Bioinformatics 1

Biology, Sequences, Phylogenetics

Part 3

Sepp Hochreiter

Contents

4 Multiple Alignment
4.1 Motivation
4.2 Multiple Sequence Similarities and Scoring
4.2.1 Consensus and Entropy Score
4.2.2 Tree and Star Score
4.2.3 Weighted Sum of Pairs Score
4.3 Multiple Alignment Algorithms
4.3.1 Exact Methods
4.3.2 Progressive Algorithms
4.3.3 Other Multiple Alignment Algorithms
4.4 Profiles and Position Specific Scoring Matrices

Motivation

4 Multiple Alignment
4.1 Motivation
4.2 Scoring
4.2.1 Consensus
4.2.2 Tree and Star
4.2.3 Sum of Pairs
4.3 Algorithms
4.3.1 Exact Methods
4.3.2 Progressive
4.3.3 Other
4.4 Profiles / PSSMs

Compare more than two sequences: arranged sequences so that the amino acids for every the columns match as good as possible

Human
Chicken Yeast
E. coli Amoeba Archaeon consensus

Human
Chicken
Yeast
E. coli

Amoeba
Archaeon consensus

[^0]
Motivation

Motivation

4 Multiple Alignment
4.1 Motivation
4.2 Scoring
4.2.1 Consensus
4.2.2 Tree and Star
4.2.3 Sum of Pairs
4.3 Algorithms
4.3.1 Exact

Methods
4.3.2 Progressive
4.3.3 Other

Motivation

4 Multiple Alignment

4.1 Motivation

4.2 Scoring
4.2.1 Consensus
4.2.2 Tree and Star
4.2.3 Sum of Pairs
4.3 Algorithms
4.3.1 Exact Methods
4.3.2 Progressive
4.3.3 Other
4.4 Profiles / PSSMs

	240	
Human	Vacinilip.EVVD	AKQ.
Chicken	VGinnil P.EVV	AKH.
Yeast	VGCASIDAAK KT	SVSEKL
E. coli	VGcinilit P.EVD	SRN
Amoeba	V	VKAAEAAKQA
Archaeon	LASGVT AKDPEKA	WDLVSGI. .
consensus	ggaslk. f	

Motivation

Multiple sequence alignment is used to
\Rightarrow detect remote homologous regions
\rightarrow detect motifs (regular patterns) in protein families
\rightarrow detect conserved regions or positions (disulfide bonds)
\Rightarrow detect structural blocks like helices or sheets
\Leftrightarrow construct phylogenetic trees
\Leftrightarrow construct a profiles (search or averages)
\bullet sequence genomes by superimposing fragments (nucleotides)
\rightarrow cluster proteins according to similar regions

Scoring and Similarity

4 Multiple Alignment
4.1 Motivation
4.2 Scoring
4.2.1 Consensus
4.2.2 Tree and Star
4.2.3 Sum of Pairs
4.3 Algorithms
4.3.1 Exact Methods
4.3.2 Progressive
4.3.3 Other
4.4 Profiles / PSSMs

Similarity measures can be based on:
\bullet the similarity of all sequences to a reference sequence
\rightarrow the similarities between evolutionary adjacent sequences
\Rightarrow all pairwise similarities

Consensus and Entropy

4 Multiple Alignment
4.1 Motivation
4.2 Scoring
4.2.1 Consensus
4.2.2 Tree and Star
4.2.3 Sum of Pairs
4.3 Algorithms
4.3.1 Exact Methods
4.3.2 Progressive
4.3.3 Other
4.4 Profiles / PSSMs
consensus sequence: obtained if for each column in the alignment the most frequent amino acid is chosen more precisely: the amino acid or letter which has the highest score to all other amino acids or gaps in the column
consensus score: sum of the pairwise score between sequences and the consensus sequence
generalized by profiles instead of sequences
profile: relative frequency instead of most frequent

