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Questions We Need to Address

Does learning help in the future, i.e. does experience from pre-
viously observed examples help us to solve a future task?

What is a good model? How do we assess the quality of a
model?

Will a given model be helpful in the future?
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Basic Setup: Inputs

Assume we want to learn something about objects from a set/space
X. Most often, these objects are represented by vectors of feature
values, i.e.

x = (x1, . . . , xd) ∈ X1 × · · · ×Xd︸ ︷︷ ︸
=X

For simplicity, we will not distinguish between the objects and the
feature vector in the following.

If Xj is a finite set of labels, we speak of a categorical vari-
able/feature. If Xj = R, a real interval, etc., we speak of a nu-
merical variable/feature.
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Basic Setup: Inputs (cont’d)

Assume we are given l objects x1, . . . ,xl that have been observed
in the past—the so-called training set. Each of these objects is
characterized by its feature vector:

xi = (xi1, . . . , x
i
d)

We can write this conveniently in matrix notation (called matrix of
feature vectors):

X =


x1

...

xl

 =


x1

1 . . . x1
d

...
. . .

...

xl1 . . . xld
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Basic Setup: Inputs vs. Outputs

Further assume that we know a target value yi ∈ R for each training
sample xi. All these values constitute the target/label vector:

y = (y1, . . . , yl)T

The training data matrix is then defined as follows:

Z = (X | y) =


x1 y1

...
...

xl yl

 =


x1

1 . . . x1
d y1

...
. . .

...
...

xl1 . . . xld yl


In the following, we denote Z = X × R.
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Classification vs. Regression

Classification: the target/label values are categorical, i.e. from a
finite set of labels; we will often consider binary classification,
i.e. where we have two classes; in this case, unless indicated
otherwise, we will use the labels -1 (negative class) and +1
(positive class)

Regression: the target/label values are numerical
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The Probabilistic Framework for
Supervised ML (1/3)

The quality of a model can only be judged on the basis of its perfor-
mance on future data. So assume that future data are generated
according to some joint distribution of inputs and outputs, the joint
density of which we denote as

p(z) = p(x, y)

If we have only finitely many possible data samples, p(z) = p(x, y)
is the probability to observe the datum z = (x, y).
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The Probabilistic Framework for
Supervised ML (2/3)

Marginal distributions: p(x) is the density/probability of observ-
ing input vector x (regardless of its target value); p(y) is the
density/probability of observing target value y

Conditional distributions: p(x | y) is the density of input values
for a given target value y; p(y | x) is the density/probability to
observe a target value y for a given input x
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The Probabilistic Framework for
Supervised ML (3/3)

In case of binary classification, we will use the following notations
to make things a bit clearer:

p(y = −1) probability to observe a negative sample

p(y = +1) probability to observe a positive sample

p(x | y = −1) distribution density of negative class

p(x | y = +1) distribution density of positive class

p(y = −1 | x) probability that x belongs to negative class

p(y = +1 | x) probability that x belongs to positive class
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Some Basic Correspondences

Using definitions:

p(x, y) = p(x | y) · p(y) p(x, y) = p(y | x) · p(x)

Bayes’ Theorem:

p(y | x) =
p(x | y) · p(y)

p(x)
p(x | y) =

p(y | x) · p(x)
p(y)

Getting marginal densities by integrating out:

p(x) =
∫
R

p(x, y)dy =
∫
R

p(x | y) · p(y)dy

p(y) =
∫
X

p(x, y)dx =
∫
X

p(y | x) · p(x)dx
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Some Basic Correspondences (cont’d)

In the case of binary classification:

p(y = −1) + p(y = +1) = 1

p(y = −1 | x) + p(y = +1 | x) = 1 for all x

p(x) = p(x, y = −1) + p(x, y = +1)

= p(x | y = −1) · p(y = −1) + p(x | y = +1) · p(y = +1)
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Loss Functions

Assume that the mapping g corresponds to our model class (para-
metric model) in the sense that

g(x; w)

maps the input vector x to the predicted output value using the
parameter vector w (i.e. w determines the model).
Then a loss function

