Bioinformatics 1 Biology, Sequences, Phylogenetics Part 3

Sepp Hochreiter

Contents

- 4 Multiple Alignment
- 4.1 Motivation
- 4.2 Multiple Sequence Similarities and Scoring
- 4.2.1 Consensus and Entropy Score
- 4.2.2 Tree and Star Score
- 4.2.3 Weighted Sum of Pairs Score
- 4.3 Multiple Alignment Algorithms
- 4.3.1 Exact Methods
- 4.3.2 Progressive Algorithms
- 4.3.3 Other Multiple Alignment Algorithms
- 4.4 Profiles and Position Specific Scoring Matrices

	Motivation					
4 Multiple Alignment		nore than two s for every th		•		
4.1 Motivation		, -	10	20	30	
4.2 Scoring	Human	APSKEF		GR <mark>KQSL</mark> GEL	IGTNA	. <mark>Akv</mark> padt
4.2.1 Consensus	Chicken Yeast	<mark>K</mark> K∣F∖	/GG <mark>NWKM</mark> N	CD <mark>KKSLG</mark> EL CTLASIETE	<mark>I</mark> HT <mark>I</mark> N <mark>G</mark>	. <mark>∧</mark> k <mark>l</mark> sadt
4.2.2 Tree and Star	E. coli			CS <mark>KQSI</mark> KEI		
4.2.3 Sum of Pairs	Amoeba Archaeon			C <mark>sr</mark> hm <mark>v</mark> hill Ieatgkrai		
4.3 Algorithms	consensus			g.k.si.e <mark>l</mark>		
4.3.1 Exact Methods						
4.3.2 Progressive		40	50		60	70
4.3.3 Other	Human Chicken			QK <mark>L</mark> D QK <mark>L</mark> D		
4.4 Profiles / PSSMs	Yeast			QI <mark>L</mark> AGEANG		
	E. coli			SL <mark>V</mark> KK		
	Amoeba	A <mark>VAIA</mark> PPE	EM <mark>y I d</mark> maki	RE <mark>A</mark> EG	SHTMLGAC	NVNLNLS <mark>G</mark>
	Archaeon	GVTIVVAF	QLVDLRM	IAES	VEIPVFAL	HIDPIKPG
	consensus		-	1		

Motivation

		80	90	100	110
4 Multiple Alignment	numan	AE <mark>TGEISPG</mark> MIK	D <mark>C</mark> GA <mark>TW</mark> V <mark>V</mark> LG	HSEKR <mark>H</mark> VFGES	SDE <mark>lt<mark>g</mark>k</mark>
4.1 Motivation	Chicken	AFTGE <mark>IS</mark> PAMIK			
4.2 Scoring	Yeast E. coli	A FTGENSVDQIK		HSEKR <mark>QI</mark> FHES HSEKRSYFHFI	SNEQ <mark>VA</mark> EK DDKF <mark>IAD</mark> K
4.2.1 Consensus	Amoeba Archaeon	AF <mark>TGET</mark> S <mark>AAML</mark> K Shtghvlpeavk	DIGA <mark>Q</mark> YIIIG EAGAVGTLEN		SDE <mark>lt<mark>a</mark>kk L<mark>eaatrr</mark>.</mark>
4.2.2 Tree and Star	consensus	afTGevs.amik			
4.2.3 Sum of Pairs					
4.3 Algorithms		120	130	140	150
4.3.1 Exact Methods	Human Chicken			EAGITEKVVFE EagitekvvFe	EOTKVIAD
4.3.2 Progressive	Yeast	VKV <mark>∧</mark> IDA <mark>G</mark> I.KVI.	A <mark>cige</mark> tea <mark>q</mark> r	IA <mark>N</mark> QTEEVV A A	AQ <mark>LKAI</mark> NN
4.3.3 Other	E. coli Amoeba	TKF <mark>AL</mark> GQ <mark>GV</mark> GVI FAVLKEQ <mark>GI</mark> TPV			R <mark>QLNAV</mark> LE RQIDAVLK
4.4 Profiles / PSSMs	Archaeon			····NNPA∨SA	
	consensus	alGl.vi			