Consensus and Entropy

4 Multiple Alignment
4.1 Motivation
4.2 Scoring
4.2.1 Consensus
4.2.2 Tree and Star
4.2.3 Sum of Pairs
4.3 Algorithms
4.3.1 Exact Methods
4.3.2 Progressive
4.3.3 Other
4.4 Profiles / PSSMs
high entropy of the letter distribution: all letter are equally probable zero entropy: one letter in the column
good alignment correlates with a low accumulative entropy

$$
\text { entropy score: } \quad-\sum_{i} \sum_{a} f_{i, a} \log f_{i, a}
$$

$f_{i, a}$: relative frequency of letter a in column i

Tree and Star Score

4 Multiple Alignment
4.1 Motivation
4.2 Scoring
4.2.1 Consensus
4.2.2 Tree and Star
4.2.3 Sum of Pairs
4.3 Algorithms
4.3.1 Exact Methods
4.3.2 Progressive
4.3.3 Other
4.4 Profiles / PSSMs

To count the number of mutations only those pairs should be compared which are evolutionary adjacent
E
E
E
E
D
D
D
D
evolutionary adjacent sequences are represented through a phylogenetic tree, which must be constructed

Tree and Star Score

4 Multiple Alignment
4.1 Motivation
4.2 Scoring
4.2.1 Consensus
4.2.2 Tree and Star
4.2.3 Sum of Pairs
4.3 Algorithms
4.3.1 Exact Methods
4.3.2 Progressive
4.3.3 Other
4.4 Profiles / PSSMs

NNN
NNN
NNN
NNC
NCC

phylogenetic star: one sequence is considered as ancestor

Weighted Sum of Pairs

4 Multiple Alignment
4.1 Motivation
4.2 Scoring
4.2.1 Consensus
4.2.2 Tree and Star
4.2.3 Sum of Pairs
4.3 Algorithms
4.3.1 Exact Methods
4.3.2 Progressive
4.3.3 Other
4.4 Profiles / PSSMs
weighted sum of pairs: all pairwise comparisons

alignment length: L number sequences: N

$$
\sum_{i=1}^{L} \sum_{l=1}^{N-1} \sum_{j=l+1}^{N} w_{l, j} s\left(x_{i, l}, x_{i, j}\right)
$$

weights: reduce the influence of closely related sequences

Weighted Sum of Pairs

4 Multiple Alignment
4.1 Motivation
4.2 Scoring
4.2.1 Consensus
4.2.2 Tree and Star
4.2.3 Sum of Pairs
4.3 Algorithms
4.3.1 Exact Methods
4.3.2 Progressive
4.3.3 Other
4.4 Profiles / PSSMs

Disadvantage: relatively decreases with respect of N for conservative regions; but larger N means more conservative

$$
\begin{aligned}
& S_{\text {old }}=\frac{N(N-1)}{2} s(C, C) \quad \text { N Cs vs. (N-1) Cs and D } \\
& S_{\text {new }}=\frac{N(N-1)}{2} s(C, C)-(N-1) s(C, C)+(N-1) s(C, D) \\
& \frac{S_{\text {old }}-S_{\text {new }}}{S_{\text {old }}}=\frac{2(N-1) s(C, C)-2(N-1) s(C, D)}{N(N-1) s(C, C)}= \\
& \frac{2}{N}\left(1-\frac{s(C, D)}{s(C, C)}\right) \quad \quad \text { for large N small difference }
\end{aligned}
$$

$$
s(C, D)<s(C, C)
$$

reasonable scoring matrices: $\left(1-\frac{s(C, D)}{s(C, C)}\right)>0$

Meighter sunn of Deirs

4 Multiple Alignment
4.1 Motivation
4.2 Scoring
4.2.1 Consensus
4.2.2 Tree and Star
4.2.3 Sum of Pairs
4.3 Algorithms
4.3.1 Exact Methods
4.3.2 Progressive
4.3.3 Other
4.4 Profiles / PSSMs
contra-intuitive: a new letter in a column of 100 equal letters is more surprising as a new letter in a column of 3 equal letters

