Bioinformatics 1 Biology, Sequences, Phylogenetics Part 4

Sepp Hochreiter

Mo. 28.01.2008

Zeit: 15:30 – 17:00

Raum:

Anmeldung Kusss

Contents

5 Phylogenetics

5.1 Motivation

5.1.1 Tree of Life

5.1.2 Molecular Phylogenies

5.1.3 Methods

5.2 Maximum Parsimony Methods

5.2.1 Tree Length

5.2.2 Tree Search

5.2.3 Weighted Parsimony and Bootstrapping

5.2.4 Inconsistency of Maximum Parsimony

5.3 Distance-based Methods

5.3.1 UPGMA

5.3.2 Least Squares

5.3.3 Minimum Evolution

5.3.4 Neighbor Joining

5.3.5 Distance Measures

5.4 Maximum Likelihood Methods

5.5 Examples Bioinformatics 1: Biology, Sequences, Phylogenetics

5 Phylogenetics	
5.1 Motivation 5.1.1 Tree of Life 5.1.2 Molecular	central field in biology: relation between species in form of a tree
Phylogenies 5.1.3 Methods	Root: beginning of life
5.2 Maximum Parsimony 5.2.1 Tree Length 5.2.2 Tree Search 5.2.3 Weighted	Leaves: <i>taxa</i> (current species) Branches: relationship "is ancestor of" between nodes Node: split of a species into two
Parsimony 5.2.4 Inconsistency	phylogeny (phylo = tribe and genesis)
5.3 Distance-based 5.3.1 UPGMA 5.3.2 Least Squares 5.3.3 Minimum Evolution 5.3.4 Neighbor Joining	Cladistic trees: conserved characters Phenetic trees: measure of distance between the leaves of the tree (distance as a whole and not based on single features)
Measures	Phenetic problems: simultaneous development of features and
5.4 Maximum Likelihood	different evolution rates Convergent evolution e.g. finding the best form in water
5.5 Examples	Bioinformatics 1: Biology, Sequences, Phylogenetics

5.4 Maximum Likelihood

Bioinformatics 1: Biology, Sequences, Phylogenetics

5.4 Maximum Likelihood

Bioinformatics 1: Biology, Sequences, Phylogenetics

Bioinformatics 1: Biology, Sequences, Phylogenetics

Molecular Phylogenies

5 Phylogenetics

Molecular Phylogenies

5.4 Maximum Likelihood Difficulties in constructing a phylogenetic tree:

different mutation rates

horizontal transfer of genetic material (Horizontal Gene Transfer, Glycosyl Hydrolase from E.coli to B.subtilis)

Species Tree

Molecular Phylogenies

5 Phylogenetics

5.1 Motivation

- Branches: time in number of mutations
- molecular clock: same evolution / mutation rate
- → number of substitution: Poisson distribution
- mutation rate: equally distributed over the sequence

5 Phylogenetics

- 5.1 Motivation 5.1.1 Tree of Life 5.1.2 Molecular Phylogenies
- 5.1.3 Methods
- 5.2 Maximum Parsimony 5.2.1 Tree Length 5.2.2 Tree Search 5.2.3 Weighted Parsimony 5.2.4 Inconsistency
- 0.2.4 11001010101010
- 5.3 Distance-based 5.3.1 UPGMA
- 5.3.2 Least Squares
- 5.3.3 Minimum Evolution
- 5.3.4 Neighbor Joining
- 5.3.5 Distance Measures
- 5.4 Maximum Likelihood

5.5 Examples

choose the sequences e.g. rRNA (RNA of ribosomes) and mitochondrial genes (in most organism, enough mutations)

- → pairwise and multiple sequence alignments
- method for constructing a phylogenetic tree distance-based maximum parsimony maximum likelihood
 - Maximum parsimony: strong sequence similarities (few trees), few sequences
 - Distance based (CLUSTALW): less similarity, many sequences
 - Maximum likelihood: very variable sequences, high computational costs

Methods

5 Phylogenetics			
5.1 Motivation 5.1.1 Tree of Life			
5.1.2 Molecular Phylogenies	Software	2	
5.1.3 Methods	Conward	, ,	
5.2 Maximum Parsimony			
5.2.1 Tree Length 5.2.2 Tree Search	Name	Author	URL
5.2.3 Weighted Parsimony			
5.2.4 Inconsistency	PHYLIP	Felsenstein 89,96	http://evolution.genetics.
5.3 Distance-based 5.3.1 UPGMA			washington.edu/phylip.html
5.3.2 Least Squares	DALID	Singuar Accession	e http://www.lmc.ci.odu/PALIP
Evolution	FAUF	Sinduel Associate	S <u>mup.//www.ims.si.edu/FAUF</u>
5.3.4 Neighbor Joining			
5.3.5 Distance Measures			
5.4 Maximum Likelihood			

5 Phylogenetics

- 5.1 Motivation 5.1.1 Tree of Life 5.1.2 Molecular Phylogenies
- 5.1.3 Methods

5.2 Maximum

Parsimony

- 5.2.1 Tree Length
- 5.2.2 Tree Search
- 5.2.3 Weighted
- Parsimony
- 5.2.4 Inconsistency
- 5.3 Distance-based
- 5.3.1 UPGMA
- 5.3.2 Least Squares
- 5.3.3 Minimum Evolution
- 5.3.4 Neighbor
 - Joining
- 5.3.5 Distance Measures
- 5.4 Maximum Likelihood

- minimize number of mutations
- mutations are branches in the tree
- tree explains the evolution of the sequences

Surviving mutations are rare → tree with minimal mutations is most likely explanation

maximum parsimony PHYLIP programs: DNAPARS, DNAPENNY, DNACOMP, DNAMOVE, and PROTPARS

Tree Length

5 Phylogenetics	→ maximum parsimony tree:	tree with smallest tree length
5.1 Motivation 5.1.1 Tree of Life 5.1.2 Molecular Phylogenies	→ <i>tree length</i> : number of sub	stitutions in the tree
5.1.3 Methods 5.2 Maximum Parsimony	➡ Example protein triosepho "Human", "Pig", "Rye", "Rice"	sphate isomerase for the taxa , and "Chicken":
5.2.1 Tree Length 5.2.2 Tree Search	Human ISPG	MI
5.2.3 Weighted	Pig IGPG	MI
5.2.4 Inconsistency	Rye ISAE	QL
5.3 Distance-based	Rice VSAE	ML
5.3.1 UPGMA	Chicken ISPA	MI
5.3.3 Minimum	➡If we focus on column 4:	
Evolution 5.3.4 Neighbor	Human G	
Joining	Pig G	
Measures	Rye E	
5.4 Maximum	Rice E	
Likelihood	Chicken A	
5.5 Examples	Bioinformatics 1: Biolo	gy, Sequences, Phylogenetics