Motivation

			160	170	180	190
4 Multiple Alignment	Human	N <mark>V</mark> KI	WSKVVLA Y	EPVWAIGTGK <mark>T</mark>	ΑΤΡ <mark>Ο</mark> ΟΛΟΕν	IIEK <mark>L</mark> KĠ
4.1 Motivation	Chicken			EPVWA <mark>IGTG</mark> K <mark>T</mark>		
	Yeast			EPVWAIGTG <mark>K</mark> I		
4.2 Scoring	E. coli			EPV.AIGTG LA		
4.2.1 Consensus	Amoeba			EPVWAIGTGK <mark>S</mark>		
4.0.0 Tree and Star	Archaeon			EPPEL <mark>IGTG</mark> IF		
4.2.2 Tree and Star	consensus	• v • • •	.wvv⊥Ay	EPvwaIGTGk t	atp.qaqev	nir.
4.2.3 Sum of Pairs			200	210	220	230
	Human	WLKSN	Sdavaqst	ĸ <mark>ŦŦĠĠŚVŦĠA</mark>	TCKELASQP	D <mark>V</mark> DGFL
4.2.3 Sum of Pairs 4.3 Algorithms	Chicken	WLKTH	, SDAV∧QST SDAV∧QST	RH <mark>IYG</mark> GSVTGA RH <mark>IYG</mark> GSVTGG	TCKELASQP NCKELASQH	D <mark>V</mark> DGFL D <mark>V</mark> DGFL
4.3 Algorithms 4.3.1 Exact	Chicken Yeast	WLKTH WMTEN	/SDAVAQST /SDAVAQST SKEVAEAT	KH <mark>IYG</mark> GSVTGA KHIYGGSVTGG KHQY <mark>G</mark> GSVNPA	TCKELASQP NCKELASQH NCNELAKKA	D <mark>V</mark> DGFL D <mark>V</mark> DGFL D <mark>I</mark> DGFL
4.3 Algorithms	Chicken	WLKTH WMTEN FL <mark>AS</mark> KI	/SDAVAQST /SDAVAQST SKEVAEAT GDKAASEL	KI <mark>IYG</mark> GSVTGA KIIYGGSVTGG KI <mark>QYG</mark> GSVNPA KI <mark>Q</mark> Y <mark>G</mark> GSVNPA	TCKELASQP CKELASQH NCNELAKKA AVTFKDKA	D <mark>V</mark> DGFL DVDGFL DIDGFL D <mark>V</mark> DGFL
4.3 Algorithms 4.3.1 Exact Methods	Chicken Yeast E. coli Amoeba	WLKTH WMTEN FLASK H <mark>I</mark> AK.	/SDAVAQST /SDAVAQST SKEVAEAT GDKAASEL /DANIAEQV	KIIIYGGSVTGA KIIIYGGSVTGG KIQYGGSVNPA KILYGGS <mark>ANGS</mark> IIQY <mark>GGSV</mark> NAS	TCKELASQP CKELASQH CKELASQH CNELAKKA NAVTFKDKA AAFLFAQP	DVDGFL DVDGFL DIDGFL DVDGFL D <mark>V</mark> DGFL D <mark>I</mark> DG <mark>A</mark> L
4.3 Algorithms 4.3.1 Exact	Chicken Yeast E. coli	WLKTH WMTEN FLASK HIAK. TVE	/SDAVAQST /SDAVAQST SKEVAEAT GDKAASEL /DANIAEQV VKKVNPEV	KI <mark>IYG</mark> GSVTGA KIIYGGSVTGG KI <mark>QYG</mark> GSVNPA KI <mark>Q</mark> Y <mark>G</mark> GSVNPA	TCKELASQP CKELASQH CNELAKKA NAVTFKDKA NAVTFKDKA EDVKKAIEL	DVDGFL DVDGFL DIDGFL DVDGFL D <mark>VDGFL</mark> G VVGV L