L(y, g(x; w))

measures the loss/cost that incurs for a given data sample z =
(x, y) (i.e. with real output value y).
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Examples of Loss Functions

Zero-one loss:

Lzo(y, g(x; w)) =

0 y = g(x; w)

1 y 6= g(x; w)

Quadratic loss:

Lq(y, g(x; w)) = (y − g(x; w))2

Clearly, the zero-one loss function makes little sense for regression.
For binary classification tasks, we have Lq = 4Lzo.
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Generalization Error/Risk

The generalization error (or risk) is the expected loss on future data for a
given model g(.; w):

R(g(.; w)) = Ez

(
L(y, g(x; w))

)
=
∫
Z

L(y, g(x; w)) · p(z)dz

=
∫
X

∫
R

L(y, g(x; w)) · p(x, y)dydx

=
∫
X

p(x)
∫
R

L(y, g(x; w)) · p(y | x)dy

︸ ︷︷ ︸
=R(g(x;w))=Ey|x(L(y,g(x;w)))

dx

Obviously, R(g(x; w)) denotes the expected loss for input x.

The risk for the quadratic loss is called mean squared error (MSE).
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Generalization Error for a Noisy Function

Assume that y is a function of x perturbed by some noise:

y = f(x) + ε

Assume further that ε is distributed according to some noise distri-
bution pn(ε). Then we can infer

p(y | x) = pn(y − f(x)),

which implies

p(z) = p(y | x) · p(x) = p(x) · pn(y − f(x)).
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Generalization Error for a Noisy Function
(cont’d)

Then we obtain

R(g(.; w)) =
∫
Z

L(y, g(x; w)) · p(z)dz

=
∫
X

p(x)
∫
R

L(y, g(x; w)) · pn(y − f(x))dydx.

In the noise-free case, we get

R(g(.; w)) =
∫
X

p(x) · L(f(x), g(x; w))dx,

which can be understood as “modeling error”.
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Generalization Error for Binary
Classification (1/3)

For the zero-one loss, we obtain

R(g(.; w)) =
∫
X

∫
R

p(x, y 6= g(x; w))dydx,

i.e. the misclassification probability. With the notations

X−1 = {x ∈ X | g(x; w) < 0}, X+1 = {x ∈ X | g(x; w) > 0},

we can conclude further:

R(g(.; w)) =
∫
X−1

p(x, y = +1)dx +
∫
X+1

p(x, y = −1)dx
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Generalization Error for Binary
Classification (2/3)

So, we get:

R(g(.; w)) =
∫

X−1

p(y = +1 | x) · p(x)dx +
∫

X+1

p(y = −1 | x) · p(x)dx

=
∫
X

 p(y = −1 | x) if g(x; w) = +1

p(y = +1 | x) if g(x; w) = −1

 · p(x)dx

Hence, we can infer an optimal classification function:

g(x) =

+1 if p(y = +1 | x) > p(y = −1 | x)

−1 if p(y = −1 | x) > p(y = +1 | x)

= sign(p(y = +1 | x)− p(y = −1 | x)) (1)
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Generalization Error for Binary
Classification (3/3)

The resulting minimal risk is

Rmin =
∫
X

min(p(x, y = −1), p(x, y = +1))dx

=
∫
X

min(p(y = −1 | x), p(y = +1 | x)) · p(x)dx

Obviously, for non-overlapping classes, i.e. min(p(y = −1 | x), p(y = +1 |
x)) = 0, the minimal risk is zero and the optimal classification function is

g(x) =

+1 if p(y = +1 | x) > 0,

−1 if p(y = −1 | x) > 0.
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Minimizing the Risk for a Gaussian
Classification Task (1/4)

Assume that both negative and positive class are distributed ac-
cording to d-variate normal distributions, i.e., p(x | y = −1)
is N(µ−1,Σ−1)-distributed and p(x | y = +1) is N(µ+1,Σ+1)-
distributed.

