducing Kernel Hilbert
Space

Basicly, this section is from Wikipedia, the free encyclopedia, http://en.wikipedia.org/
wiki/Reproducing_kernel_Hilbert_space.

Hilbert spaces can be defined by reproducing kernels (Nachman Aronszajn and, independently,
Stefan Bergman in 1950).

Let X be an arbitrary set and H a Hilbert space of complex-valued functions on X . We say
that H is a reproducing kernel Hilbert space if every linear map of the form

Lx : f 7→ f(x) (4.94)

from H to the complex numbers is continuous for any x in X . That is the evaluation at x.

Theorem 4.4 (Riesz representation theorem) LetH∗ denoteHÂt’s dual space, consisting of all
continuous linear functionals from H into the field C. If x is an element of H , then the function
φx defined by

φx(y) = 〈y,x〉 ∀y ∈ H , (4.95)

where 〈·, ·〉 denotes the inner product of the Hilbert space, is an element of H∗.

Every element of H∗ can be written uniquely in this form, that is the mapping

Φ : H → H∗, Φ(x) = φx (4.96)

is an isometric (anti-) isomorphism.

This theorem implies that for every x in X there exists an element Kx of H with the property
that:

f(x) = 〈f, Kx〉 ∀f ∈ H (∗). (4.97)

The function Kx is called the point-evaluation functional at the point x.

Since H is a space of functions, the element Kx is itself a function and can therefore be
evaluated at every point. We define the function K : X ×X → C by

K(x,y) def= Kx(y). (4.98)

This function is called the reproducing kernel for the Hilbert space H and it is determined
entirely by H because the Riesz representation theorem guarantees, for every x in X , that the
element Kx satisfying (*) is unique.

Properties:

http://en.wikipedia.org/wiki/Reproducing_kernel_Hilbert_space
http://en.wikipedia.org/wiki/Reproducing_kernel_Hilbert_space
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The reproducing property

It holds that

〈K(x, ·),K(y, ·)〉 = K(x,y). (4.99)

Orthonormal sequences

If {φk}∞k=1 is an orthonormal sequence such that the closure of its span is equal to H , then

K (x,y) =
∞∑
k=1

φk (x)φk (y) . (4.100)

The next theorem from Moore-Aronszajn states that every symmetric, positive definite kernel
defines a unique reproducing kernel Hilbert space.

Theorem 4.5 (Moore-Aronszajn) Suppose K is a symmetric, positive definite kernel on a set E.
Then there is a unique Hilbert space of functions on E for which K is a reproducing kernel.

Proof. Define, for all x in E, Kx = K(x, ·). Let H0 be the linear span of {Kx : x ∈ E}.
Define an inner product on H0 by〈

n∑
j=1

bj Kyj ,

l∑
i=1

αi Kxi

〉
=

m∑
i=1

n∑
j=1

αi βj K(yj ,xi). (4.101)

The symmetry of this inner product follows from the symmetry of K and the non-degeneracy
follows from the fact that K is positive definite.

LetH be the completion ofH0 with respect to this inner product. ThenH consists of functions
of the form

f(x) =
∞∑
i=1

αi Kxi(x) (4.102)

where
∑∞

i=1 α
2
i K(xi,xi) < ∞. The fact that the above sum converges for every x follows

from the Cauchy-Schwartz inequality.

Now we can check the RKHS property, (*):

〈f,Kx〉 =

〈 ∞∑
i=1

αi Kxi ,Kx

〉
=
∞∑
i=1

αi K(xi,x) = f(x). (4.103)
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To prove uniqueness, let G be another Hilbert space of functions for which K is a reproducing
kernel. For any x and y in E, (*) implies that 〈Kx,Ky〉H = K(x,y) = 〈Kx,Ky〉G. By linearity,
〈·, ·〉H = 〈·, ·〉G on the span of {Kx : x ∈ E}. ThenG = H by the uniqueness of the completion.

References:

Nachman Aronszajn, Theory of Reproducing Kernels, Transactions of the American Math-
ematical Society, volume 68, number 3, pages 337ÂŰ404, 1950.

Alain Berlinet and Christine Thomas, Reproducing kernel Hilbert spaces in Probability and
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Mathematical Analysis and Applications, 33, 1 (1971) 82ÂŰ95.

Grace Wahba, Spline Models for Observational Data, SIAM, 1990.

Felipe Cucker and Steve Smale, On the Mathematical Foundations of Learning, Bulletin of
the American Mathematical Society, volume 39, number 1, pages 1ÂŰ49, 2002.

4.9 Example: Face Recognition

The following example is extracted from [Osuna et al., 1997].

An SVM is trained on a database of face and non-face images of size 19× 19 pixel. As kernel
a polynomial kernel with α = 2 and for the SVM parameter C = 200 are used.

The data is preprocessed:

Pixels close to the boundary of the window are removed to reduce background patterns.

To correct of an illumination gradient, a best-fit brightness plane is subtracted from the
window pixel values (reduction of light and heavy shadows).

A histogram equalization is performed over the patterns in order to compensate for differ-
ences in illumination brightness, different camera response curves, etc.

Negative pattern (images without a face) were images of landscapes, trees, buildings, rocks,
etc.

The system was used in a bootstrapping setting: misclassifications of the first system were
used for a second system as negative examples. In this was difficult examples were filtered out to
be recognized by a more specialized system.

The following steps were used to produce an output:

Re-scaling of the input image several times.

Cutting of 19× 19 window patterns out of the scaled image.

Preprocessing of the window using a mask, light correction and histogram equalization.
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NON-FACES

FACES

Figure 4.21: Face recognition example. A visualization how the SVM separates faces from non-
faces. Support vectors are images of certain faces and images of which are close to face images.
The fact that most support vectors are non-faces is depicted in the figure. Copyright c© 1997
[Osuna et al., 1997].

Classification of the pattern using the SVM.

If the SVM predicts a face, drawing a rectangle around the face in the output image.

Fig. 4.21 depicts how faces should be separated from non-faces using a SVM. More non-faces
are used as support vectors because they form the majority class.

Figures 4.22, 4.23, 4.24, 4.25, 4.26, and 4.27 show the result of the face extraction experiment.
Figures 4.26 and 4.27 show more difficult tasks where people are not looking into the camera and
false positives and false negatives are present.

4.10 Multi-Class SVM

The theory of SVMs has been developed for two classes, i.e. for binary classification. However
in real world applications more than one class is available. For example in classifying of proteins
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Figure 4.22: Face recognition example. Faces extracted from an image of the Argentina soccer
team, an image of a scientist, and the images of a Star Trek crew (even the Klingon face was
found!). Copyright c© 1997 [Osuna et al., 1997].
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Figure 4.23: Face recognition example. Faces are extracted from an image of the German soccer
team and two lab images. Copyright c© 1997 [Osuna et al., 1997].
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Figure 4.24: Face recognition example. Faces are extracted from another image of a soccer team
and two images with lab members. Copyright c©1997 [Osuna et al., 1997].
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Figure 4.25: Face recognition example. Faces are extracted from different view and different
expressions. Copyright c© 1997 [Osuna et al., 1997].
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Figure 4.26: Face recognition example. Again faces are extracted from an image of a soccer team
but the players are moving during taking the image. Clearly false positives and false negatives are
present. Copyright c© 1997 [Osuna et al., 1997].
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Figure 4.27: Face recognition example. Faces are extracted from a photo of cheerleaders. Here
false positives are present. Copyright c© 1997 [Osuna et al., 1997].

into structural classes (e.g. according to SCOP) there are many structural classes.

One-against the rest. The first approach to using SVMs to multi-class problems ofM classes
is to construct for every class j a binary classifier which separates the class from the rest. We
assume that a data point belongs exactly to one class.

Given the discriminant functions gj of these classifiers we can chose the

arg max
j=1,...,M

gj(x) = arg max
j=1,...,M

l∑
i=1

yij αij k
(
x,xi

)
+ bj , (4.104)

where yij = 1 if xi belongs to class j and otherwise yij = −1, αij and bj are the optimal param-
eters of the “j-th class against the rest” SVM classification problem. This is a “winner-takes-all”
approach.

For this approach confusion can exist if two classes have a boundary region where only data
of these two classes are located. The classifier is chosen to optimize all data and therefore special
parameters for discriminating these two classes are not optimal. In the next approach all pairwise
classifiers are considered.

Pairwise Classifiers. Another approach to multi-class SVM is to train (optimize) an SVM for
every pair of classes which separates only these two classes. This gives M (M−1)

2 classification
tasks.

Note that the single tasks are computationally not as expensive as the one-against-the-rest
because the training set is reduced.

A new data point is assigned to the class which obtained the highest number of votes. A class
obtains a vote if a pairwise classifier predicts the class. For large M the procedure can be made
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more efficient because not all classifiers must be evaluated: the classes which cannot obtain more
or equal as many votes as the best class can be excluded.

Intuitively, for very similar classes a new pattern belonging to these classes results in (M − 2)
votes for each these classes and the decision is determined by the pairwise classifier of these two
classes.

This is the our preferred multi-class approach because in practical problems it often outper-
formed the other approaches. Let now yi ∈ {1, . . . ,M} give directly the class xi belongs to.

Multi-class Objectives. The direct optimization of the multi-class classification problem is
possible via

min
wj ,bj ,ξj

1
2

M∑
j=1

‖wj‖2 + C
l∑

i=1

∑
j 6=yi

ξij (4.105)

s.t. wT
yix

i + byi ≥ wT
j x

i + bj + 2 − ξij

ξij ≥ 0 ,

for all i = 1, . . . , l and all j = 1, . . . ,M such that j 6= yi.

The training is more complex here because all variables and data points are treated in one
optimization problem. The performance is about the performance of the one-against-the-rest ap-
proach.

Comments. Sometimes classification can be made more robust by prediction additional fea-
tures of the data points. For example proteins can be classified into pure helical or pure beta-sheet
structures, or the surface accessibility, polarity, atomic weight, hydrophobicity etc. can be pre-
dicted. For discrimination of similar classes these additional information might be helpful. It is
similar to “error-correcting output coding”, where additional bits help to correct the binary string.

4.11 Support Vector Regression

Now we want to apply the support vector technique to regression, i.e. the task is not to classify
the example x by assigning a binary label but to assign a real value. That means y is now a real
number y ∈ R.

But how can regression derived from classification? Ideas from statistical learning theory
carry over to regression: a function class is the class which approximates functions with precision
ε. The class complexity depends now also on ε. Also leave-one-out estimates are possible is only
few vectors (the support vectors) are used to define the regression function.

If y ∈ I and I is a compact subset of R – for simplicity we assume that I is connected, i.e.
a interval in R – then I can be covered by finite many compact intervals of length ε > 0. Each
of these intervals defines a class. Even more convenient would be that we use only the interval
boundaries and classify whether a data point is larger or smaller than the boundary. In this case a
linear regression function can be represented through a linear classification task with ε precision.

Therefore regression can be transformed into a classification task with ε > 0 precision. Reduc-
ing the precision allows to described the regression function with few vectors because all zero-loss
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Figure 4.28: Support vector regression. A regression function is found such that a tube with radius
ε around the regression function contains most data. Points outside the tube are penalized by ξ.
Those penalties are traded off against the complexity given by ‖w‖, which is represented by the
slope of a linear function. Copyright c© 2002 [Schölkopf and Smola, 2002] MIT Press.

data points do not contribute to the optimal regression function. Support vectors would be at the
border of the intervals and outliers, which are data points differing more than ε from their neigh-
bors which are equal to one another. However this formulation would be dependent on the choice
of the intervals. If the intervals are shifted then permanent support vectors are only the outliers.

To define these permanent support vectors we need the notion of ε-insensitive loss function

|y − g(x)|ε = max{0 , |y − g(x)| − ε} , (4.106)

where ε > 0. This loss function was introduced by [Vapnik, 1995].

If we now consider again linear functions wTx + b then we obtain the situation depicted in
Fig. 4.28. The errors must be distinguished as being more than ε below the target y or more than
ε above the target y and are defined as

ξ− = max{0 , g(x) − y − ε} (4.107)

ξ+ = max{0 , y − g(x) − ε}
ξ =

(
ξ− + ξ+

)
where again only xi with ξi > 0 are support vectors.

The complexity is again defined through ‖w‖2. However the motivation through a maximal
margin is no longer valid.

Small ‖w‖2 means a flat function, e.g. in the linear case a small slope.

More interesting small ‖w‖2 means small variation around the constant b of the regression
function on a compact set of feature vectors x. On the compact set ‖x‖ ≤ R holds. We obtain
with the Cauchy-Schwarz inequality∥∥wTx

∥∥ ≤ ‖w‖ ‖x‖ ≤ ‖w‖ R . (4.108)
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Figure 4.29: Nonlinear support vector regression is depicted. A regression function is found such
that a tube with radius ε around the regression function contains most data.

This holds also for the kernel version which means for g(x) =
∑l

i=1 αi y
i k(x,xi) + b:

‖g(x) − b‖ ≤ ‖w‖ R ≤
√∑

i,j

αi αj k(xi,xj) R ≤ (4.109)

‖α‖ √emax R ,

where emax is the maximal eigenvalue of the kernel matrix, i.e. the Gram matrix.

We obtain as optimization problem

min
w,b,ξ+,ξ−

1
2
‖w‖2 +

C

l

l∑
i=1

(
ξ+
i + ξ−i

)
(4.110)

s.t. yi − (
wTxi + b

) ≤ ε + ξ+
i(

wTxi + b
) − yi ≤ ε + ξ−i

ξ+
i ≥ 0 and ξ−i ≥ 0 .

The Lagrangian is

L
(
w, b, ξ+, ξ−,α+,α−,µ+,µ−

)
= (4.111)

1
2
‖w‖2 +

C

l

l∑
i=1

(
ξ+
i + ξ−i

) − l∑
i=1

(
µ+
i ξ

+
i + µ−i ξ

−
i

) −
l∑

i=1

α+
i

(
ε + ξ+

i − yi + wTxi + b
) −

l∑
i=1

α−i
(
ε + ξ−i + yi − wTxi − b

)
,

where α+,α−,µ+,µ− ≥ 0.
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The saddle point conditions require

∂L

∂b
=

l∑
i=1

(
α+
i − α−i

)
= 0 (4.112)

∂L

∂w
= w −

l∑
i=1

(
α+
i − α−i

)
xi = 0

∂L

∂ξ+
=

C

l
1 − α+ − µ+ = 0

∂L

∂ξ−
=

C

l
1 − α− − µ− = 0

The last two equations constrain the α+
i and α−i whereas the first two equations can be inserted

into the Lagrangian to eliminate the primal variables.

We obtain as dual formulation

min
α+,α−

1
2

(l,l)∑
i,j=(1,1)

(
α+
i − α−i

) (
α+
j − α−j

) (
xi
)T
xj + (4.113)

ε

l∑
i=1

(
α+
i + α−i

) − l∑
i=1

yi
(
α+
i − α−i

)
s.t. 0 ≤ α+

i ≤
C

l

0 ≤ α−i ≤
C

l
l∑

i=1

(
α+
i − α−i

)
= 0 .

The regression function can be written as

g(x) =
l∑

i=1

(
α+
i − α−i

) (
xi
)T
x + b . (4.114)

The KKT conditions state for the optimal parameters:

α+
i

(
ε + ξ+

i − yi + wTxi + b
)

= 0 (4.115)

α−i
(
ε + ξ−i + yi − wTxi − b

)
= 0

ξ+
i µ+

i = 0
ξ−i µ−i = 0 .
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From ξ+
i > 0 follows that µ+

i = 0 and therefore α+
i = C

l . The analog holds for ξ−i , µ
−
i

and α−i . We obtain as conditions

ξ+
i

(
C

l
− α+

i

)
= 0 (4.116)

ξ−i

(
C

l
− α−i

)
= 0 .

The data points xi with α+
i = C

l are outside the ε-tube.

Data points with 0 < α+
i < C

l are on the ε-tube border (same for 0 < α−i < C
l ). Because

α+
i < C

l implies µ+
i > 0 and therefore ξ+

i = 0. But 0 < α+
i implies ε+ ξ+

i − yi +wTxi + b =
0 that is ε + − yi + wTxi + b = 0 from which b can be computed as

b = yi − wTxi − ε . (4.117)

And for 0 < α−i < C
l the value b can be computed through

b = yi − wTxi + ε . (4.118)

If α+
i > 0 and α−i > 0, then

ε + ξ+
i − yi + wTxi + b = 0 and (4.119)

ε + ξ−i + yi − wTxi − b = 0 .

and adding both equations gives

2 ε + ξ+
i + ξ−i = 0 (4.120)

which contradicts ε > 0.

Therefore we have

α+
i α
−
i = 0 . (4.121)

We can set α = (α+ − α−) then α+ is the positive alpha part and α− the negative part,
where only one part exists. Note that ‖α‖1 =

∑l
i=1

(
α+
i + α−i

)
. Therefore the dual can be

expressed compactly as

min
α

1
2

(l,l)∑
i,j=(1,1)

αi αj
(
xi
)T
xj − (4.122)

ε ‖α‖1 +
l∑

i=1

yi αi

s.t. −C
l
≤ αi ≤ C

l
l∑

i=1

αi = 0 .
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Figure 4.30: Example of SV regression: smoothness effect of different ε. Upper left: the target
function sincx, upper right: SV regression with ε = 0.1, lower left: ε = 0.2, and lower right:
ε = 0.5. Larger ε leads to a smoother approximation function which fits into the broader ε-tube.
Copyright c© 2002 [Smola and Schölkopf, 2002].

or in vector notation

min
α

1
2
αXTX α − ε ‖α‖1 + yTα (4.123)

s.t. −C
l

1 ≤ α ≤ C

l
1, 1Tα = 0 .

An example for support vector regression is given in Fig. 4.30. Larger ε leads to a smoother
approximation function which fits into the broader ε-tube. Fig. 4.31 shows that decreasing ε results
in an increase of the number of support vectors. As depicted in Fig. 4.32 the support vectors pull
the approximation/regression function into the ε-tube.

ν-SVM Regression.

Analog to classification also a ν-support vector regression (ν-SVR) approach can be formu-
lated. Large ε is penalized and traded against complexity, i.e. smoothness.
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Figure 4.31: Example of SV regression: support vectors for different ε. Example from Fig. 4.30.
The tiny dots are the data points and the big dots are support vectors. Upper left: ε = 0.5, upper
right: ε = 0.2, lower left: ε = 0.1, and lower right: ε = 0.002. The number of support vectors
increases with smaller ε. The support vectors can be viewed as applying a force on a horizontal
rubber band. Copyright c© 2002 [Smola and Schölkopf, 2002].
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Figure 4.32: Example of SV regression: support vectors pull the approximation curve inside the ε-
tube. Example from Fig. 4.30. Dash-dotted vertical lines indicate where the approximation curve
is pulled inside the ε-tube. At these positions support vectors are located. Copyright c© 2002
[Smola and Schölkopf, 2002].
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We obtain as optimization problem

min
w,b,ξ+,ξ−,ε

1
2
‖w‖2 + C

(
ν ε +

1
l

l∑
i=1

(
ξ+
i + ξ−i

))
(4.124)

s.t. yi − (
wTxi + b

) ≤ ε + ξ+
i(

wTxi + b
) − yi ≤ ε + ξ−i

ξ+
i ≥ 0, ξ−i ≥ 0 and ε ≥ 0 .

The Lagrangian is

L
(
w, b, ξ+, ξ−,α+,α−,µ+,µ−, ε, β

)
= (4.125)

1
2
‖w‖2 + C ν ε +

C

l

l∑
i=1

(
ξ+
i + ξ−i

) − β ε −

l∑
i=1

(
µ+
i ξ

+
i + µ−i ξ

−
i

) −
l∑

i=1

α+
i

(
ε + ξ+

i − yi + wTxi + b
) −

l∑
i=1

α−i
(
ε + ξ−i + yi − wTxi − b

)
,

where α+,α−,µ+,µ− ≥ 0.

The saddle point conditions require

∂L

∂b
=

l∑
i=1

(
α+
i + α−i

)
= 0 (4.126)

∂L

∂w
= w −

l∑
i=1

(
α+
i − α−i

)
xi = 0

∂L

∂ξ+
=

C

l
1 − α+ − µ+ = 0

∂L

∂ξ−
=

C

l
1 − α− − µ− = 0

∂L

∂ε
= C ν −

l∑
i=1

(
α+ + α−

) − β = 0 .
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We obtain as dual formulation

min
α+,α−

1
2

(l,l)∑
i,j=(1,1)

(
α+
i − α−i

) (
α+
j − α−j

) (
xi
)T
xj − (4.127)

l∑
i=1

yi
(
α+
i − α−i

)
s.t. 0 ≤ α+

i ≤
C

l

0 ≤ α−i ≤
C

l
l∑

i=1

(
α+
i − α−i

)
= 0

l∑
i=1

(
α+
i + α−i

) ≤ C ν .

The normal vector of the regression function is given by w =
∑l

i=1

(
α+
i − α−i

)
xi.

Again b and ε can be computed for a pair of α+
i and α−j with 0 < α+

i , α
−
j <

C
l for which

ε + ξ+
i − yi + wTxi + b = 0 (4.128)

ε + ξ−j + yj − wTxj − b = 0 . (4.129)

Again we obtain similar statements as for the classification problem:

ν is an upper bound on the fraction of errors (points outside the ε-tube).

ν is a lower bound on the fraction of support vectors.

Under mild conditions: with probability 1, asymptotically, ν equals both the fraction of
support vector and the fraction of errors.

Figures 4.33, 4.34, and 4.35 show examples for ν-SV regression, where different ε, ν, and
kernel width σ are tried out.

Comments. In general much more support vectors are produced for the regression case if com-
pared to a classification problem. Also fast optimizers need much more time to find the solution
of a regression problem.

A robust loss function is also known from statistics to ensure robustness [Huber, 1981] who
defines the loss as{

1
2 σ (y − g(x))2 if |y − g(x)| < σ
|y − g(x)| − σ

2 otherwise
(4.130)

which is quadratic around zero and linear (Laplacian) elsewhere.
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Figure 4.33: ν-SV regression with ν = 0.2 (left) and ν = 0.8 (right). ε is automatically adjusted to
ε = 0.22 (left) and ε = 0.04 (right). Large ν allows more points to be outside the tube. Copyright
c© 2000 MIT Press Journals [Schölkopf et al., 2000].

Figure 4.34: ν-SV regression where ε is automatically adjusted to the noise level. Noise level
σ = 0 (left) and σ = 1.0 lead to ε = 0 (left) and ε = 1.19 (right), respectively. In both cases
the same parameter ν = 0.2 was used. Copyright c© 2000 MIT Press Journals [Schölkopf et al.,
2000].

Figure 4.35: Standard SV regression with the example from Fig. 4.34 (noise levels: left σ = 0 and
right σ = 1.0). ε = 0.2 was fixed which is neither optimal for the low noise case (left) nor for the
high noise case (right). Copyright c© 2000 MIT Press Journals [Schölkopf et al., 2000].
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.

w

ξ/‖w‖
ρ/‖w‖

Figure 4.36: The idea of the one-class SVM is depicted. The data points are separated from the
origin with the hyperplane which has the largest margin.

4.12 One Class SVM

Can the support vector technique be used for unsupervised learning? Yes!

An unsupervised SVM method called “one-class support vector machine” has been developed
[Schölkopf et al., 2001] which can be used for novelty detection and quantile estimation. The later
can be in turn used to filter data, i.e. select all candidates which are on quantiles with very large
margin.

The one-class support vector machine found its application already in bioinformatics. In bioin-
formatics tasks sometimes only one class can be determined with certainty, which makes the one-
class SVM a natural choice. For example protein-protein interactions are experimentally verified
however falsified data is not available. Protein-protein interactions were characterized by one-
class SVM [Alashwal et al., 2006]. In another application the goal was to detect new classes in
leukemia and lymphoma data set where also the one-class SVM was applied [Spinosa and de Car-
valho, 2005].

One-class SVMs can be used as a filtering method similar to the approach in [Vollgraf et al.,
2004]. If the negative class is huge then an one-class SVM may filter out all positives even if a
lot of false positives are present. The true positives can be separated from the false positives in
a binary classification task. The one-class SVM reduced the data set as a preprocessing step to a
binary classifier.

The idea of the one-class SVM is to separate the positive class from the origin, which is
considered as a single point of the negative class. In the context of SVMs the separation should be
performed with maximal margin. The idea is depicted in Fig. 4.36.
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We now apply the ν-SVM formulation from eq. (4.54) to this problem:

min
w̃,b̃,ξ̃,ρ̃

1
2
‖w̃‖2 − ν ρ̃ +

1
l

l∑
i=1

ξ̃i (4.131)

s.t. yi
(
w̃Txi + b̃

)
≥ ρ̃ − ξ̃i

ξ̃i ≥ 0 and ρ̃ ≥ 0 .

First we re-scale the values because the hyperplane is not supposed to be in its canonical form:

b̃ = ν b (4.132)

w̃ = ν w (4.133)

ρ̃ = ν ρ (4.134)

ξ̃ = ν ξ (4.135)

and obtain after scaling

min
w,b,ξ,ρ

1
2
‖w‖2 − ρ +

1
l ν

l∑
i=1

ξi (4.136)

s.t. yi
(
wTxi + b

) ≥ ρ − ξi

ξi ≥ 0 and ρ ≥ 0 .

The origin 0 is the negative class point with y = −1 all other data points have yi = 1.

We observed at the ν-SVM formulation that unbalanced classes are not suited for this task.
The remedy for this problem is to up-weight the error ξ− for the origin by factor of (l ν), which is
equivalent to place (l ν) negative class points at the origin.

The constraints say that wT0 + b ≤ − ρ + ξ−. The optimal value (reducing ξ− or
equivalently increasing b) is b = − ρ + ξ−.

We obtain for (l − 1) positive examples

min
w,b,ξ

1
2
‖w‖2 +

1
l ν

l−1∑
i=1

ξi + b (4.137)

s.t. wTxi + b ≥ − ξi, ξi ≥ 0 .

which gives for l positive points and re-scaling of ν the one class support vector optimization
problem:

min
w,b,ξ

1
2
‖w‖2 +

1
l ν

l∑
i=1

ξi + b (4.138)

s.t. wTxi + b ≥ − ξi, ξi ≥ 0 .
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The Lagrangian of the one class SVM formulation is

L(w, b,α, ξ) =
1
2
‖w‖2 +

1
l ν

l∑
i=1

ξi + b − (4.139)

l∑
i=1

αi
(
wTxi + b + ξi

) − l∑
i=1

µi ξi .

Setting the derivatives of L with respect to w,ξ, and b equal to zero gives:

w =
l∑

i=1

αi x
i (4.140)

αi =
1
l ν
− µi ≤ 1

l ν
l∑

i=1

αi = 1 .

The dual problem for the one-class SVM is

min
α

1
2

∑
i,j

αi αj
(
xi
)T
xj (4.141)

s.t. 0 ≤ αi ≤ 1
l ν

l∑
i=1

αi = 1 .

The value for b can again be determined from 0 < αj <
1
l ν as

b = −
l∑

i=1

αi
(
xi
)T
xj (4.142)

Note for ν = 1 a kernel density estimator is obtained because αi = αj = 1
l (especially ν ≤ 1

must hold).

Again we obtain similar ν-statements:

ν is an upper bound on the fraction of outliers (points which are negatively labeled).

ν is a lower bound on the fraction of support vectors.

Under mild conditions: with probability 1, asymptotically, ν equals both the fraction of
support vector and the fraction of outliers.

Worst case error bounds can be given similar to the standard support vector machines.

Figures 4.37 and 4.38 show the single-class SVM applied to toy problems where both ν and
the width σ of the Gaussian kernel is varied.
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ν, kernel width σ 0.5, 0.5 0.5, 0.5 0.1, 0.5 0.5, 0.1
frac. SVs/OLs 0.54, 0.43 0.59, 0.47 0.24, 0.03 0.65, 0.38
margin ρ

‖w‖ 0.84 0.70 0.62 0.48

Figure 4.37: A single-class SVM applied to two toy problems (upper left and upper right). The
second panel is the second problem with different values for ν and σ, the width of the Gaussian
kernel. In the second panel now the data points in the upper left corner are considered. “OLs”
means outliers and “SVs” support vectors. Copyright c© 2001 MIT Press Journals [Schölkopf
et al., 2001].
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Figure 4.38: A single-class SVM applied to another toy problem with σ = 0.5 and ν ∈
{0.1, 0.2, 0.4, 1.0} from upper left to lower right. Note, that ν = 1 (lower right) leads to a kernel
density estimate. Copyright c© 2001 MIT Press Journals [Schölkopf et al., 2001].
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4.13 Least Squares SVM

The C-SVM from eq. (4.32) was

min
w,b,ξ

1
2
‖w‖2 + C

l∑
i=1

ξi (4.143)

s.t. yi
(
wTxi + b

) ≥ 1 − ξi

ξi ≥ 0 .

The slack variable ξi denoted the error. The error is computed according to the 1-norm. How-
ever the 2-norm may also be possible.

min
w,b,ξ

1
2
‖w‖2 + C

l∑
i=1

ξ2
i (4.144)

s.t. yi
(
wTxi + b

) ≥ 1 − ξi ,

where ξi ≥ 0 is dropped and the dual variable µ disappears.

The derivative of the Lagrangian with respect to ξ is now

∂L
∂ξ

= 2 C ξ − α = 0 . (4.145)

Therefore

ξi =
1

2 C
αi (4.146)

which gives the terms −αi ξi = − 1
2 C α2

i and C ξ2
i = 1

4 C α2
i summing up to − 1

4 C α2
i .

The dual is now

min
α

1
2

∑
i,j

αi y
i αj y

j

((
xi
)T
xj +

1
2 C

δij

)
−

l∑
i=1

αi (4.147)

s.t. 0 ≤ αi
l∑

i=1

αi y
i = 0 ,

where δij is the Kronecker delta which is 1 for i = j and 0 otherwise.

Again be obtain known facts like

w =
l∑

i=1

αi y
i xi . (4.148)
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Also the offset b can be regularized which removes the quality constraint from the dual. How-
ever the problem is no longer translation invariant.

The primal problem formulation is

min
w,b,ξ

1
2
‖w‖2 +

1
2
b2 + C

l∑
i=1

ξ2
i (4.149)

s.t. yi
(
wTxi + b

) ≥ 1 − ξi .

The derivative with respect to b is now

∂L
∂b

= b −
l∑

i=1

αi y
i = 0 (4.150)

(4.151)

We have now the terms 1
2 b

2 = 1
2

∑
i,j αi y

i αj y
j and −b ∑i y

i αi = −∑i,j αi y
i αj y

j

in the Lagrangian which gives together −1
2

∑
i,j αi y

i αj y
j .

The dual is in this case

min
α

1
2

∑
i,j

αi y
i αj y

j

((
xi
)T
xj + 1 +

1
2 C

δij

)
−

l∑
i=1

αi (4.152)

s.t. 0 ≤ αi .

The value b can be computed through

b =
l∑

i=1

αi y
i . (4.153)

From the KKT conditions it can be inferred that the optimal solution satisfies

αT (Q α 1) = 0 , (4.154)

where

Qij = yi yj
((
xi
)T
xj + 1 +

1
2 C

δij

)
. (4.155)

A linear to the solution converging iteration scheme is

αt+1 = Q−1
(((
Q αt − 1

) − γ αt
)

+
+ 1

)
, (4.156)

where (. . .)+ sets all negative components of a vector to zero.

However this algorithm needs the inversion of a matrix which is computational expensive. But
the inversion must be made only once. An SMO-like algorithm might be faster.
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Figure 4.39: LEFT: Data points from two classes (triangles and circles) are separated by the SVM
solution. The two support vectors are separated by dx along the horizontal and by dy along the

vertical axis, from which we obtain the margin γ = 1
2

√
d2
x + d2

y and R2

γ2 = 4 R2

d2
x + d2

y
. The

dashed line indicates the classification boundary of the classifier shown on the right, scaled back
by a factor of 1

s . RIGHT: The same data but scaled along the vertical axis by the factor s. The data
points still lie within the sphere of radius R. The solid line denotes the support vector hyperplane,
whose back-scaled version is also shown on the left (dashed line). We obtain γ = 1

2

√
d2
x + s2 d2

y

and R2

γ2 = 4 R2

d2
x + s2 d2

y
. For s 6= 1 and dy 6= 0 both the margin γ and the term R2

γ2 change with
scaling.

4.14 Potential Support Vector Machine

Both the SVM solution and the bounds on the generalization from the last chapter are not invariant
under linear transformations like scaling.

The dependence on scaling is illustrated in Fig. 4.39, where the optimal hyperplane is not
invariant under scaling, hence predictions of class labels may change if the data is re-scaled before
learning. We found in previous chapter in Subsection 3.6.5 in theorem 3.10 that the VC-dimension
was bounded by

dVC ≤ R2

γ2
. (4.157)

This bound is also not scale invariant as shown in Fig. 4.39.

However if we given the length in meters, centimeters, or millimeters scales the data. Often
the output of measurement devices must be scaled to make different devices compatible. For
many measurements the outputs are scaled for convenient use and do not have any meaning. If
the classifier depends on then scale factors: which scale factors should be used? Therefore scaling
invariance seems to be desirable for obtain robust classification.

For the Potential Support Vector Machine (P-SVM) the training data is scaled such that the
margin γ remains constant while the new radius Rmin of the sphere containing all training data
becomes as small as possible. In principle all data points are projected onto a line in direction w.
All directions orthogonal to the normal vector w of the hyperplane with maximal margin γ are
scaled to zero.
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For simplicity we assume that the data is centered at the origin. We then obtain for the new
radius:

Rmin = max
i

∣∣∣∣ wT

‖w‖x
i

∣∣∣∣ . (4.158)

The new complexity measure instead of the margin would be

R2
min

γ2
=

1
‖w‖2

(
max
i

∣∣wTxi
∣∣)2

‖w‖2 = max
i

(
wTxi

)2
. (4.159)

Note that

max
i

(
wTxi

)2 ≤ R2

γ2
(4.160)

for R = maxi
∥∥xi∥∥ follows from the Cauchy-Schwarz inequality. Therefore the new bond is

tighter than the margin bound.

Because the objective maxi
(
wTxi

)2 is inconvenient to optimize, an upper bound on these
objective is optimized instead:

max
i

(
wTxi

)2 ≤ ∑
i

(
wTxi

)2
= wTX XTw . (4.161)

Using the objective

wTX XTw =
∥∥XTw

∥∥2
. (4.162)

instead of wTw is equivalent to first sphering the data and then applying a standard SVM. This
approach is called “sphered support vector machine” (S-SVM).

Minimizing the new objective leads to normal vectors which tend to point in directions of
low variance of the data. For sphered data the covariance matrix is given by 1

l X XT = I
and we recover the classical SVM because scaling of the objective does not matter. The new
objective leads to separating hyperplanes which are invariant to linear transformations of the data.
Consequently, the bounds and the performance of the derived classifier no longer depend on scale
factors. Note, that the kernel trick carries over to the S-SVM.

The S-SVM is computational expensive to optimize, because in various expressions
(
X XT

)−1

appear.

Let us assume we have a dot product matrix

Kij =
(
xi
)T
zj (4.163)

that is

K = XT Z . (4.164)
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Figure 4.40: The standard SVM (left) in contrast to the sphered SVM (right). Scaling the data
and back-scaling gives the original S-SVM solution in contrast to the standard SVM where the
solutions differ.
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The vectors
(
z1, z2, . . . ,zN

)
are called complex features summarized in the matrixZ and are

used to describe the separating hyperplane.

Note that the separating hyperplane can be described by any set of points and not only by the
data points which must be classified.

Analog to the least square SVM, the residual error ri for xi is defined as

ri = wTxi + b − yi . (4.165)

If we assume

w =
N∑
j=1

αjz
j (4.166)

then

ri =
N∑
j=1

αjKij + b − yi . (4.167)

that is ri is linear in Kij .

The empirical error, the mean square error, is defined as

Remp =
1
l

l∑
i=1

r2
i (4.168)

and it is minimal if

∂Remp

∂αj
= 2

1
l

l∑
i=1

ri Kij = 0 (4.169)

for every 1 ≤ j ≤ N .

This motivates a new set of constraints

KTr = KT
(
XT w + b1 − y

)
= 0 , (4.170)

which an optimal classifier must fulfill.

Because the error is quadratic in α the absolute value of ∂Remp

∂αj
gives the distance to the

optimum. A threshold ε may threshold the difference to the optimum and the constraints are

KT
(
XT w + b1 − y

) − ε 1 ≤ 0 , (4.171)

KT
(
XT w + b1 − y

)
+ ε 1 ≥ 0 .

Because different zj may have different length and therefore the K.j have different variance.
That means, the αj scale differently and are not comparable and in terms of absolute values. To
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make the αj comparable to one another, the vectors K.j are normalized to zero mean and unit
variance:

m∑
i=1

Kij = 0 (4.172)

1
m

m∑
i=1

K2
ij = 1 . (4.173)

in a preprocessing step. That means

KT1 = 0 . (4.174)

The constraints simplify to

KT
(
XT w − y

) − ε 1 ≤ 0 , (4.175)

KT
(
XT w − y

)
+ ε 1 ≥ 0 .

The value for ε should be adapted to the level of measurement noise, and should increase if
the noise becomes larger.

After the introduction of the slack variables we obtain the primal optimization problem of the
Potential Support Vector Machine (P-SVM),

min
w,ξ+,ξ−

1
2
‖XT w‖22 + C 1T

(
ξ+ + ξ−

)
(4.176)

s.t. KT
(
XT w − y

)
+ ε 1 + ξ+ ≥ 0

KT
(
XT w − y

) − ε 1 − ξ− ≤ 0

ξ+ ≥ 0, ξ− ≥ 0 .

The Lagrangian L is given by

L =
1
2
wT X XT w + C 1T

(
ξ+ + ξ−

) − (4.177)(
α+
)T (

KT
(
XT w − y

)
+ ε 1 + ξ+

)
+(

α−
)T (

KT
(
XT w − y

) − ε 1 − ξ−
) −(

µ+
)T
ξ+ − (

µ−
)T
ξ− .

The optimality conditions require that the following derivatives with respect to the primal
variables of the Lagrangian L are zero:

∂L

∂w
= X XT w − X K α = 0 , (4.178)

∂L

∂ξ+
= C1 − α+ − µ+ = 0 ,

∂L

∂ξ+
= C1 − α− − µ− = 0 .
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In order to ensure the first condition

X XT w = X K α = X XTZ α (4.179)

one solution is

w = Z α =
N∑
j=1

αj z
j . (4.180)

In contrast to the standard SVM expansion ofw by its support vectors x, the weight vectorw
is now expanded using the complex features z which serve as the support vectors in this case.

The last two conditions are fulfilled if

α+ ≤ C1 and α− ≤ C1 . (4.181)

The dual optimization problem of the P-SVM is:

min
α+,α−

1
2
(
α+ − α−

)T
KT K

(
α+ − α−

) − (4.182)

yT K
(
α+ − α−

)
+ ε 1T

(
α+ + α−

)
s.t. 0 ≤ α+ ≤ C1 ,

0 ≤ α− ≤ C1 .

To determine b we find its optimal value by setting the derivative of the empirical error to zero:

∂Remp

∂b
= 2

1
l

l∑
i=1

ri = 0 , (4.183)

therefore

b =
1
l

l∑
i=1

yi − wTxi = (4.184)

1
l

l∑
i=1

yi − 1
l
wTX1 =

1
l

l∑
i=1

yi − 1
l
αTKT1 =

1
l

l∑
i=1

yi .

The discriminant function is

N∑
j=1

αj (zj)Tx + b =
N∑
j=1

αj Kxj + b . (4.185)
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At the optimum, the value of the objective is

wT X XT w =
(
α+ − α−

)T
KTy − (4.186)

ε 1T
(
α+ + α−

) − α+ ξ+ + α−ξ− .

It can be seen that increasing ε or allowing larger values of ξ+ or ξ− reduces the complexity term.

Note, that the K is not required to be positive semi-definite or even square, because only the
quadratic partKT K, which is always positive definite, appears in the objective function.

The matrixK = XTX , where zj = xj and l = N , orK = X , where zj = ej (Z = I),
or a Gram matrix, where Kij = k(xi,xj) (xiφ = φxi and zjφ = φxj). The Gram matrix must
not be positive definite. The P-SVM can also be applied for kernels which are not positive definite.

Most importantly, the P-SVM can be used for feature selection because the αj weight the
features zj . The optimal separating hyperplane is expressed through support features. The number
of features which are selected can be controlled by the hyperparameter ε.

The matrix K can also be a measurement matrix because measurements can be expressed as
dot products. For example, the matrix K is identified with the matrix obtained by a micro array
experiment and xi are tissue samples and zj are genes. In this case the value Kij =

(
xi
)T
zj is

the expression of the j-th gene in the i-th tissue sample.

Therefore the P-SVM is an ideal tool for gene selection.

4.15 SVM Optimization and SMO

4.15.1 Convex Optimization

Convex Problems.

The optimization problem

min
x

f(x) (4.187)

s.t. ∀i : ci(x) ≤ 0
∀j : ej(x) = 0 ,

where f, ci, and ej are convex functions has as solution a convex set and if f is strictly convex
then the solution is unique. This problem class is call “constraint convex minimization”.

Note, that all SVM optimization problems we encountered so far are constraint convex mini-
mization problems.

The Lagrangian is

L(x,α,µ) = f(x) +
∑
i

αi ci(x) +
∑
j

µj ej(x) , (4.188)

where αi ≥ 0. The variables α and µ are called “Lagrange multipliers”. Note, that the La-
grangian can be build also for non-convex functions.
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Figure 4.41: Application of the P-SVM method to a toy classification problem. Objects x and
complex features z are in a two-dimensional space. The feature vectors x for 34 objects, 17
from each class, were chosen as shown in the figure (open and solid circles), and 50 feature
vectors (complex features) were generated randomly and uniformly from the interval [−2, 2] ×
[−2, 2]. The figures show the resulting P-SVM classifier for the polynomial kernel k

(
xi, zj

)
=(〈

xi, zj
〉

+ κ
)d (poly), the RBF kernel k

(
xi, zj

)
= exp(− 1

σ2 ‖xi − zj‖2 (RBF), and the
sine-kernel k

(
xi, zj

)
= sin(θ ‖xi − zj‖) (sine). Gray and white regions indicate areas of class

1 and class 2 membership as predicted by the selected classifiers and crosses indicate support
features. Parameters are given in the figure.
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Figure 4.42: Application of the P-SVM method to another toy classification problem. Objects
are described by two-dimensional feature vectors x, and 70 feature vectors were generated of
which 28 belong to class 1 (open circles) and 42 belong to class 2 (solid circles). A Gram ma-
trix was constructed using the positive definite RBF kernel (left) and the indefinite sine-kernel
k
(
xi,xj

)
= sin

(
θ ‖xi − xj‖) (right). White and gray indicate regions of class 1 and class 2

membership. Circled data indicate support vectors. Parameters are given in the figure.