4.4 Profiles / PSSMs

Motivation

4 Multiple Alignment

4.1 Motivation

4.2 Scoring

4.2.1 Consensus

4.2.2 Tree and Star

4.2.3 Sum of Pairs

4.3 Algorithms

4.3.1 Exact Methods

4.3.2 Progressive

4.3.3 Other

4.4 Profiles / PSSMs

	240						
Human	VGGASI	.KΡ.	E F 1	VD	$\pm N$	AKQ.	
Chicken	VGGASI	.Κ <mark>Ρ.</mark>	E F 1	VD	ΤN	AKH.	
Yeast	VCCASI						
E. coli	VGGASI	.ΚP.	E F 1	VD	$\pm N$	SRN.	
Amoeba	VGGASI	.KAD	AF	A V I	VK.	AAEA	AKQI
Archaeon	LA <mark>sg</mark> vi	[KAK	DP]	EKA	W:	DLVS	SGI.
consensus	vggas]	<u>k</u>	əf	i	in	• • • •	

	Motivation
4 Multiple Alignment	Multiple sequence alignment is used to
4.1 Motivation	➡ detect remote homologous regions
4.2 Scoring	➡ detect motifs (regular patterns) in protein families
4.2.1 Consensus	detect motifs (regular patterns) in protein families
4.2.2 Tree and Star	detect conserved regions or positions (disulfide bonds)
4.2.3 Sum of Pairs	detect structural blocks like helices or sheets
4.3 Algorithms	
4.3.1 Exact Methods	
4.3.2 Progressive	construct a profiles (search or averages)
4.3.3 Other	concluct à promoc (couron d'avorageo)
4.4 Profiles / PSSMs	➡ sequence genomes by superimposing fragments (nucleotides)
	cluster proteins according to similar regions

Scoring and Similarity

- 4 Multiple Alignment
- 4.1 Motivation
- 4.2 Scoring
- 4.2.1 Consensus
- 4.2.2 Tree and Star
- 4.2.3 Sum of Pairs
- 4.3 Algorithms
- 4.3.1 Exact Methods
- 4.3.2 Progressive
- 4.3.3 Other
- 4.4 Profiles / PSSMs

Similarity measures can be based on:

- → the similarity of all sequences to a reference sequence
- → the similarities between evolutionary adjacent sequences
- → all pairwise similarities

Consensus and Entropy

4 Multiple Alignment	consensus sequence: obtained if for each column in the alignment the
4.1 Motivation	most frequent amino acid is chosen
4.2 Scoring	more precisely: the amino acid or letter which has the highest score to
4.2.1 Consensus	all other amino acids or gaps in the column
4.2.2 Tree and Star	consensus score: sum of the pairwise score between sequences and
4.2.3 Sum of Pairs	the consensus sequence
4.3 Algorithms	
4.3.1 Exact Methods	generalized by profiles instead of sequences
4.3.2 Progressive	
4.3.3 Other	profile: relative frequency instead of most frequent
4.4 Profiles / PSSMs	

Consensus and Entropy

4 Multiple Alignment

4.1 Motivation

4.2 Scoring

4.2.1 Consensus

4.2.2 Tree and Star

4.2.3 Sum of Pairs

4.3 Algorithms

4.3.1 Exact Methods

4.3.2 Progressive

4.3.3 Other

4.4 Profiles / PSSMs

high entropy of the letter distribution: all letter are equally probable zero entropy: one letter in the column

good alignment correlates with a low accumulative entropy

entropy score:
$$-\sum_{i}\sum_{a}f_{i,a} \log f_{i,a}$$

 $f_{i,a}$: relative frequency of letter a in column i

Tree and Star Score

4 Multiple Alignment	Т
4.1 Motivation	W
4.2 Scoring	
4.2.1 Consensus	E F
4.2.2 Tree and Star	E
4.2.3 Sum of Pairs	E
4.3 Algorithms	
4.3.1 Exact Methods	D
4.3.2 Progressive	D
4.3.3 Other	e
4.4 Profiles / PSSMs	D

o count the number of mutations only those pairs should be compared /hich are evolutionary adjacent

evolutionary adjacent sequences are represented through a phylogenetic tree, which must be constructed