RA

Tree Length

5 Phylogenetics

Phylogenies

5.1 Motivation

5.1.3 Methods

5.2 Maximum

Parsimony 5.2.1 Tree Length 5.2.2 Tree Search 5.2.3 Weighted

Parsimony 5.2.4 Inconsistency

5.3 Distance-based

5.3.2 Least Squares

Evolution

Measures

5.3.1 UPGMA

5.3.3 Minimum

5.3.4 Neighbor

5.3.5 Distance

5.4 Maximum

Joining

Fitch (71) alg. for computing the tree length with taxa at leaves: Root node added to an arbitrary branch 11. 5.1.1 Tree of Life 2. bottom-up pass: sets of symbols (amino acids) for a 5.1.2 Molecular

hypothetical sequence at this node.

Minimize the number mutations by maximal agreement of the subtrees \rightarrow avoid a mutation at the actual node

(<pre>{ "leave symbol" }</pre>	if	$m_1 = m_2 = \emptyset$
$m_{12} = \langle$	$m_1\cup m_2$	if	$m_1 \cap m_2 = \emptyset$
	$m_1 \cap m_2$	if	$m_1 \cap m_2 \neq \emptyset$

In the first case m_{12} is leave, the second case enforces a mutation, and the third case avoids a mutation

Bioinformatics 1: Biology, Sequences, Phylogenetics

5.5 Examples

Likelihood

Tree Length

5 Phylogenetics

5.1 Motivation 5.1.1 Tree of Life 5.1.2 Molecular Phylogenies 5.1.3 Methods

5.2 Maximum Parsimony 5.2.1 Tree Length 5.2.2 Tree Search

5.2.3 Weighted Parsimony

5.2.4 Inconsistency

5.3 Distance-based 5.3.1 UPGMA 5.3.2 Least Squares 5.3.3 Minimum Evolution 5.3.4 Neighbor

Joining

5.3.5 Distance Measures

5.4 Maximum Likelihood

5.5 Examples

3. top town pass: hypothetical sequences at the interior nodes; counts the number of mutations

 $m_{1/2} = \begin{cases} x \in m_{1/2} \cap m_{12} & \text{if } m_{1/2} \cap m_{12} \neq \emptyset \\ x \in m_{1/2} & \text{if } m_{1/2} \cap m_{12} = \emptyset \\ m_{1/2} & \text{means that the formula holds for } m_1 & \text{and for } m_2 \end{cases}$

Non-informative columns: not used

- Columns with one symbol occur multiple an others only single (number of mutations independent of topology)
- → Columns with only one symbol

minimal number of substitutions: m_i maximal subs., star tree (center: most frequent symbol): g_i number of substitutions for the topology: s_i

hares consistency index : $c_i = \frac{m_i}{s_i}$ High values support the according tree as being plausible retention index $r_i = \frac{g_i - s_i}{q_i - m_i}$

5.4 Maximum Likelihood

5.3.4 Neighbor

Joining 5.3.5 Distance

Measures

rescaled consistency index $rc_i = r_i c_i$

Bioinformatics 1: Biology, Sequences, Phylogenetics

5 Phylogenetics

1.

5.1 Motivation 5.1.1 Tree of Life 5.1.2 Molecular Phylogenies 5.1.3 Methods

5.2 Maximum Parsimony 5.2.1 Tree Length 5.2.2 Tree Search 5.2.3 Weighted Parsimony

5.2.4 Inconsistency

5.3 Distance-based 5.3.1 UPGMA 5.3.2 Least Squares 5.3.3 Minimum Evolution

5.3.4 Neighbor Joining

5.3.5 Distance Measures

5.4 Maximum Likelihood

5.5 Examples

few sequences: all trees and their length can be constructed

→ for a larger number of sequences heuristics are used

Branch and Bound (Hendy & Penny, 82) for 20 and more taxa:

- This step determines the addition order of the taxa. First, compute the core tree of three taxa with maximal length of all three taxa trees. Next the taxa is added to one of the three branches which leads to maximal tree length. For the tree with four branches we determine the next taxa which leads to maximal tree length. ...
- 2. This step determines an upper bound for the tree length by either distance based methods (neighbor joining) or heuristic search (stepwise addition algorithm).

5 Phylogenetics

5.1 Motivation
5.1.1 Tree of Life
5.1.2 Molecular Phylogenies
5.1.3 Methods
5.2 Maximum

- Parsimony 5.2.1 Tree Length 5.2.2 Tree Search
- 5.2.3 Weighted
- Parsimony 5.2.4 Inconsistency
- 5.3 Distance-based 5.3.1 UPGMA
- 5.3.2 Least Squares 5. 5.3.3 Minimum Evolution
- 5.3.4 Neighbor Joining
- 5.3.5 Distance Measures
- 5.4 Maximum Likelihood

Branch and Bound (continued):

- 3. Start with the core tree of three taxa.
- 4. Construct new tree topologies by stepwise adding new taxa to the trees which do not possess a STOP mark. The next taxa is chosen according to the list in step 1 and added to each tree at all of its branches. Tree lengths are computed.
 - Assign STOP marks if upper bound is exceeded. Terminate if all trees possess a STOP mark.

Tree Search

Tree Search

Heuristics for Tree Search

- Stepwise Addition Algorithm: extend only tree with shortest length. If all taxa are inserted then perform branch swapping
- Branch Swapping.

(1) neighbor interchange: two taxa connected to the same node,

(2) subtree pruning and regrafting: remove small tree and connect it with the root to a branch,

(3) bisection-reconnection: remove branch to obtain two trees and reconnect them by inserting a new branch where each branch of the subtrees can be connected in contrast to (2) where the root is connected

5.1.1 Tree of Life
5.1.2 Molecular Phylogenies
5.1.3 Methods
5.2 Maximum Parsimony
5.2.1 Tree Length

5 Phylogenetics

5.1 Motivation

- 5.2.2 Tree Search
- 5.2.3 Weighted Parsimony 5.2.4 Inconsistency
- 5.3 Distance-based
- 5.3.1 UPGMA
- 5.3.2 Least Squares
- 5.3.3 Minimum Evolution
- 5.3.4 Neighbor
 - Joining
- 5.3.5 Distance Measures
- 5.4 Maximum Likelihood

Tree Search

Heuristics for Tree Search

Branch and Bound Like:

Use step 1. of the branch-and-bound algorithm to obtain the minimal tree (not maximal!).