Assume that a feasible solution exists then the following statements are equivalent, where x
denotes a feasible solution:

(a) an x exists with ci(x) < 0 for all i (Slater’s condition),

(b) an x and αi ≥ 0 exist such that
∑

i αi ci(x) ≤ 0 (Karlin’s condition).

Above statements (a) or (b) follow from the following statement

(c) there exist at least two feasible solutions and a feasible x such that all ci are strictly convex
at x w.r.t. the feasible set (strict constraint qualification).

The saddle point condition of Kuhn-Tucker:
If one of (a) - (c) holds then

L (x̂,α,µ) ≤ L (x̂, α̂, µ̂) ≤ L (x, α̂, µ̂) . (4.189)

is necessary and sufficient for (x̂, α̂, µ̂) being a solution to the optimization problem. Note, that
“sufficient” also holds for non-convex functions.

The optimal Lagrange multipliers α̂ and µ̂ maximize L with x fixed to the optimal solution
x̂. The optimal x̂ minimize L with Lagrange multipliers fixed to their optimal solution α̂ and µ̂.

All (x̂, α̂, µ̂) which fulfill the saddle point condition eq. (4.189) are a solution to the optimiza-
tion problem.

To see that assume that (x̂, α̂, µ̂) satisfy the saddle point condition eq. (4.189). FromL (x̂,α,µ) ≤
L (x̂, α̂, µ̂) it follows that∑

i

(αi − α̂i) ci(x̂) +
∑
j

(µj − µ̂j) ej(x̂) ≤ 0 . (4.190)
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Figure 4.43: Application of the P-SVM method to a toy regression problem. Objects (small dots),
described by the x-coordinate, were generated by randomly choosing points from the true func-
tion (dashed line) and adding Gaussian noise with mean 0 and standard deviation 0.2 to the y-
component of each data point. One outlier was added by hand at x = 0. A Gram matrix was then
generated using an RBF-kernel with width σ. The solid lines show the regression result. Circled
dots indicate support vectors. Parameters are given in the figure. The arrows in the figures mark
x = −2, where the effect of local vs. global smoothing can be seen.
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Figure 4.44: Application of the P-SVM method to a toy feature selection problem for a classi-
fication task. Objects are described by two-dimensional vectors x and complex features by z.
Vectors x for 50 objects, 25 from each class (open and solid circles), were generated randomly by
choosing a center from {(1, 1), (1,−1), (−1, 1), (−1,−1)} with equal probability, then adding to
each coordinate of the center a random value, which stems from a Gaussian with mean 0 and stan-
dard deviation 0.1. Feature vectors z (complex features) were generated randomly and uniformly
from the interval [−1.2, 1.2]× [−1.2, 1.2]. An RBF-kernel exp

(− 1
2 σ2 ‖xi − zj‖2) with width

σ = 0.2 is applied to each pair
(
xi, zj

)
of object and complex feature in order to construct the

data matrixK. Black crosses indicate the location of features selected by the P-SVM method.

If we set all µj = µ̂j and αi = α̂i except αk = α̂k + 1 then we obtain ck(x̂) ≤ 0 which shows
the x̂ fulfills the constraints. The equality constraint ei(x) = 0 can be replaced by constraints
ei(x) ≤ 0 and ei(x) ≥ 0. From both constraints follows 0 ≤ ek(x̂) ≤ 0, therefore,
ek(x̂) = 0 (here we can introduce µ+ and µ− and set µk = µ+

k − µ−k ).

If we set all µj = µ̂j and αi = α̂i except αk = 0 then we obtain α̂k ck(x̂) ≥ 0. Because
α̂k ≥ 0 and from above ck(x̂) ≤ 0 we have α̂k ck(x̂) ≤ 0. It follows that

α̂i ci(x̂) = 0 (4.191)

and analog

µ̂j ej(x̂) = 0 . (4.192)

These conditions are called “Karush-Kuhn-Tucker” conditions or KKT conditions.

For differentiable problems the minima and maxima can be determined.

Theorem 4.6 (KKT and Differentiable Convex Problems)
A solution to the problem eq. (4.187) with convex, differentiable f , ci, and ej is given by x̂ if
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Figure 4.45: Application of the P-SVM to a toy feature selection problem for a regression task.
100 data points are generated from the true function (dashed line) by randomly and uniformly
choosing data points from the true function and adding Gaussian noise with mean 0 and standard
deviation 10 to the function value. A Gram matrix was constructed using an RBF-kernel with
width σ = 2. The figure shows the P-SVM regression functions (solid lines) and the selected
support vectors (circled dots). Parameters are given in the figure.
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α̂i ≥ 0 and µ̂j exist which satisfy:

∂L(x̂, α̂, µ̂)
∂x

=
∂f(x̂)
∂x

+ (4.193)∑
i

α̂i
∂ci(x̂)
∂x

+
∑
j

µ̂j
∂ej(x̂)
∂x

= 0

∂L(x̂, α̂, µ̂)
∂αi

= ci(x̂) ≤ 0 (4.194)

∂L(x̂, α̂, µ̂)
∂µj

= ej(x̂) = 0 (4.195)

∀i : α̂i ci(x̂) = 0 (4.196)

∀j : µ̂j ej(x̂) = 0 (4.197)

For all x,α and µ for which eq. (4.193) to eq. (4.195) are fulfilled we have

f(x) ≥ f(x̂) ≥ f(x) +
∑
i

αi ci(x) , (4.198)

note that ej(x) = 0.

The dual optimization problem (Wolfe’s dual) to the optimization problem eq. (4.187) is

max
x,α,µ

f(x) +
∑
i

αi ci(x) +
∑
j

µj ej(x) (4.199)

s.t. ∀i : αi ≥ 0
∂L(x,α,µ)

∂x
= 0 .

The solutions of the dual eq. (4.199) are the solutions of the primal eq. (4.187). If ∂L(x,α,µ)
∂x = 0

can be solved for x and inserted into the dual, then we obtain a maximization problem in α.

Linear Programs.

min
x

cTx (4.200)

s.t. A x + d ≤ 0 ,

whereA x + d ≤ 0 means that for all i:
∑l

j=1Aij x
j + dj ≤ 0.

The Lagrangian is

L = cTx + αT (A x + d) . (4.201)
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The optimality conditions are

∂L

∂x
= ATα + c = 0 (4.202)

∂L

∂α
= A x + d ≤ 0 (4.203)

αT (A x + d) = 0 (4.204)

α ≥ 0 . (4.205)

The dual formulation is after insertingATα + c = 0 into the Lagrangian:

max
α

dTα (4.206)

s.t. AT α + c = 0

α ≥ 0 .

We compute the dual of the dual. We first make a minimization problem by using − dTα as
objective and also use − α ≤ 0 as well as − AT α − c = 0 is with Lagrange multiplier x′

for the equality constraints −AT α − c = 0 and µ for −α ≤ 0. The dual of the dual is after
again transforming it into a minimization problem:

min
α,µ

cTx′ (4.207)

s.t. A x′ + d + µ = 0

µ ≥ 0 .

Because µ do not influence the objective, we can chose them free. Therefore we obtain again the
primal eq. (4.187) because we only have to ensureA x′ + d ≤ 0.

Quadratic Programs.

The primal quadratic problem is

min
x

1
2
xTKx + cTx (4.208)

s.t. A x + d ≤ 0 ,

whereK is strictly positive definite (implying thatK−1 exists).

The Lagrangian is

L(x,α) =
1
2
xTKx + cTx + αT (A x + d) . (4.209)

The optimality conditions are

∂L

∂x
= K x + ATα + c = 0 (4.210)

∂L

∂α
= A x + d ≤ 0 (4.211)

αT (A x + d) = 0 (4.212)

α ≥ 0 . (4.213)
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The first equation is used to substitute x in the Lagrangian:

L(x,α) =
1
2
xTKx + cTx + αT (A x + d) = (4.214)

− 1
2
xTKx +

(
xTK + cT + αTA

)
x + αTd =

− 1
2
xTKx + αTd =

− 1
2
(−K−1

(
c + ATα

))T
K
(−K−1

(
c + ATα

))
+ αTd =

− 1
2
αTAK−1ATα +

(
dT − cTK−1AT

)
α − 1

2
cTK−1c .

Note that 1
2c
TK−1c is constant in α and x. We transform the maximization again into mini-

mization by using the negative objective.

The dual is

min
x

1
2
αTAK−1ATα − (

dT − cTK−1AT
)
α (4.215)

s.t. 0 ≤ α .

Note that the dual of the dual is in general not the primal but a similar problem. Dualizing
twice, however, gives again the dual.

Optimization of Convex Problems.

The convex optimization can be solved by gradient descent or constraint gradient descent
methods. See next chapter for such methods.

Efficient methods are interior point methods. An interior point is a pair (x,α) which satisfies
both the primal and dual constraints.

We can rewritten the optimality conditions of eq. (4.210) as

K x + ATα + c = 0 (4.216)
∂L

∂α
= A x + d + ξ = 0 (4.217)

αT ξ = 0 (4.218)

α, ξ ≥ 0 , (4.219)

where we set 0 ≤ ξ = − (A x + d).

The first two equations are linear in the variables α and ξ, however the third equations is
quadratic.

Interior point algorithms solve these equations in by an iterative method called “predictor-
corrector” and set αi ξi = η > 0 which is decreased (annealed) to zero.
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4.15.2 Sequential Minimal Optimization

Because support vector machines are applied to large problems efficient solvers are needed.

The first idea is to do “chunking”, i.e. optimize only on a subset of the data points an extract
the support vectors. If this is done multiple times then the previous support vectors can be used
to optimize the final problem. Idea is, if we selected all final support vectors then the solution is
optimal.

Another idea is to select a “working set”. The working set are the variables which are opti-
mized while the remaining variables are freezed (kept constant).

The working set idea can be driven to its extreme by only selecting two variables for optimiza-
tion. This method is called “Sequential Minimal Optimization” (SMO) and introduced by Platt.
Advantage of SMO algorithms is that the problems for two variables can be solved analytically.

Almost all implementations of SVMs are based on an SMO algorithm because of its efficiency.

We start with the C-SVM optimization problem given in eq. (4.42):

min
α

1
2

∑
i,j

αi y
i αj y

j
(
xi
)T
xj −

l∑
i=1

αi (4.220)

s.t. 0 ≤ αi ≤ C
l∑

i=1

αi y
i = 0 .

If we fix all αi except for two α-values. Without loss of generality we denote these two alphas
by α1 and α2.

We obtain for the equality constraint

y1 α1 + y2 α2 +
l∑

i=3

αi y
i = 0 (4.221)

which is

y1 y2 α1 + α2 = −
l∑

i=3

αi y
i y2 (4.222)

If we set s = y1 y2 and γ = − ∑l
i=3 αi y

i y2 then we have

s α1 + α2 = γ . (4.223)

This equation must still hold after α1 and α2 are optimized (changed) in order to fulfill the equality
constraint. If we set Kij =

(
xi
)T
xj or Kij = k(xi,xj) then we obtain for the optimization of
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α1 = C

α2 = C

α2 = 0

α1 = 0 α1 = C

α2 = C

α2 = 0

α1 = 0

s = −1 : α2 − α1 = γ s = 1 : α2 + α1 = γ

Figure 4.46: The two Lagrange multipliers α1 and α2 must fulfill the constraint s α1 + α2 = γ.
The two possibilities for s = −1 (left) and s = 1 (right) are depicted.

two variables

min
α1,α2

1
2
(
α2

1 K11 + α2
2 K22 + 2 s α1 α2 K12

)
+ (4.224)

c1 α1 + c2 α2

s.t. 0 ≤ α1, α2 ≤ C

s α1 + α2 = γ ,

where c1 = − 1 + y1
∑l

i=3K1i y
i αi and c2 = − 1 + y2

∑l
i=3K2i y

i αi. The constraint
s α1 + α2 = γ is depicted in Fig. 4.46.

Let us consider for the moment the optimization problem without the box constraints 0 ≤
α1, α2 ≤ C.

We insert α2 = γ − s α1 into the objective and obtain

1
2

(
α2

1 K11 + (γ − s α1)2K22 + 2 s α1 (γ − s α1)K12

)
(4.225)

+ c1 α1 + c2 (γ − s α1) =
1
2
(
(K11 + K22 − 2 K12)α2

1 +

(− 2 γ s K22 + 2 γ s K12 + 2 c1 − 2 s c2)α1) +
1
2
γ2 K22 + c2 γ

For the optimum, the derivative with respect to α1 must be zero:

(K11 + K22 − 2 K12)α1 + (4.226)

(− γ s K22 + γ s K12 + c1 − s c2) = 0

The optimal α1 is

α1 =
γ s K22 − γ s K12 − c1 + s c2

K11 + K22 − 2 K12
. (4.227)
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We use the discriminant function values

f(x1) =
l∑

i=1

yi αi Ki1 + b (4.228)

f(x2) =
l∑

i=1

yi αi Ki2 + b . (4.229)

We now can rewrite c1 and c2 as

c1 = y1 f(x1) − y1 b − 1 − K11 α1 − s K12 α2 (4.230)

c2 = y2 f(x2) − y2 b − 1 − K22 α2 − s K12 α1 (4.231)

s c2 = y1 f(x2) − y1 b − s − s K22 α2 − K12 α1 (4.232)

(4.233)

Because of

γ = α2 + s α1 (4.234)

we obtain

γ s K22 − γ s K12 = (4.235)

s K22 α2 + K22 α1 − s K12 α2 − K12 α1 .

Now we can rewrite the enumerator of eq. (4.227):

γ s K22 − γ s K12 − c1 + s c2 = (4.236)

s K22α2 + K22 α1 − s K12 α2 − K12 α1 −
y1 f(x1) + y1 b + 1 + K11 α1 + s K12 α2 +
y1 f(x2) − y1 b − s − s K22 α2 − K12 α1 =
y1
(
f(x2) − f(x1)

)
+

α1 (K22 + K11 − 2 K12) + 1 − s =
y1
((
f(x2) − y2

) − (
f(x1) − y1

))
+

α1 (K22 + K11 − 2 K12) ,

where the last equality stems from the fact that (1 − s) = y1 (y1 − y2).

As update for α1 we obtain

αnew
1 = α1 +

y1
((
f(x2) − y2

) − (
f(x1) − y1

))
K11 + K22 − 2 K12

. (4.237)

Because

s αnew
1 + αnew

2 = γ = s α1 + α2 (4.238)
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we obtain for the update of α2

αnew
2 = α2 + s (α1 − αnew

1 ) . (4.239)

However we did not consider the box constraints until now.

We define as new bounds

L =
{

max{0, α1 − α2} if s = −1
max{0, α1 + α2 − C} otherwise

(4.240)

H =
{

min{C,C + α1 − α2} if s = −1
min{C,α1 + α2} otherwise

. (4.241)

We obtain finally following update rules:

if

K11 + K22 − 2 K12 = 0 (4.242)

then

αnew
1 =

{
H if y1

((
f(x2) − y2

) − (
f(x1) − y1

))
> 0

L otherwise
. (4.243)

else

K11 + K22 − 2 K12 > 0 (4.244)

then first compute

αtemp
1 = α1 +

y1
((
f(x2) − y2

) − (
f(x1) − y1

))
K11 + K22 − 2 K12

. (4.245)

and then

αnew
1 =


H if H ≤ αtemp

1

αtemp
1 if L < αtemp

1 < H

L if αtemp
1 ≤ L

. (4.246)

In both cases (“if” and “else” case) the update for α2 is

αnew
2 = α2 + s (α1 − αnew

1 ) . (4.247)

Selection Rules.

The question arises how to chose α1 and α2.

We have to chose two αs.
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An outer loop chooses α1. This loop iterates over all patterns i which violate the KKT condi-
tions. αi’s on the boundary are skipped in a first round. Afterwards also αi on the boundary are
treated.

Sometimes a whole sweep through the KKT violating data should be made to keep everything
consistent.

The second α2 is chosen to make a large step towards the minimum. Here large steps in α are
considered even if the objective is decreased by a small amount.

Pratt uses a heuristics where he only evaluates the numerator of the update rule. He avoids
to evaluate the kernel for checking new alphas. Therefore large differences in the relative errors
f(x1) − y1 and f(x2) − y2 are looked for.

If this heuristics for choosing α2 fails then (1) at all non-bound examples are looked then (2)
all examples are looked at to make progress and finally (3) if these choices fail then a new α1 is
chosen.

Other heuristics mark updated αs in order to avoid cycles where three or more αs are updated
and small progress is made. Marked αs can be updated simultaneously in a special step to avoid
the cycles.

Initially α = 0 is a good starting point and to prefer if few support vectors will be selected.

Another trick is to introduce ε from the regression setting or from the P-SVM in order to select
only few support vectors. These support vectors can be used in another round with reduced ε
which can be viewed as annealing of support vectors.

Note that after each α update the f(xi) can be updated and sums over all α > 0 can be
avoided.

Similar SMO algorithms exist for all other SVM approaches, where the regression setting with
α+
i and α−i can be made efficiently because only one of these α can be different from zero.

As stopping criterion the KKT conditions may be used.

4.16 Designing Kernels for Bioinformatics Applications

At the beginning of the chapter in Section 4.1, a couple of special kernels for bioinformatics have
been mentioned.

Here we will explain some of these kernels which are relevant for bioinformatics.

Remember that every positive definite kernel is a dot product in some space as follows from
Mercer’s theorem.

In general performance is optimized if the kernel is designed, i.e. an expert defines which and
how features are extracted from the original data. The mapping of the original data to the features
is was called “feature map” and the feature map combined with dot product is a kernel.

4.16.1 String Kernel

The string kernel describes a string by all its subsequences. Subsequences do not need to be
contiguous that is gaps are allowed.
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The string kernel counts k how often the subsequence occurs and the distance t between the
first and the last symbol. The contribution of a subsequence is

k λt , (4.248)

where 0 < λ ≤ 1 is a decay factor. Therefore, the contribution decays exponentially with the
number of gaps.

For a subsequence all contributions of its occurrences are summed up to give the final score
for the subsequence.

The substring “BIO” in “BIOINFORMATICS” obtains 1 · λ3 + 2 · λ7 as score, because the
following subsequences exist:

BIOINFORMATICS

BIOINFORMATICS

BIOINFORMATICS.

The string kernel as an upper limit n of length of the substrings it will consider. To be inde-
pendent of the length of the string the feature vector is normalized to length one. A standard dot
product or an RBF kernel can be used to perform the dot product. The string kernel is the feature
vector generation together with the dot product.

4.16.2 Spectrum Kernel

The spectrum kernel is similar to the string kernel it counts occurrences of subsequences of length
n in the string. However gaps are not allowed.

The kernel only checks whether the corresponding substring is contained in the string.

4.16.3 Mismatch Kernel

The mismatch kernel is similar to the spectrum kernel it counts occurrences of gapless subse-
quences of length n with no more than m mismatches. The kernel only checks whether the corre-
sponding substring is contained in the string with less or equal to m mismatches.

4.16.4 Motif Kernel

A library of motifs from PROSITE or BLOCKS or PRINTS databases is build. The occurrence of
a motif is the feature vector.

4.16.5 Pairwise Kernel

The feature vector is the vector of alignment scores to the training set. That means a new vector is
aligned to all training sequences and the resulting scores give the feature vector.
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4.16.6 Local Alignment Kernel

The Smith-Waterman algorithm finds the highest scoring local alignment SW (x,y, S, g) (see
Bioinformatics 1), where x and y are strings, S is a scoring Matrix (e.g. PAM or BLOSUM), and
g is a gap penalty (or gap opening and extending penalty).

SW (x,y, S, g) = max
is,ie,js,je

s(x,y, S, g, is, ie, js, je) , (4.249)

where s(x,y, S, g, is, ie, js, je) is the alignment score (Needleman-Wunsch) if the subsequence
(xis , . . . , xie) is aligned to (yjs , . . . , yje).

Because the Smith-Waterman score is not positive definite another kernel has to be defined.

The “local alignment kernel”

kLA(x,y, S, g, β) = (4.250)∑
is=1,ie=is+1,js=1,je=js+1

exp (β s(x,y, S, g, is, ie, js, je))

is a positive definite kernel.

4.16.7 Smith-Waterman Kernel

In some application the Smith-Waterman score is used as kernel. However the theoretical basis is
missing because it is not positive definite. It may not be a dot product in some space.

But the P-SVM can naturally use the Smith-Waterman score as kernel because positive defi-
niteness is not longer necessary.

4.16.8 Fisher Kernel

A class of kernels can be defined on generative models. They are very attractive because gen-
erative models can deal with different sequence length, with missing or incomplete data, or with
uncertainty. An advantage of generative models is that they supply a likelihood p({x};w) for new
data {x} which is a measure which can be interpreted statistically.

A class of kernels is defined as

kM (x,y) =
∂ ln p(x;w)

∂w
M−1 ∂ ln p(y;w)

∂w
, (4.251)

where M = IF (w) is called the “Fisher kernel” and M = I is called the “plain kernel” which
is often used to approximate the Fisher kernel and then also called “Fisher kernel”.

The Fisher kernel was introduced for protein homology detection Jaakkola et al. [1999, 2000]
where a hidden Markov model (a generative model) was trained on the positive examples. There-
after a SVM with Fisher kernel was used as discriminative method which can also take into account
the negative examples.
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4.16.9 Profile and PSSM Kernels

The kernel working on the sequence can be generalized to kernels working on profiles or position
specific scoring matrices (PSSMs). PSSMs are obtained by letting PSI-BLAST run against a data
base like NR.

Instead of the original sequence an average over very similar sequences is processed. The
similar sequences are found by PSI-BLAST in a large data base and then averaged by a multiple
alignment. Per column of the alignment a frequency vector or a scoring vector (the PSSM) can be
computed.

Instead of alignment methods profile alignment methods must be used.

4.16.10 Kernels Based on Chemical Properties

Kernels have been suggest which take into account the chemical properties of amino acid se-
quences like hydrophobicity, polarity, atomic weight, bulkiness, etc.

However these kernels where in general inferior to the kernels based on alignment or profiles.

4.16.11 Local DNA Kernel

Here DNA sequences are locally matched in a window. The window is shifted over the sequences.

This kernel is used to detect start codons where translation starts.

The kernel can be improved by shifting 3 nucleotides which accounts for frame shifts.

4.16.12 Salzberg DNA Kernel

Similar as with PSSMs also for DNA log-odd scores can be computed according to the Salzberg
method.

4.16.13 Shifted Weighted Degree Kernel

String kernel where positions are important. “Weighted Degree Kernel” uses fixed position mea-
sured with respect to a reference point. “Shifted Weighted Degree Kernel” shifts the sequences
against each other in order to make the positions more fuzzy.

These kernels are used to detect alternative splice sites in DNA sequences.

4.17 Kernel Principal Component Analysis

In Section 4.7 the kernel trick was mentioned. The kernel trick can be applied to every algorithm
which is based on dot products. The kernel trick replaces the dot product by a kernel which is
equivalent to mapping the vectors into a feature space and then building the dot product in this
feature space.
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The kernel trick is not always obvious because some algorithms can be formulated solely by
dot products but their standard description is different.

Pre-images. Difficulties appear if the result is a vector like with clustering the cluster centers.
In this case the result has to be projected back into the original space but the data points only form
a sub-manifold in the feature space on which the resulting vector in general is not located on. This
is the problem of pre-images for which different heuristics exist. However an exact solution to this
problem is impossible because a distance measure in the feature space between the result and the
manifold of data points must be defined.

We want to demonstrate the kernel trick for Principal Component Analysis (PCA) which is
called Kernel Principal Component Analysis or kernel PCA.

PCA review. PCA computes the covariance matrixC of the data, then determinesC’s eigen-
vectors w which are sorted by their eigenvalues λ. The projection xTwi of a data vector x onto
the i-th eigenvector wi is the i-th principal component of the data vector x. PCA is often used
for dimensionality reduction or for visualization of the data. If the first k principal components
are used to represent the data then

∑d
t=k+1 λt is the expected mean squared reconstruction error

between the back-projected representation and the original data. We assume that the data was
normalized so that

∑d
t=1 λt = 1.

Kernel PCA. We assume that the data is projected into the feature space by

x 7→ Φ(x) . (4.252)

Let us for the moment assume that the data is centered in the feature space, that is

l∑
i=1

Φ(xi) = 0 . (4.253)

The covariance matrix in feature space is given by

C =
1
l

l∑
i=1

Φ(xi) ΦT (xi) . (4.254)

Note, that the Gram matrix isK =
∑l

i=1 ΦT (xi)Φ(xi).

We are searching for the eigenvectors of C, i.e. for vectors fulfilling

C w = λ w . (4.255)

We are interested in solutions w which lie in the span of {Φ(x1), . . . ,Φ(xl)}, therefore we
are searching for vectors w which fulfill

∀1 ≤ n ≤ l : (λ w)TΦ(xn) = λ wTΦ(xn) = (4.256)

(C w)TΦ(xn) = wTC Φ(xn) ,

because they are unique in the span of the mapped data vectors.
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As with SVMs the eigenvectors can be expanded with respect to the feature vectors:

w =
l∑

i=1

αi Φ(xi) . (4.257)

Inserting this equation together with the definition of C in eq. (4.254) into eq. (4.256) gives

λ
l∑

i=1

αi ΦT (xi)Φ(xn) = (4.258)

1
l

 l∑
i=1

αi

l∑
j=1

ΦT (xi)
(
Φ(xj) ΦT (xj)

)Φ(xn) .

If we use the Gram matrix K with Kij = ΦT (xj)Φ(xi). This equation holds for 1 ≤ n ≤ l
and the vectors Φ(xn) span the whole space, therefore we obtain

l λK α = K2 α . (4.259)

To solve this equation we solve the eigenvalue problem

l λ α = K α . (4.260)

The α describes the eigenvector w which must have the length 1, resulting in

1 = wTw =
(l,l)∑

ij=(1,1)

αi αj ΦT (xj)Φ(xi) = (4.261)

(l,l)∑
ij=(1,1)

αi αj Kij = αTKα = l λ αTα

The vector α has to be normalized to fulfill

l λ ‖α‖2 = 1 (4.262)

‖α‖ =
1√
l λ

(4.263)

by

αnew
i =

αi

‖α‖ √l λ (4.264)

The projection onto w can be computed as

wTΦ(x) =
l∑

i=1

αi ΦT (xi)Φ(x) =
l∑

i=1

αi Kij . (4.265)
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Here it can be seen that the explicit representation Φ(x) is not necessary and we can set
Kij = k(xi,xj), i.e. to apply the kernel trick.

However the kernel trick makes the assumption of centered data more complicated because
we want to avoid explicit representations in feature space.

Note that(
Φ(xi) − 1

l

l∑
t=1

Φ(xt)

)T (
Φ(xj) − 1

l

l∑
t=1

Φ(xt)

)
= (4.266)

ΦT (xi)Φ(xj) − 1
l

l∑
t=1

ΦT (xt)Φ(xj) − 1
l

l∑
t=1

ΦT (xi)Φ(xt) +

1
l2

(l,l)∑
(s,t)=(1,1)

ΦT (xs)Φ(xt)

and that

1
l

l∑
t=1

ΦT (xt)Φ(xi) =
[

1
l
K 1

]
i

(4.267)

1
l

l∑
t=1

ΦT (xi)Φ(xt) =
[

1
l
1TK

]
i

1
l2

(l,l)∑
(s,t)=(1,1)

ΦT (xs)Φ(xt) =
1
l2

1TK 1 .

Therefore the following equations produces a centered kernel matrix:

K − 1
l
K 1 1T − 1

l
1 1TK +

1
l2
(
1TK 1

)
1 1T . (4.268)

A new data point x can be centered by first computing

k(x, .) =
(
k(x,x1), . . . , k(x,xl)

)T
(4.269)

and then

k(x, .) − 1
l
K 1 − 1

l
1Tk(x, .) 1 +

1
l2
(
1TK 1

)
1 . (4.270)

Kernel PCA works as follows:

center the Gram matrix according to eq. (4.268)

compute eigenvectors and eigenvalues of the Gram matrixK



172 Chapter 4. Support Vector Machines

Figure 4.47: Kernel PCA example. Top left: original data. From top middle to upper right the
8 first principal components are depicted. The first two separate the clusters, the next 3 (mid-
dle panel) split the clusters, and the next 3 (bottom panel) split them orthogonal to the previous
3 components. An RBF-kernel with k(xi,xj) = exp

(− 10 ‖xi − xj‖2 ) was used. From
[Schölkopf et al., 1998]

normalize eigenvectors α according to eq. (4.264)

project a new vector x onto eigenvectors by first centering it using eq. (4.270) and then
according to eq. (4.265).

Kernel PCA toy examples are shown in Figures 4.47 and 4.48.

4.18 Kernel Discriminant Analysis

Here we will apply the kernel trick to another well known method: “Linear Discriminant Analysis”
(LDA) or “Fisher Discriminant Analysis” (FDA).

Let us assume we have a binary problem as with the SVM approach. The Fisher discriminant
algorithm maximizes the Rayleigh coefficient J with respect to w:

J(w) =
wTM w

wTN w
, (4.271)
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�
Figure 4.48: Another kernel PCA example. Each column corresponds to one method based on
PCA. Each column gives the three largest eigenvalues with the according eigenvectors depicted as
contour lines. In the first column linear PCA, and in the second, third and last column polynomial
kernel with degree 2,3, and 4, respectively, is shown. From [Schölkopf and Smola, 2002]
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where

M = (m− − m+) (m− − m+)T (4.272)

is the between class variance and

N =
l∑

i=1;yi=1

(
xi − m+

) (
xi − m+

)T + (4.273)

l∑
i=1;yi=−1

(
xi − m−

) (
xi − m−

)T
is the within class variance.

The Fisher’s discriminant attempts at minimizing the variance within one class whilst separat-
ing the class centers a good as possible.

Let l+ be the number of class 1 examples and l− the number of class -1 examples

Here we used the mean values

m+ =
1
l+

l∑
i=1;yi=1

xi (4.274)

m− =
1
l−

l∑
i=1;yi=−1

xi (4.275)

Note that

wTM w =
(
wTm− − wTm+

) (
mT
−w − mT

+w
)

(4.276)

and

wTN w = (4.277)
l∑

i=1;yi=1

(
wTxi − wTm+

) ((
xi
)T
w − mT

+w
)

+

l∑
i=1;yi=−1

(
wTxi − wTm−

) ((
xi
)T
w − mT

−w
)

Now we proceed like with the kernel PCA and set

w =
l∑

i=1

αi Φ(xi) . (4.278)

LetK be again the Gram matrix with Kij = k(xi,xj) = ΦT (xi) Φ(xj)
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We use expansion of w according to eq. (4.278) and obtain

wTm− =
1
l−

l∑
j=1;yj=−1

wTΦ(xj) = (4.279)

1
l−

l∑
j=1;yj=−1

l∑
i=1

αi ΦT (xi) Φ(xj) =

1
l−

l∑
j=1;yj=−1

l∑
i=1

αi k(xi,xj) .

We use again

k(x, .) =
(
k(x,x1), . . . , k(x,xl)

)T
(4.280)

and define

µ− =
1
l−

l∑
j=1;yj=−1

k(xj , .) =
1
l−
K 1− (4.281)

to obtain

wTm− = αTµ− . (4.282)

Here we used 1− the l-dimensional vector which has ones at positions of class -1 examples and 0
otherwise.

Analog using

µ+ =
1
l+

l∑
j=1;yj=1

k(xj , .) =
1
l+
K 1+ (4.283)

we obtain

wTm+ = αTµ+ . (4.284)

We used 1+ the l-dimensional vector which has ones at positions of class 1 examples and 0 other-
wise.

wTM w =
(
αTµ− − αTµ+

) (
µT−α − µT+α

)
= (4.285)

αT (µ− − µ+) (µ− − µ+)T α =
(
αT (µ− − µ+)

)2
=

αTMk α ,
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where

Mk = (µ− − µ+) (µ− − µ+)T . (4.286)

The expansion of w according to eq. (4.278) gives

wTN w =
l∑

j=1;yj=1

(
l∑

i=1

αi ΦT (xi)Φ(xj) − wTm+

)
(4.287)

(
l∑

i=1

αi ΦT (xj)Φ(xi) − mT
+w

)
+

l∑
j=1;yj=−1

(
l∑

i=1

αi ΦT (xi)Φ(xj) − wTm−

)
(

l∑
i=1

αi ΦT (xj)Φ(xi) − mT
−w

)
=

(l,l)∑
i,n=(1,1)

αi αn

l∑
j=1;yj=1

ΦT (xi)Φ(xj)ΦT (xj)Φ(xi) −

l+

l∑
i=1

αi µ+ α
Tµ+ −

l+

l∑
i=1

αi µ+ µ
T
+α + l+ µ

T
+α µ

T
+α +

(l,l)∑
i,n=(1,1)

αi αn

l∑
j=1;yj=−1

ΦT (xi)Φ(xj)ΦT (xj)Φ(xi) −

l−
l∑

i=1

αi µ− αTµ− −

l−
l∑

i=1

αi µ− µT−α + l− µT−α µ
T
−α =

(l,l)∑
i,n=(1,1)

αi αn

l∑
j=1

KijKji − l+ α
Tµ+ µ

T
+α −

l− αTµ− µT−α =
αT
(
K KT − l+ µ+ µ

T
+ − l− µ− µT−

)
α .

If we define

Nk = K KT − l+ µ+ µ
T
+ − l− µ− µT− (4.288)
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Figure 4.49: Kernel discriminant analysis (KDA) example. Left: KDA contour lines. Middle
and Right: first and second component of kernel PCA. With KDA the contour lines are useful to
separate the data. From [Mika et al., 1999].

then

wTN w = αTNk α . (4.289)

We obtain for the kernel version of Fisher’s discriminant the following Rayleigh coefficient to
maximize:

J(α) =
αTMk α

αTNk α
. (4.290)

The projection of a new vector onto the discriminant direction w is

wT Φ(x) =
l∑

i=1

αi ΦT (xi)Φ(x) =
l∑

i=1

αi k(xi,x) . (4.291)

The Rayleigh coefficient eq. (4.290) can be maximized by the generalized eigenvalue problem

Mk α = λNk α (4.292)

and selecting the eigenvector with maximal eigenvalue λ.

However until now the regularization, i.e. the capacity control was not considered. It is im-
portant for kernel methods because the l dimensional covariance matrixNk is estimated by l data
points.

One approach for regularization is to replaceNk by

Nk + εI . (4.293)

Fig. 4.49 shows a toy example for kernel discriminant analysis (KDA) compared with kernel
PCA.
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However the idea of kernel Fisher discriminant analysis can be written in a more convenient
form.

First assume that we affine transform the data in a way that

wTm+ + b = 1 (4.294)

and

wTm− + b = −1 . (4.295)

That means the between class variance is fixed.

Now we have only to minimize the variance of the data points around their class mean (-1 or
+1). If we set

wTxi + b = yi + ξi (4.296)

then ξi gives the deviation of the projected xi from its class label.

In order that 1 is the mean projection value of class 1 data points and −1 the mean projection
value of class -1 data points, we must ensure that

1+ ξ = 0 and (4.297)

1− ξ = 0 . (4.298)

The class 1 variance plus the class 2 variance is given by

ξT ξ = ‖ξ‖2 . (4.299)

This variance must be minimized.

Using as regularization term either ‖α‖2 or αTK α we obtain the following quadratic pro-
grams:

min
α,ξ,b

‖ξ‖2 + C ‖α‖2 (4.300)

s.t. K α + b1 = y + ξ

1+ ξ = 0 and

1− ξ = 0

or

min
α,ξ,b

‖ξ‖2 + CαTK α (4.301)

s.t. K α + b1 = y + ξ

1+ ξ = 0 and

1− ξ = 0 .

Note, that this formulation is very similar to the least square SVM in Subsection 4.13. K α =
XTw if w = X α andK = XTX . Here the errors per class are forced to have mean zero.
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4.19 Software

Online applets for SVM demos are available under

http://www.eee.metu.edu.tr/~alatan/Courses/Demo/AppletSVM.html and

http://www.csie.ntu.edu.tw/~cjlin/libsvm/.

From these sources some screen shots are made in above examples.

Software can be found under

http://www.kernel-machines.org,

http://www.support-vector-machines.org/SVM_stat.html, and

http://kernelsvm.tripod.com.

Software packages which we recommend are

P-SVM: http://www.bioinf.jku.at/software/psvm/.

• For UNIX and WINDOWS.

• Matlab front end.

• Cross-validation included.

• Feature selection included.

• Non-positive definite kernels possible.

• Significance tests.

libSVM: http://www.csie.ntu.edu.tw/~cjlin/libsvm/.

• For UNIX and WINDOWS.

• Sparse matrices.

• Phyton scripts for hyperparameter selection. Front ends for Python, R (also Splus),
MATLAB, Perl, Ruby, Weka, CLISP and LabVIEW.

• C# .NET code is available.

• Cross-validation included.

• Multi-class.

SVM-light: http://svmlight.joachims.org/.

• For UNIX and WINDOWS.

SVMTorch: http://www.idiap.ch/~bengio/projects/SVMTorch.html or
http://www.torch.ch/.

• UNIX.

• Sparse matrices.

• Multi-class.

http://www.eee.metu.edu.tr/~alatan/Courses/Demo/AppletSVM.html
http://www.csie.ntu.edu.tw/~cjlin/libsvm/
http://www.kernel-machines.org
http://www.support-vector-machines.org/SVM_stat.html
http://kernelsvm.tripod.com
http://www.bioinf.jku.at/software/psvm/
http://www.csie.ntu.edu.tw/~cjlin/libsvm/
http://svmlight.joachims.org/
http://www.idiap.ch/~bengio/projects/SVMTorch.html
http://www.torch.ch/
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Chapter 5

Error Minimization and
Model Selection

We focus on a model class of parameterized models with parameter vector w. Goal is to find or
to select the optimal model. The optimal model is the one which optimizes the objective function.
To find the optimal model, we have to search in the parameter space.

The objective function is defined by the problem to solve. In general the objective function
includes the empirical error and a term which penalizes complexity. The goal is to find the model
from the model class which optimizes the objective function.

5.1 Search Methods and Evolutionary Approaches

In principle any search algorithm can be used. The simplest was is random search, where randomly
a parameter vector is selected and then evaluated – the so far best solution is kept.

Another method would be exhaustive search, where the parameter space is searched system-
atically.

These two methods will find the optimal solution for a finite set of possible parameters. They
do not use any dependency between objective function and parameter space. For example, if the
objective function should be minimized and is 1 for every parameter w except for one parameter
wopt which gives 0. That is a singular solution.

In general there are dependencies between objective function and parameters. These depen-
dencies should be utilized to find the model which optimizes the objective function.

The first dependency is that good solutions are near good solutions in parameter space even if
the objective is not continuous and not differentiable. In this case a stochastic gradient can be used
to locally optimize the objective function. In the context of genetic algorithms a stochastic gradi-
ent corresponds to mutations which are small. With “small” we mean that every component, e.g.
“gene” is mutated only slightly or only one component is mutated at all. In general a stochastic
gradient tests solutions which are similar the current best solution or current best solutions. Fi-
nally an update of the current best solution is made sometimes by combining different parameter
changes which improved the current best solution.

Another dependency is that good solutions share properties of their parameter vector which
are independent of other components of the parameter vector. For example if certain dependencies
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between specific parameters guarantee good solutions and these specific parameters do not influ-
ence other parameters. In this case genetic algorithms can utilize these dependencies through the
“crossover mutations” where parts of different parameter vectors are combined. Important is that
components are independent of other components, i.e. the solutions have different building blocks
which can improve the objective independently of other building blocks.

Besides the genetic algorithms there are other evolutionary strategies to optimize models.
These strategies include genetic programming, swarm algorithms, ant algorithms, self-modifying
policies, Optimal Ordered Problem Solver, etc. Sometimes the model class is predefined by the
search algorithm or the model class is not parameterized. The latter even modify their own search
strategy.

All these methods have to deal with local optima of the objective function. To reduce the
problem of optima, genetic algorithms search in general at different locations in the parameter
space simultaneously. Also other approaches search in parallel at different locations in parameter
space.

To overcome the problem of local optima simulated annealing (SA) has been suggested. SA
can be shown to find the global solution with probability one if the annealing process is slow
enough. SA probabilistic jumps from the current state into another state where the probability
is given by the objective function. The objective function is transformed to represent an energy
function, so that SA jumps into energetically favorable states. The energy function follows the
Maxwell-Boltzmann distribution and the sampling is similar to the Metropolis-Hastings algorithm.
A global parameter, the temperature, determines which jumps are possible. At the beginning large
jumps even into energetically worse regions are possible due to high temperature whereas with low
temperature only small jumps are possible and energetically worse regions are avoided. Therefore
the parameter space is at the beginning scanned for favorable regions where later is searched in
more detail.

Advantages of these methods are that they

can deal with discrete problems and non-differentiable objective functions and

are very easy to implement.

Disadvantages of these methods are that they

are computationally expensive for large parameter spaces and

depend on the representation of the model.

To see the computational load of stochastic gradient or genetic algorithms assume that the
parameter vector has W components. If we only check whether these components should be
increased or decreased, we have 2W decisions to make. When the amount of change also matters
then this number of candidates will be soon infeasible to check only to make one improvement
step.

The dependency between the parameter space and the objective function which will be of in-
terest in the following is that the objective function is differentiable with respect to the parameters.

Therefore we can make use of gradient information in the search of the (local) minimum.
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tangent on (R(w), w)

R(w)

w

− g

− g

tangent on (R(w), w)

Figure 5.1: The negative gradient − g gives the direction of the steepest decent depicted by the
tangent on (R(w),w), the error surface.