Information gain: $-\log f_{i, a}=\log (N)$

Gaps: as for pairwise algorithms, linear gaps more efficient

Multiple Alignment Algorithms

4 Multiple Alignment
4.1 Motivation
4.2 Scoring
4.2.1 Consensus
4.2.2 Tree and Star
4.2.3 Sum of Pairs
4.3 Algorithms
4.3.1 Exact Methods
4.3.2 Progressive
4.3.3 Other
4.4 Profiles / PSSMs
multiple alignment optimization problem: NP-hard
Exact solution: only 10 to 15 sequences
algorithm classes:

- global and progressive methods: MSA, COSA, GSA, clustalW, TCoffee
\rightarrow iterative and search algorithms: DIALIGN, MultAlin, SAGA, PRRP, Realigner
\rightarrow local methods (motif/profile): eMotif, Blocks, Dialign, Prosite, HMM, Gibbs sampling
\rightarrow divide-and-conquer algorithms: DCA, OMA

Multiple Alignment Algorithms

4 Multiple Alignment
4.1 Motivation
4.2 Scoring
4.2.1 Consensus
4.2.2 Tree and Star
4.2.3 Sum of Pairs
4.3 Algorithms
4.3.1 Exact Methods
4.3.2 Progressive
4.3.3 Other
4.4 Profiles / PSSMs

Global progressive alignments methods

CLUSTALW	ftp://ftp.ebi.ac.uk/pub/software	Thompson et al. (1994/97) Higgins et al. (1996)
MSA	http://www.psc.edu/ http://www.ibc.wustl.edu/ibc/msa.html ftp://fastlink.nih.gov/pub/msa	Lipman et al. (1989) Gupta et al. (1995)
PRALINE	http://mathbio.nimr.mrc.ac.uk/ ~jhering/praline	Heringa (1999)
Iterative and search algorithms		
DIALIGN segment alignment	http://www.gsf.de/biodv/dialign.html	Morgenstern et al. (1996)
MultAlin	http://protein.toulouse.inra.fr/multalin.html	Corpet (1988)
PRRP progressive global alignment	$\begin{gathered} \text { ftp://ftp.genome.ad.jp/ } \\ \text { pub/genome/saitamacc } \\ \hline \end{gathered}$	Gotoh (1996)
SAGA genetic algorithm	http://igs-server.cnrs-mrs.fr/~cnotred/ Projects_home_page/saga_home_page.html	Notredame and Higgins (1996)
Local alignments / motif / profile		
Aligned Segment Statistical Eval. Tool (Asset)	ftp://ncbi.nlm.nih.gov/pub/neuwald/asset	Neuwald and Green (1994)
BLOCKS	http://blocks.fhcrc.org/blocks/	Henikoff and Henikoff (1991, 1992)
eMOTIF	http://dna.Stanford.EDU/emotif/	Nevill-Manning et al. (1998)
GIBBS (Gibbs sampler)	ftp://ncbi.nlm.nih.gov/ pub/neuwald/gibbs9_95/	$\begin{gathered} \text { Lawrence et al. (1993) } \\ \text { Liu et al. (1995) } \\ \text { Neuwald et al. (1995) } \\ \hline \end{gathered}$
HMMER hidden Markov model	http://hmmer.wustl.edu/	Eddy (1998)
MACAW	ftp://ncbi.nlm.nih.gov/pub/macaw	Schuler et al. (1991)
MEME (EM method)	http://meme.sdsc.edu/meme/website/	Bailey and Elkan (1995) Grundy et al. $(1996,1997)$ Bailey and Gribskov (1998)
$\begin{gathered} \text { Profile } \\ \text { (UCSD) } \end{gathered}$	http://www.sdsc.edu/projects/profile/	Gribskov and Veretnik (1996)
SAM hidden Markov model	http://www.cse.ucsc.edu/ research/comp/bio/sam.html	Krogh et al. (1994) Hughey and Krogh (1996)

Exact Methods

4 Multiple Alignment
4.1 Motivation
4.2 Scoring
4.2.1 Consensus
4.2.2 Tree and Star
4.2.3 Sum of Pairs
4.3 Algorithms
4.3.1 Exact Methods
4.3.2 Progressive
4.3.3 Other
4.4 Profiles / PSSMs

