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Compare more than two sequences: arranged sequences so that the 
amino acids for every the columns match as good as possible
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Multiple sequence alignment is used to

detect remote homologous regions 

detect motifs (regular patterns) in protein families

detect conserved regions or positions (disulfide bonds)

detect structural blocks like helices or sheets

construct phylogenetic trees 

construct a profiles (search or averages)

sequence genomes by superimposing fragments (nucleotides)

cluster proteins according to similar regions
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Similarity measures can be based on:

the similarity of all sequences to a reference sequence

the similarities between evolutionary adjacent sequences

all pairwise similarities
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consensus sequence: obtained if for each column in the alignment the 
most frequent amino acid is chosen
more precisely: the amino acid or letter which has the highest score to  
all other amino acids or gaps in the column

consensus score: sum of the pairwise score between sequences and 
the consensus sequence

generalized by profiles instead of sequences

profile: relative frequency instead of most frequent



Bioinformatics 1: Biology, Sequences, Phylogenetics

Consensus and Entropy

4 Multiple Alignment

4.1 Motivation

4.2 Scoring

4.2.1 Consensus

4.2.2 Tree and Star

4.2.3 Sum of Pairs

4.3 Algorithms

4.3.1 Exact Methods

4.3.2 Progressive

4.3.3 Other

4.4 Profiles / PSSMs

high entropy of the letter distribution: all letter are equally probable
zero entropy: one letter in the column

good alignment correlates with a low accumulative entropy

entropy score:

:  relative frequency of letter a in column i

−
X
i

X
a

fi,a log fi,a

fi,a
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To count the number of mutations only those pairs should be compared
which are evolutionary adjacent

E
E
E
E
D
D
D
D

evolutionary adjacent sequences are represented through a 
phylogenetic tree, which must be constructed
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weighted sum of pairs: all pairwise comparisons

alignment length: L 
number sequences: N

weights:  reduce the influence of closely related sequences

Weighted Sum of Pairs
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LX
i=1

N−1X
l=1

NX
j=l+1

wl,j s (xi,l, xi,j)
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Disadvantage: relatively decreases with respect of N for conservative 
regions; but larger N means more conservative

N Cs   vs.   (N-1) Cs and D

for large N small difference

reasonable scoring matrices: 

Sold =
N (N − 1)
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2
s(C,C)

Snew =
N (N − 1)

2
s(C,C) − (N − 1)s(C,C) + (N − 1)s(C,D)

Sold − Snew
Sold

=
2 (N − 1) s(C,C) − 2 (N − 1) s(C,D)

N (N − 1) s(C,C) =

2

N

µ
1 − s(C,D)

s(C,C)

¶

s(C,D) < s(C,C)³
1 − s(C,D)

s(C,C)

´
> 0
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contra-intuitive: a new letter in a column of 100 equal letters is more
surprising as a new letter in a column of 3 equal letters

Information gain:

Gaps: as for pairwise algorithms, linear gaps more efficient

Weighted Sum of Pairs
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− log fi,a = log(N)
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multiple alignment optimization problem: NP-hard

Exact solution: only 10 to 15 sequences

algorithm classes:

global and progressive methods: MSA, COSA, GSA, clustalW, 
TCoffee

iterative and search algorithms: DIALIGN, MultAlin, SAGA, PRRP, 
Realigner

local methods (motif/profile): eMotif, Blocks, Dialign, Prosite, HMM, 
Gibbs sampling 

divide-and-conquer algorithms: DCA, OMA
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Global progressive alignments methods
CLUSTALW ftp://ftp.ebi.ac.uk/pub/software Thompson et al. (1994/97)

Higgins et al. (1996)
MSA http://www.psc.edu/ Lipman et al. (1989)

http://www.ibc.wustl.edu/ibc/msa.html Gupta et al. (1995)
ftp://fastlink.nih.gov/pub/msa

PRALINE http://mathbio.nimr.mrc.ac.uk/ Heringa (1999)

~jhering/praline

Iterative and search algorithms
DIALIGN http://www.gsf.de/biodv/dialign.html Morgenstern et al. (1996)

segment alignment
MultAlin http://protein.toulouse.inra.fr/multalin.html Corpet (1988)

PRRP progressive ftp://ftp.genome.ad.jp/ Gotoh (1996)
global alignment pub/genome/saitamacc

SAGA genetic http://igs-server.cnrs-mrs.fr/~cnotred/ Notredame and
algorithm Projects_home_page/saga_home_page.html Higgins (1996)

Local alignments / motif / profile
Aligned Segment ftp://ncbi.nlm.nih.gov/pub/neuwald/asset Neuwald and
Statistical Eval. Green (1994)
Tool (Asset)
BLOCKS http://blocks.fhcrc.org/blocks/ Henikoff and