Note that the distribution density of a d-variate N(µ,Σ)-distributed
random variable is given as

p(x) =
1

(2π)d/2 ·
√

det Σ
· exp

(
−1

2
· (x− µ)Σ−1(x− µ)T

)
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Minimizing the Risk for a Gaussian
Classification Task (2/4)

Using (1), we can infer

g(x) = sign(ḡ(x)) = sign(ĝ(x))

where

ḡ(x) = p(y = +1 | x)− p(y = −1 | x)

=
1

p(x)
·
(
p(x | y = +1) · p(y = +1)

−p(x | y = −1) · p(y = −1)
)

ĝ(x) = ln p(x | y = +1)− ln p(x | y = −1) + ln p(y = +1)− ln p(y = −1)

ḡ and ĝ are called discriminant functions.
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Minimizing the Risk for a Gaussian
Classification Task (3/4)

Determining an optimal discriminant function:

ĝ(x) = − 1
2
(x− µ+1)Σ−1

+1(x− µ+1)T − d
2

ln 2π − 1
2

ln det Σ+1 + ln p(y = +1)

+ 1
2
(x− µ−1)Σ−1

−1(x− µ−1)T + d
2

ln 2π + 1
2

ln det Σ−1 − ln p(y = −1)

= − 1
2
(x− µ+1)Σ−1

+1(x− µ+1)T − 1
2

ln det Σ+1 + ln p(y = +1)

+ 1
2
(x− µ−1)Σ−1

−1(x− µ−1)T + 1
2

ln det Σ−1 − ln p(y = −1)

= − 1
2
x

=A︷ ︸︸ ︷
(Σ−1

+1 −Σ−1
−1) xT +

=b︷ ︸︸ ︷
(µ+1Σ−1

+1 − µ−1Σ−1
−1) xT

− 1
2
µ+1Σ−1

+1µT
+1 + 1

2
µ−1Σ−1

−1µT
−1

− 1
2

ln det Σ+1 + 1
2

ln det Σ−1 + ln p(y = +1)− ln p(y = −1)

 = c

= −
1

2
xAxT + bxT + c
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Minimizing the Risk for a Gaussian
Classification Task (4/4)

Thus, the optimal classification border ĝ(x) = 0 is a d-dimensional
hyper-quadric −1

2xAxT + bxT + c = 0.

In the special case Σ−1 = Σ+1, we obtain A = 0, i.e. the optimal
classification border is a linear hyperplane (a separating line in the
case d = 2).
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Gaussian Classification Example #1:
Distributions

The data shown on Slide 9 were created according to the following
distributions:

p(x | y = +1) corresponds to a two-variate normal distribution with parame-
ters

µ+1 = (0.3, 0.7) Σ+1 =

 0.011875 0.016238

0.016238 0.030625


p(x | y = −1) corresponds to a two-variate normal distribution with parame-
ters

µ−1 = (0.5, 0.3) Σ−1 =

 0.011875 −0.016238

−0.016238 0.030625


p(y = +1) = 55

120
= 0.45833, p(y = −1) = 65

120
= 0.54167
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Gaussian Classification Example #1:
p(x) = p(x | y = −1) ·p(y = −1)+p(x | y = +1) ·p(y = +1)
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Gaussian Classification Example #1:
g̃(x) = p(x | y = +1) ·p(y = +1)−p(x | y = −1) ·p(y = −1)
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Gaussian Classification Example #1:
Discriminant Function ḡ(x) = g̃(x)/p(x)
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Gaussian Classification Example #1:
Data + Optimal Decision Border
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Gaussian Classification Example #1:
Data + Estimated Decision Border
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Gaussian Classification Example #2:
Distributions

Data set no. 6 (cf. exercises) was created according to the following
distributions:

p(x | y = +1) corresponds to a two-variate normal distribution with parame-
ters

µ+1 = (0.4, 0.8) Σ+1 =

 0.09 0.0

0.0 0.0049


p(x | y = −1) corresponds to a two-variate normal distribution with parame-
ters

µ−1 = (0.5, 0.3) Σ−1 =

 0.00398011 −0.00730159

−0.00730159 0.0385199


p(y = +1) = 55

120
= 0.45833, p(y = −1) = 65

120
= 0.54167
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Gaussian Classification Example #2:
p(x) = p(x | y = −1) ·p(y = −1)+p(x | y = +1) ·p(y = +1)
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Gaussian Classification Example #2:
g̃(x) = p(x | y = +1) ·p(y = +1)−p(x | y = −1) ·p(y = −1)