MSA (Lippman et al., 1989, Gupa et al., 1995): generalizes the dynamic programming ideas from pairwise alignment

- -E
EEE
--C
$\mathrm{D}-\mathrm{D}$
BB-
-C -
AAA

Exact Methods

4 Multiple Alignment
4.1 Motivation
4.2 Scoring
4.2.1 Consensus
4.2.2 Tree and Star
4.2.3 Sum of Pairs
4.3 Algorithms
4.3.1 Exact Methods
4.3.2 Progressive
4.3.3 Other
4.4 Profiles / PSSMs
memory and computational complexity: exponentially with N
Gupa et al., 1995: pairwise alignments constrain the path and not the whole hypercube must be filled

MSA (Gupa):

1. compute all pairwise alignment scores $S_{k, l}$
2. predict a phylogenetic tree based on the pairwise scores
3. compute pairwise weights based on the tree
4. construct a temporary multiple alignment with score S_{t}
5. Compute $B_{k, l}$ a lower bound on $S[k, l]$ the score of the projection of the optimal multiple alignment to k and I
6. Compute space constraints similar to the Baum-Welch
7. compute the optimal alignment on the constraint cube; Dijkstra's shortest path algorithm for nonnegative edges; priority queue; non-negativity guarantees monotone increasing costs
8. compare the weight in the alignment with the maximal weight

Exact Methods

4 Multiple Alignment
4.1 Motivation
4.2 Scoring
4.2.1 Consensus
4.2.2 Tree and Star
4.2.3 Sum of Pairs
4.3 Algorithms
4.3.1 Exact Methods
4.3.2 Progressive
4.3.3 Other
4.4 Profiles / PSSMs
last step compares actual and maximal weight, if actual is larger then a better alignment may be possible, larger maximal weight means more computational costs

Carillo-Lipman bound:

$$
S \geq S_{t}
$$

$$
B_{k, l}=S_{t}+S_{k, l}-\sum_{i, j} S_{i, j}
$$

$$
\Leftrightarrow \quad \sum_{i, j} S[i, j] \geq S_{t}
$$

$$
\Rightarrow \quad \sum_{(i, j) \neq(k, l)} S_{i, j}+S[k, l] \geq S_{t}
$$

$$
S[k, l] \leq S_{k, l}
$$

$$
\Leftrightarrow \quad S[k, l] \geq S_{t}-\sum_{(i, j) \neq(k, l)} S_{i, j}
$$

$$
\Leftrightarrow \quad S[k, l] \geq S_{t}+S_{k, l}-\sum_{i, j} S_{i, j}
$$

$$
\Leftrightarrow \quad S[k, l] \geq B_{k, l}
$$

Exact Methods

4 Multiple Alignment

4.1 Motivation

4.2 Scoring
4.2.1 Consensus

4.2.2 Tree and Star

4.2.3 Sum of Pairs
4.3 Algorithms

4.3.1 Exact Methods

4.3.2 Progressive

4.3.3 Other

4.4 Profiles / PSSMs

MSA improved by the \mathcal{A}^{*} algorithm (Lermen and Reinert, 1997)

Algorithm $1 A^{*}$-algorithm.
Input: graph (the graph), start (start node), goal (goal node), h(s) approximation of the distance of node s to the goal, S (priority queue), N (list of visited nodes)
Output: list P of the shortest path

BEGIN FUNCTION

insert (start,S)
while not isEmpty (S) do
current_node $=\operatorname{pop}(S)$
if current_node in N then $\{$ no path from start to goal\}
return "no path"

end if

insert (current_node, N)
if current_node $=$ goal then reconstruct_shortest_path(start,goal, graph)