Tree and Star Score

4 Multiple Alignment

NNN

NNN

NNN

NNC

NCC

- 4.1 Motivation
- 4.2 Scoring
- 4.2.1 Consensus
- 4.2.2 Tree and Star
- 4.2.3 Sum of Pairs
- 4.3 Algorithms
- 4.3.1 Exact Methods
- 4.3.2 Progressive
- 4.3.3 Other
- 4.4 Profiles / PSSMs

phylogenetic star: one sequence is considered as ancestor

Weighted Sum of Pairs

4 Multiple Alignment

4.1 Motivation

4.2 Scoring

4.2.1 Consensus

4.2.2 Tree and Star

4.2.3 Sum of Pairs

4.3 Algorithms

4.3.1 Exact Methods

4.3.2 Progressive

4.3.3 Other

4.4 Profiles / PSSMs

weighted sum of pairs: all pairwise comparisons

alignment length: L number sequences: N $\sum_{i=1}^{L} \sum_{l=1}^{N-1} \sum_{j=l+1}^{N} w_{l,j} \ s\left(x_{i,l}, x_{i,j}\right)$

weights: reduce the influence of closely related sequences

Weighted Sum of Pairs

4 Multiple Alignment

4.1 Motivation

4.2 Scoring

4.2.1 Consensus

4.2.2 Tree and Star

S

4.2.3 Sum of Pairs

4.3 Algorithms

4.3.1 Exact Methods

4.3.2 Progressive

4.3.3 Other

4.4 Profiles / PSSMs

Disadvantage: relatively decreases with respect of N for conservative regions; but larger N means more conservative

$$\begin{split} S_{\text{old}} &= \frac{N \ (N-1)}{2} s(C,C) & \text{N Cs vs. (N-1) Cs and D} \\ S_{\text{new}} &= \frac{N \ (N-1)}{2} s(C,C) \ - \ (N-1) s(C,C) \ + \ (N-1) s(C,D) \\ \frac{S_{\text{old}} - S_{\text{new}}}{S_{\text{old}}} &= \frac{2 \ (N-1) \ s(C,C) \ - \ 2 \ (N-1) \ s(C,D)}{N \ (N-1) \ s(C,C)} = \\ \frac{2}{N} \left(1 \ - \ \frac{s(C,D)}{s(C,C)} \right) & \text{for large N small difference} \end{split}$$

s(C, D) < s(C, C)

reasonable scoring matrices: (1

$$- \frac{s(C,D)}{s(C,C)} \Big) > 0$$

Weighted Sum of Pairs

4 Multiple Alignment

4.1 Motivation

4.2 Scoring

4.2.1 Consensus

4.2.2 Tree and Star

4.2.3 Sum of Pairs

4.3 Algorithms

4.3.1 Exact Methods

4.3.2 Progressive

4.3.3 Other

4.4 Profiles / PSSMs

contra-intuitive: a new letter in a column of 100 equal letters is more surprising as a new letter in a column of 3 equal letters

Information gain: $-\log f_{i,a} = \log(N)$

Gaps: as for pairwise algorithms, linear gaps more efficient

Multiple Alignment Algorithms

4 Multiple Alignment

4.1 Motivation

4.2 Scoring

4.2.1 Consensus

4.2.2 Tree and Star

4.2.3 Sum of Pairs

4.3 Algorithms

4.3.1 Exact Methods

4.3.2 Progressive

4.3.3 Other

4.4 Profiles / PSSMs

multiple alignment optimization problem: NP-hard

Exact solution: only 10 to 15 sequences

algorithm classes:

➡ global and progressive methods: MSA, COSA, GSA, clustalW, TCoffee

→ iterative and search algorithms: DIALIGN, MultAlin, SAGA, PRRP, Realigner

➡ local methods (motif/profile): eMotif, Blocks, Dialign, Prosite, HMM, Gibbs sampling