0

0.25

0.5

0.75

1
0

0.25

0.5

0.75

1

-7.5

-5

-2.5

0

2.5

0

0.25

0.5

0.75

1



Unit 2: Model Evaluation in Supervised Machine Learning 63

Gaussian Classification Example #2:
Discriminant Function ḡ(x) = g̃(x)/p(x)
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Gaussian Classification Example #2:
Data + Optimal Decision Border
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Gaussian Classification Example #2:
Data + Estimated Decision Border
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Gaussian Classification Example #3:
Distributions

Let us consider a data set created according to the following distri-
butions:

p(x | y = +1) corresponds to a two-variate normal distribution with parame-
ters

µ+1 = (0.3, 0.7) Σ+1 =

 0.0016 0.0

0.0 0.0016


p(x | y = −1) corresponds to a two-variate normal distribution with parame-
ters

µ−1 = (0.6, 0.3) Σ−1 =

 0.09 0.0

0.0 0.09


p(y = +1) = 1

12
= 0.0833, p(y = −1) = 11

12
= 0.9167
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Gaussian Classification Example #3:
p(x) = p(x | y = −1) ·p(y = −1)+p(x | y = +1) ·p(y = +1)
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Gaussian Classification Example #1:
g̃(x) = p(x | y = +1) ·p(y = +1)−p(x | y = −1) ·p(y = −1)
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Gaussian Classification Example #1:
Discriminant Function ḡ(x) = g̃(x)/p(x)
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Gaussian Classification Example #3:
Data + Optimal Decision Border
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Gaussian Classification Example #3:
Data + Estimated Decision Border

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1



Unit 2: Model Evaluation in Supervised Machine Learning 72

What About Practice?

In practice, we hardly have any knowledge about p(x, y)

If we had, we could infer optimal prediction functions directly
without using any machine learning method

Therefore, we can only estimate the generalization error
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Estimating the Risk: Test Set Method

Assume that we have m more data samples (zl+1, . . . , zl+m), the
so-called test set, that are independently and identically distributed
(i.i.d.) according to p(x, y) (and, therefore, so is L(y, g(x,w))).
Then

RE(g(.; w)) =
1
m

m∑
j=1

L(yl+j , g(xl+j ; w)) (2)

can be considered an estimate for R(g(.; w)). By the (strong) law
of large numbers, RE(g(.; w)) converges to R(g(.; w)) for m→∞.
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Test Set Method: Practical Realization

The common way of applying the test set method in practice is the
following:

1. Split the set of labeled samples into a training set of l samples
and a test set of m samples.

2. Perform model selection, i.e. find a suitable model w, making
use only of the training set (hence, w = w(Z)), while withhold-
ing the test set.

3. Estimate the generalization error by (2) using the test set

This is also called hold-out method.
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Test Set Method: A Word of Caution

The model g(.; w) is geared to the training set. Therefore, for train-
ing and test samples, the random variables L(y, g(x,w)) are not
identically distributed. Hence, the estimate RE(g(.; w)) becomes
invalid as soon as a single training sample is being used for esti-
mating the risk; therefore:

Training samples may never be used for “testing”, i.e. es-
timating the generalization error!

Test samples may never be used for training!
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Test Set Method: Practical Caveats

To avoid the pitfall described above, take the following rules into
account:

1. Choose training/test samples randomly (unless you can be
completely sure that they are already in random order)! If the
probabilities for being selected as training or test samples are
not equal for all samples, the independence property cannot
be guaranteed.

2. Make sure that there is not the slightest influence that test sam-
ples have on the selection of the model! Also pre-processing
or feature selection steps that use all samples imply that the
estimate is biased.
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Cross Validation: Motivation

The following platitudes can be stated about the test set method:

The more training samples (and the less test samples), the
better the model, but the worse the risk estimate.

The more test samples (and the less training samples), the
coarser the model, but the better the risk estimate.

In particular, for small sample sets, the requirement that training
and test set must not overlap is painful.