Upper local bounds U_n for *n* taxa are constructed in this way. These upper bounds server for stopping signals.

5.1 Motivation 5.1.1 Tree of Life 5.1.2 Molecular Phylogenies 5.1.3 Methods

5 Phylogenetics

5.2 Maximum Parsimony 5.2.1 Tree Length 5.2.2 Tree Search 5.2.3 Weighted Parsimony

5.2.4 Inconsistency

5.3 Distance-based

5.3.1 UPGMA 5.3.2 Least Squares 5.3.3 Minimum Evolution 5.3.4 Neighbor Joining

5.3.5 Distance Measures

5.4 Maximum Likelihood

Weighted Parsimony / Bootstrapping

5 Phylogenetics

5.1 Motivation 5.1.1 Tree of Life 5.1.2 Molecular Phylogenies 5.1.3 Methods

- 5.2 Maximum Parsimony 5.2.1 Tree Length 5.2.2 Tree Search
- 5.2.3 Weighted Parsimony
- 5.2.4 Inconsistency

- 5.3 Distance-based
- 5.3.1 UPGMA
- 5.3.2 Least Squares
- 5.3.3 Minimum Evolution
- 5.3.4 Neighbor Joining
- 5.3.5 Distance Measures
- 5.4 Maximum Likelihood

 Type of substitution is *weighted* according to PAM and BLOSUM matrices to address survival of substituition

- Bootstrapping
 - accesses the variability of the tree with respect to the data ("variance") and identifies stable substructures
 - is possible because the temporal order of the alignment columns does not matter
 - cannot access the quality of a method but only its robustness

Inconsistency of Maximum Parsimony

5.5 Examples

Inconsistency of Maximum Parsimony

5 Phylogenetics

5.1 Motivation 5.1.1 Tree of Life 5.1.2 Molecular Phylogenies 5.1.3 Methods

5.2 Maximum Parsimony 5.2.1 Tree Length 5.2.2 Tree Search 5.2.3 Weighted Parsimony 5.2.4 Inconsistency

5.3 Distance-based 5.3.1 UPGMA 5.3.2 Least Squares 5.3.3 Minimum Evolution 5.3.4 Neighbor Joining 5.3.5 Distance

5.3.5 Distance Measures

5.4 Maximum Likelihood a and b are similar to each other and match to 99% whereas c and d are not similar to any other sequence and only match 5% by chance (1 out of 20).

Informative columns: only two symbols and each appears twice. Probabilities of informative columns and their rate:

 $a_i = b_i, \ c_i = d_i$: prob: $0.0495(0.99 \cdot 0.05)$ rate: 0.908 $a_i = c_i, \ b_i = d_i$: prob: $0.0025(0.05 \cdot 0.05)$ rate: 0.046 $a_i = d_i, \ b_i = c_i$: prob: $0.0025(0.05 \cdot 0.05)$ rate: 0.046 90% of the cases of informative columns we observe $c_i = d_i$.

Maximum parsimony will judge c and d as similar as a and b.

Distance-based Methods

5 Phylogenetics

5.1 Motivation 5.1.1 Tree of Life 5.1.2 Molecular Phylogenies 5.1.3 Methods

5.2 Maximum Parsimony 5.2.1 Tree Length 5.2.2 Tree Search 5.2.3 Weighted Parsimony 5.2.4 Inconsistency

5.3 Distance-based

5.3.1 UPGMA 5.3.2 Least Squares

5.3.3 Minimum Evolution

5.3.4 Neighbor Joining

5.3.5 Distance Measures

5.4 Maximum Likelihood matrix of pairwise distances between the sequences

A distance *D* is produced by a metric *d* (function) on objects *x* indexed by *i*,*j*,*k*: $D_{ij} = d(x_i, x_j)$

 \rightarrow metric *d* must fulfill

$$egin{array}{rll} d(x_i,x_j) &\geq 0 \ , \ d(x_i,x_j) &= 0 \ {
m for} \ i=j \ , \ d(x_i,x_j) &= d(x_j,x_i) \ , \ d(x_i,x_j) &\leq d(x_i,x_k) \ + \ d(x_k,x_j) \end{array}$$

not all scoring schemes are a metric, e.g. the e-value

UPGMA

5 Phylogenetics

5.1 Motivation 5.1.1 Tree of Life 5.1.2 Molecular Phylogenies 5.1.3 Methods

- 5.2 Maximum Parsimony
- 5.2.1 Tree Length
- 5.2.2 Tree Search
- 5.2.3 Weighted Parsimony
- 5.2.4 Inconsistency
- 5.3 Distance-based 5.3.1 UPGMA
- 5.3.2 Least Squares
- 5.3.3 Minimum Evolution
- 5.3.4 Neighbor Joining
- 5.3.5 Distance Measures
- 5.4 Maximum Likelihood

5.5 Examples

Unweighted Pair Group Method using arithmetic Averages (constructive clustering method based on joining pairs of clusters)

It works as follows:

1. each sequence *i* is a cluster c_i with one element $n_i = 1$ and height $l_i = 0$. Put all *i* into a list.

2. Select cluster pair (i,j) from the list with minimal D_{ij} and create a new cluster c_k by joining c_i and c_j with height $l_k = D_{ij} / 2$ and number of elements $n_k = n_i + n_j$.