Problems like that were already treated in Section 4.15 in Subsection 4.15.1. However we
focused on convex optimization. There only one minimum exists. Further we treated linear and
quadratic objectives. The idea of Lagrange multipliers carries over to constraint optimization in
general: assume that the problem is locally convex.

5.2 Gradient Descent

Assume that the objective function R(g(.;w)) is a differentiable function with respect to the pa-
rameter vectorw. The function g is the model. For simplicity, we will writeR(w) = R(g(.;w)).

The gradient is

∂R(w)
∂w

= ∇wR(w) =
(
∂R(w)
∂w1

, . . . ,
∂R(w)
∂wW

)T
, (5.1)

for a W -dimensional parameter vector w.

For the gradient of R(w) we use the vector

g = ∇wR(w) . (5.2)

The negative gradient is the direction of the steepest descent of the objective. The negative
gradient is depicted in Fig. 5.1 or a one-dimensional error surface and in Fig. 5.2 for a two-
dimensional error surface.

Because the gradient is valid only locally (for nonlinear objectives) we only go a small step
in the negative gradient direction if we want to minimize the objective function. The step-size is
controlled by 0 < η, the learning rate.
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−g

−g

−g

−g

Figure 5.2: The negative gradient − g attached at different positions on an two-dimensional error
surface (R(w),w). Again the negative gradient gives the direction of the steepest descent.

The gradient descent update is

∆w = − η ∇wR(w) (5.3)

wnew = wold + ∆w . (5.4)

Momentum Term. Sometimes gradient descent oscillates or slows down because the error
surface (the objective function) has a flat plateau. To avoid oscillation and to speed up gradient
descent a momentum term can be used. The oscillation of the gradient is depicted in Fig. 5.3 and
the reduction of oscillation through the momentum term in Fig. 5.4.

Another effect of the momentum term is that in flat regions the gradients pointing in the same
directions are accumulated and the learning rate is implicitly increased. The problem of flat regions
is depicted in Fig. 5.5 and the speed up of the convergence in flat regions in Fig. 5.6.

The gradient descent update with momentum term is

∆neww = − η ∇wR(w) (5.5)

wnew = wold + ∆neww + µ ∆old (5.6)

∆old = ∆new , (5.7)

where 0 ≤ µ ≤ 1 is the momentum parameter or momentum factor.

5.3 Step-size Optimization

Instead of choosing a fixed step-size the step-size should be adjusted to the curvature of the error
surface. For a flat curve the step-size could be large whereas for high curvature and steep minima
the step-size should be small. In Fig. 5.7 the
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−g

w2

w1

Figure 5.3: The negative gradient − g oscillates as it converges to the minimum.

−g

w2

w1

Figure 5.4: Using the momentum term the oscillation of the negative gradient − g is reduced
because consecutive gradients which point in opposite directions are superimposed. The minimum
found faster.

−g

w2

w1

Figure 5.5: The negative gradient − g let the weight vector converge very slowly to the minimum
if the region around the minimum is flat.

−g

w2

w1

Figure 5.6: The negative gradient − g is accumulates through the momentum term because con-
secutive gradients point into the same directions. The minimum found faster.
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R(w)

w w

− g

− g

R(w)

Figure 5.7: Left: the length of the negative gradient − g is large because of the steep descent.
However a small gradient step would be optimal because of the high curvature at the minimum.
Right: the length of the negative gradient − g is small because of the flat descent. However a
large gradient step could be performed because the low curvature ensures that the minimum is not
jumped over.

5.3.1 Heuristics

Learning rate adjustments. The learning rate is adjusted: if the change of the risk

∆R = R(w + ∆w) − R(w) (5.8)

is positive then the learning rate is increased and otherwise decreased:

ηnew =
{
ρ ηold if ∆R ≤ 0
σ ηold if ∆R > 0

, (5.9)

where ρ > 1 and σ < 1, e.g. ρ = 1.1 and σ = 0.5. Here ρ is only slightly larger than one but
sigma is much smaller than one in order to reduce too large learning rates immediately.

Largest eigenvalue of the Hessian. Later in eq. (5.76) we will see that the largest eigenvalue
λmax of the Hessian,H given as

Hij =
∂2R(w)
∂wi ∂wj

, (5.10)

bounds the learning rate:

η ≤ 2
λmax

. (5.11)

The idea is to efficiently infer the largest eigenvalue of the Hessian in order to find a maximal
learning rate. The maximal eigenvalue of the Hessian can be determined by matrix iteration. Let
(e1, . . . , eW ) be the from largest to smallest sorted eigenvectors of the Hessian with according
eigenvalues (λ1, . . . , λW ) and let a =

∑W
i=1 αi ei, then

Hs a =
W∑
i=1

λsi αi ei ≈ λs1 α1 e1 . (5.12)
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Normalizing Hs a and multiplication with H gives both a hint how well e1 is approximated and
how large λ1 may be.

The method depends how time intensive it is to obtain the Hessian or the product of the Hessian
with a vector. How the Hessian is computed depends on the model. For quadratic problems the
Hessian is directly given and for neural networks there exist different methods to approximate the
Hessian or to compute the product of the Hessian with a vector. See Section 6.4.4 for more details.

Individual learning rate for each parameter.

We have for parameter wi

∆wi = − ηi gi , (5.13)

where gi is the i-th component of the gradient g: gi =
[
∂R(w)
∂w

]
i
. If the parameters would be

independent from each other, then individual learning rates are justified. However for dependent
parameter, as long as all ηi > 0 the error decreases.

The delta-delta rule adjusts the local learning parameter according to

∆ηi = γ gnew
i gold

i . (5.14)

The delta-delta rule determines whether the local gradient information changes. If it changes
then the learning rate is decreased otherwise it is increased. In a flat plateau the learning rate is
increased and in steep regions the learning rate is decreased.

This rule was improved to the delta-bar-delta rule:

∆ηi =
{
κ if ḡold

i gnew
i > 0

− φ gnew
i if ḡold

i gnew
i ≤ 0

, (5.15)

where

ḡnew
i = (1 − θ) gnew

i + θ ḡold
i . (5.16)

ḡi is an exponentially weighted average of the values of gi. That means instead of the old gradient
information an average is used to determine whether the local gradient directions changes.

Big disadvantage of the delta-bar-delta rule that it has many hyper-parameters: θ, κ, φ and µ
if a momentum term is included as well.

Quickprop. This method was developed in the context of neural networks, therefore the name
“quickprop” which reminds on the name “back-propagation” the most popular method for com-
puting the gradient in neural networks.

Here again the parameters are treated individually. The quickprop learning rule is

∆newwi =
gi

gold
i − gnew

i

∆oldwi . (5.17)
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R(w)

w

Figure 5.8: The error surface (the solid curve) is locally approximated by a quadratic function (the
dashed curve).

Let us assume that R(w) is a function of one variable R(wi) then the Taylor expansion is

R(wi + ∆wi) = R(wi) +
∂R(w)
∂wi

∆wi + (5.18)

1
2
∂2R(w)
(∂wi)2

(∆wi)2 + O
(
(∆wi)3

)
=

R(wi) + gi ∆wi +
1
2
g′i (∆wi)2 + O

(
(∆wi)3

)
.

That is a quadratic approximation of the function. See Fig. 5.8 for the quadratic approximation of
the error function R(w).

To minimize R(wi + ∆wi) − R(wi) with respect to ∆wi we set the derivative of the right
hand side to zero and obtain

∆wi = − gi
g′i
. (5.19)

Now approximate g′i = g′i(wi) by g′i(w
old
i ) and use a difference quotient:

g′i =
gnew
i − gold

i

∆oldwi
, (5.20)

where gold
i = gi(wi − ∆oldwi). We now insert this approximation into eq. (5.19) which results

in the quickprop update rule.

5.3.2 Line Search

Let us assume we found the update direction d either as the negative gradient or by also taking
into account the curvature by the Hessian or its approximation.
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The update rule is

∆w = η d . (5.21)

We now want to find the value of η which minimizes

R(w + η d) . (5.22)

For quadratic functions and d = − g and very close to the minimum w∗, η is given later in
eq. (5.77) as

η =
gT g

gT H(w∗) g
. (5.23)

However this is only valid near the minimum. Further we do not knowH(w∗).

Finding the best update step could be viewed as a separate task. If we assume that at the
minimum the function R(w) is convex then we can apply line search.

Line search fits first a parable though three points and determines its minimum. The point with
largest value of R is discharged. The line search algorithm is given in Alg. 5.1.

Algorithm 5.1 Line Search

BEGIN initialization a0, b0, c0;R(a0) > R(c0);R(b0) > R(c0), Stop=false, i = 0
END initialization
BEGIN line search

while STOP=false do
fit quadratic function through ai, bi, ci
determine minimum di of quadratic function
if stop criterion fulfilled, e.g. |ai − bi| < ε or |R(b0)−R(c0)| < ε then

Stop=true
else
ci+1 = di
bi+1 = ci

ai+1 =
{
ai if R(ai) ≤ R(bi)
bi if R(ai) > R(bi)

end if
i = i+ 1

end while
END line search

Fig. 5.9 shows the line search procedure. At each step the length of the interval [a, b] or [b, a]
is decreased.

Line search starts with R(w), R(w + η0d) and R(w + ηmax d) , where a0, b0, c0 ∈
{eta0, 0, etamax}. If a large range of η values are possible, then the search can be on a logarithmic
scale as preprocessing.
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ηbca

R(η d)

η bdca

R(η d)

Figure 5.9: Line search. Left: the error function R(ηd) in search direction d is depicted as solid
curve. The scalars a, b, c are given with R(a d) > R(cd) and R(b d) > R(c d). Right: The
dashed curve is a quadratic approximation (parabola) of the error function by fitting the parabola
through a, b, and c. The minimum of the parabola is at d. For the next step we set a = b, b = c,
and c = d.

5.4 Optimization of the Update Direction

The default direction is the negative gradient − g. However there are even better approaches.

5.4.1 Newton and Quasi-Newton Method

The gradient vanishes because it is a minimum w∗: ∇wR(w∗) = g(w∗) = 0. Therefore we
obtain for the Taylor series around w∗:

R(w) = R(w∗) +
1
2

(w − w∗)T H(w∗) (w − w∗) + (5.24)

O
(
‖w − w∗‖3

)
.

The gradient g = g(w) of the quadratic approximation of R(w) is

g = H(w∗) (w − w∗) . (5.25)

Solving this equation for w∗ gives

w∗ = w − H−1g . (5.26)

The update directionH−1g is the Newton direction. The Newton direction is depicted in Fig. 5.10
for a quadratic error surface.

Disadvantages of the Newton direction are

that it is computationally expensive because computing the Hessian is expensive and its
inversion needs O(W 3) steps;

that it only works near the minimum if the Hessian is positive definite.
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− H−1 g

w2

w1

−g

Figure 5.10: The Newton direction − H−1 g for a quadratic error surface in contrast to the
gradient direction − g. The Newton direction points directly to the minimum and one Newton
update step would find the minimum.

A remedy for the later disadvantage is the model trust region approach, where the model is
only trusted up to a certain value. A positive definite matrix is added to the Hessian:

H + λI . (5.27)

The update step is a compromise between gradient direction (large λ) and Newton direction
(lambda = 0).

To address the problem of the expensive inversion of the Hessian, it can be approximated by a
diagonal matrix. The diagonal matrix is simple to invert.

Quasi-Newton Method.
From the Newton equation eq. (5.26) two weight vectors wold and wnew are related by

wnew − wold = −H−1
(
gnew − gold

)
. (5.28)

This is the quasi-Newton condition.

The best known method is the Broyden-Fletcher-Goldfarb-Shanno (BFGS) method. The
BFGS update is

wnew = wold + η Gold gold , (5.29)

where η is found by line search.

The functionG is an approximation of the inverse Hessian and is computed as follows:

Gnew = Gold +
p pT

pT v
− (5.30)(

Gold v
)
vTGold

vTGold v
+
(
vTGold v

)
u uT ,

where

p = wnew − wold (5.31)

v = gnew − gold (5.32)

u =
p

pTv
− Goldv

vTGold v
. (5.33)
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w2

w1

−g

d

Figure 5.11: Conjugate gradient. After line search in search direction d the new gradient is or-
thogonal to the line search direction.

Initialization ofG can be done by I , the identity matrix (only a gradient step as first step).

5.4.2 Conjugate Gradient

Note that for the line search algorithm we optimized η so that

R(w + η d) (5.34)

is minimized.

The minimum condition is

∂

∂η
R(w + η d) = 0 , (5.35)

which gives

(gnew)T dold = 0 . (5.36)

The gradient of the new minimum gnew is orthogonal to the previous search direction dold. This
fact is depicted in Fig. 5.11.

However still oscillations are possible. The oscillations appear especially in higher dimen-
sions, where oscillations like in Fig. 5.3 can be present in different two-dimensional subspaces
which alternate. Desirable to avoid oscillations would be that a new search directions are orthogo-
nal to all previous search directions where orthogonal is defined via the Hessian. The later means
that in the parameter space not all directions are equal important. In the following we construct
such search directions.

The oscillations can be avoided if we enforce not only

g(wnew)T dold = 0 (5.37)

but also the same condition for the new gradient

g(wnew + ηdnew)T dold = 0 . (5.38)
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d1

d̄3

d̄4

d2

d3

d4
d̄2

d̄1

Figure 5.12: Conjugate gradient. Left: d̄T1 d̄2 = 0 and d̄T3 d̄4 = 0. Right: dT1 H d2 = 0
and dT3 H d4 = 0. Conjugate directions can be viewed as orthogonal directions which were
transformed by a change of the coordinate system: d = H−1/2d̄.

Taylor expansion of g(wnew + ηdnew) with respect to η around 0 gives

g(wnew + ηdnew)T = g(wnew) + ηH(wnew)dnew + O(η2) . (5.39)

We insert that into eq. (5.38) and apply eq. (5.37) and divide through η and obtain

(dnew)T H(wnew) dold = 0 . (5.40)

Directions which satisfy eq. (5.40) are said to be conjugate. See Fig. 5.12 for conjugate direc-
tions.

Let us assume a quadratic problem

R(w) =
1
2
wTHw + cTw + k (5.41)

with

g(w) = Hw + c (5.42)

and

0 = Hw∗ + c . (5.43)

We want to have W conjugate directions, i.e.

∀i 6=j : dTjH di = 0 , (5.44)

which are linearly independent, therefore we can set

w∗ − w1 =
W∑
i=1

ηi di (5.45)

(5.46)
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and

wj − w1 =
j−1∑
i=1

ηi di . (5.47)

In the last but one equation w∗ = −H−1 c is multiplied by dTjH and we obtain

− dTj (c + Hw1) =
W∑
i=1

ηi d
T
jH di = ηj d

T
jH dj . (5.48)

From eq. (5.47) we obtain

dTjH wj = dTjH w1 . (5.49)

Using gj = c + Hwj , ηj can be determined as

ηj = − dTj gj

dTjH dj
. (5.50)

Because of

wj+1 = wj + ηj dj . (5.51)

we have determined the learning rate ηj .

Now we have find the search directions dj . We set

dj+1 = − gj+1 + βj dj . (5.52)

Multiplying by dTjH gives

βj =
gTj+1H dj

dTjH dj
. (5.53)

Because of

gj+1 − gj = H (wj+1 − wj) = ηj H dj (5.54)

we can rewrite eq. (5.53) as

Hestenes− Stiefel : (5.55)

βj =
gTj+1 (gj+1 − gj)

dTj (gj+1 − gj)
. (5.56)



5.4. Optimization of the Update Direction 195

Multiplying eq. (5.52) by gTj+1 and using the conditions dTk gj = 0 for k < j gives

dTj gj = − gTj gj . (5.57)

The equation for βj can be rewritten as

Polak−Ribiere : (5.58)

βj =
gTj+1 (gj+1 − gj)

gTj gj
. (5.59)

Similar to previous reformulation this expression can be simplified to

Fletcher−Reeves : (5.60)

βj =
gTj+1gj+1

gTj gj
. (5.61)

Even if the equations eq. (5.55), eq. (5.58), and eq. (5.60) are mathematically equivalent, there
are numerical differences. The Polak-Ribiere equation eq. (5.58) has an edge over the other update
rules.

The computation of the values ηj need the Hessian, therefore the ηj are in most implementa-
tions found by line search.

Algorithm 5.2 Conjugate Gradient (Polak-Ribiere)

BEGIN initialization g0 = ∇wR(w0), i = 0,d0 = −g0, Stop=false
END initialization
BEGIN Conjugate Gradient

while STOP=false do
determine ηi by line search
wj+1 = wj + ηj dj
gi+1 = ∇wR(wi)

βj =
gTj+1(gj+1 − gj)

gTj gj

dj+1 = − gj+1 + βj dj
if stop criterion fulfilled, e.g. ‖gi+1‖| < ε or |R(wj+1)−R(wj)| < ε then

STOP=true
end if
i = i+ 1

end while
END Conjugate Gradient

The disadvantage of conjugate gradient compared to the quasi-Newton methods is

the line search must be done precisely in order to obtain the conjugate and orthogonal gra-
dients

The advantage of conjugate gradient compared to the quasi-Newton methods is

that the storage is O(W ) compared to O(W 2) for quasi-Newton
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5.5 Levenberg-Marquardt Algorithm

This algorithm is designed for quadratic loss, i.e. for the mean squared error

R(w) =
l∑

i=1

(
ei(w)

)2
. (5.62)

We combine the errors ei into a vector e. The Jacobian of this vector is Z defined as

Zij =
∂ei

∂wj
. (5.63)

The linear approximation of the error vector gives

e(wnew) = e(wold) + Z
(
wnew − wold

)
. (5.64)

The Hessian of the loss function R(w) is

Hjk =
∂2R

∂wj ∂wk
=

l∑
i=1

(
∂ei

∂wj

∂ei

∂wk
+ ei

∂2ei

∂wj ∂wk

)
. (5.65)

If we assume small ei (if we are close to the targets) or if we assume that the term ei ∂2ei

∂wj ∂wk
averages out, then we can approximate the Hessian by

H = ZTZ . (5.66)

Note that this “outer product approximation” is only valid for quadratic loss functions.

We now can formulate a unconstraint minimization problem where

1
2

∥∥∥e(wold) + Z
(
wnew − wold

)∥∥∥2
+ λ

∥∥∥wnew − wold
∥∥∥2

(5.67)

has to be minimized. The first term accounts for minimizing the error and the second term for
minimizing the step size.

The solution is the Levenberg-Marquardt update rule

wnew = wold − (
ZTZ + λ I

)−1
ZT e(wold) . (5.68)

Small λ gives the Newton formula while large λ gives gradient descent.

The Levenberg-Marquardt algorithm is a model trust region approach.
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5.6 Predictor Corrector Methods for R(w) = 0

The problem is to solve R(w) = 0. That problem is different from minimization problems.

The idea is to make a simple update (predictor step) by neglecting higher order terms. In a
second step (corrector step) the value is corrected by involving the higher order terms. Here the
higher order terms are evaluated with the solution obtained by the predictor step.

The Taylor series of R(wnew) is

R(wnew) = R(wold) + S(wold,∆w) + TS(wold,∆w) . (5.69)

Here S(wold,0) = 0 and T (wold,0) = 0.

In the predictor step solve

R(wold) + S(wold,∆w) = 0 (5.70)

with respect to ∆w which gives ∆predw. In the corrector step solve

R(wold) + S(wold,∆w) + TS(wold,∆predw) = 0 , (5.71)

which gives the final update ∆w.

The predictor-corrector update can be formulated as an iterative algorithm.

5.7 Convergence Properties

Gradient Descent. We make a Taylor series expansion of the gradient function g locally at the
minimum w∗. The gradient vanishes because it is a minimum ∇wR(w∗) = g(w∗) = 0,
therefore we obtain

R(w) = R(w∗) +
1
2

(w − w∗)T H(w∗) (w − w∗) + (5.72)

O
(
‖w − w∗‖3

)
.

The improvement of the risk is

R (w − η g) − R(w∗) = (5.73)
1
2

(w − η g − w∗)T H(w∗) (w − η g − w∗) =

1
2
η2 gT H(w∗) g − η gT g + c ,

where c is independent of η.

First we note that

1
2
η2 gT H(w∗) g − η gT g ≤ 0 , (5.74)
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to ensure improvement for arbitrary c. That is equivalent to

η ≤ 2 gT g
gT H(w∗) g

, (5.75)

which gives the bound (the g which gives the smallest value)

η ≤ 2
λmax

. (5.76)

The optimal update is obtained if we minimize the left hand side of eq. (5.74) with respect to
η. Setting the derivative with respect to η to zero an solving for η gives

η =
gT g

gT H(w∗) g
. (5.77)

The update is

wnew = wold − gT g

gT H(w∗) g
g . (5.78)

The improvement is

R
(
wold

)
− R (wnew) = (5.79)(

wold − w∗
)
H(w∗)

gT g

gT H(w∗) g
g −

1
2

(
gT g

gT H(w∗) g

)2

gT H(w∗) g =

1
2

(
gT g

)2
gT H(w∗) g

= R
(
wold

)( (
gT g

)2
(gT H(w∗) g) (gT H−1(w∗) g)

)
.

The Kantorovich inequality states that(
gT g

)2
(gT H g) (gT H−1 g)

≥ 4 λmin λmax

(λmin + λmax)2 ≥
1

cond(H)
, (5.80)

where and λmax and λmin are the maximal and minimal eigenvalues of the Hessian, respectively,
and cond(H) is the condition of a matrix

cond(H) =
λmax

λmin
. (5.81)

The improvement depends strongly on the condition of the matrixH(w∗).

Newton Method.
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The Newton method has the update rule:

wnew = wold − ∇wR(wold)H−1(wold) . (5.82)

With previous definitions and Taylor expansion of R around w∗ we have g(w∗) = 0.

The Taylor expansion of the i-th component of g around wold is

0 = gi(w∗) = gi(wold) + ∇wgi(wold)
(
w∗ − wold

)
+ (5.83)

ξTHi(wold) ξ ,

where Hi is the Hessian of gi and ξ is a vector ξi = λ
(
w∗ − wold

)
with 0 ≤ λ ≤ 1, thus

‖ξi‖2 ≤
∥∥w∗ − wold

∥∥.

We obtain

gi(wold) = gi(wold) − gi(w∗) = gi(wold) − (5.84)(
gi(wold) +

(
w∗ − wold

)T ∇wgi(wold) +

1
2
ξTi Hi(wold) ξi

)
.

Combining above equations the we obtain

g(wold) = −H(wold)
(
w∗ − wold

)
− (5.85)

1
2

(
ξT1 H1(wold) ξ1, . . . , ξ

T
WHW (wold) ξW

)T
.

which gives

wold + g(wold)H−1 − w∗ = − (5.86)
1
2

(
ξT1 H1(wold) ξ1, . . . , ξ

T
WHW (wold) ξW

)T
.

that means

wnew − w∗ = − 1
2
H−1

(
ξT1 H1(wold) ξ1, . . . , ξ

T
WHW (wold) ξW

)T
. (5.87)

Because

ρ = max
i
‖ξi‖ ≤

∥∥∥wold − w∗
∥∥∥ (5.88)

and

1
2
H−1

(
ξT1 H1(wold) ξ1, . . . , ξ

T
WHW (wold) ξW

)T
= O(ρ2) (5.89)

the Newton method is quadratic convergent in
∥∥wold − w∗

∥∥ assumed that∥∥∥∥1
2
H−1

(
ξT1 H1(wold) ξ1, . . . , ξ

T
WHW (wold) ξW

)T∥∥∥∥ < 1 . (5.90)
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5.8 On-line Optimization

Until now we considered optimization techniques where a fixed set of training examples was given.

However there are cases where we do not want to have a fixed set but update our solution
incrementally. That means a single training example is used for update. The first method with
fixed training size is called batch update whereas the incremental update is called on-line.

In a situation where the training examples are very cheap and a huge amount of them exist we
would not like to restrict ourselves to a fixed training size. This might lead to overfitting which
can be avoided if the training size is large enough. On the other hand using all examples may
computationally too expensive. Here on-line methods are an alternative for learning because the
danger of overfitting is reduced.

In a situation where the dynamics changes, i.e. for non-stationary problems, on-line methods
are useful to track the dependencies in the data. If we have a solution, then as soon as the dynamics
changes, the error increases and learning starts again. Therefore on-line methods are a good choice
for non-stationary problems.

The goal is to find w∗ for which

g(w∗) = 0 . (5.91)

We assume that g is an conditional expectation

g(w) = E (f(w) | w) . (5.92)

with finite variance

E
(
(g − f)2 | w) < ∞ . (5.93)

The Robbins-Monro procedure is

wi+1 = wi − ηi f(wi) , (5.94)

where f(wi) is a random variable.

The learning rate sequence ηi satisfies

lim
i→∞

ηi = 0 (5.95)

∞∑
i=1

ηi = ∞ (5.96)

∞∑
i=1

η2
i < ∞ . (5.97)

The first conditions ensures convergence. The second condition ensures that the changes are suf-
ficient large to find the root w∗. The third condition ensures that the noise variance is limited.

The next theorem states that the Robbins-Monro procedure converges to the root w∗.
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Theorem 5.1 (Robbins-Monro) Under the conditions eq. (5.95) the sequence eq. (5.94) con-
verges to the root w∗ of g with probability 1.

If we apply the Robbins-Monro procedure to maximum likelihood we obtain

1
l

∂

∂w

l∑
i=1

ln p(xi | w) = 0 . (5.98)

The expectation is the limit

lim
l→∞

1
l

l∑
i=1

∂

∂w
ln p(xi | w) = E

(
∂

∂w
ln p(xi | w)

)
. (5.99)

The maximum likelihood solution is asymptotically equivalent to

E
(
∂

∂w
ln p(xi | w)

)
= 0 . (5.100)

Therefore the Robbins-Monro procedure is applicable as

wi+1 = wi + ηi
∂

∂w
ln p(xi+1 | w) |wi . (5.101)

This is an online update formula for maximum likelihood.



202 Chapter 5. Error Minimization and Model Selection



Chapter 6

Neural Networks

In this chapter we introduce artificial neural networks which have a long tradition as a basic tool
in bioinformatics.

In bioinformatics support vector machines are nowadays more popular than neural networks.
However in international challenges like the NIPS feature selection challenge and other neural
networks outperformed support vector machines but needed a lot of computational time. Some
of these challenges have been won by Radford Neal and estimating the posterior by Monte Carlo
sampling.

6.1 Neural Networks in Bioinformatics

Neural networks have been used in bioinformatics for splice site recognition, Protein structure
and function classification, protein secondary structure prediction, and much more (see list of
references at the end of this subsection).

For example we will look into the history of protein secondary structure prediction:

1. generation predictors. The prediction was based on single residues, e.g. Chou-Fasman
“GOR” (1957-70/80), which achieved 50-55% accuracy at prediction.

2. generation predictors. Instead of single residues segments, i.e. windows, are used to
predict the secondary structure of proteins. For example “GORIII” (1986-92) was able to
obtain an accuracy of 55-60%. The neural networks which were used here obtained as input
a window over the current position and had as target the secondary structure of the middle
window position. The neural network of [Qian and Sejnowski, 1988] was based on the
NETTalk architecture (see Fig. 6.1) and achieved 64.3% accuracy.

3. generation predictors. The next step in protein secondary structure prediction was
to use profiles or Position Specific Scoring Matrices (PSSMs). PSSMs are produced by
PSI-BLAST which searches in a data base for similar sequences to the query sequence.
Finally an alignment of all sequences which are very similar to the query is produced. From
this alignment either a amino acid frequency or a score can be computed for each column
of the alignment. Therefore the original query sequence can be replaced by a frequency
sequence or a scoring sequence (PSSM). The PSSM identifies conserved regions, patterns,
hydrophobic regions, etc. which can only be deduced by comparing similar sequences with
each other.

203
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Figure 6.1: The NETTalk neural network architecture is depicted. A window scans the text and
the network should predict the pronunciation of the letter in the center of the window. The same
architecture was used for protein secondary structure prediction in [Qian and Sejnowski, 1988],
where the input was a window of amino acids and the output the secondary structure of the center
amino acid.

The neural network approach “PHD” [Rost and Sander, 1993] which uses as input a PSSM
reached an accuracy of over 70%. Then other methods based on neural networks and a
PSSM input were developed like PSIPRED (Jones, 1999), PROF (Quali and King 2000),
JPred (Cuff et. Al, 1998) and accuracies up to 75% were obtained. In the late 90’s the neural
networks were replaced by support vector machines (e.g. Hua and Sun 2000) but the were
not superior to neural networks.

Currently the best method is PORTER which is based on a recurent neural network archi-
tecture.

In the following are some references given which apply neural networks to protein secondary
structure prediction:

Baucom A, Cline M, Haussler D, Gregoret L M (1996): "Prediction of beta-sheet structure
using neural networks", poster presented at the 10th Annual Protein Society Meeting, San
Jose, California, August 3-7

Bohr H, Bohr J, Brunak S, Cotterill R M J, Lautrup B, Narskov L, Olsen O, Petersen S
(1988): "Protein secondary structure and homology by neural networks. The α-rhodopsin",
FEBS Letters, 241, 223-228

Chandonia J M, Karplus M (1995): "Neural networks for secondary structure and structural
class prediction", Protein Science, 4, 275-285

Chandonia J M, Karplus M (1996): "The importance of larger data sets for protein secondary
structure prediction with neural networks", Protein Science, 5, 768-774

Frishman D, Argos P (1996): "Incorporation of non-local interactions in protein secondary
structure prediction from amino acid sequence", Protein Engineering, 9(2), 133-142

Frishman D, Argos P (1997): "75% accuracy in protein secondary structure prediction ac-
curacy", Proteins, 27, 329-335
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Gorse D (1995): "Prediction of protein structure from sequence using neural networks",
unpublished paper

Hansen L K, Salamon P (1990): "Neural network ensembles", IEEE Transactions on Pattern
Analysis and Machine Intelligence, 12(10), 993-1001

Holley H, Karplus M (1989): "Protein secondary structure prediction with a neural net-
work", Proc. Nat. Acad. Sci. USA, 86, 152-156

Kneller D G, Cohen F E, Langridge R (1990): "Improvements in protein secondary structure
prediction by an enhanced neural network", Journal of Molecular Biology, 214, 171-182

Krogh A, Riis S K (1996): "Prediction of beta sheets in proteins", in D S Touretsky, M C
Mozer and M E Hasselmo (eds.), Advances in Neural Information Processing Systems 8,
MIT Press

Maclin R, Shavlik J (1993): "Using knowledge-based neural networks to improve algo-
rithms: refining the Chou-Fasman algorithm for protein folding", Machine Learning, 11,
195-215

Qian N, Sejnowski T J (1988): "Predicting the secondary structure of globular proteins using
neural network models", Journal of Molecular Biology, 202, 865-884

Riis S K, Krogh A (1996): "Improved prediction of protein secondary structure using struc-
tured neural networks and multiple sequence alignments", Journal of Computational Biol-
ogy, 3, 163-183

Rost B, Sander C (1993a): "Prediction of protein secondary structure at better than 70%
accuracy", Journal of Molecular Biology, 232, 584-599

Rost B, Sander C (1993b): "Secondary structure of all-helical proteins in two states", Protein
Engineering, 6(8), 831-836

Rost B, Sander C (1994): "Combining evolutionary information and neural networks to
predict protein secondary structure", PROTEINS: Structure, Function and Genetics, 19, 55-
72

Stolorz P, Lapedes A, Xia Y (1992): "Predicting protein secondary structure using neural
net and statistical methods", Journal of Molecular Biology, 225, 363-377

Zhang X, Mesirov J P, Waltz D L (1992): "Hybrid system for protein secondary structure
prediction", Journal of Molecular Biology, 225, 1049-1063

6.2 Principles of Neural Networks

Artificial neural networks are justified by the computational principles of the human brain which
is so far the best known pattern recognition and pattern association device.

The processing units of the human brain are the neurons which are interconnected. The con-
nections are able to transfer information from one processing unit to others. The processing units
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j

wij

i

Figure 6.2: Artificial neural networks: units and weights. The weight wij gives the weight, con-
nection strength, or synaptic weight from units j to unit i.

can combine and modulate the incoming information. The incoming information change the state
of a neuron which represents the information at this neuron. The state serves to transfer the infor-
mation to other neurons. The connections have different strength (synaptic weights) which give
the coupling of the neurons and, therefore, the influence of one neuron onto the other.

Learning in the human brain is sought to be mainly determined by changing the synaptic
weights, i.e. changing the strength of the connections between the processing units.

Artificial neural networks (ANN) treated in our context ignore that the information in the
human brain is transferred through spikes (short bursts of high voltage). However the ANNs we
will use can represent a rate coding, which means the information transferred is the firing rate of a
neuron and the state of a neuron is its firing rate.

Neurons in artificial neural networks are represented by a variable ai for the i-th neuron which
gives the current state of the i-th neuron which is called activation of the neuron. Connections
in ANNs are parameters wij giving the strength of the connection from unit j to unit i which
are called weights. See Fig. 6.2 for the weight wij from unit j to unit i. These parameters are
summarized in a vector (or weight vector) w which are the parameters of the neural network
model.

Artificial neural networks possess special neurons. Neurons which are directly activated by
the environment are called input units. Their activation is typically the value of the feature vector
x which is assumed to represent the sensory input to the neural network. Neurons from which the
result of the processing is taken are called output units. Typically the state of certain units is the
output of the neural network. The remaining units are called hidden units. See Fig. 6.3 for a small
architecture of a 3 layered net with only one hidden layer.

Artificial neural networks can in principle be processed in parallel, i.e. each unit can be updated
independent of other units according to its current incoming signals.

The implementation of neural networks is simple as all neurons can be clones i.e. the com-
bination of the incoming signals and the activation of the neuron can be equal for each neuron.
Therefore hardware implementations of ANNs are easy to realize.

As we will see later ANNs are universal function approximators and recurrent ANNs are as
powerful as Turing machines. Thus, ANNs are powerful enough to model a part of the world to
solve a problem.
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input

output

hidden

Figure 6.3: Artificial neural networks: a 3-layered net with an input, hidden, and output layer.

a = wTx

x

w

Figure 6.4: A linear network with one output unit.

6.3 Linear Neurons and the Perceptron

In this section we will focus on (artificial) neural networks (NNs) which represent linear discrim-
inant functions.

As in Chapter 3 we assume that objects are represented or described by feature vectors x ∈
Rd. The training set consists of l objects X =

{
x1, . . . , xl

}
with a targets yi ∈ R. Again we use

the matrix of feature vectors X =
(
x1, . . . ,xl

)T , where X ∈ Rl×d, and the vector of targets

y =
(
y1, . . . , yl

)T .

The linear neural network is

g(x;w) = a = wTx . (6.1)

That means we have d input neurons where the i-th input neuron has activation xi. There is only
one output neuron with activation a. Connections exist from each input unit to the output unit
where the connection from the i-th input unit to the output is denoted by wi (see Fig. 6.4).
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a = Wx

x

W

Figure 6.5: A linear network with three output units.

If we assume Gaussian noise, then the proper noise model is the least square error. In Chapter
3 in Section 3.5.1 we treated this case and found that the optimal solution is the least square
estimator from eq. (3.98):

ŵ =
(
XTX

)−1
XTy . (6.2)

This solution may also be obtained by gradient descent on the empirical error function

Remp =
1
2

l∑
i=1

(
yi − g(xi;w)

)2 = (6.3)

1
2

l∑
i=1

(
yi − wTxi

)2
=

1
2

(y − X w)T (y − X w) .

The gradient is

∂

∂w
Remp =

l∑
i=1

(
yi − wTxi

)
xi = (y − X w)T X . (6.4)

The linear neuron can be extended to a linear net if the output contains more than one unit.
The targets are now output vectors Y =

(
y1, . . . ,yl

)T , where Y ∈ Rl×o.

The linear neural network is

g(x;w) = a = Wx , (6.5)

where W is the weight matrix W ∈ Ro×d and o is the number of output units (see Fig. 6.5 with
o = 3).

For convenience the weight matrix is sometimes written as a weight vector w, where the
columns of W are stacked on top of each other. This network is a combination of linear neurons
with

gi(x;w) = ai = wT
i x , (6.6)
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where wi is the i-th line ofW written as column vector.

Because the optimal solution is

ŵi =
(
XTX

)−1
XTyi , (6.7)

where yi is the i-th column of Y , we obtain as solution for the whole network

Ŵ T =
(
XTX

)−1
XTY . (6.8)

A linear neuron with a threshold function is called perceptron. The output of the perceptron is
binary.

The perceptron model is

a = sign
(
wTx

)
, (6.9)

where sign is called threshold function. Note that the perceptron is a linear classifier from Section
4.2 without an offset b. Note, that without the offset b the learning problem is not translation
invariant.

For the perceptron we assume a classification task, where y ∈ {−1, 1}.
The error function for the perceptron is defined as

Remp = −
l∑

i=1; aiyi=−1

yi wTxi . (6.10)

The error is the margin error of the support vector machine e.g. in Section 4.6 in the eq. (4.54) with
b = 0 and very small ρ. The C support vector error is obtained ifw is scaled such that the minimal
|wTxi| of above misclassifications is one. Scaling does not influence the perceptron output.

Using a gradient update we obtain

∆w = η
l∑

i=1; aiyi=−1

yi xi (6.11)

or in an on-line formulation

if a y = −1 : ∆w = η y x . (6.12)

The update rule is very simple: if a pattern is wrongly classified then the label multiplied by the
input vector is added to the weight vector. Fig. 6.6 depicts the perceptron update rule.

Assume that the problem is linear separable. The perceptron learning rule converges after
finite many steps to a a solution which classifies all training examples correct.

However an arbitrary solution out of all possible solutions is chosen. If the problem in not
linearly separable then the algorithms does not stop.
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w + η x

x2
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−ηx

w − η x

x2

x1

Figure 6.6: The perceptron learning rule. Left: a positive example is wrongly classified and
correctly classified after the weight update. Right: a negative example is wrongly classified and
correctly processed after weight update.

Minsky and Papert showed 1969 that many problems cannot be solved by the perceptron. For
example the XOR problem (see Fig. 3.18) is a nonlinear problem which cannot be solved by the
perceptron.

Because of the work of Minsky and Papert neural networks were not popular until the mid
80ies where the multi layer perceptron with nonlinear units and back-propagation was reintro-
duced.

6.4 Multi-Layer Perceptron

With the work Rumelhart et al. [1986b,a] neural networks and especially the multi-layer percep-
tron trained with back-propagation became very popular.

6.4.1 Architecture and Activation Functions

A multi-layer perceptron (MLP) consists of more than one perceptron where the output of one per-
ceptron is the input of the next perceptron. Further, the activation (state) of a neuron is computed
through a nonlinear function.

We define for the multi-layer perceptron (MLP, see Fig. 6.7):

ai: activity of the i-th unit

a0 = 1: activity of 1 of the bias unit

wij : weight from unit j to unit i

wi0 = bi: bias weight of unit i

W : number of weights

N : number of units
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neti

wij

ai = f(neti)

j

i

L3: output

L2: hidden

L1: input

bi

Figure 6.7: Figure of an MLP.

I: number of inputs units (1 ≤ i ≤ I) located in the first layer called input layer.

O: number of output units (N − O + 1 ≤ i ≤ N ) located in the last layer called output
layer.

H: number of hidden units (I < i ≤ N −O) located in the hidden layers.

L: number of layers, where Lν is the index set of the ν-th layer; L1 = {1, . . . , I} and
LL = {N −O + 1, . . . , N}.

neti: network input to the i-th unit (I < i) computed as

neti =
N∑
j=0

wij aj (6.13)

f : activation function with

ai = f(neti) (6.14)

It is possible to define different activation functions fi for different units. The activation
function is sometimes called transfer function (in more realistic networks one can distin-
guish between activation of a neuron and the signal which is transferred to other neurons).

the architecture of a neural network is given through number of layers, units in the layers,
and defined connections between units – the activations function may be accounted to the
architecture.

A feed-forward MLP has only connections from units in lower layers to units in higher layers:

i ∈ Lν and j ∈ Lν′ and ν ≤ ν ′ ⇒ wij = 0 . (6.15)
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For a conventional multi-layer perceptron there are only connections or weights between con-
secutive layers. Other weights are fixed to zero. The network input is then for i in layer 1 < ν
is

∀i∈Lν : neti =
N∑

j;j∈Lν−1

wij aj . (6.16)

Connections between units in layers which are not adjacent are called shortcut connections.

The forward pass of a neural network is given in Alg. 6.1.

Algorithm 6.1 Forward Pass of an MLP

BEGIN initialization
provide input x
for all (i = 1 ; i ≤ I ; i+ +) do

ai = xi
end for

END initialization
BEGIN Forward Pass

for (ν = 2 ; ν ≤ L ; ν + +) do
for all i ∈ Lν do

neti =
N∑

j=0;wij exists
wij aj

ai = f(neti)
end for

end for
provide output gi(x;w) = ai, N −O + 1 ≤ i ≤ N

END Forward Pass

Activation Functions.

The commonly used activation functions are sigmoid functions.

The logistic function is

f(a) =
1

1 + exp(− a)
(6.17)

and the tanh activation function is

f(a) = tanh(a) =
exp(a) − exp(− a)
exp(a) + exp(− a)

. (6.18)

Both functions are equivalent because

1
2

(tanh(a/2) + 1) =
1

1 + exp(− a)
. (6.19)
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(proof as exercise)

That means through weight scaling and through adjusting the bias weights the networks with
logistic or tanh can be transformed into each other.

Also quadratic or other activation functions can be used but the fact that the sigmoid functions
are squashed into a interval makes learning robust. Because the activation is bounded the deriva-
tives are bounded as we see later. Networks with sigmoid activation are even more robust against
unknown input which can drive some activations in regions which are not explored in the training
phase.

Higher order units.

Higher order units use not a linear neti. For example second order units have the form

neti =
N∑

(j1,j2)=(0,0)

wij1j2 aj1 aj2 . (6.20)

Note that linear and constant terms are considered because of the bias unit a0 = 1.

We will use higher order units in Section 6.6.6 in order to gate information flow and to access
certain information.

Symmetric Networks.

Symmetric networks can be produced with the tanh function if the signs of input weights and
output weights are changed because tanh(−x) = − tanh(x), therefore, w2 tanh(w1 x) =
(−w2) tanh((−w1) x).

Permutations of the hidden units in one layer leads to equivalent networks.

That means the same function can be represented through different network parameters.