→ divide-and-conquer algorithms: DCA, OMA

Multiple Alignment Algorithms

		Global progressive alignments method	ds
4 Multiple Alignment	CLUSTALW	ftp://ftp.ebi.ac.uk/pub/software	Thompson et al. $(1994/97)$
			Higgins et al. (1996)
	MSA	http://www.psc.edu/	Lipman et al. (1989)
4.1 Motivation		http://www.ibc.wustl.edu/ibc/msa.html	Gupta et al. (1995)
		ftp://fastlink.nih.gov/pub/msa	
	PRALINE	http://mathbio.nimr.mrc.ac.uk/	Heringa (1999)
4.2 Scoring		~jhering/praline	
		Iterative and search algorithms	
4.2.1 Consensus	DIALIGN	http://www.gsf.de/biodv/dialign.html	Morgenstern et al. (1996)
	segment alignment		
	MultAlin	http://protein.toulouse.inra.fr/multalin.html	Corpet (1988)
4.2.2 Tree and Star	PRRP progressive	ftp://ftp.genome.ad.jp/	Gotoh (1996)
	global alignment	pub/genome/saitamacc	
4.0.2 Sum of Daira	SAGA genetic	http://igs-server.cnrs-mrs.fr/~cnotred/	Notredame and
4.2.3 Sum of Pairs	algorithm	Projects_home_page/saga_home_page.html	Higgins (1996)
4.3 Algorithms			
		Local alignments / motif / profile	
	Aligned Segment	ftp://ncbi.nlm.nih.gov/pub/neuwald/asset	Neuwald and
4.3.1 Exact Methods	Statistical Eval.		Green (1994)
	Tool (Asset)		
4.2.2 Drogradiva	BLOCKS	http://blocks.fhcrc.org/blocks/	Henikoff and
4.3.2 Progressive			Henikoff (1991, 1992)
	eMOTIF	http://dna.Stanford.EDU/emotif/	Nevill-Manning et al. (1998)
4.3.3 Other	GIBBS	ftp://ncbi.nlm.nih.gov/	Lawrence et al. (1993)
	(Gibbs sampler)	pub/neuwald/gibbs9_95/	Liu et al. (1995)
			Neuwald et al. (1995)
4.4 Profiles / PSSMs	HMMER hidden	http://hmmer.wustl.edu/	Eddy (1998)
	Markov model		
	MACAW	ftp://ncbi.nlm.nih.gov/pub/macaw	Schuler et al. (1991)
	MEME	http://meme.sdsc.edu/meme/website/	Bailey and Elkan (1995)
	(EM method)		Grundy et al. (1996, 1997)
			Bailey and Gribskov (1998)
	Profile	http://www.sdsc.edu/projects/profile/	Gribskov and
	(UCSD)		Veretnik (1996)
	SAM hidden	http://www.cse.ucsc.edu/	Krogh et al. (1994)
	Markov model	research/comp/bio/sam.html	Hughey and Krogh (1996)
		Bioinformatics 1: Biology Sequences Ph	vlogenetics

4 Multiple Alignment

4.1 Motivation

4.2 Scoring

4.2.1 Consensus

4.2.2 Tree and Star

4.2.3 Sum of Pairs

4.3 Algorithms

4.3.1 Exact Methods

4.3.2 Progressive

4.3.3 Other

4.4 Profiles / PSSMs

4 Multiple Alignment

- 4.1 Motivation
- 4.2 Scoring
- 4.2.1 Consensus
- 4.2.2 Tree and Star
- 4.2.3 Sum of Pairs
- 4.3 Algorithms
- 4.3.1 Exact Methods
- 4.3.2 Progressive
- 4.3.3 Other
- 4.4 Profiles / PSSMs

memory and computational complexity: exponentially with N

Gupa et al., 1995: pairwise alignments constrain the path and not the whole hypercube must be filled

MSA (Gupa):

- 1. compute all pairwise alignment scores $S_{k,l}$
- 2. predict a phylogenetic tree based on the pairwise scores
- 3. compute pairwise weights based on the tree
- 4. construct a temporary multiple alignment with score S_t
- 5. Compute $B_{k,l}$ a lower bound on S[k,l] the score of the projection of the optimal multiple alignment to k and l
- 6. Compute space constraints similar to the Baum-Welch
- 7. compute the optimal alignment on the constraint cube; Dijkstra's shortest path algorithm for nonnegative edges; priority queue; non-negativity guarantees monotone increasing costs
- 8. compare the weight in the alignment with the maximal weight

Carillo-Lipman bound:

 $\Leftrightarrow \quad \sum_{i,j} S[i,j] \ge S_t$

 $S > S_t$

4 Multiple Alignment

4.1 Motivation

4.2 Scoring

4.2.1 Consensus

4.2.2 Tree and Star

4.2.3 Sum of Pairs

4.3 Algorithms

4.3.1 Exact Methods

4.3.2 Progressive

4.3.3 Other

4.4 Profiles / PSSMs

last step compares actual and maximal weight, if actual is larger then a better alignment may be possible, larger maximal weight means more computational costs