Question: can we somehow improve the risk estimate without nec-
essarily sacrificing model accuracy?
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Cross Validation: Basic Idea

A simple idea would be to perform the splitting into training and set
several times and to average the estimates. This is incorrect, as the
test sets overlap and, therefore, are not independent anymore.

Cross validation somehow follows this line of thought, but splits the
sample set into n disjoint fractionsa (so-called folds):

1. Training is done n times, every time leaving out one fold (i.e. tak-
ing the other n− 1 folds as training set)

2. The risk estimate is then computed as the average of the risk
estimate of the n left-out test folds

The special case n = l is commonly called leave-one-out cross vali-
dation.

aFor simplicity, assume in the following that l is divisible by n.
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Five-fold Cross Validation Visualized

evaluation training
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Cross Validation: Definition

We denote a given arbitrary sample set with l elements as Zl in the fol-
lowing. The j-th fold inside Zl is denoted as Zj

l/n and the sample set

corresponding to the remaining n− 1 folds as Zl\Zj
l/n.

Then the risk estimate given by the j-th fold is given as

Rn−cv,j(Zl) =
n

l

∑
z∈Zj

l/n

L
(
y, g(x; wj

(
Zl\Zj

l/n)
))
.

The n-fold cross validation risk is defined as

Rn−cv(Zl) =
1
n

n∑
j=1

Rn−cv,j(Zl) =
1
l

n∑
j=1

∑
z∈Zj

l/n

L
(
y, g(x; wj

(
Zl\Zj

l/n)
))
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Cross Validation: Justification

Theorem (Luntz & Brailovsky). The cross-validation risk estimate
is an “almost unbiased estimator”:

EZl−l/n

(
R(g(.; w(Zl−l/n))

)
= EZl

(
Rn−cv(Zl)

)
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Cross Validation: Miscellanea

Obviously, n different models are computed during n-fold cross validation.
Questions:

1. Which of these models should we select finally?

2. Can we get a better model if we manage to average these n models?

Answers:

1. None, as the selection would be biased to a certain fold.

2. It depends on the model class whether this is possible and meaning-
ful (see later).

A good strategy is, once that we know about the generalization abilities

of our model, to finally train a model using all l samples.
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Cross Validation: Miscellanea (cont’d)

Cross validation is also commonly applied to finding good choices of hy-
perparameters, i.e. by selecting those hyperparameters for which the
smallest cross validation risk is obtained.

Note, however, that the obtained risk estimate is then biased to the whole
training set. If an unbiased estimate for the risk is desired, this can only
be done by a combination of the test set method and cross validation:

1. Split the sample set into training set and test set first.

2. Apply cross validation on the training set (completely withholding the
test set) to find the best hyperparameter choice.

3. Finally, compute the risk estimate using the test set.
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How to Evaluate Classifiers?

So far, the only measure we have considered for assessing the
performance of a classifier was the generalization error based on
the zero-one loss.

What if the data set is unbalanced?

What if the misclassification cost depends on the sample’s
class?

Can we define a general performance measure independent
class distributions and misclassification costs?

In order to answer these questions, we need to introduce confusion
matrices first.
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Confusion Matrix for a Binary
Classification Task

Let us introduce the following terminology (for a given sample (x, y)
and a classifier g(.; w)): (x, y) is a

true positive (TP) if y = +1 and g(x; w) = +1,

true negative (TN) if y = −1 and g(x; w) = −1,

false positive (FP) if y = −1 and g(x; w) = +1,

false negative (FN) if y = +1 and g(x; w) = −1.
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Confusion Matrix for a Binary
Classification Task (cont’d)

Given a test data set (z1, . . . , zm), the confusion matrix is defined as fol-
lows:

predicted value g(x; w)

+1 -1

+1 #TP #FN

ac
tu

al
va

lu
e
y

-1 #FP #TN

In this table, the entries #TP, #FP, #FN and #TN denote the numbers of

true positives, . . . , respectively, for the given test data set.
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Evaluation Measures Derived from the
Confusion Matrix

Accuracy: number of correctly classified
items, i.e.

ACC =
#TP + #TN

#TP + #FN + #FP + #TN
.

True Positive Rate (aka recall/sensitivity):
proportion of correctly identified posi-
tives, i.e.