- 3. Compute the distances for c_k : $D_{km} = \frac{n_i D_{mi} + n_j D_{mj}}{n_i + n_j}$
- 4. Remove *i* and *j* from the list and add *k* to the list. If the list contains only one element then terminate else go to step 2. Bioinformatics 1: Biology, Sequences, Phylogenetics

UPGMA

5 Phylogenetics

- 5.1 Motivation 5.1.1 Tree of Life 5.1.2 Molecular Phylogenies
- 5.1.3 Methods
- 5.2 Maximum Parsimony 5.2.1 Tree Length 5.2.2 Tree Search 5.2.3 Weighted Parsimony
- 5.2.4 Inconsistency
- 5.3 Distance-based 5.3.1 UPGMA 5.3.2 Least Squares 5.3.3 Minimum

Evolution 5.3.4 Neighbor Joining

5.3.5 Distance Measures

5.4 Maximum Likelihood

- → assumption of constant rate of evolution in different lineages
- bootstrap can evaluate the reliability to data variation
- → Positive interior branches contribute to the quality of the tree

Least Squares

5 Phylogenetics

5.1 Motivation 5.1.1 Tree of Life 5.1.2 Molecular **Phylogenies** 5.1.3 Methods

5.2 Maximum

Parsimony

5.2.1 Tree Length

5.2.2 Tree Search

5.2.3 Weighted Parsimony

5.2.4 Inconsistency

5.3 Distance-based

5.3.1 UPGMA

5.3.2 Least Squares

5.3.3 Minimum **Evolution**

5.3.4 Neighbor

Joining

5.3.5 Distance Measures

5.4 Maximum Likelihood minimize $(D_{ii} - E_{ii})$, where E_{ii} is the sum of distances in the tree on the path from taxa *i* to taxa *j* (the path metric)

The objective is
$$\sum_{i < j} \left(D_{ij} - E_{ij}
ight)^2$$

Fitch and Margoliash, 1967, introduced *weighted least squares*: $\sum_{i < j} \left(D_{ij} - E_{ij} \right)^2 / D_{ij}^2$

optimized under the constraint of nonnegative branch length

5 Phylogenetics

5.1 Motivation 5.1.1 Tree of Life 5.1.2 Molecular Phylogenies 5.1.3 Methods

5.2 Maximum Parsimony 5.2.1 Tree Length 5.2.2 Tree Search 5.2.3 Weighted Parsimony 5.2.4 Inconsistency

5.3 Distance-based 5.3.1 UPGMA 5.3.2 Least Squares

5.3.3 Minimum Evolution 5.3.4 Neighbor

Joining

5.3.5 Distance Measures

5.4 Maximum Likelihood If matrix *A* is the binary topology matrix with N(N-1)/2 rows, one for each D_{ij} , and *v* columns for the *v* branches of the topology. In each row (*i*,*j*) all branches contained in the path from *i* to *j* are marked by 1 and all other branches are 0

l is the v-dimensional vector of branch weights, then E = A l

least squares assumption: D_{ij} deviates from E_{ij} according to a Gaussian distribution ε_{ij} with mean 0 and variance D_{ij}^2 :

 $D = E + \epsilon = A l + \epsilon$

5.3.2 Least Squares maximum likelihood estimator (least squares) is

$$\hat{\boldsymbol{l}} = (\boldsymbol{A}^T \boldsymbol{A})^{-1} \boldsymbol{A}^T \boldsymbol{D}$$

Gaussianity assumption: justified by sufficient large sequences \rightarrow l_i are Gaussian and, therefore, also D_{ii}

Minimum Evolution

```
5 Phylogenetics
                 The objective is the sum of branch length' l:
5.1 Motivation
5.1.1 Tree of Life
                                    L = \sum_{i} \hat{l}_{ij}
5.1.2 Molecular
    Phylogenies
                 Given an unbiased branch length estimator l^{\hat{}}
5.1.3 Methods
5.2 Maximum
   Parsimony
                 The expected value of L is smallest for the true topology
5.2.1 Tree Length
5.2.2 Tree Search
                      independent of the number of sequences
5.2.3 Weighted
                      (Rzhetsky and Nei, 1993)
    Parsimony
5.2.4 Inconsistency
5.3 Distance-based
5.3.1 UPGMA
                Minimum evolution is computational expensive
5.3.2 Least Squares
5.3.3 Minimum
    Evolution
5.3.4 Neighbor
    Joining
5.3.5 Distance
    Measures
5.4 Maximum
   Likelihood
```

5 Phylogenetics

5.1 Motivation 5.1.1 Tree of Life 5.1.2 Molecular Phylogenies 5.1.3 Methods

5.2 Maximum Parsimony 5.2.1 Tree Length 5.2.2 Tree Search 5.2.3 Weighted Parsimony 5.2.4 Inconsistency

5.3 Distance-based 5.3.1 UPGMA 5.3.2 Least Squares 5.3.3 Minimum Evolution 5.3.4 Neighbor Joining

5.3.5 Distance Measures

5.4 Maximum Likelihood The neighbor joining (Saitou and Nei, 1987) simplifies the minimum evolution method (for fewer than six taxa both methods give the same result)

Neighbors: taxa that are connected by a single node

Additive metric d: any four elements fulfill $d(i,j) + d(k,m) \leq d(i,k) + d(j,m) = d(i,m) + d(j,k)$

path metric (counting the branch weights) is an additive metric

Bioinformatics 1: Biology, Sequences, Phylogenetics

Bioinformatics 1: Biology, Sequences, Phylogenetics

5.4 Maximum

objective of the neighbor joining algorithm is S the sum of all branch length' l_{ii}

starts with a star tree

We assume N taxa with initial (star tree) objective S_0 :

$$S_0 = \sum_{i=1}^{N} l_{iX} = \frac{1}{N-1} \sum_{i,j;i < j} D_i$$

where the $\frac{1}{N-1}$ comes from the fact that $D_{ij} = l_{iX} + l_{Xj}$, therefore l_{iX} is part of (N-1) distances D_{ij}

Bioinformatics 1: Biology, Sequences, Phylogenetics

5 Phylogenetics

5.1 Motivation

5.1.3 Methods

5.2 Maximum Parsimony 5.2.1 Tree Length 5.2.2 Tree Search

5.2.3 Weighted

Parsimony

5.2.4 Inconsistency

5.3 Distance-based

5.3.2 Least Squares 5.3.3 Minimum

Evolution

Measures

5.3.1 UPGMA

5.3.4 Neighbor

Joining 5.3.5 Distance

5.1.1 Tree of Life 5.1.2 Molecular

Phylogenies

5 Phylogenetics

5.1 Motivation 5.1.1 Tree of Life 5.1.2 Molecular Phylogenies 5.1.3 Methods

5.2 Maximum Parsimony 5.2.1 Tree Length 5.2.2 Tree Search 5.2.3 Weighted Parsimony

5.2.4 Inconsistency

5.3 Distance-based 5.3.1 UPGMA 5.3.2 Least Squares 5.3.3 Minimum Evolution 5.3.4 Neighbor Joining

5.3.5 Distance Measures

5.4 Maximum Likelihood In the next step taxa 1 and 2 are joined and a new internal node Y is introduced and l_{XY} computed as

$$d_{XY} = \frac{1}{2(N-2)} \left(\sum_{i=3}^{N} \left(D_{1i} + D_{2i} \right) \right) -$$

$$(N-2) (l_{1Y} + l_{2Y}) - 2\sum_{i=3}^{N} l_{Xi}$$

set all paths from *i* to *j* containing l_{XY} equal to D_{ij} and solve for l_{XY} . These are all path' from nodes 1 and 2 to $i \ge 3$. Therefore (N - 2) paths start from nodes 1 and 2, each, giving 2(N - 2) paths. l_{1Y} is in all node 1 paths and l_{2Y} in all node 2 paths. The tail l_{iX} is in one node 1 and one node 2 path. Above equation is obtained by averaging over these 2(N - 2) equations for l_{XY} .