 $B_{k,l} = S_t + S_{k,l} - \sum_{i,j} S_{i,j}$

$$egin{array}{lll} S[k,l] &\leq S_{k,l} \ S_t &\leq S \end{array}$$

$$\Leftrightarrow S[k,l] \geq S_t + S_{k,l} - \sum_{i,j} S_{i,j}$$

 $\Rightarrow \sum_{(i,j)\neq (k,l)} S_{i,j} + S[k,l] \ge S_t$

 $\Leftrightarrow S[k,l] \ge S_t - \sum S_{i,j}$

 $\Leftrightarrow S[k,l] \geq B_{k,l}$

Bioinformatics 1: Biology, Sequences, Phylogenetics

 $(i,j) \neq (k,l)$

4 Multiple Alignment	MSA improved by the \mathcal{A}^* algorithm ((Lermen and Reinert, 1997)
4.1 Motivation	Algorithm 1 A*-algorithm.	
4.2 Scoring	Input: graph (the graph), start (start node), goal (goal node), h(s imation of the distance of node s to the goal, S (priority queue), visited nodes)	
4.2.1 Consensus	Output: list P of the shortest path	
4.2.2 Tree and Star	BEGIN FUNCTION insert (start,S) while not isEmpty(S) do	BEGIN SUBFUNCTION {shortest path P as list} reconstruct_shortest_path (start, node, graph) if node not= start then
4.2.3 Sum of Pairs	<pre>current_node = pop(S) if current_node in N then {no path from start to goal}</pre>	push(node, P) {get predecessor} predecessor = getPredecessor(node, graph)
4.3 Algorithms	return "no path" end if	$\label{eq:construct_shortest_path} \ensuremath{\left(\mathrm{start, \ predecessor, \ graph} \right)} \\ \mathbf{else}$
4.3.1 Exact Methods	<pre>insert (current_node, N) if current_node = goal then reconstruct_shortest_path(start,goal, graph)</pre>	return P end if END SUBFUNCTION
4.3.2 Progressive	else {find all nodes accessible from current node} successors = expand(current_node, graph)	
4.3.3 Other	<pre>save_predecessor_in_graph(current_node, graph) for all s in successors do {save node which lead to s}</pre>	
4.4 Profiles / PSSMs	<pre>predecessor(s) = current_node {compute and store costs} cost(s) = cost(current_node) + edge(graph,current_node,s) all_cost(s) = cost(s) + h(s)</pre>	
	insert(s,S) {according to all_ $cost(s)$ } end for	
	end if	
	end while	
	return "no path found" END FUNCTION	

4 Multiple Alignment

4.1 Motivation

4.2 Scoring

4.2.1 Consensus

4.2.2 Tree and Star

4.2.3 Sum of Pairs

4.3 Algorithms

4.3.1 Exact Methods

4.3.2 Progressive

4.3.3 Other

4.4 Profiles / PSSMs

MSA: weighted sum of pairs and a linear gap penalty Weight: difference pairwise and projected multiple alignment (larger difference means higher weight)

similar sequences: pull the multiple alignment towards them which down-weights them

weights through the phylogenetic tree remove weights between distant sequences

Summing up all the weights: overall divergence of the sequences

4 Multiple Alignment

- 4.1 Motivation
- 4.2 Scoring
- 4.2.1 Consensus
- 4.2.2 Tree and Star
- 4.2.3 Sum of Pairs
- 4.3 Algorithms
- 4.3.1 Exact Methods
- 4.3.2 Progressive
- 4.3.3 Other
- 4.4 Profiles / PSSMs

Progressive methods are the most popular methods for multiple alignment: ClustalW (Thomson,Higgins,Gibson, 1994) and TCoffee (Notredame, Higgins, Heringa, 2000)

ClustalW and TCoffee:

- ← perform pairwise alignment for each pair
- → weight matrix: one minus the ratio of perfect matches
- construct a phylogenetic tree (Neighbor-Joining method)
- alignments between pairs sequences/alignments (start with closest distance); alignments are propagated through the tree