BEGIN SUBFUNCTION \{shortest path P as list\} reconstruct_shortest_path (start, node, graph)
if node not= start then
push(node, P) \{get predecessor\}
predecessor $=$ getPredecessor(node, graph)
reconstruct_shortest_path (start, predecessor, graph) else
return P
end if
END SUBFUNCTION
else \{find all nodes accessible from current node\}
successors $=$ expand(current_node, graph $)$
save_predecessor_in_graph(current_node, graph)
for all s in successors do \{save node which lead to s \}
predecessor $(\mathrm{s})=$ current_node $\{$ compute and store costs $\}$
$\operatorname{cost}(\mathrm{s})=\operatorname{cost}($ current_node $)+$ edge(graph,current_node,s)
all_cost $(\mathrm{s})=\operatorname{cost}(\mathrm{s})+\mathrm{h}(\mathrm{s})$
insert(s,S) \{according to all_cost(s)\}

end for

end if
end while
return "no path found"
END FUNCTION

Exact Methods

MSA: weighted sum of pairs and a linear gap penalty Weight: difference pairwise and projected multiple alignment (larger difference means higher weight)
similar sequences: pull the multiple alignment towards them which down-weights them
weights through the phylogenetic tree remove weights between distant sequences

Summing up all the weights: overall divergence of the sequences

Progressive Methods

4 Multiple Alignment
4.1 Motivation
4.2 Scoring
4.2.1 Consensus
4.2.2 Tree and Star
4.2.3 Sum of Pairs
4.3 Algorithms
4.3.1 Exact Methods
4.3.2 Progressive
4.3.3 Other
4.4 Profiles / PSSMs

Progressive methods are the most popular methods for multiple alignment: ClustalW (Thomson,Higgins,Gibson, 1994) and TCoffee (Notredame, Higgins, Heringa, 2000)

ClustalW and TCoffee:
\rightarrow perform pairwise alignment for each pair

- weight matrix: one minus the ratio of perfect matches
\bullet construct a phylogenetic tree (Neighbor-Joining method)
- alignments between pairs sequences/alignments (start with closest distance); alignments are propagated through the tree

Initial alignments may be found through local alignment
phylogenetic tree supplies the weighting factors

Progressive Methods

4 Multiple Alignment
4.1 Motivation
4.2 Scoring
4.2.1 Consensus
4.2.2 Tree and Star
4.2.3 Sum of Pairs
4.3 Algorithms
4.3.1 Exact Methods
4.3.2 Progressive
4.3.3 Other
4.4 Profiles / PSSMs

Disadavantage progressive methods:
\Leftrightarrow local minima
\rightarrow same scoring matrix for close and remote related sequences and same gap parameters

ClustalW

gap penalties context dependent:
\rightarrow gaps in hydrophobic regions are more penalized
\Leftrightarrow gaps which are within eight amino acids to other gaps are more penalized
\Rightarrow gaps in regions of other gaps have lower gap opening penalty
\rightarrow gap penalties are amino acid dependent

4 Multiple Alignment 4.1 Motivation
4.2 Scoring
4.2.1 Consensus
4.2.2 Tree and Star
4.2.3 Sum of Pairs
4.3 Algorithms
4.3.1 Exact Methods
4.3.2 Progressive
4.3.3 Other
4.4 Profiles / PSSMs

Progressive Methods

scoring matrices are adapted:
\rightarrow scoring matrix from the PAM or the BLOSUM families
sequences are weighted through a phylogenetic tree:

- similar sequences lower weights (unbalanced data sets)
\Rightarrow phylogentic tree weights with w_{i} as the weight of sequence i

$$
\sum_{i=1}^{N-1} \sum_{j=i+1}^{N} w_{i} w_{j} s(i, j)
$$

adaptive phylogenetic tree:
\rightarrow insufficient scores change the tree
initial gap penalty parameters:

- according to scoring matrix
- similarity of the sequences (\% identity)
\rightarrow length of the sequences (log of the shorter sequences is added)
\rightarrow difference of the length to avoid gaps in the shorter sequence
$\cdot(1+|\log (n / m)|)$

Progressive Methods

4 Multiple Alignment
4.1 Motivation
4.2 Scoring
4.2.1 Consensus
4.2.2 Tree and Star
4.2.3 Sum of Pairs
4.3 Algorithms
4.3.1 Exact Methods
4.3.2 Progressive
4.3.3 Other
4.4 Profiles / PSSMs