TPR =
#TP

#TP + #FN
.

False Positive Rate: proportion of nega-
tive examples that were incorrectly
classified as positives, i.e.

FPR =
#FP

#FP + #TN
.

Precision: proportion of predicted posi-
tive examples that were correct, i.e.

PREC =
#TP

#TP + #FP
.

True Negative Rate (aka specificity):
proportion of correctly identified
negatives, i.e.

TNR =
#TN

#FP + #TN
.

False Negative Rate: proportion of posi-
tive examples that were incorrectly
classified as negatives, i.e.

FNR =
#FN

#TP + #FN
.
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Evaluation Measures Especially Designed
for Unbalanced Data

Balanced Accuracy: mean of true positive and true negative rate,
i.e.

BACC =
TPR + TNR

2
Matthews Correlation Coefficient: measure of non-randomness

of classification; defined as normalized determinant of confu-
sion matrix, i.e.

MCC =
#TP · #TN− #FP · #FN√

(#TP + #FP)(#TP + #FN)(#TN + #FP)(#TN + #FN)
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Confusion Matrix for a Multi-Class
Classification Task

Assume that we have a k-class classification task. Given a test data set
(z1, . . . , zm), the confusion matrix is defined as follows:

predicted class g(x;w)

1 · · · j · · · k

1 C11 · · · C1j · · · C1k

.

.

.
.
.
.

. . .
.
.
.

. . .
.
.
.

i Ci1 · · · Cij · · · Cik

.

.

.
.
.
.

. . .
.
.
.

. . .
.
.
.ac

tu
al

va
lu

e
y

k Ck1 · · · Ckj · · · Ckk

The entries Cij correspond to the numbers of test samples that actually

belong to class i and have been classified as j by the classifier g(.; w).
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Accuracy for a Multi-Class Classification
Task

For a multi-class classification task (with the notations as on the
previous slide), the accuracy of a classifier g(.; w) is defined as

ACC =

k∑
i=1

Cii

k∑
i,j=1

Cij

=
1
m
·
k∑
i=1

Cii,

i.e., not at all surprisingly, as the proportion of correctly classifier
samples. The other evaluation measures cannot be generalized to
the multi-class case in a straightforward way.
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Other Performance Measures for
Multi-Class Classification Task

Beside accuracy, the other evaluation measures cannot be generalized to the
multi-class case in a direct way, but we can easily define them for each class
separately. Given a class j, we can define the confusion matrix of class j as
follows:

predicted value g(x; w)

= j 6= j

= j #TPj #FNj

ac
tu

al
va

lu
e

y

6= j #FPj #TNj

From this confusion matrix, we can easily define all previously known evaluation
measures (for class j).
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Risk for Binary Classification Revisited:
The Asymmetric Case (1/4)

Consider the following loss function (with lFP, lFN > 0):

Las(y, g(x; w)) =


0 y = g(x; w)

lFP y = −1 and g(x; w) = +1

lFN y = +1 and g(x; w) = −1

Then we obtain the following:

R(g(.; w)) =
∫

X−1

lFN · p(x, y = +1)dx +
∫

X+1

lFP · p(x, y = −1)dx

=
∫
X

 lFP · p(y = −1 | x) if g(x; w) = +1

lFN · p(y = +1 | x) if g(x; w) = −1

 · p(x)dx
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Risk for Binary Classification Revisited:
The Asymmetric Case (2/4)

We can infer the following optimal classification function:

g(x) =

+1 if lFN · p(y = +1 | x) > lFP · p(y = −1 | x)

−1 if lFP · p(y = −1 | x) > lFN · p(y = +1 | x)

= sign(lFN · p(y = +1 | x)− lFP · p(y = −1 | x)) (3)

The resulting minimal risk is

Rmin =
∫
X

min(lFP · p(x, y = −1), lFN · p(x, y = +1))dx

=
∫
X

min(lFP · p(y = −1 | x), lFN · p(y = +1 | x)) · p(x)dx
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Risk for Binary Classification Revisited:
The Asymmetric Case (3/4)

Since

lFN · p(y = +1 | x) > lFP · p(y = −1 | x)

if and only if (with the convention 1/0 =∞)

p(y = +1 | x)
p(y = −1 | x)