Initial alignments may be found through local alignment

phylogenetic tree supplies the weighting factors

4 Multiple Alignment

4.1 Motivation

4.2 Scoring

4.2.1 Consensus

4.2.2 Tree and Star

4.2.3 Sum of Pairs

4.3 Algorithms

4.3.1 Exact Methods

4.3.2 Progressive

4.3.3 Other

4.4 Profiles / PSSMs

Disadavantage progressive methods:

Iocal minima

same scoring matrix for close and remote related sequences and same gap parameters

ClustalW

gap penalties context dependent:

- → gaps in hydrophobic regions are more penalized
- gaps which are within eight amino acids to other gaps are more penalized
- → gaps in regions of other gaps have lower gap opening penalty
- → gap penalties are amino acid dependent

4 Multiple Alignment

4.1 Motivation

4.2 Scoring

4.2.1 Consensus

4.2.2 Tree and Star

4.2.3 Sum of Pairs

4.3 Algorithms

4.3.1 Exact Methods

4.3.2 Progressive

4.3.3 Other

4.4 Profiles / PSSMs

scoring matrices are adapted:

scoring matrix from the PAM or the BLOSUM families

sequences are weighted through a phylogenetic tree:
→ similar sequences lower weights (unbalanced data sets)
→ phylogentic tree weights with w_i as the weight of sequence i
∑_{i=1}^{N-1} ∑_{j=i+1}^N w_i w_j s(i, j)

adaptive phylogenetic tree:

→ insufficient scores change the tree

initial gap penalty parameters:

- according to scoring matrix
- → similarity of the sequences (% identity)
- → length of the sequences (log of the shorter sequences is added)
- → difference of the length to avoid gaps in the shorter sequence

 $\cdot (1 + |\log(n/m)|)$

4 Multiple Alignment

4.1 Motivation

4.2 Scoring

4.2.1 Consensus

4.2.2 Tree and Star

4.2.3 Sum of Pairs

4.3 Algorithms

4.3.1 Exact Methods

4.3.2 Progressive

4.3.3 Other

4.4 Profiles / PSSMs

TCoffee (Tree based Consistency Objective Function For alignmEnt Evaluation) often better alignment than clustalW

TCoffee work as follows:

→ libraries of pairwise aligments based on both global (clustalW) and local (FASTA) alignments (combination is more reliable)

→ library weights are computed according to % identity

→ libraries are combined and extended; arithmetic mean of weights; extension by aligning two sequences through a third sequence

→ progressive alignment with a distance based on extended library

4 Multiple Alignment

4.1 Motivation

4.2 Scoring

4.2.1 Consensus

4.2.2 Tree and Star

4.2.3 Sum of Pairs

4.3 Algorithms

4.3.1 Exact Methods

4.3.2 Progressive

4.3.3 Other

4.4 Profiles / PSSMs

Center Star Alignment

 $\overline{i} = 1$

center sequence
$$\overline{i}$$
: $\overline{i} = \arg \min_{i} \sum_{j} C(i, j)$

pairwise alignment costs C(i, j)

new sequence is added to the set of aligned seugences by a pairwise alignment to the center sequence introducing new gaps

4 Multiple Alignment

4.1 Motivation

4.2 Scoring

4.2.1 Consensus

4.2.2 Tree and Star

4.2.3 Sum of Pairs

4.3 Algorithms

4.3.1 Exact Methods

4.3.2 Progressive

4.3.3 Other

4.4 Profiles / PSSMs

Gusfield, 1993: cost is less then twice as of the optimal cost, if C(i,i) = 0 and $C(i,j) \leq C(i,k) + C(k,j)$

scoring matrix s with

 $\begin{array}{rcl} s(-,-) &=& 0 \\ s(-,i) &<& 0 \\ s(k,k) &\geq& s(i,k) \ + \ s(k,j) \ - \ s(i,j) \\ \end{array} \begin{array}{rcl} {\sf A B} & {\sf A B} \\ | \ | \ &>& | \ | \\ {\sf A C} & {\sf C A} \end{array} \\ \hline {\sf Full fills above conditions} \end{array}$

The second conditions is

4 Multiple Alignment

4.1 Motivation

4.2 Scoring

4.2.1 Consensus

4.2.2 Tree and Star

4.2.3 Sum of Pairs

4.3 Algorithms

4.3.1 Exact Methods

4.3.2 Progressive

4.3.3 Other

4.4 Profiles / PSSMs

align i to k and j to k then align i, j, and k based on the pairwise alignments, the alignment has a gap if a gap was in one alignment