TCoffee (Tree based Consistency Objective Function For alignmEnt Evaluation) often better alignment than clustalW

TCoffee work as follows:
\bullet libraries of pairwise aligments based on both global (clustalW) and local (FASTA) alignments (combination is more reliable)
\rightarrow library weights are computed according to \% identity
θ libraries are combined and extended; arithmetic mean of weights; extension by aligning two sequences through a third sequence

- progressive alignment with a distance based on extended library

Other Methods

4 Multiple Alignment
4.1 Motivation
4.2 Scoring
4.2.1 Consensus
4.2.2 Tree and Star
4.2.3 Sum of Pairs
4.3 Algorithms
4.3.1 Exact Methods
4.3.2 Progressive
4.3.3 Other
4.4 Profiles / PSSMs

Center Star Alignment

center sequence $\bar{i}: \quad \bar{i}=\arg \min _{i} \sum_{j} C(i, j)$
pairwise alignment costs $C(i, j)$
$\bar{i}=1$
new sequence is added to the set of aligned seuqences by a pairwise alignment to the center sequence introducing new gaps

Other Methods

4 Multiple Alignment
4.1 Motivation
4.2 Scoring
4.2.1 Consensus
4.2.2 Tree and Star
4.2.3 Sum of Pairs
4.3 Algorithms
4.3.1 Exact Methods
4.3.2 Progressive
4.3.3 Other
4.4 Profiles / PSSMs

Gusfield, 1993: cost is less then twice as of the optimal cost, if

$$
C(i, i)=0 \quad \text { and } \quad C(i, j) \leq C(i, k)+C(k, j)
$$

scoring matrix s with
$s(-,-)=0$
$s(-, i)<0$
$s(k, k) \geq s(i, k)+s(k, j)-s(i, j)$
Then $C(i, j)=S_{i, i}-2 S_{i, j}+S_{j, j}$ fulfills above conditions
The second conditions is

$$
\begin{aligned}
& S_{i, i}-2 S_{i, j}+S_{j, j} \leq S_{i, i}-2 S_{i, k}+S_{k, k}+ \\
& S_{k, k}-2 S_{k, j}+S_{j, j} \\
& \Leftrightarrow S_{i, j} \geq S_{i, k}+S_{k, j}-S_{k, k}
\end{aligned}
$$

Other Methods

4 Multiple Alignment 4.1 Motivation 4.2 Scoring
4.2.1 Consensus
4.2.2 Tree and Star
4.2.3 Sum of Pairs
4.3 Algorithms
4.3.1 Exact Methods
4.3.2 Progressive
4.3.3 Other
4.4 Profiles / PSSMs
align i to k and j to k then align i, j, and k based on the pairwise alignments, the alignment has a gap if a gap was in one alignment
S is score of the multiple alignment
Per construction: $S[i, k]=S_{i, k}, S[k, j]=S_{k, j}$ and $S[k, k]=S_{k, k}$

Componentwise holds: $s(i, j) \geq s(i, k)+s(k, j)-s(k, k)$
Therefore $S[i, j] \geq S[i, k]+S[k, j]-S[k, k]$ and

$$
S[i, j] \geq S_{i, k}+S_{k, j}-S_{k, k}
$$

inequality to show follows from $S_{i, j} \geq S[i, j]$

Other Methods

4 Multiple Alignment
4.1 Motivation
4.2 Scoring
4.2.1 Consensus
4.2.2 Tree and Star
4.2.3 Sum of Pairs
4.3 Algorithms
4.3.1 Exact Methods
4.3.2 Progressive
4.3.3 Other
4.4 Profiles / PSSMs
idea of the proof of Gusfield center sequence alignment with cost C and the optimal cost C^{*}

$$
\begin{aligned}
& C=\sum_{i=1}^{N} \sum_{j=1, j \neq i}^{N} C(i, j) \leq \\
& \sum_{i=1}^{N} \sum_{j=1, j \neq i}^{N} C(i, 1)+C(1, j)=2(N-1) \sum_{i=2}^{N} C(i, 1) \\
& C^{*}=\sum_{i=1}^{N} \sum_{j=1, j \neq i}^{N} C(i, j) \geq \\
& \sum_{i=1}^{N} \sum_{j=2}^{N} C(i, 1)=N \sum_{i=2}^{N} C(i, 1) \\
& \Rightarrow \frac{C}{C^{*}} \leq \frac{2(N-1)}{N} \leq 2
\end{aligned}
$$