>
lFP

lFN
,

we can rewrite (3) as follows:

g(x) = sign
(p(y = +1 | x)
p(y = −1 | x)

− lFP

lFN

)
Hence, the optimal classification function only depends on the ratio
of lFP and lFN.
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General Performance of Discriminant
Function

If we have a general discriminant function ḡ that maps objects to
real values, we can adjust to different asymmetric/unbalanced situ-
ations by varying the classification threshold θ (which is by default
0):

g(x) = sign(ḡ(x)− θ)

Question: can we assess the general performance of a classifier
without choosing a particular discrimination threshold?
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ROC Curves

ROC stands for Receiver Operator Characteristic. The concept
has been introduced in signal detection theory.

ROC curves are a simple means for evaluating the perfor-
mance of a binary classifier independent of class distributions
and misclassification costs.

The basic idea of ROC curves is to plot the true positive rate
(TPR) vs. the false positive rate (FPR) while varying the classi-
fication threshold.
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ROC Curve Algorithm

Input: list of class labels of test samples (ỹ1, . . . , ỹm) that were first sorted in
ascending order according to their discriminant value; no. of positive samples in
test set: #p, no. of negative samples: #n;

p := 0;

n := 0;

(x′, y′) := (0, 0);

FOR i := m TO 1 STEP−1 DO
BEGIN

IF ỹi > 0 THEN
p := p + 1;

ELSE
n := n + 1;

(x, y) = ( n
#n

, p
#p

);

draw line from (x′, y′) to (x, y);

(x′, y′) := (x, y);

END
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Area Under the ROC Curve (AUC)

The area under the ROC curve (AUC) is a common measure
for assessing the general performance of a classifier g(.; w).

The lowest possible value is 0, the highest possible value is 1.
Obviously, the higher the better.

An AUC of 1 means that there exists a threshold which perfectly
separates the test samples.

A random classifier produces an AUC of 0.5 in average; hence,
an AUC smaller than 0.5 corresponds to a classification that is
worse than random and an AUC greater than 0.5 corresponds
to a classification that is better than random.
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AUC Algorithm: Direct Variant

Input: analogous to above;

p := 0;

n := 0;

AUC := 0

FOR i := m TO 1 STEP −1 DO
IF ỹi > 0 THEN
p := p+ 1;

ELSE
AUC := AUC + p

#p·#n
;



Unit 2: Model Evaluation in Supervised Machine Learning 100

AUC Algorithm: Indirect Variant

It can be proved that the following holds:

AUC =
1

#p ·#n
·
( (∑

ỹi>0

i
)

︸ ︷︷ ︸
=R

−#p · (#p+ 1)
2

)

Obviously, R is the sum of ranks of positive examples. Note that

U = R− #p · (#p+ 1)
2

is nothing else but the Mann-Whitney-Wilcoxon statistic applied to
the set of positive examples.
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ROC Curve + Direct AUC Algorithm

Input: analogous to above;

p := 0;

n := 0;

AUC := 0

(x′, y′) := (0, 0);

FOR i := m TO 1 STEP−1 DO
BEGIN

IF ỹi > 0 THEN
p := p + 1;

ELSE
BEGIN

n := n + 1;

AUC := AUC + p
#p·#n

;

END

(x, y) = ( n
#n

, p
#p

);

draw line from (x′, y′) to (x, y);

(x′, y′) := (x, y);

END
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ROC Example: Data Set 6 (Exercises)

0 0.2 0.4 0.6 0.8 1
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0.4

0.6

0.8

1
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ROC Example: ROC Curve for
ḡ((x1, x2)) = x1 Using All Samples

0 0.2 0.4 0.6 0.8 1
FPR
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AUC = 0.42042
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ROC Example: ROC Curve for
ḡ((x1, x2)) = x2 Using All Samples
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AUC = 0.993566
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ROC Example: ROC Curves for KNN (75%
training, 25% test samples)

k = 1:

0 0.2 0.4 0.6 0.8 1
FPR

0

0.2

0.4

0.6

0.8

1

T
P
R

AUC = 0.931034

k = 3:
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k = 5:
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k = 7:
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k = 11:
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k = 13:
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k = 39:
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ROC50

For highly unbalanced data sets, the ROC Curve (and the AUC
measure) are problematic.