S is score of the multiple alignment

Per construction: $S[i,k] = S_{i,k}$, $S[k,j] = S_{k,j}$ and $S[k,k] = S_{k,k}$

Componentwise holds: $s(i,j) \ge s(i,k) + s(k,j) - s(k,k)$

Therefore $S[i,j] \ge S[i,k] + S[k,j] - S[k,k]$ and $S[i,j] \ge S_{i,k} + S_{k,j} - S_{k,k}$

inequality to show follows from $S_{i,j} \geq S[i,j]$

4 Multiple Alignment

4.1 Motivation

4.2 Scoring

4.2.1 Consensus

4.2.2 Tree and Star

4.2.3 Sum of Pairs

4.3 Algorithms

4.3.1 Exact Methods

 C°

4.3.2 Progressive

4.3.3 Other

4.4 Profiles / PSSMs

idea of the proof of Gusfield center sequence alignment with cost C and the optimal cost C^{*}

$$C = \sum_{i=1}^{N} \sum_{j=1, j \neq i}^{N} C(i, j) \leq \frac{N}{N}$$

$$\sum_{i=1}^{N} \sum_{j=1, j \neq i}^{N} C(i, 1) + C(1, j) = 2 (N-1) \sum_{i=2}^{N} C(i, 1)$$

$$* = \sum_{i=1}^{N} \sum_{j=1, j \neq i}^{N} C(i, j) \ge$$

$$\sum_{i=1}^{N} \sum_{j=2}^{N} C(i,1) = N \sum_{i=2}^{N} C(i,1)$$
$$\Rightarrow \frac{C}{C^*} \leq \frac{2(N-1)}{N} \leq 2$$

4 Multiple Alignment

4.1 Motivation

4.2 Scoring

4.2.1 Consensus

4.2.2 Tree and Star

4.2.3 Sum of Pairs

4.3 Algorithms

4.3.1 Exact Methods

4.3.2 Progressive

4.3.3 Other

4.4 Profiles / PSSMs

SAGA (Sequence Alignment by Genetic Algorithm): genetic algorithm

MSASA (Multiple Sequence Alignment by Simulated Annealing): simulated annealing

Gibbs sampling

HMMs (hidden Markov models) can be used to find motifs

Profiles and PSSMs

4 Multiple Alignment

4.1 Motivation

4.2 Scoring

4.2.1 Consensus

4.2.2 Tree and Star

4.2.3 Sum of Pairs

4.3 Algorithms

4.3.1 Exact Methods

4.3.2 Progressive

4.3.3 Other

4.4 Profiles / PSSMs

Profiles and Position Specific Scoring Matrices

Assumptions:

- rightarrow x is i.i.d. in its elements according to p_x
- rightarrow n the length of $oldsymbol{x}$ is large
- → expected letter score for random sequences $\sum_i p_x(i) s(i) < 0$ → exist i for which s(i) > 0

$$S_n = \sum_{i=1}^n s(i)$$
 centered value: $ilde{S}_n = S_n - rac{\ln n}{\lambda}$

$$P\left(\tilde{S}_n > S\right) \approx 1 - \exp\left(-K \ e^{-\lambda \ S}\right) \approx K \ e^{-\lambda \ S}$$
$$\sum_i p_x(i) \ \exp(\lambda \ s(i)) = 1$$

Profiles and PSSMs

4 Multiple Alignment

4.1 Motivation

4.2 Scoring

4.2.1 Consensus

4.2.2 Tree and Star

4.2.3 Sum of Pairs

4.3 Algorithms

4.3.1 Exact Methods

4.3.2 Progressive

4.3.3 Other

4.4 Profiles / PSSMs

 q_i : frequency of a letter a_i in a column of a multiple alignment

for sufficient high scoring segments

$$\lim_{n \to \infty} q_i = p_x(i) \exp(\lambda \ s(i))$$

$$\Rightarrow \ s(i) = \ln\left(\frac{q_i}{p_x(i)}\right)/\lambda$$

"Position Specific Scoring Matrices" (PSSMs) or profiles

new sequence: high scores mean similar alignment sequences