Other Methods

4 Multiple Alignment
4.1 Motivation
4.2 Scoring
4.2.1 Consensus
4.2.2 Tree and Star
4.2.3 Sum of Pairs
4.3 Algorithms
4.3.1 Exact Methods
4.3.2 Progressive
4.3.3 Other
4.4 Profiles / PSSMs

Motifs or pattern can be superimposed for alignment landmarks

Profiles and blocks can be derived from multiple alignments

Other Methods

4 Multiple Alignment
4.1 Motivation
4.2 Scoring
4.2.1 Consensus
4.2.2 Tree and Star
4.2.3 Sum of Pairs
4.3 Algorithms
4.3.1 Exact Methods
4.3.2 Progressive
4.3.3 Other
4.4 Profiles / PSSMs

SAGA (Sequence Alignment by Genetic Algorithm): genetic algorithm

MSASA (Multiple Sequence Alignment by Simulated Annealing): simulated annealing

Gibbs sampling

HMMs (hidden Markov models) can be used to find motifs

Other Methods

4 Multiple Alignment
4.1 Motivation
4.2 Scoring
4.2.1 Consensus
4.2.2 Tree and Star
4.2.3 Sum of Pairs
4.3 Algorithms
4.3.1 Exact Methods
4.3.2 Progressive
4.3.3 Other
4.4 Profiles / PSSMs

Divide-and-conquer Algorithms

Bioinformatics 1: Biology, Sequences, Phylogenetics

Profiles and PSSMs

4 Multiple Alignment
4.1 Motivation
4.2 Scoring
4.2.1 Consensus
4.2.2 Tree and Star
4.2.3 Sum of Pairs
4.3 Algorithms
4.3.1 Exact Methods
4.3.2 Progressive
4.3.3 Other
4.4 Profiles / PSSMs

Profiles and Position Specific Scoring Matrices

Assumptions:

$\Leftrightarrow \boldsymbol{x}$ is i.i.d. in its elements according to p_{x}
$\Leftrightarrow n$ the length of \boldsymbol{x} is large
\Leftrightarrow expected letter score for random sequences $\sum_{i} p_{x}(i) s(i)<0$
\Leftrightarrow exist i for which $s(i)>0$

$$
\begin{aligned}
& S_{n}=\sum_{i=1}^{n} s(i) \quad \text { centered value: } \tilde{S}_{n}=S_{n}-\frac{\ln n}{\lambda} \\
& \quad P\left(\tilde{S}_{n}>S\right) \approx 1-\exp \left(-K e^{-\lambda S}\right) \approx K e^{-\lambda S} \\
& \quad \sum_{i} p_{x}(i) \exp (\lambda s(i))=1
\end{aligned}
$$

Profiles and PSSMs

4 Multiple Alignment
4.1 Motivation
4.2 Scoring
4.2.1 Consensus
4.2.2 Tree and Star
4.2.3 Sum of Pairs
4.3 Algorithms
4.3.1 Exact Methods
4.3.2 Progressive
4.3.3 Other
4.4 Profiles / PSSMs
q_{i} : frequency of a letter a_{i} in a column of a multiple alignment for sufficient high scoring segments

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} q_{i}=p_{x}(i) \exp (\lambda s(i)) \\
& \Rightarrow s(i)=\ln \left(\frac{q_{i}}{p_{x}(i)}\right) / \lambda
\end{aligned}
$$

"Position Specific Scoring Matrices" (PSSMs) or profiles
new sequence: high scores mean similar alignment sequences

[^0]: Bioinformatics 1: Biology, Sequences, Phylogenetics