- 5.2.2 Tree Search
- 5.2.3 Weighted Parsimony
- 5.2.4 Inconsistency
- 5.3 Distance-based 5.3.1 UPGMA 5.3.2 Least Squares
- 5.3.3 Minimum Evolution
- 5.3.4 Neighbor Joining
- 5.3.5 Distance Measures
- 5.4 Maximum Likelihood

 $\sum_{i=1}^{N} l_{Xi} = \frac{1}{N-3} \sum_{i,j; 2 < i < j} D_{ij}$

similar as for the initial star tree

inserted into the last equation:

$$S_{12} = l_{1Y} + l_{2Y} + l_{XY} + \sum_{i=3}^{N} l_{Xi} = \frac{1}{2(N-2)} \sum_{i=3}^{N} (D_{1i} + D_{2i}) + \frac{1}{2} D_{12} + \frac{1}{N-2} \sum_{i,j;3 \le i \le j} D_{ij}$$

generalized from joining (1,2) to (k,l):

5 Phylogenetics

5.1 Motivation 5.1.1 Tree of Life 5.1.2 Molecular **Phylogenies** 5.1.3 Methods 5.2 Maximum Parsimony 5.2.1 Tree Length 5.2.2 Tree Search 5.2.3 Weighted Parsimony 5.2.4 Inconsistency 5.3 Distance-based 5.3.1 UPGMA 5.3.2 Least Squares 5.3.3 Minimum **Evolution** 5.3.4 Neighbor Joining 5.3.5 Distance **Measures**

5.4 Maximum Likelihood *net divergences* r_k are accumulated distances of k to all other taxa:

$$r_k = \sum_{i=1}^{N} D_{ki} \text{ giving } S_{kl} = \frac{2 \sum_{i,j;i < j} D_{ij} - r_k - r_l}{2(N-2)} + \frac{D_{kl}}{2}$$

 $\frac{2 \sum_{i,j;i < j} D_{ij}}{2(N-2)}$ is constant for all objectives S_{kl} , therefore an equivalent objective is $Q_{kl} = (N-2) D_{kl} - r_k - r_l$

If k and l are evolutionary neighbors but D_{kl} is large due to fast evolution of k and/or l, then r_k and/or r_l are large and Q_{kl} small

5 Phylogenetics

5.1 Motivation 5.1.1 Tree of Life 5.1.2 Molecular

5.1.2 Molecular Phylogenies

5.1.3 Methods

5.2 Maximum Parsimony

- 5.2.1 Tree Length
- 5.2.2 Tree Search

5.2.3 Weighted Parsimony

5.2.4 Inconsistency

5.3 Distance-based 5.3.1 UPGMA 5.3.2 Least Squares 5.3.3 Minimum Evolution 5.3.4 Neighbor

Joining

5.3.5 Distance Measures

5.4 Maximum Likelihood The algorithm:

1. Given D_{ij} start with a star tree where the taxa are the leaves. Put all taxa in a set of objects.

2. For each leave *i* compute $r_i = \sum_{i=1}^{n} D_{ik}$

3. For each pair (*i*,*j*) compute $Q_{ij} = (N-2) D_{ij} - r_i - r_j$

4. Determine the minimal Q_{ij} . Join these (i,j) to new leave u. Compute new branch length' and new distances of u:

 $l_{iu} = \frac{D_{ij}}{2} + \frac{r_i - r_j}{2(N-2)} \qquad D_{ku} = \frac{D_{ik} + D_{jk} - D_{ij}}{2}$ $l_{ju} = D_{ij} - l_{iu}$

Delete *i* and *j* from the set of objects and add. Stop if the set of objects contains only *u* otherwise go to Step 1

Likelihood

Neighbor joining: $O(N^3)$ algorithm; for larger data sets

The formula for Q_{ij} accounts for differences in evolution rates The objective *S* is only minimized approximatively CLUSTALW uses neighbor-joining for multiple alignments

G

we focus on nucleotides!

Т

 \mathbf{C}

Jukes Cantor

substitution rates:

Α

 α

 α

 α

 β

 β

 α

 αg_A

 αq_A

 αq_A

 $\beta (g_A + g_T)$

 $\beta (g_A + g_T)$

 $\alpha (g_A + g_T)$

Α

Т

 \mathbf{C}

G

Α

Т

 \mathbf{C}

G

Т

 \mathbf{C}

G

Α

Τ

 \mathbf{C}

G

5.1 Motivation

5 Phylogenetics

5.1.1 Tree of Life

5.1.2 Molecular

Phylogenies

5.1.3 Methods

5.2 Maximum Parsimony

5.2.1 Tree Length 5.2.2 Tree Search 5.2.3 Weighted

Parsimony 5.2.4 Inconsistency

5.3 Distance-based

5.3.1 UPGMA

5.3.2 Least Squares A

5.3.3 Minimum

Evolution

5.3.4 Neighbor Joining

5.3.5 Distance

Measures

5.4 Maximum Likelihood

Bioinformatics 1: Biology, Sequences, Phylogenetics

Hasegawa βg_T Α βg_C αg_G α α α βg_G Т βq_A αq_C α α \mathbf{C} βg_A βg_G α α αg_T G βg_T βq_C αg_A α α Kimura Tamura-Nei β β Α βg_T βg_C α $\alpha_{AG} g_G$ Т β βg_A βg_G $\alpha_{TC} g_C$ α β \mathbf{C} βg_A βg_G α $\alpha_{TC} g_T$ ß β G βg_C βg_T $\alpha_{AG} g_A$ Felsenstein / Tajima-Nei Reversible А αg_T αg_C αg_G $\alpha_{AT} g_T$ $\alpha_{AC} g_C$ $\alpha_{AG} g_G$ Т αg_C αg_G $\alpha_{AT} q_A$ $\alpha_{TC} g_C$ $\alpha_{TG} g_G$ C αg_T αg_G $\alpha_{AC} q_A$ $\alpha_{CG} g_G$ $\alpha_{TC} g_T$ G αg_T αg_C $\alpha_{AG} q_A$ $\alpha_{TG} g_T$ $\alpha_{CG} g_C$ General Tamura $\beta (g_G + g_C)$ $\beta (q_A + q_T)$ $\alpha (q_G + q_C)$ Α a_{12} a_{13} a_{14} $\alpha (g_G + g_C)$ $\beta (g_G + g_C)$ Т a_{21} a_{23} a_{24} \mathbf{C} $\beta (g_G + g_C)$ $\alpha (g_A + g_T)$ a_{31} a_{32} a_{34} G $\beta (g_A + g_T)$ $\beta (g_G + g_C)$ a_{41} a_{42} a_{43}