6.4.2 Universality

The in [Funahashi, 1989] it is proven that MLPs are universal function approximators:

Theorem 6.1 (MLPs are Universal Approximators) If the activation function f is not constant,
monotonic increasing, continuous, and bounded, then each continuous function g(x) on a compact
interval K can be approximated arbitrary exact through a three-layered neural network o(x;w):

max
x∈K
|o(x;w) − g(x)| < ε , (6.21)

where ε is given and the number of hidden units H depend on ε and g.

This statement (neural networks are universal function approximators) was also shown in
[Hornik et al., 1989, Stinchcombe and White, 1989, White, 1990].

We cite from [Hornik et al., 1989]:
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In other words, standard feed-forward networks with only a single hidden layer can
approximate any continuous function uniformly on any compact set and any measur-
able function arbitrarily well in the ρµ metric, regardless of the squashing function Ψ
(continuous or not), regardless of the dimension of the input space r, and regardless
of the input space environment µ. Thus, Σ networks are also universal approximators.

and

In other words, there is a single hidden layer feed-forward network that approximates
any measurable function to any desired degree of accuracy on some compact set K
of input patterns that to the same degree of accuracy has measure (probability of
occurrence) 1.

Note that in [Hornik et al., 1989] in contrast to [Funahashi, 1989] non-continuous activation
functions are allowed.

6.4.3 Learning and Back-Propagation

To train neural network the gradient based methods from Chapter 5 can be applied.

The gradient of a neural network can be computed very efficiently by back-propagation [Rumel-
hart et al., 1986b,a] which was even earlier proposed by [Werbos, 1974]. The back-propagation
algorithm made artificial neural networks popular since the mid 80ies.

In the following we derive the back-propagation algorithm in order to compute the gradient of
a neural network.

In eq. (3.161) we defined the empirical error as

Remp(w,X,Y ) =
1
l

l∑
i=1

L
(
yi, g

(
xi;w

))
, (6.22)

where we generalized to multiple outputs. According to eq. (5.3) the gradient descent update is

wnew = wold − η ∇wRemp(w,X,Y ) . (6.23)

We obtain

∇wRemp(w,X,Y ) =
1
l

l∑
i=1

∇wL
(
yi, g

(
xi;w

))
. (6.24)

We have to compute

∂

∂wkl
L
(
yi, g

(
xi;w

))
(6.25)

for all wkl.



6.4. Multi-Layer Perceptron 215

∂

∂wkl
L
(
yi, g

(
xi;w

))
= (6.26)

∂

∂netk
L
(
yi, g

(
xi;w

)) ∂netk
∂wkl

=

∂

∂netk
L
(
yi, g

(
xi;w

))
al .

We define the δ-error at unit k as

δk =
∂

∂netk
L
(
yi, g

(
xi;w

))
(6.27)

and obtain

∂

∂wkl
L
(
yi, g

(
xi;w

))
= δk al . (6.28)

The δ-error at the output units is

∀1 ≤ s ≤ O : δN−O+s = (6.29)
∂

∂gs
L
(
yi, g

(
xi;w

))
f ′(netN−O+s) =

∂L

∂aN−O+s
f ′(netN−O+s) ,

where f ′ denotes the derivative of the activation function f .

The δ-error at units not in the output layer is

δk =
∂

∂netk
L
(
yi, g

(
xi;w

))
= (6.30)∑

n

∂

∂netn
L
(
yi, g

(
xi;w

)) ∂netn
∂netk

=

∑
n

∂

∂netn
L
(
yi, g

(
xi;w

)) ∂netn
∂netk

=

f ′(netk)
∑
n

δn wnk ,

where the
∑

n goes over all n for which wnk exists. Typically n goes over all units in the layer
above the layer where unit k is located.

This efficient computation of the δ-errors led to the term “back-propagation” because the δ-
errors of one layer are used to compute the δ-errors of the layer below. The algorithm is sometimes
also called “δ-propagation”. Fig. 6.8 depicts the back-propagation algorithm for a 4-layer feed-
forward network.
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∑
k δk wki

L3: hidden 2

L1: input

L2: hidden 1 i

k

δk

wki

δi = ∂L(y,x,w)
∂ai

f ′(neti)

δi = f ′(neti)

L4: output

Figure 6.8: 4-layer MLP where the back-propagation algorithm is depicted. The δk =
∂

∂netk
L
(
yi, g

(
xi;w

))
are computed from the δ’s of the higher layer. The back-propagation

algorithm starts form the top layer and ends with the layer 2 where the weights to layer 2 are
updated.
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Note that for the logistic function

f(a) =
1

1 + exp(− a)
(6.31)

the derivative is

f ′(a) = f(a) (1 − f(a)) . (6.32)

This speeds up the algorithm because the exponential function must only be evaluated once.

Alg. 6.2 gives the backward pass for a single example where the weight update is accumulated
in ∆wij .

Algorithm 6.2 Backward Pass of an MLP

BEGIN initialization
provide activations ai of the forward pass and the label y
for (i = N −O + 1 ; i ≤ N ; i+ +) do

δi =
∂L(y,x,w)

∂ai
f ′(neti)

for all j ∈ LL−1 do

∆wij = − η δi aj
end for

end for
END initialization
BEGIN Backward Pass

for (ν = L− 1 ; ν ≥ 2 ; ν −−) do
for all i ∈ Lν do

δi = f ′(neti)
∑
k

δk wki

for all j ∈ Lν−1 do

∆wij = − η δi aj
end for

end for
end for

END Backward Pass

Note that in Alg. 6.2 has complexity of O(W ) which is very efficient.

6.4.4 Hessian

The Hessian matrix is useful for training and regularizing neural networks. The Hessian is defined
as

Hlj =
∂2R(w)
∂wl ∂wj

. (6.33)
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For most risk functions it is sufficient to calculate the Hessian of the loss function for one example
to compute the Hessian the risk

Hij(yi,xi,w) =
∂2L(yi,xi,w)
∂wl ∂wj

. (6.34)

and then combine these derivatives. In the following we write Hij for the Hessian of the loss
function for a certain example.

We have already seen that optimization techniques like the Newton method (see Section 5.4.1)
uses the Hessian or uses characteristics of the Hessian to optimize the step-size (see Section 5.3).

Further the Hessian can be used to retrain a network or to identify units or weights which are
not needed in the architecture (see Section 6.4.5.3). In other applications the Hessian is used to
assign error bars to the outputs (see Section 7.4) or to determine regularization parameters (see
Section 7.5) or to compare or average over models (see Section 7.8).

In this section we especially consider techniques which are adapted to neural networks to
efficiently compute the Hessian or to approximate it.

Diagonal approximations.

According to eq. 6.26 we have

∂2L(w)
∂w2

ij

=
∂2L (w)
∂net2

i

a2
j . (6.35)

Further the chain rule gives

∂2L (w)
∂net2

i

= (6.36)

(
f ′(neti)

)2∑
l

∑
k

wlj wkj
∂2L (w)

∂netl ∂netk
+ f ′′(neti)

∑
l

∂L (w)
∂netl

≈

(
f ′(neti)

)2∑
l

w2
lj

∂2L (w)
∂net2

l

+ f ′′(neti)
∑
l

∂L (w)
∂netl

,

where the off-diagonal elements of the Hessian were neglected.

This approximation can be done with an additional forward and backward pass and, therefore,
is as efficient as back-propagation with complexity O(W ).

However the approximation is often rough because the off-diagonal elements have large abso-
lute value.

Outer product / Levenberg-Marquardt Approximation.

The Levenberg-Marquardt algorithm in Section 5.5 approximated the Hessian in eq. (5.66)
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through

Hij,kl = (6.37)

∂2R

∂wij ∂wkl
=

l∑
i=1

(
∂ei

∂wij

∂ei

∂wkl
+ ei

∂2ei

∂wij ∂wkl

)
≈

l∑
i=1

∂aN (xi)
∂wij

∂aN (xi)
∂wkl

,

where

ei = (aN (xi;w) − yi) (6.38)

and

R(w) =
l∑

i=1

(
ei(w)

)2
. (6.39)

Attention: that only holds for squared error!

Inverse Hessian Approximation.

We will need the inverse Hessian in Section 6.4.5.3 which can be approximated by an outer
product approximation.

If gi is the weight gradient for example xi then

H =
l∑

i=1

gi
(
gi
)T

. (6.40)

This means the Hessian can be build sequentially

Hk =
k∑
i=1

gi
(
gi
)T

, (6.41)

whereH l = H .

We obtain

Hk+1 = Hk + gk+1
(
gk+1

)T
. (6.42)

To this formula the matrix inversion lemma

(A + B C)−1 = A−1 − A−1B
(
I + C A−1B

)−1
C A−1 (6.43)
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is applied which gives

(
Hk+1

)−1
=
(
Hk
)−1 −

(
Hk
)−1

gk+1
(
gk+1

)T (
Hk
)−1

1 + (gk+1)T (Hk)−1
gk+1

. (6.44)

Because only
(
Hk
)−1

gk+1 must be computed. and then each component of the Hessian can
be updated, the algorithm has O(W 2) complexity per iteration.

If the initial matrix is α I then this algorithm gives the inverse of (H + α I). In many
algorithms (H + α I) is more robust because the inversion with small eigenvalues is avoided.

If the Hessian is build up iteratively over more epochs (whole training set is updated) then
also quasi-Newton methods (see Section 5.4.1) may be considered because they also build up an
approximation of the Hessian which improves step by step.

Finite differences.

Either finite differences can be applied to the error function or the gradient of the error function.

Because for finite differences of the error function we have to disturb each pair of weights
(R(wij ± ε, wkl ± ε) and perform for each disturbance a forward pass we obtain complexity of
O(W 3).

The finite differences applied to the gradient gives

Hij,kl ≈ 1
2 ε

(
∂R

∂wij
(wkl + ε) − ∂R

∂wij
(wkl − ε)

)
. (6.45)

This is more efficient than finite differences of the error function because only W weights have to
be disturbed and the gradient can be computed in O(W ) time by back-propagation. Therefore the
Hessian can be approximated in O(W 2) complexity.

Exact Computation of the Hessian.

So far only the diagonal approximation was as efficient as back-propagation with O(W ) and
the other approximations of the Hessian have complexity O(W 2).

However the Hessian can be computed exactly with complexity O(W 2). Ideas from the back-
propagation are used for computing the Hessian.

From eq. (6.27) and eq. (6.28) we have

δk =
∂

∂netk
L
(
yi, g

(
xi;w

))
(6.46)

∂

∂wkl
L
(
yi, g

(
xi;w

))
= δk al .



6.4. Multi-Layer Perceptron 221

Hij,kl =
∂2L

∂wij ∂wkl
= (6.47)

aj
∂

∂neti
∂L

∂wkl
= aj

∂

∂neti
(δk al) =

δk aj f
′(netl)

∂netl
∂neti

+ aj al
∂δk
∂neti

=

δk aj f
′(netl) Vli + aj al bki ,

where we used the definitions

Vli =
∂netl
∂neti

(6.48)

bki =
∂δk
∂neti

.

The Vli are computed by forward propagation through

Vli =
∑
n:wln

∂netl
∂netn

∂netn
∂neti

=
∑
n:wln

f ′(netl) wln Vni . (6.49)

Note, that for input units the Vli are not required, so that the forward propagation can be
initialized by

Vii = 1 (6.50)

and for i in a higher than or the same layer as l set

Vli = 0 . (6.51)

Now for all l in a higher layer than i the value Vli can be determined by the forward propagation.

A backward propagation can now determine the values bli remember the back-propagation eq.
(6.30):

δk = f ′(netk)
∑
n

δn wnk (6.52)

which leads to

bki =
∂

∂neti
f ′(netk)

∑
n

δn wnk = (6.53)

f ′′(netk) Vki
∑
n

δn wnk + f ′(netk)
∑
n

wnk bni .
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Note that wij = wnk must be avoided in above equations because we expanded ∂
∂wij

into

aj
∂

∂neti
. However it is always possible to use the symmetric Hessian entry because it avoids this

equality otherwise the network would contain cycles.

The initial values bki are given as

bki =
∑
n

Skn Vni = [SVi]k = [SV ]ki , (6.54)

where

Skj =
∂2L

∂netk ∂netj
. (6.55)

The initial conditions for the backward pass are for output unit i

δi =
∂L(y,x,w)

∂ai
f ′(neti) (6.56)

and for i and j output units (where output units are not interconnected):

Sij =
∂2L(y,x,w)
∂ai ∂aj

f ′(neti) f ′(netj) . (6.57)

The algorithm Alg. 6.3 has complexity O(W 2) which is optimal because the Hessian has
O(W 2) entries (it is not W 2 because of symmetries).

Multiplication of the Hessian with a Vector.

Similar to previous algorithm the product of the Hessian with a vector can be computed very
efficiently. It can be computed in O(W ) time.

Following Pearlmutter [Pearlmutter, 1994] (see similar approach of Møller [Mller, 1993]) we
define a differential operator as

R{.} = vT∇w (6.58)

in order to derive a efficient way to compute

vTH = R{∇wL} = vT∇2
wL . (6.59)

We have

R{w} = v (6.60)

and

R{ai} = 0 (6.61)
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Algorithm 6.3 Hessian Computation

forward pass according to Alg. 6.1
BEGIN Hessian Forward Pass

for (ν = 2 ; ν ≤ L ; ν + +) do
for all i ∈ Lν do

Vii = 1
for (ν1 = ν ; ν1 ≥ 2 ; ν1 −−) do

for all l ∈ Lν1 do

Vli = 0
end for

end for
for (ν1 = ν + 1 ; ν1 ≤ L ; ν1 + +) do

for all l ∈ Lν1 do

Vli =
X
n

f ′(netl) wln Vni

end for
end for

end for
end for

END Hessian Forward Pass
backward pass according to Alg. 6.2

BEGIN Hessian Backward Pass
for (i = N −O + 1 ; i ≤ N ; i+ +) do

for (j = N −O + 1 ; j ≤ N ; j + +) do

Sij =
∂2L(y,x,w)

∂ai ∂aj
f ′(neti) f

′(netj)

end for
end for
for (ν = L ; ν ≥ 2 ; ν −−) do

for all l ∈ Lν do
for (i = N −O + 1 ; i ≤ N ; i+ +) do

bil =

NX
n=N−O+1

Sin Vnl

end for
for (ν = L− 1 ; ν ≥ 2 ; ν −−) do

for all i ∈ Lν do

bil = f ′′(neti) Vil
X
n

δn wni + f ′(neti)
X
n

wni bnl

end for
end for

end for
end for

END Hessian Backward Pass
for all (i, j) ≥ (k, l) do

Hij,kl = δk aj f
′(netl) Vli + aj al bli

end for
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for ai input unit.

We obtain

R{ai} = f ′(neti)R{neti} (6.62)

and

R{neti} =
∑
j

wijR{aj} +
∑
j

vij aj , (6.63)

where the first sum vanishes for j in the input layer.

Now the operator is applied to the δ’s of the back-propagation algorithm.

For an output unit i we have

δi =
∂L(y,x,w)

∂ai
f ′(neti) (6.64)

which gives

R{δi} = (6.65)(
∂2L(y,x,w)

∂a2
i

(
f ′(neti)

)2 +
∂L(y,x,w)

∂ai
f ′′(neti)

)
R{neti}

For non-output units i we have

R{δi} = f ′′(neti)R{neti}
∑
k

wki δk + (6.66)

f ′(neti)
∑
k

vki δk + + f ′(neti)
∑
k

wki R{δk}

The Hessian can be computed as

R
{
∂L

∂wij

}
= R{δi aj} = R{δi} aj + R{aj}δi , (6.67)

where again for the input units j the second term vanishes.

The algorithm for computing the product vTH of a vector with the Hessian has complexity
O(W ).

This algorithm applied to the W unit vectors allows to extract the Hessian in O(W 2) time but
Alg. 6.3 is more efficient.
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Algorithm 6.4 Hessian-Vector Multiplication

forward pass according to Alg. 6.1
BEGIN Hessian-Vector Forward Pass

for all i ∈ L1 do

R{ai} = 0
end for
for (ν = 2 ; ν ≤ L ; ν + +) do

for all i ∈ Lν do

R{neti} =
∑
j

wijR{aj} +
∑
j

vij aj

R{ai} = f ′(neti)R{neti}
end for

end for
END Hessian-Vector Forward Pass

backward pass according to Alg. 6.2
BEGIN Hessian-Vector Backward Pass

for (i = N −O + 1 ; i ≤ N ; i+ +) do

R{δi} =
(
∂2L(y,x,w)

∂a2
i

(
f ′(neti)

)2 +
∂L(y,x,w)

∂ai
f ′′(neti)

)
R{neti}

end for
for (ν = L− 1 ; ν ≥ 2 ; ν −−) do

for all i ∈ Lν do

R{δi} = f ′′(neti)R{neti}
∑
k

wki δk +

f ′(neti)
∑
k

vki δk + + f ′(neti)
∑
k

wki R{δk}
end for

end for
END Hessian-Vector Backward Pass

for all (i, j) do

[
vTH

]
ij

= R{ ∂L
∂wij

} = R{δi} aj + R{aj}δi
end for
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6.4.5 Regularization

In Section 3.6.4 we introduced the idea of structural risk minimization, where the empirical risk
(the training error) is minimized for a function class with bounded complexity.

In Section 3.6.5 the margin was define as a complexity measure and in Chapter 4 the support
vector machines minimize the complexity given as the margin for a perfect classification of the
training data. In Section 4.4 perfect classification was replaced by margin errors and a new variable
C was introduced. The variableC controlled the trade-off between margin errors and large margin.
Therefore in Section 4.4 we already found the trade-off between low complexity and low training
error.

In Fig. 3.20 the trade-off between complexity and training error (empirical risk) is depicted:

R ≤ Remp + complexity . (6.68)

Increasing complexity leads to smaller training error but the test error, the risk, increases at some
point.

Also Fig. 3.15 shows the relation between the test error R(g) and the training error as a func-
tion of the complexity. The test error R first decreases and then increases with increasing com-
plexity. The training error decreases with increasing complexity. The test error R is the sum of
training error and a complexity term. At some complexity point the training error decreases slower
than the complexity term increases – this is the point of the optimal test error.

For low test error, i.e. high generalization, we have to control the complexity of the neural
network.

Typical regularization terms are

smoothing terms, which control the curvature and higher order derivatives of the function
represented by the network

complexity terms which control number of units and weights or their precision.

If the network extracts characteristics which are unique for training data only (the data points
which have been drawn), stem from noise, or are due to outliers in the training data then overfit-
ting is present. In general all regularization terms which avoid that the network can extract such
characteristics from the training data can regularize. These terms allow the network only to extract
the most prominent characteristics which are not observed at one example but for many examples.

The regularization can be done

during or

after

training the network.

Regularization during training has the problem that there is a trade-off between decreasing the
empirical risk and the complexity. This trade-off is difficult to regulate during learning. Advantage
is that a constant pressure is on the learning to efficiently extract the structures.
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Regularization after training has the problem that the network can be spoiled by the training
procedure. Important structures may distributed over the whole network so that pruning weights
or nodes is impossible without destroying the important structure. E.g. a structure which can be
represented by a small subnetwork may be in a large architecture containing copies of this small
subnetwork. If now one of these copies is deleted the error decreases because it contributes to
the whole output. On the other hand the subnetwork share the task of representing the impor-
tant structure therefore have free capacity to represent more characteristics of the training data
including noise. Advantage of the regularization after training is that one can better control the
complexity and the trade-off between empirical error and complexity.

Because all regularization must be expressed through weight values, a problem appears for
all these methods. The network function can be implemented through different weight values and
some weight values may indicate lower complexity even if they implement the same function.

6.4.5.1 Early Stopping

To control the complexity of the network it is possible to stop learning before the minimum is
reached. This regularization technique is called “early stopping” and belongs to regularization
after learning. Early stopping can be seen as a training procedure which produces a sequences of
networks with increasing complexity. Complexity is controlled by selecting one of these networks
after learning.

During learning the network will first extract the most dominant rules, that is the most impor-
tant structures in the data. Here “important” or “dominant” means that the rule can be applied or
structure is present at many training examples. These rules or structures can decrease the train-
ing error most efficiently because the loss decreases for many examples. Later in the learning
procedure characteristics are found which apply only to few or just one example.

If the network is initialized with small weights and sigmoid activation functions are used, then
at the beginning of learning the network implements an almost linear function. The initial network
function is made more and more nonlinear during learning. For a highly nonlinear network func-
tion the weights in the network must be large. This means as early the learning is stopped as more
linear the network function will be and as lower is the complexity.

In Fig. 3.15 the relation between the test error and the training error is shown. If the complexity
grows with learning time, then the test error first decreases and then increases again. Optimal
would be to stop where the test error is minimal.

To analytically determine the best stopping time is complicated. Only rough guesses can be
given and do not help in practice.

A practical way is to use a validation set besides the training set to determine the best stopping
time. However the validation examples are lost as training examples.

Disadvantage of early stopping is that there is no pressure on the learning algorithm to focus
on the most prominent structure and efficiently use the resources. Also dominant but complicated
structures are not found because to extract them would take more time.
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6.4.5.2 Growing: Cascade-Correlation

The architecture, the number of units and weights, strongly influences the complexity of the net-
work. Growing algorithms start with small networks and add stepwise new units or new weights
which amount to increasing the complexity.

We classify growing algorithms as regularization techniques after training because during
training no regularization is done. Regularization is obtain through selecting a network from a
hierarchy of networks with increasing complexity similar to early stopping.

Well know algorithms for classification are the pocket and the tiling algorithm.

We will introduce the best known algorithm: cascade-correlation.

Cascade-correlation works as follows: If a new hidden unit k is added then first its weights
are trained to maximize the correlation between the residual error and the unit’s activation. The
objective to maximize is

Ck =
N∑

j=N−O+1

∣∣∣∣∣
l∑

i=1

(ak − āk) (εj − ε̄j)

∣∣∣∣∣ , (6.69)

where εj = (aj − yj−N+O) is the error of output unit j (ε̄j its mean value) and ak is the activation
of the new hidden unit k (āk its mean value).

The derivative of Ck with respect to the weights is just

∂Ck
∂wkj

=
N∑

j=N−O+1

±
l∑

i=1

(εj − ε̄j) f ′(netk) aj , (6.70)

where the sign is given by the sign of the correlation in eq. (6.69).

The training is very fast because only the incoming connections to the new hidden units have
to be trained.

The hidden to output weights are then found by a linear least-square estimate (see eq. (3.98))
if the output unit(s) is (are) linear. Otherwise again a gradient descent method can be applied to
determine the hidden to output weights. Here also a single layer of weights has to be trained. Fig.
6.9 shows the architecture of the cascade-correlation network.

Disadvantage of growing or “constructive” algorithms is that units or weights are added only
in small groups. Therefore, the combined effect of units cannot be used. If for example a reduction
of the error can be done only through a couple of units then this would not be detected. It is unclear
when the error starts to decrease therefore it is hard to decide when to stop or add a new unit.

6.4.5.3 Pruning: OBS and OBD

The opposite approach to growing is pruning. With pruning first a neural network is trained
until a local minimum of the training error (empirical risk) is found. Now the complexity of
trained network is reduced by removing weights (setting them to zero) from the network. Those
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hidden units

o = a5

a1 = x1

a0 = 1

a2 = x2

a3

a4

output unit

Figure 6.9: Cascade-correlation: architecture of the network. Squares are weights which are
trained whereas crosses represent weights which retrained only after the addition of a hidden unit.
First the hidden unit 3 with activation a3 was added and then hidden unit 4 with activation a4.

weights are removed which do not dramatically increase the training error to ensure that the major
information extracted from the training data is still coded in the network.

Pruning methods are typical methods for regularization after training.

Method like in [White, 1989, Mozer and Smolensky, 1989, Levin et al., 1994] remove units
and in [Moody, 1992, Refenes et al., 1994] even input units are removed. Before removing a units
or a weight its importance must be measured. The importance is determined by the influence or
contribution of the unit to producing the output.

To determine the increase of the error if a weight is deleted, a Taylor expansion of the empirical
error R(w) around the local minimum w∗ is made (that was already done in eq. (5.72). The
gradient vanishes in the minimum∇wR(w∗) = 0, therefore we obtain with ∆w = (w − w∗)

R(w) = R(w∗) +
1
2

∆wTH(w∗) ∆w + O
(

(∆w)3
)
, (6.71)

whereH is the Hessian.

For small |∆w| the error increase R(w) − R(w∗) for w = w∗ + ∆w is determined by
∆wTH(w∗) ∆w.

To delete the weight wi we have to ensure

eTi ∆w + wi = 0 , (6.72)

where ei is the unit vector with an one at the i-th position and otherwise zeros.

“Optimal Brain Damage” (OBD) LeCun et al. [1990] uses only the main diagonal of the Hes-
sian which can be computed in O(W ) time as we saw through eq. (6.36). The error increase is
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determined by∑
i

Hii (∆wi)
2 . (6.73)

If we want to remove a weight then this term should be as small as possible. At the minimum the
Hessian is positive definite, which means that for all v

vTH v ≥ 0 , (6.74)

therefore

eTi H ei = Hii ≥ 0 . (6.75)

Therefore the vector ∆w is chosen as

∆w = − wi ei (6.76)

so that all components except the i-th are zero. The minimal error increase is given by

min
i
Hii w

2
i (6.77)

and the weight wk with

k = arg min
i
Hii w

2
i (6.78)

is removed.

If the error increases after removal of some weights the network is retrained again until a local
minimum is found.

OBD is not able to recognize redundant weights. For example if two weights performing the
same tasks which can be done by one weight alone: assume each of the two weights has value of
0.5 then this may be equivalent to set one of the weights to 1 and delete the other.

OBD was successfully applied to recognize handwritten zip (postal) codes where a network
with 10.000 parameters was reduced to 1/4 of its original size.

A method called “Optimal Brain Surgeon” (OBS) Hassibi and Stork [1993] which uses the
complete Hessian was introduced by Hassibi & Stork. The full Hessian allows for correcting other
weights which also allows to detect redundant weights and remove redundancies. Also retraining
can be avoided are at least made reduced.

Above Taylor expansion and the constraint of removing weight i can be stated as an quadratic
optimization problem

min
∆w

1
2

∆wTH ∆w (6.79)

s.t. eTi ∆w + wi = 0
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The Lagrangian is

L =
1
2

∆wTH ∆w + α
(
eTi ∆w + wi

)
. (6.80)

The derivative has to be zero

∂L

∂∆w
= H ∆w + α ei = 0 (6.81)

which is

∆w = − αH−1 ei (6.82)

Further we have

wi = − eTi ∆w = α eTi H
−1 ei = αH−1

ii (6.83)

which gives

α =
wi

H−1
ii

(6.84)

and results in

∆w = − wi

H−1
ii

H−1 ei . (6.85)

The objective is

1
2

∆wTH ∆w =
1
2
w2
i

H−1
ii

, (6.86)

where oneH−1 vanishes withH and the other has the form eTi H
−1 ei = H−1

ii .

The criterion for selecting a weight to remove is the

1
2
w2
i

H−1
ii

(6.87)

and the correction is done by

∆w = − wi

H−1
ii

H−1 ei . (6.88)

Exercise: Why is the expression w2
i

H−1
ii

always larger than or equal to zero?

An approximation technique for the inverse Hessian was given in Section 6.4.4.

Problem with OBS is that most weights may be larger than 1.0 and the Taylor expansion is
not valid because higher terms in ∆w do not vanish. However in practice OBS does also work in
these cases because higher order derivatives are small.

Heuristics to improve OBS are
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checking for the first order derivative ∇wR(w∗) = 0; if the gradient is not zero then also
the linear term can be used to determine the increase of the error

retraining after weight deletion

checking for
∥∥I − H−1 H

∥∥ > β to see the quality of the approximation of the inverse
Hessian.

check for weight changes larger than γ (e.g. γ = 5.0), if changes appear which are larger
than γ then the weight correction should be scaled.

In general OBS will not find the smallest network because the gradient descent training was
not forced to use the smallest architecture to solve the problems. Therefore some structures are
distributed in a larger network which avoids to prune the network to an optimal size.

6.4.5.4 Weight Decay

Now we move on to regularization during learning. In general the error function is extended by a
complexity term Ω which expresses the network complexity as a function of the weights:

R(w) = Remp(w) + λ Ω(w) . (6.89)

This has the same form as the expressions in Theorem 3.9. In Section 3.6.5 the complexity term
was expressed through the margin and the margin in turn through the weight vector. Therefore this
is the expression which is also optimized by support vector machines.

Gradient descent in now performed on this extended error term.

∇wR(w) = ∇wRemp(w) + λ ∇wΩ(w) . (6.90)

The best known term for Ω(w) is weight decay, where small absolute weights values are
preferred over large absolute weight values.

Motivation for this term as a complexity term is similar to early stopping with small weights.
If a sigmoid activation function is used then small weights kept the activation in the linear range.
Therefore small absolute weight values prefer linear solutions. The same argument holds for
higher order derivatives of the network function. High derivatives can only be obtained by large
weights, therefore weight decay is a bias towards linear solutions.

Different weight decay terms were suggested like a term based on the 1-norm ‖w‖1 [Han-
son and Pratt, 1989] (Laplace distribution of weights in the Bayes treatment see Chapter 7), a
term based on log

(
1 + wTw

)
[Williams, 1994] (Cauchy distribution of weights in the Bayes

treatment see Chapter 7), or the 2-norm ‖w‖2 = wTw [Krogh and Hertz, 1992] (Gaussian
distribution of weights in the Bayes treatment see Chapter 7).

Later in Section 7.6 we will investigate how to adjust the hyper-parameter λ for the Gaussian
weight distribution according to [MacKay, 1992].

All these complexity terms tend to replace large absolute weights through a couple of small
absolute weights. For large networks also small absolute weights can lead to high nonlinearities if
the small weights accumulate to transfer a signal.
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Therefore the complexity term was further developed and a threshold for large weights intro-
duced [Weigend et al., 1991]. Only changes of weights near the threshold have large impact on the
complexity term. All weights below the threshold are pushed towards zero and the weights beyond
the threshold are not further penalized and can be even made larger in order to approximate the
training data.

The weight decay term according to [Weigend et al., 1991] is

Ω(w) =
∑
i

w2
i /w

2
0

1 + w2
i /w

2
0

, (6.91)

where w0 is the threshold value. For example w0 = 0.2.

To have more control and to better adjust the hyper-parameter λ the gradient of Ω(w) can be
normalized and multiplied by the length of the gradient ∇wRemp(w) which amount to a variable
weighting of the complexity term.

For an MLP the weight decay terms can be separated for each layer of weights and individual
hyper-parameters given for each layer. For example the input layer can be treated separately e.g.
also for selecting or ranking input variables.

6.4.5.5 Training with Noise

To regularize and to avoid that the network extracts individual characteristics of few training exam-
ples either to the training examples noise is added or to networks components [Minai and Williams,
1994, Murray and Edwards, 1993, Neti et al., 1992, Matsuoka, 1992, Bishop, 1993, Kerlirzin and
Vallet, 1993, Carter et al., 1990, Flower and Jabri, 1993].

For example Murray and Edwards [Murray and Edwards, 1993] inject white noise into the
weights which results in a new complexity term. The complexity term consists of squared weight
values and second order derivatives. However due to the second order derivatives the algorithms
is very complex.

It can be shown that noise injection is for small weight values equivalent to Tikhonov regu-
larization. Tikhonov regularization penalizes large absolute higher order derivatives of the output
with respect to the inputs and therefore highly nonlinear functions.

6.4.5.6 Weight Sharing

Nowland and Hinton [Nowlan and Hinton, 1992] propose that the weights have special preferred
values and should be grouped. Each group of weights should have similar values.

Each group has a preferred value and a certain range which says what weights are considered
as similar. Therefore each group j is modeled by a Gaussian

G(σj , µj) =
1

(2 π)1/2 σj
exp

(
− 1

2 σ2
j

(w − µj)2

)
. (6.92)

Each group j has a prior size αj which estimates what percentage of weights will belong to this
group.
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Figure 6.10: Left: example of a flat minimum. Right: example of a steep minimum.

We obtain for the probability of a weight belonging to group j

p(w | j) =
αj G(σj , µj)∑
k αk G(σk, µk)

(6.93)

and the probability of observing this weight value

p(w) =
∑
j

p(w | j) . (6.94)

The value p(w) should be maximized and we obtain for the derivative of R(w) with respect
to a single weight

∂R(w)
∂wi

=
∂Remp(w)

∂wi
+ λ

∑
j

p(wi | j) (wi − µj)
σ2
j

. (6.95)

Also the centers µj and the variances σ2
j can be adaptively adjusted during learning.

6.4.5.7 Flat Minimum Search

Another algorithm for regularization during training is the “Flat Minimum Search” (FMS) algo-
rithms [Hochreiter and Schmidhuber, 1997a]. It searches for large regions in the weight space
where the network function does not change but the empirical risk is small. Each parameter vector
from this region leads to the same empirical risk. Such a region is called “flat minimum” (see Fig.
6.10).

A steep minimum corresponds to a weight vector which has to be given with high precision
in order to ensure low empirical error. In contrast a flat minimum corresponds to a weight vector
which can be given with low precision without influencing the empirical risk. Precision is here
defined as how exact the weight vector is given in terms of intervals. For example 1.5 means the
interval [1.45, 1.55] of length 0.1 and 1.233 means the interval [1.2325, 1.2335] of length 0.001,
where the later is give more precisely than the former but needs more digits to describe. The FMS
algorithm removes weights and units and reduces the sensitivity of the output with respect to the
weights and other units. Therefore is can be viewed as an algorithm which enforces robustness.
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From the point of view of “Minimum Message Length” [Wallace and Boulton, 1968] and
“Minimum Description Length” [Rissanen, 1978] fewer bits are needed to describe a flat mini-
mum. That means a flat minimum corresponds to a low complexity neural network.

An error term Ω(w) describing the local flatness is minimized. This error term consists of first
order derivatives and can be minimized by gradient methods based on Alg. 6.4.

The FMS error term is

Ω(w) =
1
2

−L log ε+
∑
i,j

log
N∑

k=N−O+1

(
∂ak
∂wij

)2

+ (6.96)

W log
N∑

k=N−O+1

∑
i,j

∣∣∣ ∂ak∂wij

∣∣∣√∑N
k=N−O+1( ∂ak∂wij

)2

2
 ,

where ε gives the tolerable output change as Euclidian distance (output changes below ε are con-
sidered to be equal).

The derivative is

∂Ω(w)
∂wuv

=
N∑

k=N−O+1

∑
i,j

∂Ω(w)

∂
(
∂ak
∂wij

) ∂2ak
∂wij ∂wuv

(6.97)

which is with ∂ak
∂wij

as new variables

∇wΩ(w) =
N∑

k=N−O+1

Hk

(
∇ ∂ak

∂wij

Ω(w)
)
, (6.98)

whereHk is the Hessian of the output unit ak.

The algorithm has complexity of O(O W ) (remember that O is the number of output units).

FMS prefers as weight decay weights close to zero, especially outgoing weights from units
which are not required (then the ingoing weights can be given with low precision). In contrast to
weight decay FMS also prefers large weight values. Especially large negative bias weights to push
the activation of units either to zero (outgoing weights can be given with low precision. ). Other
large weights push activation into regions of saturation (ingoing weights can be given with low
precision).

6.4.5.8 Regularization for Structure Extraction

Regularization of neural networks can be used to extract structures from data.

The idea to build an auto-associator network, where the input and the output should be iden-
tical (see Fig. 6.11). That means an auto-associator is a network which represents the identity.
Regularization ensures a low complex bottleneck which stores the information of the input for
constructing the output.
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output=input

hidden=coding

input

Figure 6.11: An auto-associator network where the output must be identical to the input. The
hidden layer must code the input information to supply it to the output layer.
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Figure 6.12: Example of overlapping bars. The second and fourth vertical as well as the second
horizontal bar is active. On the right the corresponding inputs to the neural network.

However using regularization the identity must be build using a low complexity network where
also the output must not exactly match the input. The network is forced to extract the major
structures from the network and present them at the output – only in this way the input can be
generated sufficiently well.

In the following we show FMS applied to auto-association.

In the first task a 5× 5 pixel square contains horizontal and vertical bars. See Fig. 6.12 for an
example. A good coding strategy would be to code bars and not the single pixels.

To the input noise is added which gives training examples as shown in Fig. 6.13.

The result of the auto-associator trained with FMS is shown in Fig. 6.14. The bar structure is
extracted and efficiently coded.

Now we extract structures from images of size 150 × 150 pixel with 256 grey values. The
input to the network is a 7× 7 square of these images.

We analyze the image of a village as in Fig. 6.15. The image is black except for special white
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1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

21 22 23 24 25

Figure 6.13: 25 examples for noise training examples of the bars problem where each example is
a 5× 5 matrix. The white circles are positive and the black circles are negative values. The radius
of the circle is proportional to the absolute value. The values are normalized for each 5× 5 matrix
so that one maximal circle is present.
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1 pruned 2 pruned 3 4 5 pruned

6 pruned 7 pruned 8 9 pruned 10 pruned

11 pruned 12 13 pruned 14 pruned 15

16 pruned 17 18 19 20

21 pruned 22 23 pruned 24 pruned 25 pruned

1 pruned 2 pruned 3 4 5 pruned

6 pruned 7 pruned 8 9 pruned 10 pruned

11 pruned 12 13 pruned 14 pruned 15

16 pruned 17 18 19 20

21 pruned 22 23 pruned 24 pruned 25 pruned

input units -> hidden units hidden units -> output units

Figure 6.14: Noise bars results for FMS. Left: weights from inputs to the hidden units. Each
5 × 5 square represents one hidden unit with its ingoing weights. At the upper left corner the
bias weights are given. The color coding is as in Fig. 6.13 but also the bias weights is used for
normalization. Units which are marked by “pruned” have been removed by FMS. Right: weights
from hidden units to output units.

regions which show buildings or streets. The result is shown in Fig. 6.15. The black background
with white structures was extracted by localized white spot detectors.

We analyze the image of wood cells as in Fig. 6.17. Fig. 6.18 shows the results after training
with FMS.

We analyze the image of wood piece with grain as shown in Fig. 6.19. The results after training
with FMS are shown in Fig. 6.20.

In all these experiments a regularized auto-associator was able to extract structures in the input
data.

6.4.6 Tricks of the Trade

6.4.6.1 Number of Training Examples

According to Baum & Haussler 1989 if from

l ≥ W

ε
log2

(
M

ε

)
(6.99)

examples a fraction (1 − ε/2) are correctly classified then a fraction of (1 − ε) of future examples
are classified correctly. Here M is the number of units.

Further they found that

dVC ≥ (M − 2) d , (6.100)
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Figure 6.15: An image of a village from air.
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Figure 6.16: Result of FMS trained on the village image. Left: weights from input units to hidden
units. The most units are deleted. Right: weights from hidden units to output units.
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Figure 6.17: An image of wood cells.
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Figure 6.18: Result of FMS trained on the wood cell image. Left: weights from input units to
hidden units. The most units are deleted. Right: weights from hidden units to output units.
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Figure 6.19: An image of a wood piece with grain.
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Figure 6.20: Result of FMS trained on the wood piece image. Left: weights from input units to
hidden units. The most units are deleted. Right: weights from hidden units to output units.
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where d is the number of inputs. For a two-layered network with one output unit we have d (M −
d− 1) weights from input to the (M − d− 1) hidden units, (M − d− 1) weight from the hidden
units to the output, (M − d− 1) hidden bias weights, and a output bias which gives

W = (d+ 2) (M − d− 1) + 1 . (6.101)

Approximatively we have

W = M d . (6.102)

For ε = 0.1 we have

l ≥ W/ε = 10 W . (6.103)

That amount to 10 times more examples than weights in the network.

6.4.6.2 Committees

In many application the performance is more robust if over different networks is averaged.

Let gj the function which is represented by the j-th network then as an committee output with
C members we obtain

g(x) =
1
C

C∑
j=1

gj(x) . (6.104)

We assume that

gj(xi) = yi + εij , (6.105)

where εj is distributed with zero mean E(εj) = 0 for each j and with zero covariance E(εj εk) =
0. We further assume that all εj follow the same distribution for all j.

The expected error of the committee is

E

 1
C

C∑
j=1

gj(x) − y

2 = E

 1
C

C∑
j=1

(gj(x) − y)

2 = (6.106)

E

 1
C

C∑
j=1

εj

2 =
1
C2

C∑
j=1

E
(
ε2j
)

=

1
C

E
(
ε2j
)
,

where E
(
ε2j

)
is the error obtained by a single network.
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That means the error was reduced by a factor of 1
C because the individual error are averaged

out.

However that does not work in practice because the errors of the individual networks are not
de-correlated. In the worst case all networks converge to the same minimum and no improvement
is obtained.

If the error correlation matrix is known then a weighted average

g(x) =
C∑
j=1

αj gj(x) (6.107)

with
∑C

j=1 αj = 1 is possible. The αj can be determined by using the correlation matrix.

6.4.6.3 Local Minima

In principle are the optimization techniques for neural networks prone to finding only local minima
of the empirical error and not its global minimum.

However in practice large enough networks never get stuck in local minima because the em-
pirical error can be minimized until it reaches zero, i.e. all training examples are perfectly learned.

More problematic is structural risk minimization where the risk is the empirical error plus a
complexity term. Here most sensitive is the adjustment of the hyper-parameter which scales the
complexity term.

The only way to find a good solution is to use a simple complexity term which has not many
optima in itself and to explore different regions in weight space.

The best approach will be treated later in Section 7.8 where the optimum of the risk is found
by monte carlo sampling.

6.4.6.4 Initialization

Initialization with small weights is to prefer because of three reasons. First the network starts with
simple functions which are almost linear. Secondly the derivatives are large in the linear activation
range compared to ranges with saturation of the units. Thirdly, weights around zero have on
average the minimal distance to their optimal values if we assume a zero mean distribution of the
final weight values.

Typical initialization values may be uniformly in [−0.1; 0.1].

Sometimes bias weights can have special treatment for initialization. The bias weight to the
output can be adjusted that the output unit supplies the mean target value at the beginning of
learning.

Bias weights to hidden units can be staged so that the hidden units are not used all at once and
doing the same job. Ideally the hidden unit with the smallest negative bias is used first and then
the second smallest and so on.