Henikoff (1991, 1992)
eMOTIF http://dna.Stanford.EDU/emotif/ Nevill-Manning et al. (1998)
GIBBS ftp://ncbi.nlm.nih.gov/ Lawrence et al. (1993)

(Gibbs sampler) pub/neuwald/gibbs9_95/ Liu et al. (1995)
Neuwald et al. (1995)

HMMER hidden http://hmmer.wustl.edu/ Eddy (1998)
Markov model

MACAW ftp://ncbi.nlm.nih.gov/pub/macaw Schuler et al. (1991)
MEME http://meme.sdsc.edu/meme/website/ Bailey and Elkan (1995)

(EM method) Grundy et al. (1996, 1997)
Bailey and Gribskov (1998)

Profile http://www.sdsc.edu/projects/profile/ Gribskov and
(UCSD) Veretnik (1996)

SAM hidden http://www.cse.ucsc.edu/ Krogh et al. (1994)
Markov model research/comp/bio/sam.html Hughey and Krogh (1996)
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MSA (Lippman et al., 1989, Gupa et al., 1995): generalizes the 
dynamic programming ideas from pairwise alignment

three sequences:

A-BD-E-

ACB--E-

A--DCEE
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memory and computational complexity: exponentially with N

Gupa et al., 1995: pairwise alignments constrain the path and not the 
whole hypercube must be filled

MSA (Gupa): 
1. compute all pairwise alignment scores
2. predict a phylogenetic tree based on the pairwise scores
3. compute pairwise weights based on the tree
4. construct a temporary multiple alignment with score
5. Compute         a lower bound on              the score of the 

projection of the optimal multiple alignment to k and l
6. Compute space constraints similar to the Baum-Welch 
7. compute the optimal alignment on the constraint cube; Dijkstra's

shortest path algorithm for nonnegative edges; priority queue; 
non-negativity guarantees monotone increasing costs 

8. compare the weight  in the alignment with the maximal weight

Sk,l

St
Bk,l S[k, l]
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last step compares actual and maximal weight, if actual is larger then 
a better alignment may be possible, larger maximal weight means 
more computational costs

Carillo-Lipman bound:
S ≥ St
⇔

X
i,j

S[i, j] ≥ St

⇒
X

(i,j)6=(k,l)
Si,j + S[k, l] ≥ St

⇔ S[k, l] ≥ St −
X

(i,j)6=(k,l)
Si,j

⇔ S[k, l] ≥ St + Sk,l −
X
i,j

Si,j

⇔ S[k, l] ≥ Bk,l

Bk,l = St + Sk,l −
X
i,j

Si,j

S[k, l] ≤ Sk,l

St ≤ S
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MSA improved by the       algorithm (Lermen and Reinert, 1997)A∗
Algorithm 1 A∗-algorithm.

Input: graph (the graph), start (start node), goal (goal node), h(s) approx-
imation of the distance of node s to the goal, S (priority queue), N (list of
visited nodes)

Output: list P of the shortest path

BEGIN FUNCTION
insert (start,S)
while not isEmpty(S) do

current node = pop(S)
if current node in N then {no path from start to goal}
return “no path”

end if
insert (current node, N)
if current node = goal then

reconstruct shortest path(start,goal, graph)
else {find all nodes accessible from current node}
successors = expand(current node, graph)

save predecessor in graph(current node, graph)
for all s in successors do {save node which lead to s}
predecessor(s) = current node {compute and store costs}
cost(s) = cost(current node) + edge(graph,current node,s)
all cost(s) = cost(s) + h(s)
insert(s,S) {according to all cost(s)}

end for

end if
end while
return “no path found”

END FUNCTION

BEGIN SUBFUNCTION {shortest path P as list}
reconstruct shortest path (start, node, graph)
if node not= start then
push(node, P) {get predecessor}
predecessor = getPredecessor(node, graph)
reconstruct shortest path (start, predecessor, graph)

else
return P

end if
END SUBFUNCTION
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MSA: weighted sum of pairs and a linear gap penalty
Weight: difference pairwise and projected multiple alignment (larger 

difference means higher weight)

similar sequences:  pull the multiple alignment towards them which 
down-weights them

weights through the phylogenetic tree remove weights between distant 
sequences

Summing up all the weights:  overall divergence of the sequences
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Progressive methods are the most popular methods for multiple 
alignment:  ClustalW (Thomson,Higgins,Gibson, 1994) and TCoffee
(Notredame, Higgins, Heringa, 2000) 