Т

А

 \mathbf{C}

G

5 Phylogenetics	Jukes Cantor
5.1 Motivation 5.1.1 Tree of Life 5.1.2 Molecular Phylogenies	Mutation probability: $r = 3\alpha$
5.2 Maximum	Identical positions of 2 seq. remain identical: $(1 - r)^2 \approx 1 - 2 r$
5.2.1 Tree Length 5.2.2 Tree Search 5.2.3 Weighted	different nucleotides will be identical: $\frac{2 r}{3}$
5.2.4 Inconsistency	One changes and the other not: $\alpha (1 - r) = \frac{r}{3} (1 - r)$
5.3 Distance-based 5.3.1 UPGMA 5.3.2 Least Squares 5.3.3 Minimum Evolution 5.3.4 Neighbor Joining 5.3.5 Distance Measures	Two of these events: $\frac{2 r}{3} (1 - r) \approx \frac{2 r}{3}$
5.4 Maximum Likelihood	
	Picinformation 1: Piclagy Saguanaan Dhylaganation

5 Phylogenetics	Jukes Cantor
5.1 Motivation 5.1.1 Tree of Life 5.1.2 Molecular Phylogenies	difference equation: $q_{t+t} = (1 - 2 r) q_t + \frac{2 r}{3} (1 - q_t)$
5.1.3 Methods 5.2 Maximum Parsimony	$q_{t+t} - q_t = rac{2 r}{3} - rac{8 r}{3} q_t$
5.2.1 Tree Length 5.2.2 Tree Search 5.2.3 Weighted Parsimony	continuous model: $\dot{q} = \frac{2 r}{3} - \frac{8 r}{3} q$
5.2.4 Inconsistency	J J
5.3 Distance-based 5.3.1 UPGMA 5.3.2 Least Squares 5.3.3 Minimum Evolution 5.3.4 Neighbor Joining 5.3.5 Distance	The solution for $q(0) = 1$: $q(t) = 1 - \frac{3}{4} \left(1 - \exp\left(-\frac{8 r t}{3}\right) \right)$
Measures	
5.4 Maximum Likelihood	
	Bioinformatics 1: Biology, Soquences, Phylogenetics

5.5 Examples

5 Phylogenetics

Jukes Cantor

5.1 Motivation

5.1.1 Tree of Life

5.1.2 Molecular Phylogenies

5.1.3 Methods

5.2 Maximum

Parsimony 5.2.1 Tree Length

5.2.1 Tree Length

5.2.3 Weighted

Parsimony 5.2.4 Inconsistency

5.3 Distance-based 5.3.1 UPGMA 5.3.2 Least Squares 5.3.3 Minimum Evolution 5.3.4 Neighbor

Joining

5.3.5 Distance Measures

5.4 Maximum Likelihood The substitutions per position d for two sequences is 2rt

$$d = -\frac{3}{4}\ln\left(1 - \frac{3}{4}p\right), p = 1 - q$$

Estimating *q* and inserting in above equation: estimate *d*. The variance of the estimate for *d*: $Var(\hat{d}) = \frac{9p (1 - p)}{(3 - 4p)^2 n}$

5 Phylogenetics

5.1.1 Tree of Life 5.1.2 Molecular

Phylogenies

Parsimony 5.2.4 Inconsistency

5.3 Distance-based

5.3.2 Least Squares 5.3.3 Minimum

Evolution

Measures

5.3.1 UPGMA

5.3.4 Neighbor Joining 5.3.5 Distance

5.1 Motivation

5.1.3 Methods

5.2 Maximum Parsimony 5.2.1 Tree Length 5.2.2 Tree Search 5.2.3 Weighted **Kimura**

 $r~=~\alpha~+~2\beta$

group nucleotide pairs: $P = \{AG, GA, TC, CT\}$ $Q = \{AT, TA, AC, CATG, GT, CG, GC\}$

$$P = \frac{1}{4} (1 - 2 \exp(-4 (\alpha + \beta) t) + \exp(-8 \beta t))$$
$$Q = \frac{1}{2} (1 - \exp(-8 \beta t))$$

5.5 Examples

5.4 Maximum Likelihood

5 Phylogenetics

Kimura

5.1 Motivation 5.1.1 Tree of Life 5.1.2 Molecular Phylogenies 5.1.3 Methods

5.2 Maximum Parsimony 5.2.1 Tree Length 5.2.2 Tree Search 5.2.3 Weighted Parsimony

5.2.4 Inconsistency

5.3 Distance-based 5.3.1 UPGMA 5.3.2 Least Squares 5.3.3 Minimum Evolution 5.3.4 Neighbor Joining 5.3.5 Distance

Measures

5.4 Maximum Likelihood

$$d = 2 r t = 2 \alpha t + 4 \beta t =$$

$$-\frac{1}{2} \ln (1 - 2 P - Q) - \frac{1}{2} \ln (1 - 2 Q)$$

$$Var(\hat{d}) = \frac{1}{n} \left(c_1^2 P + c_2^2 Q - (c_1 P + c_2 Q)^2 \right)$$

$$c_1 = (1 - 2 P - Q)^{-1}$$

$$c_2 = \frac{1}{2} \left((1 - 2 P - Q)^{-1} + (1 - 2 Q)^{-1} \right)$$

transitional substitutions: $2 \alpha t$ transversional substitutions: $4 \beta t$

equilibrium frequency of each nucleotide: 0.25

However occurrence of GC Drosophila mitochondrial DNA is 0.1

Bioinformatics 1: Biology, Sequences, Phylogenetics

5 Phylogenetics

Felsenstein / Tajima-Nei

5.1.1 Tree of Life 5.1.2 Molecular Phylogenies

5.1.3 Methods

5.1 Motivation

5.2 Maximum Parsimony 5.2.1 Tree Length 5.2.2 Tree Search 5.2.3 Weighted Parsimony

5.2.4 Inconsistency

5.3 Distance-based 5.3.1 UPGMA 5.3.2 Least Squares 5.3.3 Minimum Evolution 5.3.4 Neighbor Joining

5.3.5 Distance Measures

5.4 Maximum Likelihood $x_{ij}: \text{ relative frequency of nucleotide pair } (i,j)$ $b = \frac{1}{2} \left(1 - \sum_{i=1}^{4} g_i^2 + \frac{p^2}{c} \right)$ $c = \sum_{i=1}^{3} \sum_{j=i+1}^{4} \frac{x_{ij}^2}{2 g_i g_j}$