The negative bias can also be used for regularization because some units are kept away from
processing the output and only if there is enough error flowing back they come into the game.
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6.4.6.5 δ-Propagation

During training different training examples have different contribution to the weight update. The
contribution of few examples is sometimes important.

To speed up learning the training examples with empirical error smaller than δ are marked
and not used for training in the next epochs. After certain number of epochs a sweep through all
training examples is made and again the examples with error smaller than δ are marked and not
used in the next epochs.

6.4.6.6 Input Scaling

All input components should be scaled so that they are within [−1, 1] which is the activation range
of standard units. Larger input values lead to large weight updates and unstable learning.

Often each input component is normalized to zero mean and variance 1.

If for a input component positive and negative values express different facts then this should
be kept and normalization to zero mean should be avoided.

If a input component contains outliers that is extreme large absolute values then these values
should be mapped to a maximum or a squashing function should be used. For example if for
examples the value of one component is in [−1, 1] and one example has a value of 100 of this
component, then after scaling the component is for all except one value in [−0.01, 0.01] and learn-
ing of this component is difficult. Also the weight update of the large value is 100 times larger
than any other update for equal delta-error at an unit in the first hidden layer. That means one
example overwrites the information of many other examples.

6.4.6.7 Targets

For classification it is sometimes useful to use targets of 0.2 and 0.8 for sigmoid activation in [0; 1]
instead of 0 and 1 or targets of -0.8 and 0.8 for sigmoid activation in [−1; 1] instead of -1 and
1. Problem with targets at the boundary of the activation interval is that some examples may get
stuck in saturated regions and the derivatives are small. In this case a wrongly classified example
takes a long time to be made correctly.

For a multi-class network it is useful to define an output unit for each class which obtains 1 as
target if the input belongs to the according class and zero otherwise.

If in a classification task the size of the classes is different then it can help to assign higher
outputs to classes with few members so that the overall error contribution is similar for all classes.

6.4.6.8 Learning Rate

Typical learning rates per example are 0.1 or 0.01. In batch learning the learning rate must be
divided by the number of examples in the training set.

However in batch learning the learning rate can be increased again because error signals get
superimposed and the accumulative update signal is not the sum of all absolute update values. The
updates for one weight are positive and negative depending on the example.
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6.4.6.9 Number of Hidden Units and Layers

In many practical applications it was of advantage to have more hidden units in a layer than output
and input units.

A network with two hidden layers is appropriate for many tasks.

Shortcut connections should be avoided because these connections obtain a larger error signal
(see Section 6.6.5) and start oscillate so that the between layer weights are hard to adjust.

For some applications it is useful to reduce the activation of the constant bias unit to 0.1
because its outgoing weights obtain the largest update signal and begin to oscillate.

6.4.6.10 Momentum and Weight Decay

In Section 5.2 the momentum term was introduced which in most cases help to speed up the
back-propagation algorithm.

For regularization weight decay method is easy to realize.

6.4.6.11 Stopping

When should learning be stopped?

With regularization the empirical error may converge to a constant value which indicates that
learning can be stopped.

Without regularization the empirical error may decrease by a certain rate to zero.

It is often interesting to know the maximal deviation of the output from the target value over
the training examples. If the maximal deviation is below a threshold then learning can be stopped.

Other stopping criterion include the maximal weight change of the last epochs, the error im-
provement of the last epochs.

6.4.6.12 Batch vs. On-line

In many application learning can be sped up by using an on-line update (see Section 5.8), that
means after each example the weights are immediately changed.

Here it is important to shuffle the training examples after each epoch in order to avoid update
loops which make no progress.

Advantage of the on-line method is that all future examples see the weight update and are
not evaluated on the old weights (e.g. the bias weight to the output may be adjusted after a few
training examples and all other see the new bias weight.). On-line learning together with shuffling
also includes a small random effect which helps to explore the local environment in weight space.
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Figure 6.21: A radial basis function network is depicted. Inputs activate the Gaussians according
how close the input is to the center. For the current input (dark point) the dark Gaussians are
activated.

6.5 Radial Basis Function Networks

In contrast to the neural networks which we treated so far, the support vector machines where
local approximators in the sense that training examples are used as a reference to classify new data
points.

Local approximators also exist in the neural network literature, where the best known approach
is radial basis function (RBF) networks.

Assume we have C basis functions φ then the RBF network is

gk(x) =
C∑
j=1

αkj φj (‖x − µj‖) + αk0 . (6.108)

For example Gaussian radial basis functions are

φj (‖x − µj‖) = exp

(
− 1

2 σ2
j

‖x − µj‖2
)
. (6.109)

Fig. 6.21 depicts how RBF networks are working.

The parameters of this network are the weighting coefficients αkj , the centersµj and the width
σj .

It is possible to use a covariance matrix

φj (‖x − µj‖) = exp
(
− 1

2
(x − µj)

T Σ−1
j (x − µj)

)
. (6.110)
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6.5.1 Clustering and Least Squares Estimate

To adjust the parameters of RBF networks there exist different approaches.

First we consider a two-stage procedure, where the in the first stage µj and σj are determined
and then the parameters αkj .

In the first stage µj and σj can be found by unsupervised methods like clustering or density
estimation (mixture of Gaussians) as will be discussed in sections 10.6 and 10.6.1.

The values φj (‖x − µj‖) are then given for the training set and can be summarized in the
vector which can be expanded to a matrix Φ which also summarizes all training examples.

The parameters αkj can be summarized in the matrix Λ and the targets yj are summarized in
the vector y and the targets over the whole training set in the matrix Y .

We obtain

Y = Λ Φ (6.111)

which can be solved by a least-square estimate according to eq. (3.98) if a squared error is used:

ΛT =
(
ΦTΦ

)−1
ΦTY . (6.112)

6.5.2 Gradient Descent

Of course the RBF networks can be trained by gradient based methods. For the mean squared error
we have L(g(x),y) =

∑
k (gk(x) − yk)

2 and if spherical Gaussians are use, the derivatives
are

∂L(g(x),y)
∂αkj

= (gk(x) − yk) φj = (gk(x) − yk) = (6.113)

exp

(
− 1

2 σ2
j

‖x − µj‖2
)

∂L(g(x),y)
∂σj

=
∑
k

(gk(x) − yk) αkj

exp

(
− 1

2 σ2
j

‖x − µj‖2
)
‖x − µj‖2

σ3
j

∂L(g(x),y)
∂µjl

=
∑
k

(gk(x) − yk) αkj

exp

(
− 1

2 σ2
j

‖x − µj‖2
)

(xl − µjl)
σ2
j

.
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6.5.3 Curse of Dimensionality

A compact region grows exponentially with d in a d-dimensional space. If we assume a cube
where each axis is divided into k intervals then we obtain kd small hypercubes. This fact is known
as the “curse of dimensionality” [Bellman, 1961].

Therefore also the number of basis function should increase exponentially with dwhich in turn
leads to complex models which are likely to overfit. According to [Stone, 1980], the number of
training examples has to increase exponentially with the number of dimensions in order to ensure
that an estimator also performs well for higher dimensional data.

That means RBF networks are not suited for high-dimensional data – similar statement holds
for other local approximation methods.

Local approximation methods must assign a value to each region in space based on local infor-
mation. However, if there is no local information then local methods fail to assign an appropriate
value to data point at this region.

6.6 Recurrent Neural Networks

Until now we only considered neural networks with feed-forward connections, i.e. the directed
connections did not form a loop. Without a loop there is a forward pass which can use the input
variables to activate the network and produce output values.

Real neural networks however possess loops which serve to store information over time. That
means the new activation depends on the old activation of the network.

The feed-forward network can be considered as a function which maps the input vector x to
an output vector g(x).

Neural networks with loops, the so-called recurrent networks, map an input sequence

(x(1), . . . ,x(t), . . . ,x(T ))

to an output sequence (g(1), . . . , g(t), . . . , g(T )), where

g(t) = g (a0,x(1), . . . ,x(t)) , (6.114)

where a0 is the initial activation of the network. The index t of the sequence elements is often
called “time” because recurrent networks are often used to time series prediction. Also feed-
forward networks can be used for time series prediction if an input vector is build of the current
input together with past inputs. However such networks with an input window of the time series
cannot see information outside the window and their complexity (number of parameters) increases
with window size. Recurrent networks can process long sequences with few parameters and can
use past information to optimally process information which they will see in the future sequence.

Fig. 6.22 shows an architecture of a recurrent network and Fig. 6.23 shows how a sequences
is processed.

In bioinformatics recurrent networks are however used for sequence processing.



6.6. Recurrent Neural Networks 249
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Figure 6.22: An architecture of a recurrent network. The recurrent hidden layer is fully connected,
i.e. all units are interconnected. The hidden units are able to store information, i.e. information
from previous inputs is kept in the hidden units.

The loops are used to store information from the previous time steps because the old activation
of a unit can influence the new activation of other units or its own new activation. For example
a unit which gets activated can keep this activation by a strong positive self-recurrent connection.
Such a unit can therefore store the occurrence of an event.

The computational power of recurrent networks is that of Turing machines [Siegelmann and
Sontag, 1991, Sun et al., 1991, Siegelmann, 1995].

6.6.1 Sequence Processing with RNNs

The activation functions and network inputs are now time dependent and are computed from the
activations of previous time step:

neti(t) =
N∑
j=0

wij aj(t− 1) (6.115)

ai(t) = f(neti(t)) . (6.116)

Further we need initial activations ai(0) from which are the activations before the network sees
the first input element.

Some of the units can be defined as input and some as output units.

For learning, for each input sequence (x(1), . . . ,x(t), . . . ,x(T )), a target sequence (y(1), . . . ,y(t), . . . ,y(T ))
is given. We denote by {x(t)} the sequence (x(1), . . . ,x(t)) and by {y(t)} the sequence (y(1), . . . ,y(t)).

Similar to feed-forward networks we define the empirical error as

∇wRemp(w, {X(T )}, {Y (T )}) = (6.117)

1
l

l∑
i=1

T∑
t=1

∇wL
(
yi(t), g

({xi(t)};w)) .
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Figure 6.23: The processing of a sequence with a recurrent neural network. At each step the
current input element is fed to the input units and the output unit should supply the target value.

The next subsections discuss how recurrent networks can be learned.

6.6.2 Real-Time Recurrent Learning

For performing gradient descent we have to compute

∂

∂wuv
L
(
yi(t), g

({xi(t)};w)) (6.118)

for all wuv.

Using the chain rule this can be expanded to

∂

∂wuv
L
(
yi(t), g

({xi(t)};w)) = (6.119)∑
k,k output unit

∂

∂ak(t)
L
(
yi(t), g

({xi(t)};w)) ∂ak(t)
∂wuv

.

For all units k we can compute

∂ak(t+ 1)
∂wuv

= f ′(netk(t+ 1))

(∑
l

wkl
∂al(t)
∂wuv

+ δkuav(t)

)
, (6.120)
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input(t) hidden(t− 1) output(t− 2)

Figure 6.24: Left: A recurrent network. Right: the left network in feed-forward formalism, where
all units have a copy (a clone) for each times step.

where δ is the Kronecker delta with δku = 1 for k = u and δku = 0 otherwise.

If the values ∂ak(t)
∂wuv

are computed during a forward pass then this is called real time recur-
rent learning (RTRL) [Werbos, 1981, Robinson and Fallside, 1987, Williams and Zipser, 1989,
Gherrity, 1989].

RTRL has complexity of O(W 2) for a fully connected network, where W = N (N − I) =
O(N2) (each unit is connected to each other unit except the input units, which do not have ingoing
connections).

Note that RTRL is independent of the length of the sequence, therefore RTRL is local in time.

6.6.3 Back-Propagation Through Time

A recurrent network can be transformed into a feed-forward network if for each time step a copy
of all units is made. This procedure of unfolding in time is depicted in Fig. 6.24 for one step and
the network unfolded over the whole time is depicted in Fig. 6.25.

After re-indexing the output by adding two time steps and re-indexing the hidden units by
adding one time step we obtain the network from Fig. 6.26.

To the network of Fig. 6.26 can now be trained by standard back-propagation. This method is
called back-propagation through time (BPTT) [Williams and Zipser, 1992, Werbos, 1988, Pearl-
mutter, 1989, Werbos, 1990].

We have

L
(
yi, g

({xi};w)) =
T∑
t=1

L
(
yi(t), g

({xi(t)};w)) (6.121)

for which we write for short

L =
T∑
t=1

L(t) . (6.122)



252 Chapter 6. Neural Networks

...... ... ... ... ... ...

input(1) hidden(0) output(−1)

input(T + 2) hidden(T + 1) output(T )

Figure 6.25: The recurrent network from Fig. 6.24 left unfolded in time. Dummy inputs at time
(t + 1) and (t + 2) and dummy outputs at (t − 2) and (t − 1) are used. The input is shifted two
time steps against the output to allow the input information be propagated through the network.
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...... ... ... ... ... ...

input(1) hidden(1) output(1)

input(T + 2) hidden(T + 2) output(T + 2)

Figure 6.26: The recurrent network from Fig. 6.25 after re-indexing the hidden and output.
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The delta error is

δj(t) = − ∂L

∂(netj(t))
= −

∂
(∑T

τ=t L(τ)
)

∂(netj(t))
(6.123)

The back-propagation algorithm starts with

δj(T ) = f ′(netj(T ))
∂L(T )
∂aj(T )

, (6.124)

where in above reformulation T has to be replaced by (T + 2).

For t = T − 1 to t = 1:

δj(t) = f ′j(netj(t))

(
∂L(t)
∂aj(t)

+
∑
l

wljδl(t+ 1)

)
, (6.125)

where ∂L(t)
∂aj(t)

accounts for the immediate error and the sum for the back-propagated error. Both
types of error occur if output units have outgoing connections. In out architecture in Fig. 6.26
these errors are separated.

The derivative of the loss with respect to a weight in a layer t of the unfolded network in Fig.
6.26 is

− ∂L

∂wjl(t)
= − ∂L

∂(netj(t))
netj(t)
∂wjl(t)

= δj(t) al(t− 1) . (6.126)

Because the corresponding weights in different layers are identical, the derivative of the loss
with respect to a weight is

∂L

∂wjl
=

T∑
t=1

∂L

∂wjl(t)
= −

T∑
t=1

(δj(t) al(t− 1)) . (6.127)

The on-line weight update is

wnew
jl = wold

jl − η
∂L

∂wjl
, (6.128)

where η is the learning rate.

The complexity of BPTT is O(T W ). BPTT is local in space because its complexity per time
step and weight is independent of the number of weights.

A special case of BPTT is truncated BPTT called BPTT(n), where only n steps is propagated
back. For example n = 10 is sufficient because information further back in time cannot be learned
to store and to process (see Subsection 6.6.5).

Therefore BPTT is in most cases faster than RTRL without loss of performance.
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6.6.4 Other Approaches

We did not consider continuous time networks and did not consider attractor networks like the
Hopfield model or Boltzmann machines.

These approaches are currently not relevant for bioinformatics. Continuous time networks
may be useful for modeling that is for systems biology.

In the review [Pearlmutter, 1995] a nice overview over recurrent network approaches is given.
The first approach were attractor networks for which gradient based methods were developed
[Almeida, 1987, Pineda, 1987].

Other recurrent network architectures are

Networks with context units which use special units, the context units, to store old activa-
tions. “Elman networks” [Elman, 1988] use as context units the old activations of hidden
units. “Jordan networks” [Jordan, 1986] use as context units old activations of the output
units.

Special context units with time constants allow fast computation or to extract special infor-
mation in the past. The “focused back-propagation” method [Mozer, 1989] and the method
of [Gori et al., 1989] introduce delay factors for the context units and lead to fast learning
methods.

Other networks directly feed the output back for the next time step [Narendra and Parthasarathy,
1990] or NARX networks [Lin et al., 1996].

Local recurrent networks use only local feedback loops to store information [Frasconi et al.,
1992]

Networks can be build on systems known from control theory like “Finite Impulse Response
Filter” (FIR) networks [Wan, 1990] where at the ingoing weights a FIR filter is placed. The
architecture in [Back and Tsoi, 1991] uses “Infinite Impulse Response Filter” (IIR) filter
instead of FIR filter.

Other networks use “Auto Regressive Moving Average” (ARMA) units.

“Time Delay Neural Networks” (TDNNS) [Bodenhausen, 1990, Bodenhausen and Waibel,
1991] use connections with time delays, that means the signal is delayed as it gets trans-
ported over the connection. Therefore old inputs can be delayed until they are needed for
processing.

The “Gamma Memory” model [de Vries and Principe, 1991] is a combination of TDNN
and time constant based methods.

Recurrent network training can be based on the (extended) Kalman filter estimation [Matthews,
1990, Williams, 1992, Puskorius and Feldkamp, 1994].

A variant of RTRL is “Teacher Forcing-RTRL” if the output units also have outgoing connec-
tions. With “Teacher Forcing-RTRL” the activation of the output units is replaced by the target
values.
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RTRL and BPTT can be combined to a hybrid algorithm [Schmidhuber, 1992a] which has
complexity O(W N). Here BPTT is made for N time steps having complexity O(W N) where-
after a single RTRL update is made which as complexity O(W 2/N) = O(W N).

6.6.5 Vanishing Gradient

The advantage of recurrent network over feed-forward networks with a window is that they can in
principle use all information in the sequence which was so far processed.

However there is problem in storing the relevant information over time. If recurrent networks
are not able to store information over time then there great advantage over other approaches is lost.

Consider an error signal δu(t) which is computed at time t at unit u and which gets propagated
back over q time steps to unit v. The effect of δu(t) on δv(t− q) can be computed as

∂δv(t− q)
∂δu(t)

=

{
f ′ (netv(t− 1)) wuv q = 1

f ′ (netv(t− q))
∑N

l=I
∂δl(t−q+1)
∂δu(t) wlv q > 1

. (6.129)

If we set lq = v and l0 = u then we obtain

∂δv(t− q)
∂δu(t)

=
N∑
l1=I

. . .

N∑
lq−1=I

q∏
r=1

f ′ (netlr(t− r)) wlrlr−1 . (6.130)

Because of

δv(t− q) = − ∂L

∂netv(t− q) = −
∑
l

∂L

∂netl(t)
∂netl(t)

∂netv(t− q) = (6.131)

∑
l

δl(t)
∂netl(t)

∂netv(t− q)

holds

∂δv(t− q)
∂δu(t)

=
∂netu(t)

∂netv(t− q) (6.132)

true.

This leads to

∂L(t)
∂wij(t− q) = (6.133)∑
l:output unit

f ′(netu(t))
∂L(t)
∂aj(t)

∂netl(t)
∂neti(t− q)

∂neti(t− q)
∂wij(t− q) =

∑
l:output unit

f ′(netu(t))
∂L(t)
∂aj(t)

∂ϑi(t− q)
∂ϑl(t)

aj(t− q)
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which shows that ∂L(t)
∂wij(t−q) is governed by the factor in eq. (6.130).

The eq. (6.130) contains N q−1 terms of the form

q∏
r=1

f ′ (netlr(t− r)) wlrlr−1 . (6.134)

If the multipliers

f ′ (netlr(t− r)) wlrlr−1 > 1 , (6.135)

the learning is instable because derivatives grow over time and the weight update are too large.

If the multipliers

f ′ (netlr(t− r)) wlrlr−1 < 1 , (6.136)

then we have the case of vanishing gradient which means that ∂L(t)
∂wij(t−q) decreases with q expo-

nentially to zero.

That means inputs which are far in the past do not influence the current loss and will not be
used to improve the network. Therefore the network is not able to learn to store information in the
past which can help to reduce the current loss.

6.6.6 Long Short-Term Memory

From previous considerations we know that to avoid both instable learning and the vanishing
gradient, we have to enforce

f ′ (netlr(t− r)) wlrlr−1 = 1 . (6.137)

For simplicity we consider only one unit j with a self-recurrent connection wjj and obtain

f ′ (netj(t− r)) wjj = 1 . (6.138)

Solving this differential equation gives:

f(x) =
1
wjj

x . (6.139)

Because f depends on the self-recurrent connection we can set wjj = 1 to fix f and obtain

f(x) = x . (6.140)

Fig. 6.27 shows the single unit which ensures that the vanishing gradient is avoided. Because
this unit represents the identity it is immediately clear that information is stored over time through
the architecture.
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1.0

Figure 6.27: A single unit with self-recurrent connection which avoids the vanishing gradient.

1.0

Figure 6.28: A single unit with self-recurrent connection which avoids the vanishing gradient and
which has an input.

However it is not enough to avoid the vanishing gradient and therefore ensure keeping of
information. A signal must be stored in the unit before it is kept. Fig. 6.28 shows the single unit
with an additional input.

However a new problem appears: all information flowing over the input connection is stored.
All information which is stored gets superimposed and the single signals cannot be accessed. More
serious, not only relevant but also all irrelevant information is stored.

Only relevant information should be stored. In order to realize that a input gate ain (basically
a sigma-pi unit) is used. If we further assume that the network input netc to the single unit is
squashed the we obtain following dynamics:

a(t+ 1) = a(t) + ain(t) g (netc(t)) , (6.141)

If ain is a sigmoid unit active in [0, b] then in can serve as a gating unit.

Now we assume that the output from the storing unit is also squashed by a function h. Further
we can control the access to the stored information by an output gate aout which is also a sigmoid
unit active in [0, b].

The memory access dynamics is

ac(t+ 1) = aout(t) h (a(t+ 1)) . (6.142)

The whole dynamics is

ac(t+ 1) = aout(t) h (a(t) + ain(t) g (netc(t))) . (6.143)
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1.0

g ac = aout h(a)

ain aout

ha = a + ain g(netc)
netc

netin netout

Figure 6.29: The LSTM memory cell. Arrows represent weighted connections of the neural net-
work. Circles represent units (neurons), where the activation function (linear or sigmoid) is indi-
cated in the circle.

The sub-architecture with the gate units ain and aout and the single unit a is called memory
cell and depicted in Fig. 6.29.

The input to the storing unit is controlled by an “input gating” or attention unit (Fig. 6.29, unit
marked “ain”) which blocks class-irrelevant information, so that only class-relevant information
is stored in memory. The activation of attention units is bounded by 0 and b, i.e. the incoming
information netc(t) is squashed by a sigmoid function g. The output of the memory cell (Fig.
6.29, center) is bounded by the sigmoid function h (Fig. 6.29, unit labeled as “h”). Memory
readout is controlled by an “output gate” (Fig. 6.29, unit labeled “aout”). The cell’s output ac is
then computed according to eq. (6.142) and eq. (6.143).

The recurrent network build from memory cells is called “Long Short-Term Memory” (LSTM,
[Hochreiter and Schmidhuber, 1997b]) is an RNN with a designed memory sub-architecture called
“memory cell” to store information.

Memory cells can in principle be integrated into any neural network architecture. The LSTM
recurrent network structure as depicted in Fig. 6.30.

The LSTM network is well suited to protein and DNA analysis. For example it excelled in
protein classification. Here the input can be not a single amino acid or nucleotide but a whole
window over the current position. In this case LSTM is able to learn profiles as depicted in Fig.
6.31.

Using these profiles LSTM was able to generate new motives which were unknown to the
PROSITE motif data base.

Currently LSTM is used for alternative splice site detection, nucleosome position detection,
protein classification, etc.
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output unit
ce

ll

ce
ll

m
em

or
y

A V D A A A E K V F KT

m
em

or
y

Figure 6.30: LSTM network with three layers: input layer (window of the amino acid sequence
– shaded elements), hidden layer (with memory cells – see Fig. 6.29), and output layer. Arrows
represent weighted connections; the hidden layer is fully connected. The subnetworks denoted
by “memory cell” can store information and receive three kinds of inputs, which act as pattern
detectors (input→ hidden), as storage control (recurrent connections), and as retrieval control (re-
current connections). The stored information is combined at the output. The amino acid sequence
is processed by scanning the sequence step by step from the beginning to the end.
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Figure 6.31: A profile as input to the LSTM network which scans the input from left to right.
Amino acids are represented by the one letter code. Shaded squares in the matrix match the input
and contribute to the sum netc.
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Chapter 7

Bayes Techniques

In this chapter we introduce a probabilistic framework for the empirical error and regularization.

Especially the Bayes framework will be applied to neural networks but it can also be applied
to other models.

The Bayes framework gives tools for dealing with the hyper-parameters like the value λ in
eq. (6.89) for neural networks or the value C in the optimization problem for the C-SVM eq.
(4.32). These hyper-parameters trade-off the empirical error with the complexity term. However
an optimal value for these parameters can so far only be found by cross-validation on the training
set. The Bayes framework helps to formally treat these parameters. Especially the case if many
hyper-parameters are needed then their combination cannot be tested by cross-validation and a
formal treatment is necessary.

Another important issue is that Bayes methods allow to introduce error bars and confidence
intervals for the model outputs.

Bayes approaches also help to compare quite different models like different neural networks
architectures.

Bayes techniques can be used to select relevant features. Feature selection will be discussed
in detail in Chapter 8.

Bayes methods can be used to build averages and committees of models.

Summarizing, Bayes techniques allow

to introduce a probabilistic framework

to deal with hyper-parameters

to supply error bars and confidence intervals for the model output

to compare different models

to select relevant features

to make averages and committees.

263
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7.1 Likelihood, Prior, Posterior, Evidence

As in Section 3.2.1 we have the training data
{
z1, . . . ,zl

}
(zi = (xi, yi)), the matrix of feature

vectors X =
(
x1, . . . ,xl

)T , the vector of labels y =
(
y1, . . . , yl

)T , and the training data
matrix Z =

(
z1, . . . ,zl

)
. Further we define the training data as

{z} = {z1, . . . ,zl} . (7.1)

In Section 3.4.4 the likelihood L was defined as

L({z};w) = p({z};w) , (7.2)

i.e. the probability of the model p(z;w) to produce the data set. We found that for iid data
sampling the likelihood is

L({z};w) = p({z};w) =
l∏

i=1

p(zi;w) . (7.3)

In supervised learning we can write

p (z;w) = p (x) p(y | x;w) (7.4)

and

L({z};w) =
l∏

i=1

p(xi)
l∏

i=1

p(yi | xi;w) . (7.5)

Because
∏l
i=1 p(x

i) is independent of the parameters, it is sufficient to maximize the conditional
likelihood

L({y} | {x};w) =
l∏

i=1

p(yi | xi;w) . (7.6)

The likelihood or the negative log-likelihood can be treated as any error term.

For the likelihood in this chapter the parameter vector w is not used to parameterize the like-
lihood but the likelihood is conditioned on w.

The likelihood is

p({z} | w) . (7.7)

However we found that only minimizing the likelihood would lead to overfitting if the model
is complex enough. In the most extreme case the model would only produce the training examples
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with equal probability and other data with probability zero. That means p (z;w) is the sum of
Dirac delta-distributions.

To avoid overfitting we can assume that certainw are more probable to be observed in the real
world than other. That means some models are more likely in the world.

The fact that some models are more likely can be expressed by a distribution p(w), the prior
distribution. The information in p(w) stems from prior knowledge about the problem. This is
knowledge without seeing the data, that means we would choose a model according to p(w) if we
do not have data available.

Now we can use Bayes formula:

p(w | {z}) =
p({z} | w) p(w)

pw({z}) (7.8)

where

p(w | {z}) (7.9)

is called the posterior distribution and the normalization constant

pw({z}) =
∫
W
p({z} | w) p(w) dw (7.10)

is called the evidence for a class of models parameterized byw, however it is also called accessible
volume of the configuration space (from statistical mechanics), partition function (from statistical
mechanics), or error moment generating function.

Bayes formula is

posterior =
likelihood × prior

evidence
. (7.11)

Note that only if p(w) is indeed the distribution of model parameters in the real world then

pw({z}) = p({z}) . (7.12)

That means if the real data is indeed produced by first choosing w according to p(w) and then
generating {z} through p({z} | w) then pw({z}) is the probability of observing data {z}.

However in general the data in real world is not produced according to some mathematical
models and therefore pw({z}) is not the distribution of occurrence of data {z} in the real world.

However pw({z}) gives the probability of observing data {z} with the model class which is
parameterized by w.
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p

w

p(w | {z})

p(w)

wMAP

Figure 7.1: The maximum a posteriori estimatorwMAP is the weight vector which maximizes the
posterior p(w | {z}). The prior distribution p(w) is also shown.

7.2 Maximum A Posteriori Approach

The Maximum A Posteriori Approach (MAP) search for the maximal posterior p(w | {z}) Fig.
7.1 shows the maximum a posteriori estimator wMAP which maximizes the posterior.

For applying the MAP approach the prior p(w) must be defined.

For neural networks we introduced the weight decay method in Section 6.4.5.4, where the
simplest term was

Ω(w) = ‖w‖2 = wTw =
∑
ij

w2
ij . (7.13)

This can be expressed through a Gaussian weight prior

p(w) =
1

Zw(α)
exp

(
− 1

2
α ‖w‖2

)
(7.14)

Zw(α) =
∫
W

exp
(
− 1

2
α ‖w‖2

)
dw =

(
2 π
α

)W/2
.

The parameter α is a hyper-parameter which trades in the log-posterior the error term against the
complexity term and is here correlated with the allowed variance of the weights.

The other weight decay terms in Section 6.4.5.4 give either a Laplace distribution (Ω(w) =
‖w‖1)

p(w) =
1

Zw(α)
exp

(
− 1

2
α ‖w‖1

)
(7.15)

Zw(α) =
∫
W

exp
(
− 1

2
α ‖w‖1

)
dw
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or for compact weight sets a Cauchy distribution (Ω(w) = log
(
1 + ‖w‖2) ):

p(w) =
1

Zw(α)
exp

(
− 1

2
α

) (
1 + ‖w‖2) (7.16)

Zw(α) =
∫
W

exp
(
− 1

2
α

) (
1 + ‖w‖2) dw .

For Gaussian noise models from Section 3.5.1 we have

p({z} | w) = (7.17)
1

(2 π)d/2 |Σ|1/2
exp

(
−1

2
(y − X w)T Σ−1(y − X w)

)
p({x})

and for Σ = σ2 I

p({z} | w) = (7.18)
1

(2 π)d/2 |Σ|1/2
exp

(
− 1

2 σ2
(y − X w)T (y − X w)

)
p({x}) .

The term Remp = (y − X w)T (y − X w) is only the mean squared error.

The negative log-posterior is

− log p(w | {z}) = − log p({z} | w) − log p(w) + log pw({z}) , (7.19)

where pw({z}) does not depend on w.

For maximum a posteriori estimation only − log p({z} | w) − log p(w) must be minimized
which results in the terms

R̃(w) =
1

2 σ2
Remp +

1
2
α Ω(w) =

1
2
β Remp +

1
2
α Ω(w) , (7.20)

where β−1 = σ2. If we set R(w) = R̃(w) 2 σ2 and setting λ = σ2 α we have to minimize

R(w) = Remp + λ Ω(w) . (7.21)

This is exactly eq. (6.89).

Therefore minimizing error terms consisting of the empirical error plus a complexity term can
be viewed in most cases as maximum a posteriori estimation.

Note that the likelihood is the exponential function with empirical error as argument

p({z} | w) =
1

ZR(β)
exp

(
− 1

2
β Remp

)
(7.22)
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and the prior is an exponential function of the complexity

p(w) =
1

Zw(α)
exp

(
− 1

2
α Ω(w)

)
(7.23)

and the posterior is

p(w | {z}) =
1

Z(α, β)
exp

(
− 1

2
(α Ω(w) + β Remp)

)
, (7.24)

where

Z(α, β) =
∫
W

exp
(
− 1

2
(α Ω(w) + β Remp)

)
dw . (7.25)

7.3 Posterior Approximation

In order to approximate the posterior a Gaussian assumption is made.

First we make a Taylor expansion of R(w) around its minimum wMAP:

R̃(w) = R̃(wMAP) +
1
2

(w − wMAP)T H (w − wMAP) , (7.26)

where the first order derivatives vanish at the minimum andH is the Hessian of R̃(w) at wMAP.

The posterior is now a Gaussian

p(w | {z}) =
1
Z

exp(− R̃(w)) = (7.27)

1
Z

exp
(
− R̃(wMAP) − 1

2
(w − wMAP)T H (w − wMAP)

)
,

where Z is normalization constant.

The Hessian for weight decay given by

H =
1
σ2
Hemp + α I = β Hemp + α I , (7.28)

where Hemp is the Hessian of the empirical error and can for neural networks be computed as
described in Section 6.4.4.

The normalization constant is

Z(α, β) = exp
(
R̃(wMAP)

)
(2 π)−W/2 |H|−1/2 . (7.29)
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7.4 Error Bars and Confidence Intervals

We now want to derive confidence intervals for model outputs. A user is not only interested in the
best prediction but also wants to know how reliable the prediction is.

The distribution for the outputs is

p(y | x, {z}) =
∫
W
p(y | x,w) p(w | {z}) dw , (7.30)

where we used the posterior distribution p(w | {z}) and a noise model p(y | x,w).

The Gaussian noise model for one dimension is

p(y | x,w) =
1

ZR(β)
exp

(
− β

2
(g(x;w) − y)2

)
, (7.31)

where we again used β = 1
σ2 and

ZR(β) =
(

2 π
β

)l/2
. (7.32)

We now approximate g(x;w) linearly around wMAP:

g(x;w) = g(x;wMAP) + gT (w − wMAP) , (7.33)

where g is the gradient of g(x;w) evaluated at wMAP. This approximation together with the
approximation for the posterior gives us

p(y | x, {z}) ∝
∫
W

exp
(
− β

2
(
y − g(x;wMAP) + gT (w − wMAP)

)2 −(7.34)

1
2

(w − wMAP)T H (w − wMAP)
)
dw .

This integral can be computed and results in

p(y | x, {z}) =
1√

2 π σy
exp

(
− 1

2 σ2
y

(y − g(x;wMAP))2

)
, (7.35)

where

σ2
y =

1
β

+ gTH−1 g = σ2 + gTH−1 g . (7.36)

The output variance is the inherent data noise variance σ2 plus the approximation uncertainty
gTH−1 g.

Fig. 7.2 shows error bars which are large because of a high inherent error β−1 = σ2. Fig. 7.3
shows error bars which are large because of a not very precisely chosen wMAP. The later can be
if few training data are available or if the data contradicts the prior.
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y

wMAP

w

p(w | {z})

g(x; w)

β−1 = σ2

p(y | x, {z})

Figure 7.2: Error bars obtained by Bayes technique. On the y-axis the error bars are given as
quantiles of the distribution p(y | x; {z}). The large error bars result from the high inherent error
β−1 = σ2 of the data. The parameterwMAP has been chosen very precisely (e.g. if many training
data points were available).

p(w | {z})

wMAP

w

g(x; w)p(y | x, {z})y

β−1 = σ2

Figure 7.3: Error bars obtained by Bayes technique. On the y-axis the error bars are given as
quantiles of the distribution p(y | x; {z}). The large error bars result from the broad posterior,
that means the parameter wMAP has not been chosen very precisely (few data points or prior and
data were not compatible).
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7.5 Hyper-parameter Selection: Evidence Framework

We are focusing on the hyper-parameters α and β from the objective eq. (7.20). β is an assumption
on the noise in the data. α is an assumption on the optimal network complexity relative to the
empirical error.

The posterior can be expressed by integrating out α and β which is called marginalization:

p(w | {z}) = (7.37)∫
Sα

∫
Sβ

p(w, α, β | {z}) dα dβ =∫
Sα

∫
Sβ

p(w | α, β, {z}) p(α, β | {z}) dα dβ .

To compute the integrals will be considered in Section 7.6.

Here we first consider to approximate the posterior. We assume that the posterior p(α, β | {z})
is sharply peaked around the maximal values αMAP and βMAP. That means around high values of
p(α, β | {z}) the p(w | α, β, {z}) is constant p(w | αMAP, βMAP, {z}). We obtain

p(w | {z}) = p(w | αMAP, βMAP, {z})
∫
Sα

∫
Sβ

p(α, β | {z}) dα dβ = (7.38)

p(w | αMAP, βMAP, {z}) .

Using this approximation we are searching for the hyper-parameters which maximize the pos-
terior. We will try to express the posterior with the variables α and β and then to search for the
variables which maximize the posterior.

The posterior of α and β is

p(α, β | {z}) =
p({z} | α, β) p(α, β)

pα,β({z}) . (7.39)

Here the prior for α and β, p(α, β) must be chosen. For example non-informative priors which
give equal probability to all values are a popular choice.

Note that from objective eq. (7.20). we see that β = 1
σ2 is only present in the w-likelihood

because it determines the noise in the data. In contrast α is only present in w-prior as a weight-
ing factor for the w-prior which scales the complexity against the error. We express the (α, β)-
likelihood through marginalization over w:

p({z} | α, β) =
∫
W
p({z} | w, α, β) p(w | α, β) dw = (7.40)∫

W
p({z} | w, β) p(w | α) dw .

Using eq. (7.22), eq. (7.23), eq. (7.24), and eq. (7.25) we obtain

p({z} | α, β) =
Z(α, β)

Zw(α) ZR(β)
. (7.41)
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Especially,

p(w | {z}) =
Z(α, β)

ZR(β) Zw(α)
p({z} | w) p(w) . (7.42)

Example.

We will show this on an example with concrete empirical error and prior term.

For example if we use the mean squared error and as regularization a weight decay term we
already computed Z(α, β) in eq. (7.29) as

Z(α, β) = exp
(
− R̃(wMAP)

)
(2 π)W/2 |H|−1/2 , (7.43)

where

R̃(wMAP) =
1
2
βRemp +

1
2
α Ω(w) . (7.44)

According to eq. (7.32)

ZR(β) =
(

2 π
β

)l/2
(7.45)

and according to eq. (7.14)

Zw(β) =
(

2 π
α

)W/2
. (7.46)

ln p({z} | α, β) = − α Ω(wMAP) − β Remp − 1
2

ln |H| + (7.47)

W

2
lnα +

l

2
lnβ − W + l

2
ln(2π) ,

where according to eq. (7.28)

H = β Hemp + αI . (7.48)

Assume we already computed the eigenvalues λj ofHemp then

∂

∂α
ln |H| =

∂

∂α
ln

W∏
j=1

(β λj + α) = (7.49)

∂

∂α

W∑
j=1

ln (β λj + α) =
W∑
j=1

1
β λj + α

= TrH−1 ,
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where we assumed that λj do not depend on α. However the Hessian H was evaluated at wMAP

which depends on α, therefore terms in ∂λj
∂α were neglected.

Setting the derivative of the negative log-posterior (for α and β) with respect to α to zero gives

∂

∂α
ln p({z} | α, β) = (7.50)

− Ω(wMAP) − 1
2

W∑
j=1

1
β λj + α

+
1
2
W

1
α

= 0 ,

which gives

2 α Ω(wMAP) = (7.51)

−
W∑
j=1

α

β λj + α
+ W =

W∑
j=1

β λj
β λj + α

= γ .

If Ω(wMAP) = 0 then the weight vector is zero, so Ω(wMAP) shows how far the weights are
pushed away from their prior value of zero by the data.

The term β λj
β λj + α is in [0; 1] and if it is close to one then the data governs this term and terms

close to zero a driven by the prior.

The term γ measures the effective number of weights which are driven by the data.

Note, however that the Hessian is not evaluated at the minimum of Remp but at wMAP, there-
fore the eigenvalues λj of Hemp are not guaranteed to be positive. Therefore terms β λj

β λj + α may
be negative because (β λj + α) is positive.

Now we compute the derivative of the negative log-posterior (for α and β) with respect to β.

The derivative of the log of the absolute Hessian determinant with respect to β is

∂

∂β
ln |H| =

∂

∂β

W∑
j=1

ln (β λj + α) = (7.52)

W∑
j=1

λj
β λj + α

.

Setting the derivative of the negative log-posterior with respect to β to zero gives

2 β Remp = l −
W∑
j=1

λj
β λj + α

= l − γ . (7.53)

The updates for the hyper-parameters are

αnew =
γ

2 Ω(wMAP)
(7.54)

βnew =
l − γ

2 Remp(wMAP)
.



274 Chapter 7. Bayes Techniques

Now with these new hyper-parameters the new values of wMAP can be estimated through
gradient based methods. Then again the hyper-parameters α and β can be updated and so forth.

If all parameters are well defined γ = W and if much more training examples than weights
are present l >> W then one can use as an approximation for the update formulae

αnew =
W

2 Ω(wMAP)
(7.55)

βnew =
l

2 Remp(wMAP)
.

7.6 Hyper-parameter Selection: Integrate Out

In previous section we started with the posterior which was obtained by integrating out α and β.

p(w | {z}) =
∫
Sα

∫
Sβ

p(w, α, β | {z}) dα dβ = (7.56)∫
Sα

∫
Sβ

p(w | α, β, {z}) p(α, β | {z}) dα dβ =

1
pw({z})

∫
Sα

∫
Sβ

p({z} | w, β) p(w | α) p(α) p(β) dα dβ .

Here we used that the hyper-parameters α and β are independent from one another do not depend
on the data: p(α, β | {z}) = p(α) p(β). The w-posterior p(w | α, β, {z}) was expressed
through the Bayes formula

p(w | {z}) =
p({z} | w) p(w)

pw({z}) (7.57)

and then the hyper-parameters are removed from densities where the variable is independent from
the hyper-parameter . That is p({z} | w, α, β) = p({z} | w, β) and p(w | α, β) = p(w | α).

The parameters α and β are scaling parameters. If target and output range is increased then β
should re-scale the empirical error.

Similar hold for weight scaling. If the activation functions say 1
1 + exp(−ρ net change their

slopes ρ then the same network functions are obtained by re-scaling the weights and, therefore,
net. That means different weight ranges may implement the same function.

Such parameter as the standard deviation σ for the Gaussians are scale parameters. For scale
parameters the prior is often chosen to be non-informative (uniformly) on a logarithmic scale, that
is p(ln(α)) and p(ln(β)) are constant.

From this follows (note, px(x) = pg(g(x))
∣∣∣ ∂g∂x ∣∣∣):

p(α) =
1
α

(7.58)

p(β) =
1
β
. (7.59)
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We first consider the prior over the weights

p(w) =
∫ ∞

0
p(w | α) p(α) dα = (7.60)∫ ∞

0

1
Zw(α)

exp(− α Ω(w))
1
α
dα =

(2 π)−W/2
∫ ∞

0
exp(− α Ω(w)) αW/2−1 dα =

Γ(W/2)

(2 π Ω(w))W/2
,

where Γ is the gamma function.