In such cases, it is common to consider the ROC Curve only
up to the 50th false positive.

The area under the ROC50 curve (AUC50) is then a common
measure for assessing the performance of a classifier.

Obviously, the ROC50 curve is a “sub-graph” of the ROC curve

If there are not more than 50 negative samples in the test data
set, the ROC50 curve and the regular ROC curve coincide
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ROC50 Example
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ROC50/AUC50 Algorithm

Input: analogous to above with the additional assumption that there are at least
50 negative samples;

n := 0;

#p := 0;

#n := 50;

j := m;

WHILE n ≤ 50 AND j ≥ 1 DO
IF ỹj < 0 THEN
BEGIN

n := m + 1;

j := j − 1;

END
ELSE

#p := #p + 1;

initialization analogous

FOR i := m TO j + 1 STEP−1 DO
BEGIN

analogous
END
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How Do We Actually Judge Results?

We know that the lower the generalization error is, the better.

But how do we know whether an MSE of 0.1562 is just great or
mega-bad?

We know that the higher the AUC(50) is, the better. We further
know that an AUC(50) of around or below 0.5 is bad.

But how do we know whether an AUC(50) of 0.65342 is just
great or mega-bad?
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Some Basic Facts

The absolute values of MSE, AUC, and other evaluation mea-
sures are relatively meaningless if we want to know whether
they could be improved or not.

The reason is simply that there are usually influences that are
beyond our control—e.g. unavoidable errors caused by noise.

A common approach to assess absolute values of evaluation
measures in machine learning is significance testing, which is
concerned with finding out whether the results could have been
observed by chance.
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Significance Testing According to Fisher

With the hypothesis that an observation is the result of pure
randomness, the p-value is the probability of obtaining a result
at least as high/low as a given observation.

So the p-value is a means of inductive evidence against the hy-
pothesis that the observation has been observed by chance.
Clearly, the smaller the p-value, the greater the evidence
against the hypothesis.
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Significance Testing in Supervised
Machine Learning (1/4)

In supervised machine learning, we can use this idea to find
out whether there is structure in the data.

The hypothesis is that

p(x, y) = p(x) · p(y)

p(y | x) = p(y)

holds, i.e. inputs and labels are independent from each other.
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Significance Testing in Supervised
Machine Learning (2/4)

Then, if inputs and outputs were actually independent, the re-
sults we have obtained for our data should be similar to the
results that we obtain if we apply our learning algorithm to ran-
domly sampled data according to the assumption above.

The p-value is then the probability that a better result (higher
AC, lower MSE, higher AUC(50), etc.) is obtained.
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Significance Testing in Supervised
Machine Learning (3/4)

It is clear that we can almost never compute the exact p-value.

What we can do is the following:

1. Repeat training a large number of times, each time using a
different random label vector (y1, . . . , yl) (either by sampling
yi’s according to an estimated p(y) or by randomly shuffling
the label vector we have already)

2. Compute a value p̃ as the proportion (relative frequency)
of outcomes in which a better result (higher AC, lower
MSE, higher AUC(50), etc. on the test set or using cross-
validation) has been obtained as an estimate for the real
p-value.
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Significance Testing in Supervised
Machine Learning (4/4)

A low p̃ indicates that the learning algorithm is only able to find better
results in a small number of situations—most likely, when there is (at
least as much) structure in the data.

A high p̃ indicates that our results are not (much) better than if we had
used a random label vector. The reasons for this may be twofold:

1. There is not enough (not more than random) structure in our data
(no specific relationship, missing features, too high noise, etc.) →
this is a situation we cannot overcome.

2. Our model/learning algorithm is so weak (at least for the given
data) that it does not fit our data better than random data.
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Summary and Outlook

In this unit, we have studied how to evaluate a given model:

Generalization error/risk

Estimates via test set method and cross validation

ROC analysis

Significance testing

In some sense, we now have a posteriori tools for assessing
the results we have obtained, but we do not know yet how to
create good models.
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