ClustalW and TCoffee: 
perform pairwise alignment for each pair 
weight matrix:  one minus the ratio of perfect matches 
construct a phylogenetic tree (Neighbor-Joining method)
alignments between pairs sequences/alignments (start with closest 

distance); alignments are propagated through the tree

Initial alignments may be found through local alignment

phylogenetic tree supplies the weighting factors
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Disadavantage progressive methods:
local minima 
same scoring matrix for close and remote related sequences and 

same gap parameters

ClustalW

gap penalties context dependent: 
gaps in hydrophobic regions are more penalized
gaps which are within eight amino acids to other gaps are more 

penalized
gaps in regions of other gaps have lower gap opening penalty
gap penalties are amino acid dependent 
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scoring matrices are adapted:
scoring matrix from the PAM or the BLOSUM families 

sequences are weighted through a phylogenetic tree:
similar sequences lower weights (unbalanced data sets)
phylogentic tree weights with      as the weight of sequence i

adaptive phylogenetic tree: 
insufficient scores change the tree

initial gap penalty parameters: 
according to scoring matrix
similarity of the sequences (% identity)
length of the sequences (log of the shorter sequences is added)
difference of the length to avoid gaps in the shorter sequence

PN−1
i=1

PN
j=i+1 wi wj s(i, j)

wi

· (1 + | log(n/m)|)
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TCoffee (Tree based Consistency Objective Function For alignmEnt
Evaluation) often better alignment than clustalW

TCoffee work as follows:

libraries of pairwise aligments based on both global (clustalW) and 
local (FASTA) alignments (combination is more reliable) 

library weights are computed according to % identity

libraries are combined and extended; arithmetic mean of weights; 
extension by aligning two sequences through a third sequence

progressive alignment with a distance based on extended library
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Center Star Alignment

center sequence   : 

pairwise alignment costs 

new sequence is added to the set of aligned seuqences by
a pairwise alignment to the center sequence introducing new gaps

ī

C(i, j)

ī = argmin
i

X
j

C(i, j)

ī = 1
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Gusfield, 1993: cost is less then twice as of the optimal cost, if

scoring matrix s with

A B        A B
|  |    >    |  |

A C        C A 
Then                                                            fulfills above conditions

The second conditions is

C(i, i) = 0 and C(i, j) ≤ C(i, k) + C(k, j)

s(−,−) = 0

s(−, i) < 0

s(k, k) ≥ s(i, k) + s(k, j) − s(i, j)

C(i, j) = Si,i − 2 Si,j + Sj,j

Si,i − 2 Si,j + Sj,j ≤ Si,i − 2 Si,k + Sk,k +

Sk,k − 2 Sk,j + Sj,j

⇔ Si,j ≥ Si,k + Sk,j − Sk,k
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align i to k and j to k then align i, j, and k based on the pairwise
alignments, the alignment has a gap if a gap was in one alignment

S is score of the multiple alignment

Per construction:                         ,                     and

Componentwise holds:

Therefore

inequality to show follows from

S[i, k] = Si,k S[k, j] = Sk,j S[k, k] = Sk,k

s(i, j) ≥ s(i, k) + s(k, j) − s(k, k)

S[i, j] ≥ S[i, k] + S[k, j] − S[k, k] and

S[i, j] ≥ Si,k + Sk,j − Sk,k

Si,j ≥ S[i, j]
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idea of the proof of Gusfield center sequence alignment with cost C 
and the optimal cost C∗

C =
NX
i=1

NX
j=1,j 6=i

C(i, j) ≤

NX
i=1

NX
j=1,j 6=i

C(i, 1) + C(1, j) = 2 (N − 1)
NX
i=2

C(i, 1)

C∗ =
NX
i=1

NX
j=1,j 6=i

C(i, j) ≥

NX
i=1

NX
j=2

C(i, 1) = N

NX
i=2

C(i, 1)

⇒ C

C∗
≤ 2(N − 1)

N
≤ 2
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Motifs or  pattern can be superimposed for alignment landmarks

Profiles and blocks can be derived from multiple alignments
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SAGA (Sequence Alignment by Genetic Algorithm): genetic algorithm

MSASA (Multiple Sequence Alignment by Simulated
Annealing):  simulated annealing

Gibbs sampling 

HMMs (hidden Markov models) can be used to find motifs
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Divide-and-conquer Algorithms
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Profiles and Position Specific Scoring Matrices

Assumptions:
is i.i.d. in its elements according to

n the length of       is large
expected letter score for random sequences 
exist i for which

centered value: 

x px
x P

i px(i) s(i) < 0
s(i) > 0

Sn =
nX
i=1

s(i) S̃n = Sn − lnn
λ

P
³
S̃n > S

´
≈ 1− exp

¡
−K e−λ S

¢
≈ K e−λ SX

i

px(i) exp(λ s(i)) = 1
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: frequency of a letter      in a column of a multiple alignment

for sufficient high scoring segments

“Position Specific Scoring Matrices” (PSSMs) or profiles

new sequence: high scores mean similar alignment sequences

qi ai

lim
n→∞

qi = px(i) exp(λ s(i))

⇒ s(i) = ln

µ
qi
px(i)

¶
/λ
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