Analog we obtain

p({z} | w) =
Γ(l/2)

(2 π Remp)l/2
. (7.61)

From these two values and the Bayes formula we can compute the negative log-posterior as

− ln p(w | {z}) =
l

2
Remp +

W

2
Ω(w) + const . (7.62)

Comparing last equation with eq. (7.24) and noting that we usedwMAP, gives the update rules
from eq. (7.55):

αnew =
W

2 Ω(wMAP)
(7.63)

βnew =
l

2 Remp(wMAP)
.

Again an iterative methods first uses the actual α and β to findwMAP through gradient descent.
And then α and β are updated whereafter again the new wMAP is estimated and so on.

7.7 Model Comparison

Using the Bayes formula we can compare model classesM.

Bayes formula gives

p(M | {z}) =
p({z} | M) p(M)

pM({z}) , (7.64)

where p({z} | M) is here the likelihood of the data given a model class but is at the same time
the evidence introduced in Section 7.1 for model selection.

The evidence for model selection was defined in eq. (7.10) as

p({z} | M) =
∫
W
p({z} | w,M) p(w | M) dw , (7.65)
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where we only made all probabilities conditioned on the model classM.

If the posterior p(w | {z},M) (or according to the Bayes formula equivalently p({z} |
w,M) p(w | M ) is peaked in weight space then we can approximate the posterior by a box
around the maximum a posteriori value wMAP:

p({z} | M) ≈ p({z} | wMAP,M) p(wMAP | M) ∆wMAP . (7.66)

If we assume a Gaussian distribution of the posterior then ∆wMAP can be estimated from the
HessianH .

We can also use the eq. (7.47)

ln p({z} | α, β) = − α Ω(wMAP) − β Remp − 1
2

ln |H| + (7.67)

W

2
lnα +

l

2
lnβ − W + l

2
ln(2π) ,

where we insert αMAP and βMAP for α and β.

It can be shown (e.g. [Bishop, 1995] page pp 419) that the more exact term is

ln p({z} | M) = − αMAP Ω(wMAP) − βMAP Remp − 1
2

ln |H| + (7.68)

W

2
lnαMAP +

l

2
lnβMAP + lnH! + 2 lnH +

1
2

ln
(

2
γ

)
+

1
2

ln
(

2
l − γ

)
.

Here the terms in H , the number of hidden units in the network, appears because the posterior
is locally approximated but there are equivalent regions in weights space.

As mentioned in Section 6.4.1 the networks are symmetric so that the signs of ingoing and
outgoing weights to a hidden units can be flipped. This gives 2H weight vectors representing the
same function. The hidden units can also be reordered which gives H! orderings. Together we
obtain a factor of (H! 2H) equivalent representations through weight vectors of the same function.

7.8 Posterior Sampling

In order to compute the integrals like

A(f) =
∫
W
f(w) p(w | {z}) dw (7.69)

we can sample weight vectors wi to estimate

A(f) ≈ 1
L

L∑
i=1

f(wi) , (7.70)
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where the wi are sampled according to p(w | {z}).

Because we cannot easily sample from p(w | {z}) we use a simpler distribution q(w) where
we can sample from. We obtain

A(f) =
∫
W
f(w)

p(w | {z})
q(w)

q(w) dw (7.71)

which is an expectation in q(w). This expectation can be approximated by

A(f) ≈ 1
L

L∑
i=1

f(wi)
p(wi | {z})
q(wi)

, (7.72)

where now the wi are sampled according to q(w).

To avoid the normalization of p(w | {z}) which also includes integrations which are difficult
to perform, the following term can be used

A(f) ≈
∑L

i=1 f(wi) p̃(wi | {z}) / q(wi)∑L
i=1 p̃(wi | {z}) / q(wi)

, (7.73)

where p̃(w | {z}) is the unnormalized posterior, i.e. the product of the likelihood and the prior.

This approach is called importance sampling.

Because p(w | {z}) is in general very small we must guarantee to sample in regions with
large probability mass. This can be done by using Markov Chain Monte Carlo methods where
regions with large mass are only left with low probability.

On method which improves random walk in a way that regions with large p(w | {z}) are
sampled is called Metropolis algorithm. The Metropolis algorithm can be characterized as follows

wnew = wcandidate with probability (7.74){
1 if p(wcandidate | {z}) > p(wold | {z})
p(wcandidate|{z})
p(wold|{z}) if p(wcandidate | {z}) < p(wold | {z}) .

Also simulated annealing can be used to estimate the expectation under the posterior which is
similar to the Metropolis algorithm.

These sampling methods are discussed in [Neal, 1996] which is recommended for further
reading.
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Chapter 8

Feature Selection

Feature selection is important

1. to reduce the effect of the “curse of dimensionality” [Bellman, 1961] when predicting the
target in a subsequent step,

2. to identify features which allow to understand the data

3. build models of the data generating process,

4. to reduce costs for future measurements, data analysis, or prediction, and

5. to identify targets for drugs, process improvement, failures.

Feature selection chooses a subset of the input components which are required for solving a
task. In contrast feature construction methods compute new features from the original ones.

We focus on feature selection, where only components of the input vector are selected.

8.1 Feature Selection in Bioinformatics

Feature selection is an important topic in bioinformatics as high throughput methods measure
many components at the same time. However for most tasks only few of these components are
of interest. Extracting the relevant components allows to construct better (more robust and higher
precision) classifiers or regression models.

Another important fact is that extracting relevant components gives insights into how nature is
working. The extracted features can be used for building better models, can be used for improving
or designing experiments, and can be used for identifying key components of systems which in
turn can be used for drug design or switching off subsystems.

Medical doctors are changing their attention to effective screening and diagnostic involving
high resolution, high throughput methods in order to early detect diseases. Early detection in-
creases the chances of curing the disease.

279
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8.1.1 Mass Spectrometry

One example is the high resolution mass spectrometry data which comes with many measurement
values which are noisy.

In order to apply machine learning methods and obtain sufficient classification accuracy, di-
mensionality reduction is necessary – preferably through feature selection methods.

Another objective is to identify biomarkers which indicate the presents or the state of specific
diseases. The best known biomarker is the prostate specific antigen (PSA) for prostate cancer.
Nowadays it is commonly believed that for many diseases not a single biomarker exists but a
pattern of biomarkers [Conrads et al., 2003].

Ovarian Cancer

In ovarian cancer studies [Petricoin et al., 2002a, Conrads et al., 2003] on mass spectrometry
data high classification rates (95%) in distinguishing healthy persons from persons with cancer.
However for clinical relevance a specificity of 99.6% is required. Note that specificity is “true
negative / (true negative + false positive)” (performance on the negative class); sensitivity is “true
positive / (true positive + false negative)” (performance on the positive class), accuracy is “true
positive + true negative / all data” (the performance on all data), the balanced accuracy is the
mean of specificity and sensitivity. For achieving this mark techniques with higher resolution and,
therefore, techniques which produce more data have been developed, e.g. surface-enhanced laser
desorption/ionization time-of-flight mass spectrometry (SELDI TOF MS) [Conrads et al., 2003].

Dimensionality reduction through principal component analysis (PCA – see later in unsu-
pervised techniques) achieved 100% accuracy [Lilien et al., 2003]. In [Wu et al., 2003] feature
selection techniques were applied and with 15 to 25 features an accuracy of 92% was obtained.
The advantage of the features selection technique is that from the features it is possible to in-
fer biomarkers which is more difficult form PCA components. [Tibshirani et al., 2003] achieved
72.5% balanced accuracy with only seven features.

Prostate Cancer

With SELDI TOF MS data to classify healthy and cancerous persons, decision trees achieved
81% sensitivity and a 97% specificity, thus 89& balanced accuracy [Adam et al., 2002].

This result was improved using AdaBoost in [Qu et al., 2002] to average sensitivity of 98.5%
and a specificity of 97.9% (balanced accuracy 98%). However, with feature selection the results
were not as good. In [Lilien et al., 2003] with PCA as dimensionality reduction method and LDA
as classifier an average accuracy of 88% was achieved. Feature selection was used in [Petricoin
et al., 2002b, Wulfkuhle et al., 2003] which resulted in 95% specificity and 83% sensitivity (bal-
anced accuracy of 83%).

These results show varying results if using feature selection which was discussed in [Diaman-
dis, 2003].

8.1.2 Protein Sequences

The most classical task of bioinformatics is sequences processing and comparing new sequences
with known sequences in order to detect evolutionary relationships. The is called “homology



8.1. Feature Selection in Bioinformatics 281

detection” and is by far the most used method to determine structure or function of new genes or
their products the proteins.

Traditionally homology detection is done by alignment methods [Needleman and Wunsch,
1970, Smith and Waterman, 1981, Pearson, 1990, Altschul et al., 1990, 1997]. Other methods use
Hidden Markov Models (HMMS – [Krogh et al., 1994a, Eddy and Durbin, 1995, Sonnhammer
et al., 1997, 1998]) or profiles [Gribskov et al., 1987, 1990]. However still about 40% of the
sequenced human genes have not been classified by their function through homology methods
[Lander et al., 2001, Venter et al., 2001].

The methods considered in this subsection are based on motifs, that are highly conserved
patterns of the protein sequence which allow to classify the sequences [Falquet et al., 2002, Nevill-
Manning et al., 5865-5871, Huang and Brutlag, 2001]. Here each motif of a motif database is
considered as a feature describing the sequence. If we assume that evolution used building blocks
to construct new proteins then these building blocks may be identified. The motifs as building
blocks are responsible for catalytic sites, binding sites, or structural patterns (used for folding or
stability). Assumption is that also proteins can be classified if there is no known homolog but other
proteins which share the same building blocks. Feature selection focuses now on the task to find
the best suited motifs for a specific task [Ben-Hur and Brutlag, 2003, 2004, Logan et al., 2001].

SVM Kernels as Feature Selection Methods for Motifs

Note that the kernels like string kernel, spectrum kernel, mismatch kernel, etc. identify impor-
tant motifs of the positive class by selecting appropriate support vectors.

The vectorw of the linear support vector machine in the space of subsequences weights motifs
(pattern) which are indicative for the positive class highly positive and motifs which are indicative
for the negative class negative.

For example the motifs can explicitly represented by the spectrum kernel if explicitly comput-
ing w.

Basically w only selects the most indicative motifs for the classification task at hand.

8.1.3 Microarray Data

Gene expression profiles obtained by the microarray technique provide a snapshot of the expres-
sion values of some thousand up to some ten thousand genes in a particular tissue sample or a
particular sample from other organisms (bacteria, plants, etc.). The advantage of the microarray
method – namely to monitor a large number of variables of a cell’s (or a piece of tissue’s) state,
however, often turns out to be difficult to exploit. The number of samples is small and the level
of noise is high which makes it difficult to detect the small number of genes relevant to the task
at hand. Therefore, specific gene selection methods must be designed in order to reliably extract
relevant genes. Here the features are the genes, therefore feature selection is equal to gene selec-
tion in the microarray case. However in principle also tissue extraction is possible, i.e. select the
tissues which are correlated to certain genes or certain gene clusters.

The microarray technique [Southern, 1988, Lysov et al., 1988, Drmanac et al., 1989, Bains
and Smith, 1988] is a recent technique which allows to monitor the concentration of many kinds
of messenger RNA (mRNA) simultaneously in cells of a tissue sample and provides a snapshot
of the pattern of gene expression at the time of preparation [Wang et al., 1998, Gerhold et al.,



282 Chapter 8. Feature Selection

1999]. The so-called DNA microarrays allow for the first time the simultaneous measurement
of several 1000 or several 10,000 expression levels providing valuable information about whole
genetic networks. DNA microarrays allow to search for genes related to certain properties of the
sample tissue and to extract related genes via dependencies in their expression pattern.

Fig. 8.1 depicts the microarray procedure. Messenger RNA is extracted from the samples (Step
1) and reversely transcribed to cDNA (Step 2). This “target” cDNA is then coupled to a fluorescent
dye (Step 3). The target cDNA is then hybridized with a large number of probes of immobilized
DNA (steps 4 and 5) which had been synthesized and fixed to different locations of the DNA chip
during fabrication. The cDNA from the samples binds to their corresponding probes on the chip
(Step 5). After cleaning, the chip is scanned with a confocal microscope and the strength of the
fluorescent light is recorded (Step 6). Genes which are predominantly expressed in the sample give
rise to bright spots of strong fluorescent light. No expression is indicated by weak fluorescent light.
After segmentation of the stained locations on the chip and a correction for background intensity,
intensity values are transformed to real numbers for every location (Step 7). After processing,
the data from several experiments with different samples are collected and represented in matrix
form, where columns correspond to tissue samples, rows correspond to genes, and matrix entries
describe the result of a measurement of how strong a particular gene was expressed in a particular
sample.

Expression values as measured by the DNA microarray technique are noisy. Firstly, there ex-
ists biological noise, because samples do not show the same “expression state” and exactly the
same levels of mRNA even if they belong to the same class or the same experimental condition.
Then there is noise introduced by the microarray measurement technique. Sources of noise include
tolerances in chip properties which originate from the fabrication process, different efficiencies for
the mRNA extraction and the reverse transcription process, variations in background intensities,
nonuniform labeling of the cDNA targets (the dye may bind multiple times and with different
efficiencies), variations in the dye concentration during labeling, pipette errors, temperature fluc-
tuations and variations in the efficiency of hybridization, and scanner deviations. The effect of
measurement noise can be reduced by averaging over multiple measurements using the same sam-
ple but usually remains large. Measurement noise is not always Gaussian. [Hartemink et al., 2001]
for example found that the measurement noise distribution of the logarithmic expression values
has heavy tails.

Gene Selection for Microarrays

As already mentioned feature selection is in most microarray applications equal to gene se-
lection. In most cases the tissue samples are labeled according to conditions like healthy tissue or
tissue associated with a disease or like plant samples from certain growth periods.

Gene selection aims at three goals:

(a) data preprocessing in order to improve the prediction quality of machine learning ap-
proaches,

(b) identification of indicator genes (this would aid the interpretation and understanding of
the data), and

(c) reducing costs, if microarray data are used for example for diagnostic purposes.
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Figure 8.1: The microarray technique (see text for explanation).
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Item (a) is an important issue in machine learning if the input dimension is larger than the
number of samples. The reduction in performance for data sets with many attributes is known as
the “curse of dimensionality” [Bellman, 1961]. According to [Stone, 1980], the number of training
examples has to increase exponentially with the number of dimensions in order to ensure that an
estimator also performs well for higher dimensional data. Otherwise overfitting (high variance
in model selection) occurs, that is fitting of the selected model to noise in the training data. On
the other hand, if the model class is chosen to be smooth so that the variance of model selection
is restricted (low overfitting), then underfitting (high bias of model selection) occurs, that is the
training data is not approximated well enough. The later is shown by [Friedman, 1997] who
demonstrated for K-nearest neighbor classifiers that the curse of dimensionality leads to large
bias. Practical applications confirm the theory: many input dimensions lead to poor generalization
performance. Fewer features on the other hand should improve generalization for equal training
error.

For microarray data the situation is especially difficult because the number of features (genes)
is often more than 10 times larger than the number of examples (tissue samples). The high level of
noise additionally complicates the selection of relevant genes of microarray data. Both facts, the
large number of genes and the presence of noise, led [Guyon et al., 2002] to state that “the features
selected matter more than the classifier used” for DNA microarray data classification, a fact which
will be confirmed by our analysis later on.

Item (b) refers to the identification of genes whose expression values change with the sample
class. Genes which show different expression values in a control condition when compared to the
condition to analyze are useful to differentiate between these conditions and should be extracted
(see [Jäger et al., 2003]). The knowledge of the relevant genes can then be exploited in two ways.
Firstly, cellular mechanisms can be understood and active pathways may be identified. Secondly,
target genes or target proteins for causing or avoiding conditions can be detected. In medical
applications both kinds of information are highly relevant for diagnosis and drug design. Note,
however, that the selection of genes for prediction and the selection of genes whose expression
levels are correlated lead to different sets. Redundant sets of genes, which are the outcome of
the latter task, may lead to a reduced performance of the former task. On the other hand, genes
selected for the purpose of prediction may not include genes strongly correlated to each other in
order to keep the number of features small.

Item (c) refers to the costs of large scale microarray studies, for example, for diagnostic pur-
poses. Small gene ensembles lead to cheaper chips (fewer probes on a chip), to savings in man-
power (fewer experiments), and to easier interpretable experiments [Jäger et al., 2003].

8.2 Feature Selection Methods

In principle feature selection is possible for supervised and unsupervised methods. Here we focus
on feature selection for supervised methods. Unsupervised feature selection methods are mostly
related to unsupervised techniques, e.g. to select components which are most informative or which
are not redundant etc.

For simplicity let us consider a classification task where the objects to classify are described
by vectors with a fixed number of components (the features). The training set consists of vectors
which are labeled by whether the according object belongs to a class or not and we assume that
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there are only two classes. Given the training data, a classifier should be selected which assigns
correct class labels to the feature vectors. The goal of machine learning methods is not only to
select a classifier which performs well on the training set, but which also correctly classifies new
examples, that is which correctly predicts events of the future.

There are two classes of preprocessing methods which are commonly used to improve ma-
chine learning techniques: feature selection and feature construction methods. Feature construc-
tion methods compute new features as a combination of the original ones and are often used for
dimensionality reduction which will be treated later in the unsupervised learning chapter.

Feature selection methods, in contrast to feature construction, choose a subset of the input
components which are supposed to be relevant for solving a task and leave it to a subsequent stage
of processing to combine their values in a proper way. In the following we focus on feature selec-
tion, that is on the task of choosing a subset of “informative” input components, that is components
which are relevant for predicting the class labels. The classifier is then selected using the reduced
feature vectors as the objects’ description. Therefore, only feature selection techniques address
items (b) and (c) from the previous section, that is the extraction of indicator genes and reducing
costs. Note that item (b) may not be fully addressed by feature selection approaches because re-
dundant features are avoided and not all indicator genes are extracted. However, the missing genes
can be extracted by correlation analysis in a subsequent step.

Review articles on feature selection have been published in a “special issue on relevance” of
the journal Artificial Intelligence [Kohavi and John, 1997, Blum and Langley, 1997] and a “special
issue on variable and feature selection” of the Journal of Machine Learning Research [Guyon and
Elisseeff, 2003] to which we refer the reader for more details. The book of [Liu and Motoda,
1998] also gives an overview on feature selection.

The best and most comprehensive overview with the newest methods can be found in [Guyon
et al., 2006].

Feature selection methods perform either feature ranking or subset selection. In feature rank-
ing an importance value is assigned to every feature while subset selection attempts at constructing
an optimal subset of features. While some feature ranking methods do not consider dependencies
between features, subset selection methods usually do and may even include features which have
low correlations with the class label if justified by a good classification performance. The latter
usually happens if dependencies between features (and not between class label and a certain fea-
ture) are important for prediction. In those cases the selection of interacting features is important,
but it is also difficult to achieve (see [Turney, 1993a,b]).

Feature selection methods fall into one of two categories [Langley, 1994, Kohavi and John,
1997, John et al., 1994, Das, 2001, Liu and Motoda, 1998, Liu and Setiono, 1996]:

(a) filter methods: do not use an explicit regression or classification method;

(b) wrapper methods: use a regression or classification method as the objective function for
the evaluation of a subset of features.

8.2.1 Filter Methods

Filter methods extract features whose values show dependencies with class labels without explic-
itly relying on a regression or classification method.
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Figure 8.2: Simple two feature classification problem, where feature 1 (var. 1) is noise and feature
2 (var. 2) is correlated to the classes. In the upper right figure and lower left figure only the
axis are exchanged. The upper left figure gives the class histogram along feature 2 whereas the
lower right figure gives the histogram along feature 1. The correlation to the class (corr) and the
performance of the single variable classifier (svc) is given. Copyright c© 2006 Springer-Verlag
Berlin Heidelberg.

One example are statistical methods which compute the statistical dependencies between class
labels and features and select features where the dependencies are strong.

Remember Fig. 2.14 (below Fig. 8.2). Statistical methods can distinguish between feature 1
and feature2 because feature 1 separates the classes.

The calculation of dependencies is based on Pearson’s correlation coefficient, Wilcoxon statis-
tics, t-statistics, Fisher’s criterion or signal-to-noise ratios [Hastie et al., 2001, Golub et al., 1999,
Furey et al., 2000, Tusher et al., 2001]. Statistical methods are fast and robust, but assume certain
data or class distributions and cannot recognize dependencies between features. In principle, sta-
tistical methods can serve as subset selection methods if the dependency between a whole feature
subset and the class label is computed. For example, the mutual information between feature sets
and class labels has been considered in [Koller and Sahami, 1996]. However the number of pos-
sible subsets increases exponentially with the number of features which makes these approaches
unattractive. Therefore, the method in [Koller and Sahami, 1996] is only tractable if approxima-
tions are made.

We want to give some simple statistical feature selection methods. In the following the target
is y and the j-th feature is xj . The statistical methods measure the correlation between the j-th
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feature and the label y. We define

ȳ =
1
l

l∑
i=1

yi (8.1)

x̄j =
1
l

l∑
i=1

xij (8.2)

σ2
y =

1
l

l∑
i=1

(
yi − ȳ

)2
(8.3)

σ2
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1
l

l∑
i=1

(
xij − x̄j

)2
. (8.4)

For classification we have y ∈ {−1, 1} and assume we have l+ class +1 and l− class −1
examples then we define

x̄+
j =

1
l+

l∑
i=1;yi=1

xij (8.5)
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1
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)2
(8.7)

(
σ−j
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=
1
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(
xij − x̄−j

)2
. (8.8)

Pearson’s correlation coefficient is

corr =

∑l
i=1

(
xij − x̄j

) (
yi − ȳ

)
σy σj

(8.9)

and the test for correlation can be performed using the paired t-test (assumptions: normal distri-
bution and both distributions have same variance – only test for equal mean).

The “signal-to-noise ratio” is

x̄+
j − x̄−j
σ+
j + σ−j

(8.10)

which is also known as Golub’s criterion.
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The Fisher criterion is(
x̄+
j − x̄−j

)2

(
σ+
j

)2
+
(
σ−j
)2 . (8.11)

The two-sample t-test uses

x̄+
j − x̄−j√(

σ+
j

)2
/l+ +

(
σ−j
)2
/l+

. (8.12)

The “relief” methods [Kira and Rendell, 1992, Kononenko, 1994, Robnik-Sikonja and Kononenko,
1997] are another approach which assign relevance values to features. Values are assigned accord-
ing to the average separation of data vectors belonging to different classes minus the average
separation of data points belonging to the same class. The averages are computed by randomly
selecting a data point and determining its nearest data points from the same class and the opposite
class. The “relief” methods are fast, can detect feature dependencies but – again – do not remove
redundant features.

Combinatorial search procedures are able to remove redundant features from the selected set.
These methods exhaustively test all feature subsets for their ability to separate the classes, that is
whether two training vectors have the same values on the selected feature subset but different class
labels. After testing, the minimal subset necessary to predict the class label is chosen. For example
such methods are FOCUS [Almuallim and Dietterich, 1991] or the probabilistic approach in [Liu
and Setiono, 1996]. Combinatorial search methods, however, suffer from high computational costs
and can only be applied to a small number of features. They are prone to overfitting through noise
but on the other hand they will find the best solution in the noiseless case. Another feature subset
selection which – like FOCUS – searches for a minimal necessary feature subset to separate the
classes is based on decision trees [Cardie, 1993]. The decision tree is used for separating the
classes but not as a classifier. This method, however, is not applicable for small training sets
because only log2m features are selected if m training examples are available. However many
bioinformatics task like microarrays, the sample size is usually below 100, only log2 100 ≈ 7
genes are typically selected. These are too few genes for decision trees.

The problem of selecting relevant features can be more difficult as an be achieved by statistical
methods. Remember Fig. 2.16 which is below given as Fig. 8.3 which shows an example where
the correlation of features with the class is zero. Statistical methods which take only the mean (or
center) of the classes may fail to extract the best features as it was shown in Fig. 2.17 which is
below shown again as Fig. 8.4. In this figures the shape of the clusters of the classes is important.
In the left and right subfigure the feature’s mean values and variances are equal for each class.
However, the direction of the variance differs in the subfigures leading to different performance in
classification.

We have also shown in Tab. 2.1 (below Tab. 8.1) where features which have no correlation with
the target should be selected. The table shown also an example where the feature with the largest
correlation with the target should not be selected. Reason is that correlation between features can
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Figure 8.4: The left and right subfigure each show two classes where the features mean value and
variance for each class is equal. However, the direction of the variance differs in the subfigures
leading to different performance in classification.
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f1 f2 t f1 f2 f3 t

-2 3 1 0 -1 0 -1
2 -3 -1 1 1 0 1

-2 1 -1 -1 0 -1 -1
2 -1 1 1 0 1 1

Table 8.1: Left hand side: the target t is computed from two features f1 and f2 as t = f1 + f2.
No correlation between t and f1.

help for prediction like if features are correlated by noise then one feature can be used to remove
the noise from another feature.

In Tab. 8.1, the target t is computed from two features f1 and f2 as t = f1 + f2. All values
have mean zero and the correlation coefficient between t and f1 is zero. In this case f1 should be
selected because it has negative correlation with f2. The top ranked feature may not be correlated
to the target, e.g. if it contains target-independent information which can be removed from other
features. The right hand side of Tab. 8.1 depicts another situation, where t = f2 + f3. f1, the
feature which has highest correlation coefficient with the target (0.9 compared to 0.71 of the other
features) should not be selected because it is correlated to all other features.

8.2.2 Wrapper Methods

Wrapper methods [Kohavi and John, 1997, John et al., 1994] use a classifier as the objective
function for the evaluation of a subset of features. The classifier is obtained through a model
selection (training) method which minimizes the classification error on the training data. The
classifier is then used to compute the prediction error on a validation set. Typical classifiers are
decision trees, for example ID3 [Quinlan, 1986], CART [Breiman et al., 1984], and C4.5 [Quinlan,
1993], or instance-based classifiers like k-nearest neighbor.

Well known wrapper methods are the nested subset methods which are based on greedy strate-
gies like hill-climbing (for example SLASH [Caruana and Freitag, 1994] and the random mutation
hill climbing – random mutation of feature presence map – described in [Skalak, 1994]). Nested
subset methods perform either “forward selection” [Cover and Campenhout, 1977] or “backward
elimination” [Marill and Green, 1963].

Forward vs. Backward Selection.

Forward selection works in the underfitting regime. It starts from an empty set of features and
adds features step by step which lead to the largest reduction of the generalization error. Backward
elimination, on the other hand, works in the overfitting regime. It starts with the set of all features
and removes unimportant features step by step in order to maximally reduce the generalization
error. The major shortcoming of these methods is that they do not consider all possible combina-
tions of features [Cover and Campenhout, 1977]. If, for example, only the XOR of two features
is important, these features would not be recognized by a forward selection procedure which adds
only a single feature at a time.

The backward selection procedure suffers from a similar problem. Assume that one feature
conveys the information of two other features and vice versa. The best strategy would be to
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remove these two features to obtain a minimal set but backward selection may keep these two
features and remove the single one which is represented by the other two. Another problem of
backward selection is to determine good candidate features for deletion because overfitting makes
it hard to distinguish between label noise fitting and true dependencies with class labels.

Other search strategies are computationally more expensive but explore more possible feature
sets. Such search methods include beam and bidirectional search [Siedlecki and Sklansky, 1988],
best-first search [Xu et al., 1989], and genetic algorithms [Vafaie and Jong, 1992, 1993, Bala et al.,
1995].

8.2.3 Kernel Based Methods

Recently kernel based feature selection methods which use the support vector machine (SVM)
approach have shown good performance for feature selection tasks. See for example the review
in [Guyon and Elisseeff, 2003]. Kernel based feature selection methods are emphasized through
this subsection since they are especially suited for microarray data due to the fact that they have
shown good results in high dimensional data spaces and have been successfully applied to noisy
data. These methods use either one of two feature selection technique, which were already known
in the field of neural networks:

(a) feature selection by pruning irrelevant features after a classifier has been learned or

(b) adding a regularization term to the training error which penalizes the use of uninforma-
tive features during learning a classification task.

8.2.3.1 Feature selection after learning

[Guyon et al., 2002] proposed a feature selection method for support vector learning of linear
classifiers where the features with the smallest squared weight values are pruned after learning
is complete. This method is a special case of the “Optimal Brain Surgeon” (OBS, ) or “Optimal
Brain Damage” techniques given in Section 6.4.5.3 where input weights can be deleted. OBS han-
dles dependent features or whereas OBD assumes independent feature under the assumption that
feature values have variance one. Intuitively, the support vector method corresponds to projecting
the normal vector of the separating hyperplane into the subspace perpendicular to the less impor-
tant directions. The features for which these values are lowest are then deleted. [Guyon et al.,
2002] also describe an iterative version of this feature selection procedure where the feature with
the smallest absolute weight is removed of the model of a linear SVM after each SVM optimiza-
tion step. This method is then called “Recursive Feature Elimination” (RFE) and is an example
of backward elimination of features. It has recently been extended by [Rakotomamonjy, 2003] to
nonlinear kernels. Note, however, that these methods which prune features after learning cannot
detect important but redundant features and that they are sensitive to outliers.

8.2.3.2 Feature selection during learning

Regularization techniques have been proposed for support vector machines in order to improve
prediction performance by selecting relevant features. The first set of techniques directly favors
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SVMs with sparse weight vectors. This can be done by using the 1-norm in the SVM objective
function, a technique, which is known as the linear programming (LP) machine [Schölkopf and
Smola, 2002, Smola et al., 1999, Frieß and Harrison, 1998]. This approach leads to many zero
components of the weight vector and to the removal of the corresponding features. In [Bradley
and Mangasarian, 1998, Bi et al., 2003] these methods are utilized together with backward elim-
ination. In [Bradley and Mangasarian, 1998] the 0-norm of the weight vector is considered as an
objective to select a classifier. The 0-norm counts the non-zero components of the weight vector
which leads to a discrete and NP-hard optimization problem. Approximations can be made but
they are sensitive to the choice of parameters (see [Weston et al., 2003]) and the optimization is
still computationally complex in high dimensions. [Weston et al., 2003] propose an improved ap-
proximation of the 0-norm, which reduces to a method which iteratively solves 1-norm SVMs and
adjusts scaling factors for the different features. In [Perkins et al., 2003] both the 0-norm and the
1- or 2-norm are used for feature selection, where the 1- or 2-norm serves for regularization and
the 0-norm selects features.

The second set of techniques is based on the proper choice of scaling factors for the different
features. [Weston et al., 2000] applies scaling factors to the 2-norm SVM approach (“R2W2”).
Two phases are performed iteratively. First the SVM is optimized and a bound for the generaliza-
tion error is computed. Secondly, the scaling factors are optimized by a gradient descent method
in order to minimize the bound. This method has the advantage, that it can be extended to non-
linear kernels, where the scaling factors are put into the kernel function. On the other hand, this
method is computationally expensive because two optimization problems (SVM solution and error
bound) have to be solved for every iteration and the kernel matrix must be evaluated for every step.
Additionally, the gradient based optimization suffers from convergence to local optima.

In bioinformatics so far the most common choice are statistical methods e.g. for selecting
relevant genes from microarray data like in [Pomeroy et al., 2002]. However, support vector
machine based methods have recently been applied with good success [Shipp et al., 2002].

8.2.3.3 P-SVM Feature Selection

The Potential Support Vector Machine (P-SVM) from Section 4.14 is suitable for feature selection.

The P-SVM selects the optimal features in Tab. 8.1 because it takes into account the correlation
between features.

The P-SVM was introduced as a method for selecting a classification function, where the
classification boundary depends on a small number of “relevant” features. The method can be
used for feature selection, and it can also be used for the subsequent prediction of class labels in
a classification task. The optimal P-SVM classifier is a classifier with minimal empirical risk but
with the largest margin after sphering the data. Feature selection can be interpreted as removing
features from the optimal classifier but bounding the increase in mean squared error through the
value ε.

The first observation is that optimization (that is the selection of the proper values for α and b)
only involves the measurement matrixX and the label vector y.

For example, in order to apply the P-SVM method to the analysis of microarray data, we
identify the objects with samples, the features with genes, and the matrix X with the matrix of
expression values. Due to the term X XT in the dual objective, the optimization problem is
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well defined for measurement matricesX of expression values. From a conceptual point of view,
however, it is advantageous to interpret the matrix X of observations (here: expression values)
itself as a dot product matrix whose values emerge as a result of the application of a measurement
kernel.

The second observation is that an evaluation of the classifier for new samples x only involves
the measurement of its expression values (x)j for the selected “support” genes j. The number of
“support genes” depends on the value of a noise parameter, the correlation threshold ε. If the value
of ε is large during learning, only a few “most informative” genes are kept. The other genes are
discarded because of being too noisy or not conveying information about the class labels.

The set of all genes for which the weighting coefficients αj are non-zero (the set of support
genes) is the selected feature set. The size of this set is controlled by the value of ε, and if the
P-SVM is applied for feature selection, the value of ε should be large.

In the following the P-SVM for feature selection is given.

P-SVM feature selection

min
α+,α−

1
2
(
α+ − α−

)>
F> F

(
α+ − α−

)
(8.13)

− y> F (
α+ − α−

)
+ ε 1>

(
α+ + α−

)
subject to 0 ≤ α+ , 0 ≤ α− .

ε: parameter to determine the number of features, large ε means few features

αj = α+
j − α−j : relevance value for complex feature vector zj , αj 6= 0

means that vector no. j is selected, positive αj means class 1 indicative vector
zj and negative αj means class -1 indicative

F = X> Z with data matrixX and the matrix of complex features vectors
Z (variable selection: F = X)

y: vector of labels

8.2.4 Automatic Relevance Determination

Automatic Relevance Determination (ARD) is a special case of weight decay from Section 6.4.5.4
and Section 7.2, where weight decay is applied to the input hidden weights and the maximum
posterior is determined [Neal, 1996, MacKay, 1993].

Here a Gaussian prior is used as in the example in Section 7.5. However the Gaussian is has
as covariance matrix a diagonal matrix with entries β−1

j .

If H is the Hessian of the log-posterior evaluated around the maximum wMAP, the βj can be
estimated as

βj =
1 − βj H

−1
jj

(wi)2
MAP

. (8.14)
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Using this update of β, the evidence framework in Section 7.5 can be used. The MAP estimate
and the value of βi are iteratively updated.

Note that the “R2W2” method which was considered in previous section is similar to the ARD
approach.

8.3 Microarray Gene Selection Protocol

In this section we describe the protocol for extracting meaningful genes from a given set of ex-
pression values for the purpose of predicting labels of the sample classes. The protocol includes
data preprocessing, the proper normalization of the expression values, the feature selection and
ranking steps, and the final construction of the predictor.

Note that our feature selection protocol requires class labels which must be supplied together
with the expression values of the microarray experiment. For the following, however, we assume
that the task is to select features for classification and that l labeled samples are given for training
the classifier.

8.3.1 Description of the Protocol

1. Expression values vs. log-ratios. Before data analysis starts it is necessary to choose an
appropriate representation of the data. Common representations are based on the ratio Tj =
Rj
Gj

of expression values between the value Rj (red) of a gene j in the sample to analyze and
the value Gj (green) in the control sample, and the log ratio Lj = log2(Tj).

For arrays like the Affymetrix chips only one kind of expression level which indicates the
concentration of the according mRNA in the sample. Here also the log expression value is
a common choice for representing the expression levels.

2. Normalization and Summarization. Different normalization methods exist to make the
measurements from different arrays comparable. The most famous ones are “Quantile nor-
malization” and “Cyclic Loess”.

Some techniques like the Affymetrix GeneChip makes more than one measurement for each
gene. A so-called probe set makes 11 to 21 measurements for each gene. To obtain a
single expression value these measurements must be “summarized”. Here also different
summarization methods like RMA, GCRMA, MBEI, MAS5.0, or FARMS exist. Some
methods like FARMS are able to supply a present call, which is discussed in next item.

3. Present call. The present call is usually the first step in the analysis of microarray data.
During this step genes are identified for which the confidence is high, that they are actually
expressed in at least one of the samples. Genes for which this confidence is low are excluded
from further processing in order to suppress noise.

For this purpose an error model has to be constructed for the expression values or their
ratios (sometimes before, sometimes after averaging across multiple measurements of the
same sample — see [Tseng et al., 2001, Schuchhardt and Beule, 2000, Kerr et al., 2000,
Hartemink et al., 2001]. This error model accounts for both measurement specific noise (for
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example background fluctuations), which affects all expression values in a similar way, and
gene specific noise (for example the binding efficiency of the dye), which affects expression
values for different genes in a different way. Using this error model one assigns a p-value,
which gives the probability that the observed measurement is produced by noise, to every
measurement of an expression level. If the P -value is smaller than a threshold q1 (typical
values are 5%, 2%, or 1%), the expression level is marked “reliable”. If this happens for a
minimum number q2 (typical values range from 3 to 20) of samples, the corresponding gene
is selected and a so-called present call has been made.

4. Standardization. Before further processing, the expression values are normalized to mean
zero and unit variance across all training samples and separately for every gene. Stan-
dardization accounts for the fact that expression values may differ by orders of magnitudes
between genes and allows to assess the importance of genes also for genes with small ex-
pression values.

Some summarization methods may already account for comparable variance and zero mean
– in this case standardization is not necessary.

5. Gene ranking and gene selection. Here we assume that a feature selection method has
been chosen where the size of the set of selected genes is controlled by a hyperparameter
which we call ε in the following (according to the P-SVM).

In this step we perform two loops: An “inner loop” and an “outer loop” (the leave-one-out
loop). The inner loop serves two purposes. It ranks features if only a subset method like
the P-SVM is available and it makes feature selection more robust against variations due
to initial conditions of the selection method. The outer loop also serves also two purposes.
It makes the selection robust against outlier samples and allows to determine the optimal
number of selected genes together with the optimal values of hyperparameters for the later
prediction of class labels. In order to do this, a predictor must be constructed. Here we
suggest to use a ν-SVM where the value of ν is optimized by the outer loop. In order
to implement the outer (leave-one-out) loop, l different sets of samples of size l − 1 are
constructed by leaving out one sample for validation. For each of the l sets of reduced size,
we perform gene selection and ranking using the following “inner loop”.

Inner loop. The subset selection method is applied multiple times to every reduced set of
samples for different values of ε. For every set of samples multiple sets of genes of different
size are obtained, one for every value of ε. If the value of ε is large, the number of selected
genes is small and vice versa. The inner loop starts with values of ε which are fairly large
in order to obtain few genes only. Gradually the value is reduced to obtain more genes per
run. Genes obtained for the largest value of ε obtain the highest rank, the second highest
rank is given to genes which additionally appear for the second largest value of ε, etc. The
values of ε are constant across sample sets. The minimal value should be chosen, such that
the number of extracted genes is approximately the total number l of samples. The maximal
value should be chosen such that approximately five to ten genes are selected. The other
values are distributed uniformly between these extreme values.

Outer loop. The results of the inner loops are then combined across the l different sets of
samples. A final ranking of genes is obtained according to how often genes are selected in
the l leave-one-out runs of the inner loop. If a gene is selected in many leave-one-out runs,
it is ranked high, else it is ranked low. Genes which are selected equally often are ranked
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according to the average of their rank determined by the inner loops. The advantage of the
leave-one-out procedure is that a high correlation between expression values and class labels
induced by a single sample is scaled down if the according sample is removed. This makes
the procedure more robust against outliers.

The outer loop is also used for selecting an optimal number of genes and other hyperparam-
eters. For this purpose, ν-SVMs are trained on each of the l sets of samples for different
values of the hyperparameter ν and the number F of high ranking genes (ranking is obtained
by the inner loop). Then the average error is calculated on the left out samples. Since the
leave-one-out error as a function of the number F of selected genes is noisy, the leave-one-
out error for F is replaced by the average of the leave-one-out errors for F , F + a, and
F − a. Then the values of the hyperparameter ν and the number of genes F which give rise
to the lowest error are selected. This completes the feature selection procedure.

8.3.2 Comments on the Protocol and on Gene Selection

Normalization and Summarization of new arrays. If a new array has to be analyzed then all known
arrays together with the new array must be normalized and used for summarization. Thereafter
machine learning methods can be applied to the training set and the new array can be classified.

Corrections to the outer, leave-one-out loop. The samples which were removed from the
data in the outer loop when constructing the l reduced subsets for the gene ranking should not
be considered for the present call and for determining the normalization parameters. Both steps
should be done individually for each of the l sets of sample, otherwise feature or hyperparameter
selection may not be optimal.

Computational Costs. The feature selection protocol requires l × nε feature selection runs,
where nε is the number of different values of the ε parameter. However the computational ef-
fort is justified by the increased robustness against correlation by chance (see next item) and the
elimination of single sample correlations.

Correlations by chance. “Correlations by chance” refers to the fact, that noise induced spu-
rious correlations between genes and class labels may appear for a small sample size if the level
of noise is high. If the number of selected genes is small compared to the total number of probes
(genes) on the chip, spurious correlations may become a serious problem. Monte-Carlo simula-
tions of van’t Veer et al. [2002] on randomly chosen expression values for a data set of 78 samples
and 5000 genes resulted in 36 “genes” which had noise induced correlation coefficients larger than
0.3. In order to avoid large negative effects of above-mentioned spurious correlations the number
of selected genes should not be too small, and one should extract a few tens of genes rather than
a few genes only to decrease the influence of single spurious correlated genes. The random corre-
lation effect can also be reduced, by increasing q2, the minimum number of “reliable” expression
values for making a present call. This avoids the selection of genes for which too few samples
contribute to the correlation measure. However as explained in the next paragraph too many genes
should be avoided as well.

Redundancy. Redundant sets of genes, that is sets of genes with correlated expression patterns
should be avoided in order to obtain good machine learning results [Jäger et al., 2003]. Selec-
tion of too many genes with redundant information may lead to low generalization performance
Another reason for avoiding redundancy is that not all causes which imply the conditions may be
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recognized. This may happen if the set has to be kept small while redundant genes are included
(redundant genes indicate the same cause). Reducing redundancy does not preclude the extraction
of co-expressed clusters of genes: co-regulated genes can be extracted in a subsequent processing
step, for example based on classical statistical analysis.