 $d = -b \ln \left(1 - \frac{p}{b}\right)$ $\operatorname{Var}(\hat{d}) = \frac{b^2 p (1 - p)}{(b - b)^2 n}$

5 Phylogenetics

5.1 Motivation

5.1.2 Molecular

5.1.3 Methods

5.2 Maximum

Parsimony 5.2.1 Tree Length 5.2.2 Tree Search 5.2.3 Weighted

Parsimony 5.2.4 Inconsistency

5.3 Distance-based

5.3.2 Least Squares 5.3.3 Minimum

Evolution

Measures

5.3.1 UPGMA

5.3.4 Neighbor Joining 5.3.5 Distance

Tamura

5.1.1 Tree of Life extends Kimura's model for GC content different from 0.5 **Phylogenies**

$$d = -h \ln \left(1 - \frac{P}{h} - Q \right) - \frac{1}{2} (1 - h) \ln (1 - 2 Q)$$

$$h = 2 \theta (1 - \theta)$$

Bioinformatics 1: Biology, Sequences, Phylogenetics

5.4 Maximum Likelihood

Hasegawa (HKY)

5.1 Motivation
5.1.1 Tree of Life
5.1.2 Molecular Phylogenies
5.1.3 Methods
5.2 Maximum

Parsimony

5 Phylogenetics

5.2.1 Tree Length
5.2.2 Tree Search
5.2.3 Weighted Parsimony
5.2.4 Inconsistency
5.3 Distance-based
5.3.1 UPGMA
5.3.2 Least Squares
5.3.3 Minimum Evolution
5.3.4 Neighbor

Joining 5.3.5 Distance Measures

5.4 Maximum Likelihood

hybrid of Kimuras and Felsenstein / Tajima-Nei: GC content and
 transition / transversion

 $\frac{2 g_A g_G}{2 g_A g_G}$

 g_R

 $c_1 =$

5 Phylogenetics

Tamura-Nei

5.1 Motivation

5.1.1 Tree of Life

5.1.2 Molecular

Phylogenies

5.1.3 Methods

5.2 Maximum Parsimony 5.2.1 Tree Length 5.2.2 Tree Search 5.2.3 Weighted

Parsimony

5.2.4 Inconsistency

5.3 Distance-based 5.3.1 UPGMA 5.3.2 Least Squares 5.3.3 Minimum Evolution 5.3.4 Neighbor Joining 5.3.5 Distance

Measures

5.4 Maximum Likelihood

includes Hasegawa's model

$$c_{2} = \frac{2 g_{T} g_{C}}{g_{Y}}$$

$$d = -c_{1} \ln \left(1 - c_{1}^{-1} P_{1} - (2 g_{R})^{-1} Q \right) - c_{2} \ln \left(1 - c_{2}^{-1} P_{2} - (2 g_{Y})^{-1} Q \right) - c_{2} \ln \left(1 - c_{2}^{-1} P_{2} - (2 g_{Y})^{-1} Q \right) - (2 g_{R} g_{Y} - c_{1} g_{Y} - c_{2} g_{R}) \ln \left(1 - (2 g_{R} g_{Y})^{-1} Q \right)$$

P₁: proportion of transitional differences between A and G
 P₂: proportion of transitional differences between T and C
 Q: proportion of transversional differences

5 Phylogenetics

Maximum Likelihood Methods

5.1 Motivation 5.1.1 Tree of Life 5.1.2 Molecular **Phylogenies** 5.1.3 Methods 5.2 Maximum Parsimony 5.2.1 Tree Length 5.2.2 Tree Search 5.2.3 Weighted Parsimony 5.2.4 Inconsistency 5.3 Distance-based 5.3.1 UPGMA 5.3.2 Least Squares 5.3.3 Minimum **Evolution** 5.3.4 Neighbor Joining 5.3.5 Distance **Measures**

5.4 Maximum Likelihood *Tree probability*: product of the mutation rates in each branch *Mutation rate*: product between substitution rate and branch length

D: data, multiple alignment of N sequences (taxa) D_k : N-dimensional vector at position k of the multiple alignment A: tree topology (see least squares) *l*: vector of branch length H: number of hidden nodes of the topology A \mathcal{M} : model for nucleotide substitution \mathcal{A} : set of letters (e.g. the amino acids) Hidden nodes are indexed from 1 to H taxa are indexed from H+1 to H+NRoot node has index 1

5 Phylogenetics

5.1 Motivation 5.1.1 Tree of Life 5.1.2 Molecular Phylogenies

5.1.3 Methods

5.2 Maximum Parsimony 5.2.1 Tree Length 5.2.2 Tree Search 5.2.3 Weighted Parsimony 5.2.4 Inconsistency

5.3 Distance-based 5.3.1 UPGMA

5.3.2 Least Squares 5.3.3 Minimum

Evolution

5.3.4 Neighbor Joining

5.3.5 Distance Measures

5.4 Maximum Likelihood

5.5 Examples

The likelihood of the tree at the *k*-th position:

$$egin{aligned} L(oldsymbol{D}_k \mid oldsymbol{l}, oldsymbol{A}, \mathcal{M}) &= \ & \sum_{h=1}^{H} \sum_{a_h \in \mathcal{A}} P_r\left(a_1
ight) & \prod_{i,j; \ 1 \leq i \leq H, \ i < j \leq N+H, \ A_{ij} = 1} P_{a_i a_j}\left(l_{ij}
ight) \end{aligned}$$

 $P_r(a_1)$: prior probability of the root node assigned with $a_1 \in \mathcal{A}$ $A_{ij} = 1$: indicates an existing branch $i \to j$