Finally, one may wonder why redundant information does not help to decrease the noise level
of otherwise informative genes. Empirically one finds that non-redundant feature selection meth-
ods (P-SVM and R2W2) outperform feature selection methods which include redundant genes
(Fisher correlation and RFE). It seems as if the detrimental effects of a larger number of features
are stronger.

8.3.3 Classification of Samples

In order to construct a predictor for the class labels of new samples a classifier is trained on all
the l samples using the optimal set of genes and the optimal value of the hyperparameter (here: ν,
cf. Step 5). The generalization performance of the classifier can again be estimated using a cross-
validation procedure. This procedure must involve performing the full gene selection procedure
including all preprocessing steps (for example normalization and feature selection) separately on
all l cross-validation subsets. Otherwise a bias is introduced in the estimate. Note that this also
requires to perform the “inner loop” of Step 5 on sets of (l − 2) samples.

Before the classifier is applied to new data, the expression values for the new sample must
be scaled according to the parameters derived from the training set. As a consequence we may
observe expression values which are larger than the ones which occur in the training data. We
set the expression values exceeding the maximal value in the training set to this maximal value.
With this procedure we may underestimate certain expression levels but the robustness against
unexpected deviations from the training data is increased.
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Chapter 9

Hidden Markov Models

This is the first chapter devoted to unsupervised learning, especially to generative models. The
most prominent generative model in bioinformatics is the hidden Markov model. It is well suited
for analyzing protein or DNA sequences because of its discrete nature.

9.1 Hidden Markov Models in Bioinformatics

A hidden Markov model (HMM) is a generative approach for generating output sequences. The
model is able to assign to each sequence a certain probability of being produced by the current
model. The sequences of a class are used to build a model so that these sequences have high
probability of being produced by the model. Thereafter the model can be utilized to search for
sequences which also have high probability as being produces by the model. Therefore the new
sequences with high probability are assumed to be similar to the sequences from which the model
is build.

The HMM is able to model certain patterns in a sequences and if those patterns are detected,
the probability of the sequence is increased.

HMMs for gene prediction.

The DNA is scanned and exons and introns are identified from which the coding region of the
gene can be obtain. Translating the coding regions of the gene gives a protein sequences. HMMs
are a standard tool for identifying genes in a genome. GENSCAN [Burge and Karlin, 1997] and
other HMM approaches to gene prediction [Kulp et al., 1996, Krogh, 1997, Krogh et al., 1994b]
have a base-pair specificity between 50% and 80%.

Profile HMMs.

Profile HMMs [Krogh et al., 1994a] are used to store a multiple alignment in a hidden Markov
model. An HMM is better suited for storing the alignment than a consensus string because it is a
generative model. Especially new sequences can be be evaluated according to their likelihood of
being produced by the model. Also the likelihood can be fine tuned after storing the alignment.

If HMMs are build from unaligned sequences, they often stick in local likelihood maxima.
Approaches exist which try to avoid them, e.g. deterministic annealing (“Userguide” to HMMER
version 1.8). Because of the poor results with unaligned sequences despite annealing approaches,
in the new version of HMMER the HMMs are only initialized by alignment results.

299
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The most common software packages for profile HMMs are HMMER [Eddy, 1998] (http://
hmmer.wustl.edu/) and SAM [Krogh et al., 1994a] (http://www.cse.ucsc.edu/compbio/
sam.html).

However HMMs have drawbacks as Sean Eddy writes [Eddy, 2004]:

“HMMs are reasonable models of linear sequence problems, but they don’t deal
well with correlations between residues or states, especially long-range correlations.
HMMs assume that each residue depends only on one underlying state, and each state
in the state path depends only on one previous state; otherwise, residues and states are
independent of each other.” ... “The state path of an HMM has no way of remember-
ing what a distant state generated when a second state generates its residue.”

Real valued protein characteristics like hydrophobic profiles cannot be represented by HMMs.
HMMs cannot detect higher order correlations, cannot consider dependencies between regions
in the sequence, cannot deal with correlations of elements within regions, cannot derive or pro-
cess real valued protein characteristics, cannot take into account negative examples during model
selection, and do not work sufficiently well for unaligned sequences.

Other HMMs Applications.

HMMs were used for remote homology detection [Park et al., 1998, Karplus et al., 1998, 1999]
which is weak sequence homology [Sjölander et al., 1996].

HMMs were used for scoring [Barrett et al., 1997] and are combined with trees [Lio et al.,
1999].

A whole data base is build on HMMs, namely the PFAM (protein family database) [Bateman
et al., 2004, 2000]. Here protein families are classified by HMMs. Software exists for large data
sets or proteins like SMART (simple modular architecture research tool) [Schultz et al., 2000].

9.2 Hidden Markov Model Basics

A hidden Markov model (HMM) is a graph of connected hidden states u ∈ {1, . . . , S}, where
each state produces a probabilistic output.

Fig. 9.1 shows a hidden Markov model with two state values 1 and 0 which are associated
with “on” and “off”. If the switch is “on” then it can remain on or going to the value “off”. If the
switch is “off” then it can remain off or going to the value “on”. The state may be hidden in the
sense that the position of switch cannot be observed.

The model evolves over time t (in bioinformatics time is replaced by sequence position). At
each step the process jumps from the current state into another state or remains in the current state.
The evolving of the state variable u over time can be expressed by introducing the variable ut for
each time point t. At each time t the variable ut has a certain value ut ∈ {1, . . . , S}. Fig. 9.2
shows a hidden Markov model where the state variable evolves over time.

It is possible to present all possible sequences of values of the hidden state like in Fig. 9.3.
Each path in the Figure from left to right is a possible sequence of state values. The probability of
taking a certain value at a certain time (e.g. u5 = 3) is the sum over all path’ from the left to this
value and time.

http://hmmer.wustl.edu/
http://hmmer.wustl.edu/
http://www.cse.ucsc.edu/compbio/sam.html
http://www.cse.ucsc.edu/compbio/sam.html
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on:u = 1 off:u = 0

Figure 9.1: A simple hidden Markov model, where the state u can take on one of the two values 0
or 1. This model represents the switch for a light: it is either “on” or “off” and at every time point
it can remain in its current state (reccurent connections) or go to the opposite state.

ut−2 ut−1 ut ut+1 ut+2 ut+3

Figure 9.2: A simple hidden Markov model. The state u evolves over time and to each time t the
state u takes on the value ut.

ut−1 ut ut+1 ut+2 ut+3ut−2

u = 1

u = 2

u = 3

u = 4

u = 5

Figure 9.3: The hidden Markov model from Fig. 9.2 in more detail where also the state values
u = 1, . . . , u = 5 are given (S = 5). At each time t the state ut takes on one of these values and
if the state moves on the value may change. Each path from left to right has a certain probability
and the probability of taking a certain value at a certain time is the sum over all path’ from the left
to this value and time.
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ut−2 ut−1 ut ut+1 ut+2 ut+3

Figure 9.4: A second order hidden Markov model. The transition probability does not depend
only on the current state value but also on the previous state value.

The hidden Markov model has transition probabilities p(a | b), where a, b ∈ {1, . . . , S} and
b is the current state and a the next state. Here the Markov assumption is that the next state only
depends on the current state. Higher order hidden Markov models assume that the probability of
going into the next state depends on the current state and previous states. For example in a second
order Markov model the transition probability is p(a | b, c), where a, b, c ∈ {1, . . . , S} and b is
the current state, c the previous state, and a the next state. The second order Markov model is
depicted in Fig. 9.4.

We will focus on a first order hidden Markov model, where the probability of going into a state
depends only on the actual state.

At each time the state variable u takes on the value ut and has a previous value given by
ut−1, therefore we observed the transition from ut−1 to ut. This transition has probability of
p(ut | ut−1),

Assume we have a certain start state probability pS(u1) then the probability of observing the
sequence uT = (u1, u2, u3, . . . , uT ) of length T is

p(uT ) = pS(u1)
T∏
t=2

p(ut | ut−1) . (9.1)

For example a sequence may be (u1 = 3, u2 = 5, u3 = 2, . . . , uT = 4) that is the sequence
(3, 5, 2, . . . , 4). Fig. 9.5 shows the hidden Markov model from Fig. 9.3 where now the transition
probabilities are marked including the start state probability pS .

Now we will consider Markov models which actually produce data, that means they are used
as generative models. We assume that each state value has an emission probability pE(xt | ut) of
emitting a certain output. Here ut is a value of the state variable at time t (e.g. ut = 2) and xt is
an element of the output alphabet of size P , for example xt ∈ {A, T,C,G}. A specific emission
probability may be pE(A | 2). Fig. 9.6 shows a hidden Markov model with output emission.

Fig. 9.7 shows a HMM where the output sequence is the Shine-Dalgarno pattern for ribosome
binding regions.

Each output sequence has a certain probability of being produced by the current model. The
joint probability of the output sequence xT = (x1, x2, x3, . . . , xT ) of length T and the hidden
state value sequence uT = (u1, u2, u3, . . . , uT ) of length T is

p(uT , xT ) = pS(u1)
T∏
t=2

p(ut | ut−1)
T∏
t=1

pE(xt | ut) . (9.2)
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Figure 9.5: The hidden Markov model from Fig. 9.3 where now the transition probabilities are
marked including the start state probability pS . Also the state value ut+1 = 4 is marked.

ut−2 ut−1 ut ut+1 ut+2 ut+3

xt−2 xt−1 xt xt+1 xt+2 xt+3

Figure 9.6: A simple hidden Markov model with output. At each time t the hidden state ut has a
certain probability of producing the output xt.

G G A G G UA

Shine-Dalgarno pattern for ribosome binding

ut−2 = AG

ut−1 = AGG

ut = AGGA

ut+1 = AGGAG

ut+2 = AGGAGG

ut+3 = AGGAGGU

Figure 9.7: An HMM which supplies the Shine-Dalgarno pattern where the ribosome binds. Each
state value is associated with a prefix sequence of the Shine-Dalgarno pattern. The state value for
“no prefix” is omitted in the figure.
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Through marginalization we obtain the probability of the output sequence xT being produced
by the HMM:

p(xT ) =
∑
uT

p(uT , xT ) =
∑
uT

pS(u1)
T∏
t=2

p(ut | ut−1)
T∏
t=1

pE(xt | ut) , (9.3)

where
∑

uT denotes the sum over all possible sequences of length T of the values {1, . . . , S}. The
sum

∑
uT has ST summands corresponding to different sequences (S values for u1 multiplied by

S values for u2 etc.).

Fortunately, the (first order) Markov assumption allows to recursively compute above sum.
We denote with xt = (x1, x2, x3, . . . , xt) the prefix sequence of xT of length t. We introduce the
probability p(xt, ut) of the model producing xt and being in state ut at the end.

p(xt, ut) = p(xt | xt−1, ut) p(xt−1, ut) = (9.4)

pE(xt | ut)
∑
ut−1

p(xt−1, ut, ut−1) =

pE(xt | ut)
∑
ut−1

p(ut | xt−1, ut−1) p(xt−1, ut−1) =

pE(xt | ut)
∑
ut−1

p(ut | ut−1) p(xt−1, ut−1) ,

where the Markov assumptions p(xt | xt−1, ut) = pE(xt | ut) on the output emission and p(ut |
xt−1, ut−1) = p(ut | ut−1) and on the transitions is used. Further marginalization p(xt−1, ut) =∑

ut−1
p(xt−1, ut, ut−1) and the definition of conditional probabilities p(xt−1, ut, ut−1) = p(ut |

xt−1, ut−1) p(xt−1, ut−1) was applied.

That means each recursion step needs only a sum over all ut−1 which is a sum over S val-
ues. However we have to do this for each value of ut, therefore the recursion has complexity of
O(T S2). The complexity can be reduced if transition probabilities are zero. The recursion starts
with

p(x1, u1) = pS(u1) pE(x1 | u1) . (9.5)

The final probability of xT can be computed as

p(xT ) =
∑
uT

p(xT , uT ) . (9.6)

This algorithm is called the “forward pass” or the “forward phase” and is used to compute the
probability of xT which is equal to the likelihood of xT because we have discrete values. Alg.
9.1 shows the algorithm for the forward phase to compute the likelihood for one sequence for an
HMM.
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Algorithm 9.1 HMM Forward Pass

Given: sequence xT = (x1, x2, x3, . . . , xT ), state values u ∈ {1, . . . , S}, start probabilities
pS(u1), transition probabilities p(ut | ut−1), and emission probabilities pE(xt | ut); Output:
likelihood p(xT ) and p(xt, ut)

BEGIN initialization

p(x1, u1) = pS(u1) pE(x1 | u1)
END initialization
BEGIN Recursion

for (t = 2 ; t ≤ T ; t+ +) do
for (a = 1 ; a ≤ S ; a+ +) do

p(xt, ut = a) = pE(xt | ut = a)
S∑

ut−1=1

p(ut = a | ut−1) p(xt−1, ut−1)

end for
end for

END Recursion
BEGIN Compute Likelihood

p(xT ) =
S∑
a=1

p(xT , uT = a)

END Compute Likelihood
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9.3 Expectation Maximization for HMM: Baum-Welch Algorithm

Now we focus on learning and parameter selection based on a training set.

The parameters of a hidden Markov model are the S start probabilities pS(u1), the S2 transi-
tions probabilities p(ut | ut−1), and the S P emission probabilities pE(xt | ut) (P is the number
of output symbols).

If we have a set of training sequences {xi}, 1 ≤ i ≤ l, then the parameter can be optimized
by maximizing the likelihood from Section 3.4.

Instead of gradient based methods from Chapter 5 we deduce a Expectation Maximization
algorithm as shown in Subsection 3.4.6.

In Subsection 3.4.6 in eq. (3.77) we defined

F(Q,w) =
∫
U
Q(u | x) ln p(x,u;w) du − (9.7)∫

U
Q(u | x) lnQ(u | x) du ,

where Q(u | x) is an estimation for p(u | x;w).

We have to adapt this formulation to discrete HMMs. For HMMs u is the sequence of hid-
den states, x the sequence of output states and w summarizes all probability parameters (start,
transition, and emission) in the model. The integral

∫
U du can be replaced by a sum.

The estimation for the state sequence can be written as

Q(u | x) = p(u1 = a1, u2 = a2, . . . , uT = aT | xT ;w) . (9.8)

We obtain

F(Q,w) =
S∑

a1=1

. . .

S∑
aT=1

(9.9)

p(u1 = a1, u2 = a2, . . . , uT = aT | xT ;w) ln p(xT , uT ;w) −
S∑

a1=1

. . .

S∑
aT=1

p(u1 = a1, u2 = a2, . . . , uT = aT | xT ;w)

ln p(u1 = a1, u2 = a2, . . . , uT = aT | xT ;w) = (9.10)
S∑

a1=1

. . .

S∑
aT=1

p(u1 = a1, u2 = a2, . . . , uT = aT | xT ;w) ln p(xT , uT ;w)

−c ,

where c is a constant independent of w.

We have

ln p(uT , xT ;w) = ln pS(u1) +
T∑
t=2

ln p(ut | ut−1) +
T∑
t=1

ln pE(xt | ut) . (9.11)
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Because most variables at can be summed out we obtain:

F(Q,w) =
S∑
a=1

p(u1 = a | xT ;w) ln pS(u1 = a) + (9.12)

T∑
t=1

S∑
a=1

p(ut = a | xT ;w) ln pE(xt | ut = a) +

T∑
t=2

S∑
a=1

S∑
b=1

p(ut = a, ut−1 = b | xT ;w) ln p(ut = a | ut−1 = b) − c .

Note that the parameters w are the start probabilities pS(a), the emission probabilities pE(x |
a), and the transition probabilities p(a | b). We have as constraints

∑
a pS(a) = 1,

∑
x pE(x |

a) = 1, and
∑

a p(a | b) = 1.

Consider the optimization problem

min
w

∑
t

∑
a

cta lnwa (9.13)

s.t.
∑
a

wa = 1 .

The Lagrangian is

L =
∑
t

∑
a

cta lnwa − λ

(∑
a

wa − 1

)
. (9.14)

Optimality requires

∂L

∂wa
=
∑
t

cta
1
wa
− λ = 0 (9.15)

therefore∑
t

cta − λ wa = 0 (9.16)

and summing over a gives∑
a

∑
t

cta = λ . (9.17)

We obtain

wa =
∑

t cta∑
a

∑
t cta

. (9.18)



308 Chapter 9. Hidden Markov Models

The constraint maximization step (M-step) is therefore

pS(a) =
p(u1 = a | xT ;w)∑
a′ p(u1 = a′ | xT ;w)

(9.19)

pE(x | a) =
∑T

t=1 δxt=x p(ut = a | xT ;w)∑
y

∑T
t=1 δxt=y p(ut = a | xT ;w)

(9.20)

p(a | b) =
∑T

t=2 p(ut = a, ut−1 = b | xT ;w)∑
a′
∑T

t=2 p(ut = a′, ut−1 = b | xT ;w)
(9.21)

which is

pS(a) = p(u1 = a | xT ;w) (9.22)

pE(x | a) =
∑T

t=1 δxt=x p(ut = a | xT ;w)∑T
t=1 p(ut = a | xT ;w)

(9.23)

p(a | b) =
∑T

t=2 p(ut = a, ut−1 = b | xT ;w)∑T
t=2 p(ut−1 = b | xT ;w)

. (9.24)

We now consider the estimation step (E-step) in order to estimate p(ut = a | xT ;w) and
p(ut = a, ut−1 = b | xT ;w). First we have to introduce the suffix sequence xt←T = (xt, xt+1, . . . , xT ).
of length T − t+ 1.

We use the probability p(xt+1←T | ut = a) of the suffix sequence xt+1←T = (xt+1, . . . , xT )
being produced by the model if starting from ut = a.

Now we can formulate an expression for p(ut = a | xT ;w)

p(ut = a | xT ;w) =
p(ut = a, xT ;w)

p(xT )
= (9.25)

p(xt, ut = a;w) p(xt+1←T | ut = a)
p(xT )

,

where the first “=” is the definition of conditional probability and the second “=” say that all path’
of hidden values with have at time t the value a can be separated into a prefix path from start to
time t ending in the value a and a suffix path starting at time t in a.

Similar we can formulate an expression for p(ut = a, ut−1 = b | xT ;w)

p(ut = a, ut−1 = b | xT ;w) =
p(ut = a, ut−1 = b, xT ;w)

p(xT )
= (9.26)

p(xt−1, ut−1 = b;w) p(ut = a | ut−1 = b) pE(xt | ut = a)
p(xt+1←T | ut = a) / p(xT ) ,

where again the first “=” is the conditional probability and the second “=” says all path’ which are
at time t in state value a and in time (t− 1) in state value b can be separated in a prefix path from
start to time (t − 1) ending in b, a suffix path starting from t in value a to the end, the transition
b← a with probability p(ut = a | ut−1 = b) and the emission of xt given by pE(xt | ut = a).
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Note that

p(ut = a | xT ;w) =
S∑
b=1

p(ut = a, ut−1 = b | xT ;w) . (9.27)

Similar to eq. (9.4) we can derive a backward recursion for computing p(xt+1←T | ut = a) by
using the Markov assumptions:

p(xt+1←T | ut = a) = (9.28)
S∑
b=1

pE(xt+1 | ut+1 = b) p(ut+1 = b | ut = a) p(xt+2←T | ut+1 = b) .

The starting conditions are

p(xT←T | uT−1 = a) =
S∑
b=1

pE(xT | uT = b) p(uT = b | uT−1 = a) (9.29)

or, alternatively

∀a : p(xT+1←T | uT = a) = 1 (9.30)

In Alg. 9.2 an algorithm for the backward procedure for HMMs is given.

The EM algorithm for HMMs is given Alg. 9.3 which is based on the forward procedure Alg.
9.1 and the backward procedure Alg. 9.2.

9.4 Viterby Algorithm

In the forward (and also backward) pass we computed p(xT ), the probability of producing xT by
the model, that is the likelihood of xT . The likelihood of xT is an integral – more exactly a sum –
over all probabilities of possible sequences of hidden states multiplied by the probability that the
hidden sequence emits xT .

In many cases a specific hidden sequence (uT )∗ = (u∗1, u∗2, u∗3, . . . , u∗T ) and its probability of
emitting xT dominates the above sum. More formally

(uT )∗ = arg max
uT

p(uT | xT ) = arg max
uT

p(uT , xT ) . (9.31)

(uT )∗ is of interest if the hidden states have a semantic meaning, then one want to extract
(uT )∗.

In bioinformatics the extraction of (uT )∗ is important to make an alignment of a sequence with
a multiple alignment stored in an HMM.
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Algorithm 9.2 HMM Backward Pass

Given: sequence xT = (x1, x2, x3, . . . , xT ), state values u ∈ {1, . . . , S}, start probabilities
pS(u1), transition probabilities p(ut | ut−1), and emission probabilities pE(xt | ut); Output:
likelihood p(xT ) and p(xt+1←T | ut = a)

BEGIN initialization

∀a : p(xT+1←T | uT = a) = 1
END initialization
BEGIN Recursion

for (t = T − 1 ; t ≥ 1 ; t−−) do
for (a = 1 ; a ≤ S ; a+ +) do

p(xt+1←T | ut = a) =
S∑
b=1

pE(xt+1 | ut+1 = b) p(ut+1 = b | ut = a) p(xt+2←T | ut+1 = b) .

end for
end for

END Recursion
BEGIN Compute Likelihood

p(xT ) =
S∑
a=1

pS(u1 = a) (p(x1←T | u1 = a)

END Compute Likelihood
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Algorithm 9.3 HMM EM Algorithm

Given: l training sequences (xT )i = (xi1, x
i
2, x

i
3, . . . , x

i
T ) for 1 ≤ i ≤ l, state values u ∈ {1, . . . , S}, start

probabilities pS(u1), transition probabilities p(ut | ut−1), and emission probabilities pE(x | u); Output: updated
values of pS(u), pE(x | u), and p(ut | ut−1)

BEGIN initialization
initialize start probabilities pS(u1), transition probabilities p(ut | ut−1), and emission probabilities pE(x | u);
Output: updated values of pS(u), pE(x | u), and p(ut | ut−1)

END initialization

Stop=false
while Stop=false do

for (i = 1 ; i ≥ l ; i+ +) do
Forward Pass

forward pass for (xT )i according to Alg. 9.1

Backward Pass
backward pass for (xT )i according to Alg. 9.2

E-Step
for (a = 1 ; a ≤ S ; a+ +) do

for (b = 1 ; b ≤ S ; b+ +) do

p(ut = a, ut−1 = b | (xT )i; w) =

p((xt−1)i, ut−1 = b; w) p(ut = a | ut−1 = b) pE(xit | ut = a)

p((xt+1←T )i | ut = a) / p((xT )i)
end for

end for
for (a = 1 ; a ≤ S ; a+ +) do

p(ut = a | (xT )i; w) =

SX
b=1

p(ut = a, ut−1 = b | (xT )i; w)

end for
M-Step

for (a = 1 ; a ≤ S ; a+ +) do

pS(a) = p(u1 = a | (xT )i; w)
end for
for (a = 1 ; a ≤ S ; a+ +) do

for (x = 1 ; x ≤ P ; x+ +) do

pE(x | a) =

PT
t=1 δxi

t=x p(ut = a | (xT )i; w)PT
t=1 p(ut = a | (xT )i; w)

end for
end for
for (a = 1 ; a ≤ S ; a+ +) do

for (b = 1 ; b ≤ S ; b+ +) do

p(a | b) =

PT
t=2 p(ut = a, ut−1 = b | (xT )i; w)PT

t=2 p(ut−1 = b | (xT )i; w)
end for

end for
end for
if stop criterion fulfilled then

Stop=true
end if

end while
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Because (uT )∗ can be viewed as an alignment, it is not surprising that it can be obtained
through dynamic programming. The dynamic programming algorithm has to find a path in Fig.
9.5 from left to right. Towards this end the state values at certain time which are the circles in Fig.
9.5 are represented by a matrix V . Vt,a contains the maximal probability of a sequence of length
t ending in state value a:

Vt,a = max
ut−1

p(xt, ut−1, ut = a) . (9.32)

The Markov conditions allow now to formulate Vt,a recursively:

Vt,a = pE(xt | ut = a) max
b
p(ut = a | ut−1 = b) Vt−1,b (9.33)

with initialization

V1,a = pS(a)pE(x1 | u1 = a) (9.34)

and the result

max
uT

p(uT , xT ) = max
a

VT,a . (9.35)

The best sequence of hidden states can be found by back-tracing using

b(t, a) = arg max
b
p(ut = a | ut−1 = b) Vt−1,b (9.36)

The complexity of the Viterby algorithm is O(T S2) because all S T values Vt,a must be
computed and for computing them, the maximum over S terms must be determined.

The Viterby algorithm can be used to iteratively improve a multiple alignment:

1 initialize the HMM

2 align all sequences to the HMM via the Viterby algorithm

3 make frequency counts per column and compute the transition probabilities to update the
HMM

4 if not converged go to step 2

9.5 Input Output Hidden Markov Models

Input Output Hidden Markov Models (IOHMMs) generates an output sequence xT = (x1, x2, x3, . . . , xT )
of length T conditioned on an input sequence yT = (y1, y2, y3, . . . , yT ) of length T .

The difference between standard HMMs and input output HMMs is that the probabilities are
conditioned on the input. Start probabilities are pS(u1 | y1), the transition probabilities p(ut |
yt, ut−1), and the emission probabilities pE(xt | yt, ut).
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Algorithm 9.4 HMM Viterby

Given: sequence xT = (x1, x2, x3, . . . , xT ), state values u ∈ {1, . . . , S}, start probabilities
pS(u1), transition probabilities p(ut | ut−1), and emission probabilities pE(xt | ut); Output:
most likely sequence of hidden state values (uT )∗ and its probability p

(
xT , (uT )∗

)
BEGIN initialization

V1,a = pS(a)pE(x1 | u1 = a)
END initialization
BEGIN Recursion

for (t = 2 ; t ≤ T ; t+ +) do
for (a = 1 ; a ≤ S ; a+ +) do

Vt,a = pE(xt | ut = a) max
b
p(ut = a | ut−1 = b) Vt−1,b

b(t, a) = arg max
b
p(ut = a | ut−1 = b) Vt−1,b

end for
end for

END Recursion
BEGIN Compute Probability

p
(
xT , (uT )∗

)
=

S
max
a=1

V (T, a)

END Compute Probability
BEGIN Back-tracing

s = arg
S

max
a=1

V (T, a)

print s
for (t = T ; t ≥ 2 ; t−−) do

s = b(t, s)

print s
end for

END Back-tracing
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ut+2 ut+3ut−2 ut−1 ut ut+1

xt−2 xt xt+1 xt+2 xt+3

yt−2 yt−1 yt yt+1 yt+2 yt+3

xt−1

Figure 9.8: An input output HMM (IOHMM) where the output sequence xT =
(x1, x2, x3, . . . , xT ) is conditioned on the input sequence yT = (y1, y2, y3, . . . , yT ).

Using IOMMs also negative examples can be used by setting for all yt either a don’t care or a
fixed value and setting yT = 1 for the positive class and yT = −1 for the negative class. Whether
a model for the negative class can be build is not clear but at least a subclass of the negative class
which is very similar to the positive class can be better discriminated.

The number of parameters increase proportional to the number of input symbols, which may
make it more difficult to estimate the probabilities if not enough data is available.

Learning via the likelihood is as with the standard HMM with the probabilities additionally
conditioned on the input.

9.6 Factorial Hidden Markov Models

The HMM architecture Fig. 9.6 is extended to Fig. 9.9 where the hidden state is divided into more
components ui (three in the figure).

The transition probability of ui is conditioned on all uk with k ≤ i and the emission probability
depends on all hidden states. The HMM architecture in Fig. 9.9 is meant that u1 evolves very
slowly, u2 evolves faster, and u3 evolves fastest of all hidden variables. Fast evolving variables do
not influence slow evolving ones but slow evolving variables influence fast evolving variables.

If the factorial HMM has h hidden state variables ui and each one of them can take on S val-
ues then the emission probability distribution consists of P Sh emission probabilities. Therefore
learning factorial HMMs is computational expensive. However approximative methods have been
developed to speed up learning [Ghahramani and Jordan, 1996, 1997].

9.7 Memory Input Output Factorial Hidden Markov Models

Remember that we quoted Sean Eddy [Eddy, 2004]:
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xt−2 xt xt+1 xt+2 xt+3xt−1

u3,t+2 u3,t+3u3,t−2 u3,t−1 u3,t u3,t+1

u2,t+2 u2,t+3u2,t−2 u2,t−1 u2,t u2,t+1

u1,t+2 u1,t+3u1,t−2 u1,t−1 u1,t u1,t+1

Figure 9.9: A factorial HMM with three hidden state variables u1, u2, and u3. The transition
probability of ui is conditioned on all uk with k ≤ i and the emission probability depends on all
hidden states.

“HMMs are reasonable models of linear sequence problems, but they don’t deal
well with correlations between residues or states, especially long-range correlations.
HMMs assume that each residue depends only on one underlying state, and each state
in the state path depends only on one previous state; otherwise, residues and states are
independent of each other.” ... “The state path of an HMM has no way of remember-
ing what a distant state generated when a second state generates its residue.”

The only way a HMM can store information over time is to go into a certain state value and
don’t change it any more. The state is fixed and the event which led the HMM enter the fixed state
is memorized. Instead of a state a set of states can be entered from which the escape probability is
zero.

To realize a state with a non-escaping value which can memorize past events is

p(ut = a | ut−1 = a) = 1 .

That means if the state takes on the value a then the state will not take any other value.

In principle the storage of past events can be learned but the likelihood of storing decreases ex-
ponentially with the time of storage. Therefore learning to store is practically impossible because
these small likelihood differences are tiny in comparison to local minima resulting from certain
input / output pattern or input / output distribution.

Therefore memory is enforced by setting p(ut = a | ut−1 = a) = 1 and to allowing this
probability to change.

However after the storage process (taking on the value a) the model is fixed and neither future
systems dynamics nor other events to memorize can be dealt with.
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Figure 9.10: Number of updates required to learn to remember an input element until sequence
end for three models: input output HMM (IOHMM), input output factorial HMM (IOFHMM),
and “Memory-based Input-Output Factorial HMM” (MIOFHMM) as a function of the sequence
length T .

To overcome this problem a factorial HMM can be used where some of the hidden state vari-
ables can store information and others extract the dynamics of the system to model.

Storing events is especially suited for input output HMMs where input events can be stored.

An architecture with memory state variable and using the input output architecture is the
“Memory-based Input-Output Factorial HMM” (MIOFHMM, [Hochreiter and Mozer, 2001]).

Initially, all state variables have “uncommitted” values then various inputs can trigger the
memory state variables to take on values from which the state variables cannot escape – they
behave as a memory for the occurrence of an input event. Fig. 9.10 shows the number of up-
dates required to train three models: input output HMM (IOHMM), input output factorial HMM
(IOFHMM), and “Memory-based Input-Output Factorial HMM” (MIOFHMM) as a function of
the sequence length T .

9.8 Tricks of the Trade

Sometimes the HMM and its algorithms must be adjusted for bioinformatics applications
for example to handle delete states which do not emit symbols in the forward pass.

HMMs can be used for variable length of the sequences; however care must be take if com-
paring likelihoods because there are more longer sequences than shorter and the likelihood
decreases exponentially with the length

To deal with small likelihood and probability values is is recommended to compute the
values in the log-space
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To avoid zero probabilities for certain sequences which makes certain minima unreachable
all probabilities can be kept above a threshold ε.

The EM-algorithm cannot reach probabilities which are exact zero, therefore, as an after-
learning postprocessing all small probabilities ≤ ε can be set to zero. This often helps to
generalize from short to very long sequences.

HMM are prone to local minima, for example if HMMs are build from unaligned sequences.
Global optimization strategies try to avoid theses minima, e.g. deterministic annealing was
suggested in the “Userguide” to HMMER version 1.8.

9.9 Profile Hidden Markov Models

Profile Hidden Markov Models code a multiple sequence alignment into a HMM as a position-
specific scoring system which can be used to search databases for remote homologous sequences.
Fig. 9.11 shows a HMM which can be used for homology search. The top row with states indicated
with circles are a pattern. The diamond states are inserted strings. The bottom row with states
indicated as squares are deletions, where a letter from the pattern is skipped.

To learn an HMM from a set of unaligned positive examples suffers from the problem of
local minima. Therefore expensive global optimization strategies must be used to avoid theses
minima, e.g. deterministic annealing was suggested in the “Userguide” to HMMER version 1.8.
Therefore in most applications an HMM is at least initialized by a multiple alignment of the
positive examples.

The use of profile HMMs was made very convenient by the free HMMER package by Sean
Eddy [Eddy, 1998] which allows to to build and apply HMMs. HMMER supplies a log-odds
likelihood of the model compared to a random model to access the significance of the score of
a new sequence. Fig. 9.12 shows the architecture of the models used by HMMER. The states
indicated by squares and denoted by “Mx” are the consensus string. The circled states denoted by
“Dx” are deletion states (non-emitting states), where part of the consensus string can be skipped.
The diamond states denoted by “Ix” are insertion states where a substring can be inserted into the
consensus string

The other package which enabled a convenient use of HMMs for biological sequences is
Sequence Alignment and Modeling system (SAM – http://www.cse.ucsc.edu/research/

compbio/sam.html) which enables for creating, refining, and using HMMs for biological se-
quence analysis. Also the SAM models represent a refinement of a multiple alignment. Models
can be used to both generate multiple alignments and search databases for new members of the
family.

Also databases like Protein FAMily database (Pfam) are based on HMMs. 67% of proteins
contain at least one Pfam profile HMM and 45% of residues in the protein database are covered in
total by the HMMs.

Another HMM application which is not associated with profile HMMs is shown in Fig. 9.13,
where the HMM is used for splice site detection.

http://www.cse.ucsc.edu/research/compbio/sam.html
http://www.cse.ucsc.edu/research/compbio/sam.html
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Figure 9.11: Hidden Markov model for homology search. The top row with states indicated with
circles are a pattern. The diamond states are inserted strings. The bottom row with states indicated
as squares are deletions, where a letter from the pattern is skipped.

M1

S N B

M2 M3 M4

E C T

J

I1 I2 I3

D1 D2 D3 D4

Figure 9.12: The HMMER hidden Markov architecture. The states indicated by squares and de-
noted by “Mx” form a pattern (consensus string). The circled states denoted by “Dx” are deletion
states (non-emitting), where a letter from the pattern can be skipped. The diamond states denoted
by “Ix” are insertion states where a substring between letters of the pattern has been inserted. “B”
and “E” denote the begin and end state of the pattern, respectively.
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Figure 9.13: An HMM for splice site detection.
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Chapter 10

Unsupervised Learning: Projection
Methods and Clustering

10.1 Introduction

10.1.1 Unsupervised Learning in Bioinformatics

We have already seen an application of an unsupervised method in bioinformatics: the hidden
Markov model. Hidden Markov models are used for sequence analysis.

One important topic in bioinformatics is to analyze microarray measurements with unsuper-
vised techniques. Goals are to figure out which genes are expressed simultaneously (are part of
the same pathway), what metabolic stages are present, etc. Also time series of microarray data
must be analyzed e.g. by cluster analysis (e.g. [Eisen et al., 1998]). Fig. 10.1 and Fig. 10.2 show
microarray dendrograms obtained through hierarchical clustering.

Often unsupervised methods are used in bioinformatics to visualize dependencies and clusters
like the use of principal component analysis for Spellman’s cell-cycle data in Fig. 10.3.

For visualization the data must be in general down-projected to show the data in a 2-dimensional
or 3-dimensional space.

As we have already explained in Chapter 8 on feature selection, dimension reduction is an im-
portant step in preprocessing biological data. In Chapter 8 we reported that with mass spectrometry
the data is huge and principal component analysis was used to reduce the input dimension. For ex-
ample [Lilien et al., 2003] achieved best results on classification of healthy and cancerous persons
of prostate Cancer on the basis surface-enhanced laser desorption/ionization time-of-flight mass
spectrometry (SELDI TOF MS) date if PCA was used.

10.1.2 Unsupervised Learning Categories

Many unsupervised learning procedures can be viewed as trying to bring two probability distribu-
tions into alignment. Two well known classes of unsupervised procedures that can be cast in this
manner are generative and recoding models.

321



322 Chapter 10. Unsupervised Learning: Projection Methods and Clustering

Figure 10.1: A microarray dendrogram obtained by hierarchical clustering.

10.1.2.1 Generative Framework

In a generative unsupervised framework (see Fig. 10.4), the environment generates training exam-
ples – which we will refer to as observations or training data – by sampling from one distribution;
the other distribution is embodied in the model. In the generative framework we want to model or
to simulate the real world by generating samples with the same underlying distribution as the real
world samples.

The hidden Markov models from previous Chapter 9 fall into the generative framework. Other
examples of the generative framework are factor analysis [Jöreskog, 1967, Everitt, 1984, Neal
and Dayan, 1997], Boltzmann machines [Hinton and Sejnowski, 1986], or mixture models. In
the generative framework we have to bring two distributions to match: the fixed distribution of
observations and the model output distribution.

10.1.2.2 Recoding Framework

In the recoding unsupervised framework (see Fig. 10.5), the model transforms observations to an
output space. The distribution of the transformed observations (the outputs) is compared either to a
reference (target) distribution or whether target distribution features are present. These features are
measured by an objective function which must be optimized. Target features are used to represent
a whole class of target distributions. In many cases the objective function can be replaced by the
distribution from the target distribution set which is closest to the output distribution.

Goal of the recoding framework is to represent the observations in an appropriate way, e.g.
desired data density, low dimensional representation, high variance (large information), non-
Gaussianity, or independent components.



10.1. Introduction 323

Figure 10.2: Another example of a microarray dendrogram obtained by hierarchical clustering.
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Figure 10.3: Spellman’s cell-cycle data represented through the first principal components (Land-
grebe et al., Genome Biology, 2002).

world

modelsource
noise

Figure 10.4: The generative framework is depicted. A noise source "drives" the model and pro-
duces an output distribution which should match the distribution observed in the world. Separation
of model and noise source means that all adjustable parameters are contained in the model.
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target

world

model

Figure 10.5: The recoding framework is depicted. The data from the world is mapped through a
model to a model output distributions which should match a specified target distribution.

Recoding Example: Density Estimation.
Another special case of the recoding unsupervised framework is density estimation, where

the reference (target) distribution is easy to calculate like an uniform distribution or a Gaussian
distribution. A well known example is the mixtures of Gaussians (MoG) model [Pearson, 1894,
Hasselblad, 1966, Duda and Hart, 1973]. The observation transformation must be locally invertible
that is the Jacobian determinant must exists for the observation. That allows to compute the density
of the observation. Note that these constraints are weaker than assuming to know the inverse of
the transformation. For example with neural networks the Jacobian can be computed [Flake and
Pearlmutter, 2000] and, therefore, it is local invertible but the inverse model is unknown.

Other Recoding Approaches.

Projection Pursuit and PCA. Other examples within the recoding framework are projection
methods such as projection pursuit (e.g., [Friedman and Tukey, 1974, Friedman and Stuetzle,
1981, Huber, 1985, Friedman, 1987, Jones, 1987, Jones and Sibson, 1987, Zhao and Atkeson,
1996, Intrator, 1993]), principal component analysis (PCA) (e.g. [Oja, 1982, 1989, Jolliffe, 1986,
Jackson, 1991]. Projection pursuit aims at an output distribution which is as non-Gaussian as
possible where the non-Gaussianity is measured by the entropy. Note, that for a given variance the
Gaussian distribution maximizes the entropy. PCA’s objective for an one-dimensional projection
is maximal variance. The projection is constraint to a linear mapping, the coefficient vector has
unit length, and is orthogonal to previous projections.

Clustering and Coincidence Detection. An objective function can be given for Clustering
methods and Coincidence detection approaches. Clustering methods can be interpreted as mixture
models and describe the data by a multimodal distribution. Coincidence detection is based on
the fact that the multidimensional distribution of observations has high density regions indicating
correlated components in the observations. Therefore coincidence detection is closely related to
independent component analysis.
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Self-organizing maps (SOMs). For self-organizing maps (SOMs) [Kohonen, 1982, 1988, 1990,
1995, Ritter et al., 1992, 1991, Obermayer et al., 1992, Erwin et al., 1992] the objective function
[cannot always be expressed as a single scalar function (like an energy or error function). Scalar
objectives are important to derive learning algorithms based on optimizing this function and to
compare models. The objective of SOMs is a scalar function for discrete input spaces and for
discrete neighborhood functions otherwise the objective function must be expressed as a vector
valued potential function [Kohonen, 1995, Cottrell et al., 1995, Ritter et al., 1992, 1991, Erwin
et al., 1992]. The lack of a scalar objective function one of the major drawbacks of SOMs be-
cause models cannot be compared, overfitting not detected, and stopping of training is difficult to
determine.

10.1.2.3 Recoding and Generative Framework Unified

If the recoding model has an unique inverse then the generative framework can be applied in the
recoding context. The inverse model can use the observations as training examples which must
be produced from some target distribution. Then the model maps the training examples to target
distributions.

If the inverse model is obtained from the generative approach, then the recoding model is also
available.

The objective function of principal component analysis (PCA) and independent component
analysis (ICA) [Hinton and Sejnowski, 1999, Attias, 1999] attempt at keeping maximal informa-
tion about the observations in the code while fulfilling certain constraints. In the generative view
they are treated as generative models, which try to produce the data, whereas the constraints are
coded into the model e.g. by using specific target distributions.

However, most recoding methods have higher input dimensionality than output dimensionality
because the goal is to represent the input compactly and non-redundantly for visualization or for
features extraction.

However, it is sometimes possible to formulate the recoding approach as a generative model
even for a non-bijective model. The target distribution has to produce the observations by first
generating a code which in turn generates the observations. Computing the likelihood required
the computations of the probabilities of the codes corresponding to the observations. Density
estimation, Projection pursuit and vector quantization can be treated is such a way [Hinton and
Sejnowski, 1999, Attias, 1999]. The probabilities of the codes are the posterior of the code given
the data, where we assume that an observation can be produced by different codes. For exam-
ple, recoding methods which do not have bijective functions are principal curves [Mulier and
Cherkassky, 1995, Ritter et al., 1992], which are a nonlinear generalization of principal compo-
nents [Hastie and Stuetzle, 1989].

Example: Independent Component Analysis. An example for a recoding model treated as gen-
erative model and using objective functions is independent component analysis (ICA) [Schmid-
huber, 1992b, Bell and Sejnowski, 1995, Deco and Brauer, 1995, Pearlmutter and Parra, 1997,
Cardoso and Laheld, 1996, Cichocki et al., 1994, Jutten and Herault, 1991, Comon, 1994, Yang
and Amari, 1997, Yang et al., 1996, Cardoso and Souloumiac, 1993, Hyvärinen, 1999], a method
that discovers a representation of vector-valued observations in which the statistical dependence
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Figure 10.6: Principal component analysis for a two-dimensional data set. Left: the original data
set. Right: The first principal component is shown as the line from lower left to upper right. The
second principal component is orthogonal to the first component.

among the vector elements in the output space is minimized. With ICA, the model de-mixes ob-
servation vectors and the output should consist of statistically independent components. Towards
this end the output distribution can be compared against a given factorial distribution. The gen-
erative approach assumes that the observations are produced by a model with independent hidden
units [Cardoso, 1997, Moulines et al., 1997, Yang and Amari, 1997, Pearlmutter and Parra, 1997].
Alternatively, an objective or contrast function indicating statistically independent model output
components can be used (see e.g. [Hyvärinen, 1999]).

Example: Density Estimation. The traditional density estimation framework supplies the in-
verse model and, therefore, can be viewed as a generative framework. For example in the mixture
of Gaussians model each mixture component can be viewed as being generated by a Gaussian dis-
tribution with identity matrix as covariance matrix and thereafter transformed by a non-singular
linear mapping. The posterior can be easily computed thus the model can serve data generation
model.

10.2 Principal Component Analysis

Principal Component Analysis (PCA) also known as Karhunen-Loève transform (KTL) or as
Hotelling transform makes a transformation of the coordinate system so that the first coordinate
has the largest variance of the data, the second largest data variance is on the second coordinate,
etc. The coordinates are called principal components. Fig. 10.6 shows the principal components
of a two-dimensional data set and Fig. 10.7 shows how the first principal component is extracted
from some data points.

Let X =
(
x1, . . . ,xl

)T ∈ Rl×d be the matrix of data, then the data can be centered at the
origin by

X̄ = X − 1
l

1 1TX . (10.1)

Principal component analysis can be performed by computing the eigenvectors and eigenval-
ues of the covariance matrix

C =
1
l
X̄T X̄ = WΛ2W T , (10.2)
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Figure 10.7: Principal component analysis for a two-dimensional data set. The first principal
component is extracted for some data points by projecting them onto the first component and
measuring the distance to the origin.

where Λ is the diagonal matrix of the roots of the eigenvalues and W is the matrix of princi-
pal components (the eigenvectors). The roots of the eigenvalues tell how much data variance is
explained by the corresponding eigenvector.

The projection

xTwi (10.3)

of a data vector x onto the i-th eigenvector wi is the i-th principal component of the data vector
x.

If we normalize the data so that

d∑
i=1

λi = 1 (10.4)

and if the first k principal components are used to represent the data, then

E(MSE) =
d∑

i=k+1

λi (10.5)

is the expected mean squared reconstruction error between the back-projected representation and
the original data.

Especially if the eigenvalues for the first principal components are large then most information
in the data can be represented by these first eigenvalues. This is important for down-projecting the
data for visualization.

The first principal component is described as

w1 = arg max
‖w‖=1

E
((
wTx

)2)
(10.6)

and the k-th as

wk = arg max
‖w‖=1

E

(wT

(
x −

k−1∑
i=1

wi w
T
i x

))2
 . (10.7)
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Iterative methods for PCA are sometimes to prefer if the dimension d is large or if on-line
methods should be implemented.

Most famous is Oja’s rule [Oja, 1982]. First let us the projection define as

y = wTx . (10.8)

Oja’s rule is

wnew = w + η
(
y x − y2 w

)
, (10.9)

where η is the learning rate.

The eigenvectors of C are the fixed points of Oja’s rule and only the eigenvector with largest
eigenvalue is a stable fixed point.

10.3 Independent Component Analysis

Independent Component Analysis (ICA) attempts at finding a code for the observation where the
components are mutually statistical independent.

The assumption for ICA is that the observations x are generated by mixing the sources s,
where both x and s are d-dimensional vectors:

x = A s . (10.10)

Goal is to find a matrixW with

s = W x . (10.11)

The main assumption says that the sources are statistically independent:

p(s) =
d∏
j=1

p(sj) . (10.12)

Fig. 10.8 shows how two speaker (the sources s) speak independently from each other. The
microphones record the acoustic signals and are the observations x.

In the optimal case we obtainW = A−1. However

x = A P P−1 s (10.13)

holds true for all permutation matrices P and all diagonal (scaling) matrices P . In this case
s̄ = P−1 s are sources which are statistically independent and can be mixed to give x with
mixing matrixA P .

This means the problem formulation gives only unique solutions up to permutations and scal-
ing.

Fig. 10.9 shows the ICA solution of the data set of Fig. 10.6 and Fig. 10.10 compares the PCA
and the ICA solution.

Assumptions which must be made are
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Figure 10.8: Two speakers recorded by two microphones. The speakers produce independent
acoustic signals which can be separated by ICA.

Figure 10.9: Independent component analysis on the data set of Fig. 10.6. Left subfigures show
the original data and the right subfigures the transformed data by ICA. The bottom line is the top
line but the ICA components are shown.
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Figure 10.10: Comparison of PCA and ICA on the data set of Fig. 10.6. Top: original data set.
Bottom left: PCA solution. Bottom right: ICA solution.

the source components si are non-Gaussian (except for one component), because mixtures
of Gaussians are Gaussians and no unique solution exists.

the observation dimension must be at least as large as the number of sources

the matrixA must have full rank.

We will combine the last two assumptions by assume that the observations x and the sources s
live in a d-dimensional space andA−1 ∈ Rd×d exists.

If the densities p(si) are known or approximated – e.g. by super-Gaussians –, then the max-
imum likelihood method can be applied. In this case the generative model is known and we can
first estimateA and then computeW = A−1.

10.3.1 Measuring Independence

The entropy of a factorial code is larger than the entropy of the joint distribution. The difference
of the two expressions is the mutual information between the variables sj :

I(s1, . . . , sd) =
d∑
j=1

H(sj) − H(s) , (10.14)

where H denotes the entropy

H(a) = −
∫
p(a) ln p(a) da . (10.15)
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If we set

s = W x (10.16)

then

I(s1, . . . , sd) =
d∑
j=1

H(sj) − H(x) − ln |W | , (10.17)

where |W | is the absolute value of the determinant of the matrixW .

Above equation stems from the fact that

p(s) =
p(x)
|W | . (10.18)

The negentropy is defined as

J(y) = H(ygauss) − H(y) , (10.19)

where ygauss is a Gaussian random vector with the same covariance matrix as y. The negentropy
is an affinely invariant version of the entropy.

The maximal negentropy is equivalent to representations where the mutual information be-
tween the components is minimized. Here the connection between ICA and projection pursuit is
clear because both can be expressed in maximize the distance to Gaussian distributions.

Unfortunately, the negentropy cannot be used easily because its estimation is difficult.

The non-Gaussianity can be measured through other parameters for example through the cum-
mulants. For example the fourth cummulant, kurtosis is a common measure for non-Gaussianity
where positive kurtosis indicates super-Gaussians (the tails are smaller than for Gaussians) and
negative kurtosis indicates sub-Gaussians (the tails are larger than for Gaussians).

For zero mean variables the cummulants are defined as

κ1 = E(x) = 0 (10.20)

κ2 = E(x2) (10.21)

κ3 = E(x3) (10.22)

κ4 = E(x4) − 3
(
E(x2)

)2
. (10.23)

κ4 is called kurtosis. For Gaussians κ4 = 0 and for x1 and x2 independent:

κ4(x1 + x2) = κ4(x1) + κ4(x2) (10.24)

κ4(α x) = α4 κ4(x) . (10.25)

Many ICA algorithms use contrast functions which measure the independence of the variables
and are used as objective functions.

Common contrast functions are
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κ4(y), the kurtosis

1
12 κ

2
3(y) + 1

48 κ
2
4(y), where the variable y is normalized to zero mean and unit variance

|Ey(G(y)) − Eν(G(ν)))|p, where ν is a standardized Gaussian, p = 1, 2, and y is normal-
ized to zero mean and unit variance. Here G can be the kurtosis for which G(ν) = 0 would
hold. Other choices for G are G(x) = log cosh a x and G(x) = exp(−a x2/2) with
a ≥ 1.

10.3.2 INFOMAX Algorithm

The INFOMAX algorithm is motivated by maximizing the entropy H(g(y)), where g is an acti-
vation function of a neural network with output

g(yi) (10.26)

and

y = W x . (10.27)

If the entropy is maximized then

I(g(y1), . . . , g(yd)) =
d∑
j=1

H(g(yj)) − H(g(y)) = 0 (10.28)

and the components (g(y1), . . . , g(yd)) are statistically independent.

Very common choice for gi is

g(yi) = tanh(yi) . (10.29)

We have

p(g(y)) = p(x)
∣∣∣∣∂g(y)
∂y

∂y

∂x

∣∣∣∣−1

= p(x)
∣∣∣∣∂g(y)
∂y

W

∣∣∣∣−1

(10.30)

where ∣∣∣∣∂g(y)
∂y

W

∣∣∣∣ =

∣∣∣∣∣∣
d∏
j=1

g′(yj)

∣∣∣∣∣∣ |W | . (10.31)

The entropy is then

H(g(y)) = E (− ln g(y)) = (10.32)

H(x) + E

 d∑
j=1

∣∣ln g′(yj)∣∣
 + ln |W | ≈

H(x) +
1
l

l∑
i=1

d∑
j=1

∣∣ln g′(yij)∣∣ + ln |W | ,
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where

yi = W xi . (10.33)

Now we can maximize the entropy. Very common choice for gi is

g(yi) = tanh(yi) (10.34)

which gives

∂

∂wj
ln g′(yj) =

g′′(yj)
g′(yj)

xT = − 2 g(yj) xT . (10.35)

For sigmoid activation function we have

∂

∂wj
ln g′(yj) = (1 − 2 g(yj)) xT . (10.36)

Further we have

∂

∂W
ln |W | =

(
W T

)−1
. (10.37)

Because H(x) does not depend onW we obtain

∂

∂W
H(g(y)) =

(
W T

)−1 − 2 g(y) xT (10.38)

for tanh and for the sigmoid activation function

∂

∂W
H(g(y)) =

(
W T

)−1
+ (1 − 2 g(y)) xT (10.39)

for the derivatives.

The update rules are for the tanh activation function

∆W ∝ (
W T

)−1 − 2 g(y) xT (10.40)

and for the sigmoid activation function

∆W ∝ (
W T

)−1
+ (1 − 2 g(y)) xT . (10.41)

For this update rule the natural gradient can be applied which takes the geometrical structure
of the parameter space into account. In this case the update rule is multiplied with W TW . The
update rule are now for the tanh activation function

∆W ∝ (
I − 2 g(y) xT

)
W (10.42)

and for the sigmoid activation function

∆W ∝ (
I + (1 − 2 g(y)) xT

)
W . (10.43)

INFOMAX is equivalent to a maximum likelihood approach, when g′i(si) = p(si).
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10.3.3 EASI Algorithm

The EASI algorithm uses the following update rule:

∆W ∝ (
I − y yT − g(y)yT + y gT (y)

)
W . (10.44)

Here the nonlinear functions g are similar to the functions used by INFOMAX.

10.3.4 FastICA Algorithm

The FastICA algorithm is an fixed point algorithm which was originally based on the kurtosis and
extracts a weight vector w.

The iteration step of the FastICA algorithm is

wnew = E
(
x g(wT x)

) − E
(
g′(wT x)

)
w , (10.45)

where g is the derivative of the contrast function, which has been defined above.

Instead of the expectation E the empirical mean over the training examples is used.

10.4 Factor Analysis

Here we focus on the maximum likelihood factor analysis. In contrast to PCA, factor analysis
has the advantage that it is a generative approach and it does model the independent noise at the
observations. Disadvantage of factor analysis is that it has to make assumptions on the distribution
like that the factors are Gaussian and the noise is Gaussian.

We are given the data {x} = {x1, . . . ,xl} which is already normalized to mean zero (by
subtracting the mean µ from the data). The model is

x = Λz + ε , (10.46)

where

z ∼ N (0, I) and ε ∼ N (0,Ψ) . (10.47)

The observations x, ε ∈ Rd, the factors z ∈ Rp, the factor loading matrix Λ ∈ Rd×p, and the
noise covariance matrix Ψ is a diagonal matrix from Rd×d.

In general the model has fewer factors than observations: d ≥ p. The diagonal form of Ψ
is reasonable if the measurements are taken independently and the noise at the components are
mutually independent. Therefore, the observations are mutually independent if the factors are
known (only the noise is the random component).

Correlations between observations can only be explained by factors.

We assume that ε and z are independent which must not be true for all systems, e.g. if the
noise changes with the signal strength.
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noise ε

z2

x1 x2 x3 x4

z1

λ42

λ22

ε2 ε3 ε4ε1

factor z

observations x

loading matrix Λ

Figure 10.11: The factor analysis model.

The free parameters of the model are Λ and Ψ, which can be estimated by maximum like-
lihood. Both parameter sets explain the variance in the observations x, however Λ explains the
dependent part whereas Ψ explains the independent part of the variance. The factors are compara-
ble with the principal components of the PCA method and data components can be projected onto
them.

Fig. 10.11 depicts the factor analysis model.

We have

x | z ∼ N (Λz,Ψ) , (10.48)

because if z is given, then only the noise distribution is present.

We focus on the maximum likelihood approach to factor analysis is in most cases [Jöreskog,
1967] based on the Expectation-Maximization (EM) optimization technique [Dempster et al.,
1977].

We will now consider the likelihood of the data. Let denote E the expectation of the data
(i.e. the factor distribution and the noise distribution is combined), then we obtan for the first two
moments:

E(x) = E(Λz + ε) = ΛE(z) + E(ε) = 0 , (10.49)

E
(
x xT

)
= E

(
(Λz + ε)(Λz + ε)T

)
=

ΛE
(
z zT

)
ΛT + ΛE (z) E

(
εT
)

+ E (z) E (ε) ΛT + E
(
ε εT

)
=

Λ ΛT + Ψ .

The variance can be computed as

var(x) = E
(
x xT

) − (E(x))2 = (10.50)

Λ ΛT + Ψ .

Therefore, the marginal distribution for x is

x ∼ N (0 , ΛΛT + Ψ
)
. (10.51)



10.4. Factor Analysis 337

This means that the observations are Gaussian distributed. This is an assumption of the factor
analysis model which can be checked to see whether the model is applicable to a certain problem.

The log-likelihood of the data {x} under the model (Λ,Ψ) is

log
l∏

i=1

(2π)−d/2
∣∣ΛΛT + Ψ

∣∣−1/2
(10.52)

exp
(
−1

2

(
(xi)T

(
ΛΛT + Ψ

)−1
xi
))

,

where |.| denotes the absolute value of the determinant of a matrix.

To maximize the likelihood is difficult because no closed form of directly maximizing the
likelihood with respect to the parameters is known.

We again apply the EM-algorithm. We introduce a distribution which estimates the hidden
states, here the factors.

Using

Qi(zi) = p
(
zi | xi; Λ,Ψ) (10.53)

then

zi | xi ∼ N (µzi|xi ,Σzi|xi
)

(10.54)

µzi|xi =
(
xi
)T (

Λ ΛT + Ψ
)−1

Λ

Σzi|xi = I − ΛT
(
Λ ΛT + Ψ

)−1
Λ +(

Λ ΛT + Ψ
)−1

xi (xi)T
(
Λ ΛT + Ψ

)−1
,

where we used the fact that

v ∼ N (µv,Σvv) , u ∼ N (µu,Σuu) , (10.55)

Σuv = Covar(u,v) and Σvu = Covar(v,u) :
v | u ∼ N (µv + ΣvuΣ−1

uu (u − µu) , Σvv + ΣvuΣ−1
uuΣuv

)
and

E(zx) = Λ E(z zT ) = Λ . (10.56)

We obtain

Qi(zi) = (2π)−d/2
∣∣Σzi|xi

∣∣−1/2 (10.57)

exp
(
−1

2
(
zi − µzi|xi

)T
Σ−1
zi|xi

(
zi − µzi|xi

))
.
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The EM algorithm for maximum likelihood maximizes in the M-step a lower bound for the
likelihood:

log
(
p(xi | Λ,Ψ)

)
= (10.58)

log
(∫

Rp

Qi(zi) p(xi, zi | Λ,Ψ)
Qi(zi)

dzi
)
≥∫

Rp
Qi(zi) log

(
p(xi, zi | Λ,Ψ)

Qi(zi)

)
dzi .

Using the expectation

Ezi|xi
(
f(zi)

)
=
∫

Rp
Qi(zi) f(zi) dzi (10.59)

and neglecting all terms which are independent of Λ and Ψ, the M-step requires to maximize

logL =
d l

2
log (2π) − l

2
log |Ψ| − (10.60)

1
2

l∑
i=1

Ezi|xi
((
xi − Λzi

)T
Ψ−1

(
xi − Λzi

))
.

The optimality criteria are

1
l
∇Λ logL =

1
l

l∑
i=1

Ψ−1 Λ Ezi|xi
(
zi (zi)T

) −
1
l

l∑
i=1

Ψ−1 xi Ezi|xi
(
zi
)

= 0 (10.61)

and

∇Ψ logL = − l
2
Ψ−1 + (10.62)

1
2

l∑
i=1

Ezi|xi
(
Ψ−1

(
xi − Λzi

) (
xi − Λzi

)T
Ψ−1

)
= 0 .

Solving above equations gives:

Λnew =

(
1
l

l∑
i=1

xi Ezi|xi
(
zi
)) (

1
l

l∑
i=1

Ezi|xi
(
zi (zi)T

))−1

(10.63)
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and

Ψnew = (10.64)

diag

(
1
l

l∑
i=1

Ezi|xi
((
xi − Λnewzi

) (
xi − Λnewzi

)T)) =

diag

(
1
l

l∑
i=1

xi (xi)T − 1
l

l∑
i=1

Ezi|xi
(
zi
)
xi (Λnew)T −

1
l

l∑
i=1

Ezi|xi
(
zi
)
Λnew(xi)T +

1
l

l∑
i=1

Ezi|xi
(
zi (zi)T

)
Λnew (Λnew)T

)
,

where “diag” makes a diagonal matrix from a matrix by setting all non-diagonal elements to zero.

From eq. (10.63) we obtain

Λnew

(
1
l

l∑
i=1

Ezi|xi
(
zi (zi)T

))
=

(
1
l

l∑
i=1

xi Ezi|xi
(
zi
))

. (10.65)

and can replace the left hand side of above equation in the last term of eq. (10.64) which leads to
the fact that one term 1

l

∑l
i=1 Ezi|xi

(
zi
)
Λnew(xi)T cancels in eq. (10.64). We obtain

Ψnew =
1
l
diag

(
l∑

i=1

xi (xi)T −
l∑

i=1

Ezi|xi
(
zi
)
xi (Λnew)T

)
. (10.66)

This leads to following EM updates:

E-step: (10.67)

Ezi|xi
(
zi
)

= µzi|xi

Ezi|xi
(
zi (zi)T

)
= µzi|xi µ

T
zi|xi + Σzi|xi

M-step: (10.68)

Λnew =(
1
l

l∑
i=1

xi Ezi|xi
(
zi
)) (

1
l

l∑
i=1

Ezi|xi
(
zi (zi)T

))−1

Ψnew = (10.69)

1
l
diag

(
l∑

i=1

xi (xi)T −
l∑

i=1

Ezi|xi
(
zi
)
xi (Λnew)T

)
.
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Speed Ups. To speed up the algorithm for especially for d > p the matrix inversion lemma
can be used:

(
Λ ΛT + Ψ

)−1
= Ψ−1 − Ψ−1Λ

(
I + ΛTΨ−1Λ

)−1
ΛTΨ−1 , (10.70)

where Ψ−1 can be evaluated very fast because it is a diagonal matrix.

Another speed up is obtained

1
l

l∑
i=1

xi Ezi|xi
(
zi
)

= (10.71)(
1
l

l∑
i=1

xi
(
xi
)T ) (

Λ ΛT + Ψ
)−1

Λ =

C
(
Λ ΛT + Ψ

)−1
Λ =

C
(
Ψ−1Λ − Ψ−1Λ

(
I + ΛTΨ−1Λ

)−1
ΛTΨ−1Λ

)
=

C
(
A − A (I + B)−1B

)
,

where A = Ψ−1Λ, B = ΛTΨ−1Λ = ΛTA, and C is the empirical covariance matrix, which
has to be computed only once.

We can also compute

1
l

l∑
i=1

Σzi|xi = (10.72)

I − ΛT
(
Λ ΛT + Ψ

)−1
Λ +(

Λ ΛT + Ψ
)−1

(
1
l

l∑
i=1

xi (xi)T
)(

Λ ΛT + Ψ
)−1

=

I − ΛT Ψ−1Λ + ΛT Ψ−1Λ
(
I + ΛTΨ−1Λ

)−1
ΛTΨ−1Λ +(

Ψ−1 − Ψ−1Λ
(
I + ΛTΨ−1Λ

)−1
ΛTΨ−1

)
C(

Ψ−1 − Ψ−1Λ
(
I + ΛTΨ−1Λ

)−1
ΛTΨ−1

)
=

I − B + B (I + B)−1B +(
Ψ−1 − A (I + B)−1AT

)
C
(
Ψ−1 − A (I + B)−1AT

)
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and

1
l

l∑
i=1

µzi|xi µ
T
zi|xi = (10.73)

ΛT
(
Λ ΛT + Ψ

)−1

(
1
l

l∑
i=1

xi
(
xi
)T) (

Λ ΛT + Ψ
)−1

Λ =

ΛT
(
Λ ΛT + Ψ

)−1
C
(
Λ ΛT + Ψ

)−1
Λ =(

A − A (I + B)−1B
)T
C
(
A − A (I + B)−1B

)
.

Using these equations the E-step and the M-step can be unified and all sums
∑l

i=1 are removed
and the matrix C can be computed once at the beginning of the iterative procedure.

MAP factor analysis. This algorithm can be generalized to a maximum a posteriori method
with posterior p(Λ,Ψ | {x}) which is proportional to the product between the likelihood p({x} |
Λ,Ψ) and the prior p(Λ):

p(Λ,Ψ | {x}) ∝ p({x} | Λ,Ψ) p(Λ) , (10.74)

therefore up to a constant independent of the parameters the log-posterior is

log (p(Λ,Ψ | {x})) = log (p({x} | Λ,Ψ)) + log (p(Λ)) . (10.75)

An example for the prior on λj is a rectified Gaussian Nrect (µΛ, σΛ) in order to allow only
positive factor loading values which assume that the factors are only additive:

yj ∼ N (µΛ, σΛ) (10.76)

λj = max{yj , 0} . (10.77)

MAP factors. The E-step gives also the most probable values for the factors z. This can be
important for analyzing data and extracting hidden causes.

Interpretation. We already mentioned that the data variance is explained through signal vari-
ance and through noise. The communality cj of an observations variable xj is

cj =
var(xj) − var(εj)

var(xj)
=

Ψjj

Ψjj +
∑p

k=1 λ
2
jk

(10.78)

which is the proportion in xi explained by the factors. Here each factor zl contributes

λ2
jl

Ψjj +
∑p

k=1 λ
2
jk

. (10.79)
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10.5 Projection Pursuit and Multidimensional Scaling

10.5.1 Projection Pursuit

Projection pursuit attempts to find “interesting” projections of the data in order to visualize, cluster
the data or for dimensionality reduction.

“Interesting” is defined as the least Gaussian distribution. The important question is how to
define non-Gaussianity.

If the covariance of a zero mean variable y is fixed, then a Gaussian distribution maximizes
the entropy H(y).

Then for y = wTx the vectorw must be found which maximized H(y) if y is normalized to
zero mean and unit variance.

However the density of y = wTx is difficult to estimate.

Other more practical measures of non-Gaussianity have been given in as independent compo-
nent analysis was introduced in Subsection 10.3.1.

10.5.2 Multidimensional Scaling

Multidimensional Scaling (MDS) aims at representing data points x by y in a lower dimensional
space so that he distances between the y’s correspond to the distances (dissimilarities) between
the x’es.

We define

yi = f(xi;w) (10.80)

δij =
∥∥xi − xj

∥∥ (10.81)

dij =
∥∥yi − yj

∥∥ . (10.82)

The goal is to define a measure which measures the difference between δ and d which is mostly
done by a weighted sum of the differences between δij and dij .

Possible measures are

R1(d, δ) =

∑
i<j (dij − δij)

2∑
i<j δ

2
ij

∝
∑
i<j

(dij − δij)
2 (10.83)

R2(d, δ) =
∑
i<j

(
dij − δij

δij

)2

(10.84)

R3(d, δ) =
1∑
i<j δij

∑
i<j

(dij − δij)
2

δij
∝
∑
i<j

(dij − δij)
2

δij
, (10.85)

where “∝” removed factors which are constant in the parameters w.

The measure R1 is basically the mean squared error and penalizes large errors even if the
δij are large. The measure R2 measures the fractional errors (relative errors) but small δij may
increase the relative error. R3 is called “Sammon mapping” and is an compromise of R1 and R2.
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Figure 10.12: Example for multidimensional scaling. Points x from a 3-dimensional space (left)
are mapped by multidimensional scaling to a 2-dimensional space (right). Copyright c© 2001 John
Wiley & Sons, Inc.

The derivatives which can be used in gradient based methods are

∂

∂yk
R1(d, δ) =

2∑
i<j δ

2
ij

∑
j 6=k

(dkj − δkj)
yk − yj
dkj

(10.86)

∂

∂yk
R2(d, δ) = 2

∑
j 6=k

dkj − δkj
δ2
kj

yk − yj
dkj

(10.87)

∂

∂yk
R3(d, δ) =

2∑
i<j δij

∑
j 6=k

dkj − δkj
δkj

yk − yj
dkj

. (10.88)

If the measures are viewed as potential functions, then the derivatives can be considered as
forces on certain points yk.

Fig. 10.12 shows and example for multidimensional scaling.

10.6 Clustering

One of the most popular unsupervised learning techniques is clustering. Here “clusters” in the
data, that is regions of high data density, are identified. Often these clusters represent typically data
points which stem from one “prototype data point” by noise perturbations or represent a certain
situation in the real world where the situation is expressed as dependencies in the components.

Clustering extracts structure in the data. Often clustering identifies new data classes which
were unknown so far.
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An important application of clustering is also data visualization where is some cases both
down-projection and clustering are combined (e.g. for self-organizing maps).

If data points are represented by their prototypes then clustering is a data compression method
called “vector quantization”.

10.6.1 Mixture Models

Because clusters are regions of high data density, density estimators which locally assign a com-
ponent can be used for clustering. A local component j out of c components has a location µj , a
width or shape Σj and a weight wj giving the local probability mass.

If we consider this as a generative model, then wj is the probability p(j) of choosing compo-
nent j. The values µj and Σj describe the local component j which has density p(x | j,µj ,Σj).

If we summarize all parameters µj , Σj , and w in the parameter vector θ, then we obtain the
model

p(x | θ) =
c∑
j=1

p(j) p(x | j,µj ,Σj) . (10.89)

The log-likelihood is

lnL =
l∑

i=1

ln p(xi | θ) . (10.90)

If we summarize µj and Σj in θj then the derivative of the log-likelihood is

∂

∂θj
lnL =

l∑
i=1

1
p(xi | θ)

c∑
j=1

p(j)
∂

∂θj
p(xi | j,µj ,Σj) = (10.91)

l∑
i=1

p(j | xi,µj ,Σj)
∂

∂θj
ln p(xi | j,µj ,Σj) ,

where we used Bayes’ formula

p(j | xi,µj ,Σj) =
p(xi | j,µj ,Σj) p(j)

p(xi | θ)
. (10.92)

The derivative of the log-likelihood of the model with respect to the parameters of the j com-
ponent is posterior expectation of component j of the derivative of the log-likelihood of the com-
ponent j.

These consideration are valid of each mixture model.

We will now consider mixture of Gaussian (MoG), where

p(xi | j,µj ,Σj) ∼ N (µj , Σj) . (10.93)
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The model is

p(x | θ) =
c∑
j=1

wj N (µj , Σj) (10.94)

c∑
j=1

wj = 1 (10.95)

wj ≥ 0 (10.96)

N (µj , Σj) (x) = (10.97)

(2π)−d/2 |Σj |−1/2 exp
(
−1

2
(x − µj)

T Σ−1
j (x − µj)

)
.

Gaussian are convenient because in eq. (10.91) the logarithm inverts the exponential function:

ln p(x | j,µj ,Σj) = (10.98)

− d

2
ln (2π) − 1

2
ln |Σj | − 1

2
(x − µj)

T Σ−1
j (x − µj)

which gives for the derivatives

∂

∂µj
ln p(x | j,µj ,Σj) = Σ−1

j (x − µj) (10.99)

∂

∂Σj
ln p(x | j,µj ,Σj) = (10.100)

1
2
(
ΣT
j

)−1
+

1
2

Σ−Tj (x − µj) (x − µj)
T Σ−Tj .

Here also the EM-algorithm can be used where the hidden parameters are p(j | xi,µj ,Σj)
must be estimated to evaluate eq. (10.91).

The EM-algorithm is

E-step: (10.101)

p(j | xi,µj ,Σj) =
wj N (µj , Σj) (xi)∑c
l=1wl N (µl , Σl) (xi)

M-step: (10.102)

wnew
j =

1
l

l∑
i=1

p(j | xi,µj ,Σj)

µnew
j =

∑l
i=1 p(j | xi,µj ,Σj) xi∑l
i=1 p(j | xi,µj ,Σj)

(10.103)

Σnew
j =

∑l
i=1 p(j | xi,µj ,Σj)

(
xi − µj

) (
xi − µj

)T∑l
i=1 p(j | xi,µj ,Σj)

. (10.104)
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In order to avoid too small variances and near zero eigenvalues of Σj the mixture of Gaussian
can be optimized by a maximum a posterior approach.

A proper prior for the covariance Σ is the Wishart densityW(Σ−1 | α,Ψ), a proper prior for
the weighting factors wj is a Dirichlet density D(w | γ), and a proper prior for the mean values µ
is a Gaussian N (µ | ν, η−1Σ

)
:

W(Σ−1 | α,Ψ) = c(α,Ψ)
∣∣Σ−1

∣∣α−(d+1)/2 exp
(−tr

(
Ψ Σ−1

))
(10.105)

D(w | γ) = c(γ)
c∏
j=1

wγ−1
j (10.106)

N (µ | ν, η−1Σ
)

= (10.107)

(2π)−d/2
∣∣η−1 Σj

∣∣−1/2 exp
(
−η

2
(µ − ν)T Σ−1

j (µ − ν)
)
,

where α > (d− 1)/2 and c(γ) as well as c(α,Ψ) are normalizing constants. The operator “tr” is
the trace operator.

The expectation-maximization algorithm is now

E-step: (10.108)

p(j | xi,µj ,Σj) =
wj N (µj , Σj) (xi)∑c
l=1wl N (µl , Σl) (xi)

M-step: (10.109)

wnew
j =

∑l
i=1 p(j | xi,µj ,Σj) + γ − 1

l + c (γ − 1)

µnew
j =

∑l
i=1 p(j | xi,µj ,Σj) xi + η νj∑l

i=1 p(j | xi,µj ,Σj) + η
(10.110)

Σnew
j =

(
l∑

i=1

p(j | xi,µj ,Σj)
(
xi − µj

) (
xi − µj

)T + (10.111)

η (νj − µj) (νj − µj)
T + 2 Ψ

)
(

l∑
i=1

p(j | xi,µj ,Σj) + 2 α − d
)−1

.

Above formulae are obtained as follows: Because

c∑
j=1

wnew
j = 1 (10.112)
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we obtain as Lagrangian for the constraint optimization problem for the wj

L =
l∑

i=1

c∑
j=1

p(j | xi,µj ,Σj) lnwnew
j + lnD(w | γ) − (10.113)

λ

 c∑
j=1

wnew
j − 1

 .

Setting the derivative to zero:

∂L

∂wj
=

l∑
i=1

p(j | xi,µj ,Σj)
(
wnew
j

)−1 + (10.114)

(γ − 1)
(
wnew
j

)−1 − λ = 0
l∑

i=1

p(j | xi,µj ,Σj) + (γ − 1) = λ wnew
j

Summing over j gives

l∑
i=1

c∑
j=1

p(j | xi,µj ,Σj) + c (γ − 1) = λ
c∑
j=1

wnew
j (10.115)

l + c (γ − 1) = λ (10.116)

We obtain

wnew
j =

∑l
i=1 p(j | xi,µj ,Σj) + (γ − 1)

l + c (γ − 1)
(10.117)

For the other parameters we do not have constraints. The gradient of the log-posterior LP with
respect to µj contains the log-likelihood and the log-prior:

∂LP
∂µj

=
l∑

i=1

p(j | xi,µj ,Σj) Σ−1
j

(
xi − µj

)
+ (10.118)

η Σ−1
j (νj − µj) = 0 .

For the gradient with respect to Σj a trick is applied: the gradient is taken with respect to Σ−1
j

with also must be zero at the minimum, because

∂LP
∂Σj

= − Σ−2
j

∂LP
∂Σ−1

j

(10.119)

and the variables Σ−1
j fully represent the variables Σj .
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We obtain

∂LP
∂Σ−1

j

= (10.120)

1
2

l∑
i=1

p(j | xi,µj ,Σj)
(
Σj −

(
xi − µj

) (
xi − µj

)T) +

1
2

(
Σj − η (νj − µj) (νj − µj)

T
)

+

Σj (α − (d + 1)/2) − Ψ = 0 ,

where we used

∂ ln |A|
∂A

= A−1 (10.121)

forA = Σ−1
j .

Note that each component can have prior so that we would obtain νj , ηj , αj , Ψj , and γj . The
update formulae would we similar as above.

Default values for the hyperparameters are

α =
d

2
(10.122)

Ψ =
1
2
I OR Ψ =

1
2

covar(x) (10.123)

γ = 1 (10.124)

η = 0 (10.125)

νj = mean(x) (10.126)

A prior on the mean values µ is in most cases not useful except a preferred region is known.

The posterior p(j | xi,µj ,Σj) can be used for clustering: xi belongs to the cluster j for
which the posterior is largest.

But also soft clustering is possible: p(j | xi,µj ,Σj) gives the graded or fuzzy membership of
xi to the cluster j.

10.6.2 k-Means Clustering

p(j | xi,µj ,Σj) in eq. (10.101) is determined by the weight wj of the jth component and the
distance

(
xi − µj

)T Σ−1
j

(
xi − µj

)
of xi to the mean µj .

If we set wj = 1
c and Σ−1

j = I , then xi belongs to the cluster j which center µj has the
smallest Euclidean distance

∥∥xi − µj
∥∥ to xi.

If we discretize

p(j | xi,µj) =
{

1 if j = cxi = arg minl
∥∥xi − µl

∥∥
0 otherwise

(10.127)
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then the M-step in eq. (10.102) is

µnew
j =

1
lj

l∑
i=1, j=cxi

xi (10.128)

lj =
l∑

i=1

p(j | xi,µj ,Σj) =
l∑

i=1, j=cxi

1 , (10.129)

where lj is the number of data points assigned to cluster j.

Therefore µnew
j is the mean of the data points assigned to cluster j. This method is called

k-means clustering and its algorithm is given in Alg. 10.1.

Algorithm 10.1 k-means

Given: data {x} = (x1,x2, . . . ,xl), number of clusters c

BEGIN initialization
initialize the cluster centers µj , 1 ≤ j ≤ c

END initialization

BEGIN Iteration

Stop=false
while Stop=false do

for (i = 1 ; i ≥ l ; i+ +) do
assign xi to the nearest µj

end for
for (j = 1 ; j ≥ c ; j + +) do

µnew
j =

1
lj

l∑
i=1, j=cxi

xi

end for
if stop criterion fulfilled then

Stop=true
end if

end while
END Iteration

The k-means clustering is fast but it is prone to initial initialization. For example consider an
initialization which places one center near an outlier data point which is separated from the rest
of the data points which all have other cluster centers closer to them. Then this outlier cluster will
contain in each iteration only one data point.

This behavior can be serious in high dimensions.

Let us again assume wj = 1
c and Σ−1

j = I . But now we use a continuous estimate of
p(j | xi,µj ,Σj) = p(j | xi,µj), where the distances do not have an exponential decay as in eq.
(10.101).
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We set

p(j | xi,µj) =

∥∥xi − µj
∥∥−2/(b−1)∑c

l=1 ‖xi − µl‖−2/(b−1)
. (10.130)

and obtain

µnew
j =

∑l
i=1 p

b(j | xi,µj) xi∑l
i=1 p

b(j | xi,µj)
. (10.131)

The error function which is minimized is

c∑
l=1

l∑
i=1

pb(j | xi,µj) xi
∥∥xi − µj

∥∥2
. (10.132)

This algorithm is called fuzzy k-means clustering and described in Alg. 10.2.

Algorithm 10.2 Fuzzy k-means

Given: data {x} = (x1,x2, . . . ,xl), number of clusters c

BEGIN initialization
initialize the cluster centersµj , 1 ≤ j ≤ c, andwj(xi) = p(j | xi,µj) so that

∑c
j=1wj(x

i) =
1, wj(xi) ≥ 0.

END initialization

BEGIN Iteration

Stop=false
while Stop=false do

µnew
j =

∑l
i=1w

b
j(x

i) xi∑l
i=1w

b
j(xi)

.

wj(xi) =

∥∥xi − µj
∥∥−2/(b−1)∑c

l=1 ‖xi − µl‖−2/(b−1)

if stop criterion fulfilled then
Stop=true

end if
end while

END Iteration

10.6.3 Hierarchical Clustering

Until now we did not consider distances and structures between the clusters. Structures between
clusters can be obtained through hierarchical clustering where in a dendrogram also the neighbor-
hood between clusters is shown.
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Figure 10.13: Example for hierarchical clustering given as a dendrogram (corresponding tree) of
animal species.

Fig. 10.13 shows and example for hierarchical clustering where a dendrogram is depicted.

Hierarchical clustering is already known from “Bioinformatics 1” where we constructed a
phylogenetic tree. The method “Unweighted Pair Group Method using arithmetic Averages” (UP-
GMA) was an example of hierarchical clustering in order to construct a phylogenetic tree.

In machine learning the UPGMA method is called agglomerative hierarchical clustering,
where the closest clusters are merged do give a new cluster. Starting point is where each clus-
ter consists of a single element.

This method can be varied by using different distance measures between clusters A and B

dmin(A,B) = min
a∈A,b∈B

‖a − b‖ (10.133)

dmax(A,B) = max
a∈A,b∈B

‖a − b‖ (10.134)

davg(A,B) =
1

lA lB

∑
a∈A

∑
b∈B
‖a − b‖ (10.135)

dmean(A,B) = ‖ā − b̄‖ , (10.136)

where lA (lB) is the number of elements in A (B) and ā (b̄) is the mean of cluster A (B).

For single elements these distance measures are equivalent, however for clusters there is a
difference. The use of dmax avoids that clusters are elongated in some direction but the smallest
distance between their points remains small.

UPGMA is based on dmin, therefore, it is known in machine learning as “nearest neighbor
algorithm”.

Also the “Neighbor Joining” algorithm from “Bioinformatics 1” to construct a phylogenetic
tree falls into the class of “nearest neighbor algorithm”.

The use of dmax measures how broad are two clusters together and avoids that extreme points
of two clusters are widely separated if the clusters have small distance.
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Other hierarchical clustering methods can be based on graph theoretic considerations. On first
builds the minimal spanning tree. Then the largest edge is removed which gives two clusters.
Now the second largest edge can be removed and so on. However a better procedure may be to
compute the average edge length of the clusters and find an edge which is considerably large than
other edges in the cluster. This procedure can be done at node level, where for each node the
edge is determined which is considerably larger than other edges of this node. The inconsistent
(considerably larger) edges can be removed stepwise and new clusters are produced.

10.6.4 Self-Organizing Maps

A method which is similar to multidimensional scaling is the Self-Organizing Map (SOM) also
called Kohonen map.

SOMs comprise two objectives: clustering and down-projecting. Data points x ∈ Rd are
clustered and down-projected to points y ∈ Rl with d > l. Because of the clustering only finite
many y exist, namely yk.

In almost all applications the yk equidistantly fill a hypercube in Rl. For each yk there exist
an associated wk ∈ Rd representing the cluster center in the data space.

Goal now is to find cluster centers wk that for data points x which are neighbors in Rd their
projections are also neighbors in Rl. The goal is to down-project but preserving the neighborhood
relation which gave these methods also the name “topologically ordered maps”.

The learning can be done on-line, that is each new data point x leads to an update of the wk.
The update rule is

k = arg max
m

xTwm (10.137)

(wn)new = wn + η δ
(∥∥∥yn − yk|

∥∥∥) (x − wn) , (10.138)

where η is the learning rate which also depends on the iteration number and is annealed and δ is
the “window function” which is largest for yn = yk and is decreasing with the distance to yk.
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0 2 0 1 00

2 5 ,000 5 0,000 7 5 ,000

1 000 1 0,000

1 00,000 1 5 0,000

Figure 10.14: Self-Organizing Map. Example of a one-dimensional representation of a two-
dimensional space. Copyright c© 2001 John Wiley & Sons, Inc.

100 1000 10,000 2 5 ,000 5 0,000

7 5 ,000 100,000 15 0,000 2 00,000 3 00,000

Figure 10.15: Self-Organizing Map. Mapping from a square data space to a square (grid) repre-
sentation space. Copyright c© 2001 John Wiley & Sons, Inc.

0 1000 25000 400000

Figure 10.16: Self-Organizing Map. The problem from Fig. 10.14 but with different initialization.
Kinks in the map do not vanish even if more patterns are presented – that is a local minimum.
Copyright c© 2001 John Wiley & Sons, Inc.
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0 1000 400,000 800,000

Figure 10.17: Self-Organizing Map. The problem from Fig. 10.14 but with a non-uniformly
sampling: the density at the center was higher than at the border. Copyright c© 2001 John Wiley
& Sons, Inc.
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