 $P_{a_i a_j}\left(l_{ij}\right)$: probability of branch length l_{ij} between a_i and a_j

hidden states are summed out Prior $P_r(a_1)$ is estimated or given

5 Phylogenetics

5.1 Motivation 5.1.1 Tree of Life 5.1.2 Molecular Phylogenies 5.1.3 Methods

5.2 Maximum Parsimony 5.2.1 Tree Length 5.2.2 Tree Search 5.2.3 Weighted Parsimony

5.3 Distance-based 5.3.1 UPGMA 5.3.2 Least Squares 5.3.3 Minimum Evolution 5.3.4 Neighbor

Joining 5.3.5 Distance

5.3.5 Distance Measures

5.4 Maximum Likelihood If $\mathcal{M}_{}$ is the Felsenstein / Tajima-Nei equal-input model, the branch length probabilities are

$$P_{a_{i}a_{i}}(l_{ii}) = g_{a_{i}} + (1 - g_{a_{i}}) e^{-l_{ii}}$$
$$P_{a_{i}a_{j}}(l_{ij}) = g_{a_{j}}(1 - e^{-l_{ij}})$$

5.2.4 Inconsistency For $g_{a_i} = \frac{1}{4}$ and $l_{ij} = 4rt$ we obtain Jukes-Cantor: $P_{a_i a_i} = q$

reversible models: $g_{a_i} P_{a_i a_j}(l) = g_{a_j} P_{a_j a_i}(l)$ choice of the root does not matter because branch lengths count independent of their substitution direction

5 Phylogenetics 5.1 Motivation 5.1.1 Tree of Life	$L(\boldsymbol{D} \mid \boldsymbol{l}, \boldsymbol{A}, \mathcal{M}) = \prod_{k} L(\boldsymbol{D}_{k} \mid \boldsymbol{l}, \boldsymbol{A}, \mathcal{M})$ (independent positions)
5.1.2 Molecular Phylogenies 5.1.3 Methods	Felsenstein's (81) pruning algorithm to compute $L(\boldsymbol{D}_k \mid \boldsymbol{l}, \boldsymbol{A}, \mathcal{M})$
5.2 Maximum Parsimony 5.2.1 Tree Length	$P_i(a) = P_i(a \mid D_k, l, A, M)$: probability of a letter <i>a</i> at node <i>i</i>
5.2.2 Tree Search 5.2.3 Weighted	recursive formula: $D(x) = \int 1 \text{ for } a = b$
5.2.4 Inconsistency	$P_i(a_i) = o_{a_i \ D_{k(i-H)}} \text{for} i > H (i \text{ taxa}) \qquad \qquad b_{a \ b} = 0 \text{for} a \neq b$
5.3.1 UPGMA 5.3.2 Least Squares 5.3.3 Minimum	$\left P_i(a_i) \right = \prod_{j; A_{ij}=1} \left(\sum_{a_j \in \mathcal{A}} P_{a_i a_j}(l_{ij}) P_j(a_j) \right) \text{ for } i \leq H \text{ (i hidden)} \right)$
Evolution 5.3.4 Neighbor Joining	$P_i(a)$ computed by dynamic programming from leaves to root
5.3.5 Distance Measures	Likelihood: $L(\mathbf{D}_k \mid \mathbf{l}, \mathbf{A}, \mathcal{M}) = \sum P_r(a_1) P_1(a_1)$
5.4 Maximum Likelihood	$a_1 \in \mathcal{A}$

5 Phylogenetics	best tree: both the branch length' and the topology optimized
5.1 Motivation 5.1.1 Tree of Life 5.1.2 Molecular Phylogenies 5.1.3 Methods	branch length': gradient based / EM (expectation-maximization)
5.2 Maximum Parsimony 5.2.1 Tree Length 5.2.2 Tree Search 5.2.3 Weighted Parsimony 5.2.4 Inconsistency	tree topology: Felsenstein (81) growing (constructive) algorithm start with 3 taxa, at k-th taxa test all (2k-5) branches for insertion
	further optimized by local changing the topology
5.3 Distance-based 5.3.1 UPGMA 5.3.2 Least Squares 5.3.3 Minimum	tree topology: small N all topologies can be tested, then local changes similar to parsimony tree
Evolution 5.3.4 Neighbor Joining 5.3.5 Distance Measures	ML estimator is computationally expensive but unbiased (sequence length) and asymptotically efficient (minimal variance)
5.4 Maximum Likelihood	fast heuristics: Strimmer and v. Haeseler (96): all topologies of 4 taxa then build the final tree (software: http://www.tree-puzzle.de/ Bioinformatics 1: Biology, Sequences, Phylogenetics

Examples

From triosephosphat isomerase of different species trees are

5 Phylogenetics

5.1 Motivation 5.1.1 Tree of Life 5.1.2 Molecular **Phylogenies** 5.1.3 Methods

5.2 Maximum Parsimony 5.2.1 Tree Length 5.2.2 Tree Search 5.2.3 Weighted Parsimony 5.2.4 Inconsistency

5.3 Distance-based 5.3.1 UPGMA 5.3.2 Least Squares 5.3.3 Minimum **Evolution** 5.3.4 Neighbor Joining 5.3.5 Distance Measures

5.4 Maximum Likelihood

5.5 Examples

constructed with PHYLIP (Phylogeny Inference Package) 3.5c EColi VibMar Chicken Human Nematode Yeast. Pfalcip Amoeba TBrucei TCruzi LeiMex Bacillus ThMar Archaeon

Escherichia coli Vibrio marinus Gallus gallus Homo sapiens Caenorhabditis elegans Saccharomyces cerevisiae Plasmodium falciparum Entamoeba histolytica Trypanosoma brucei Trypanosoma cruzi Leishmania mexicana Bacillus stearothermophilus Thermotoga maritima Pyrococcus woesei

Bacterium Bacterium Animal Animal Worm Yeast single cell single cell single cell single cell single cell Bacterium Bacterium Archaeon

Examples

Bioinformatics 1: Biology, Sequences, Phylogenetics

	Examples
5 Phylogenetics 5.1 Motivation 5.1.1 Tree of Life 5.1.2 Molecular Phylogenies 5.1.3 Methods 5.2 Maximum Parsimony 5.2.1 Tree Length 5.2.2 Tree Search 5.2.3 Weighted Parsimony 5.2.4 Inconsistency 5.3 Distance-based 5.3.1 UPGMA 5.3.2 Least Squares 5.3.3 Minimum Evolution 5.3.4 Neighbor Joining	 Phylogenetic tree based on triosephosphat isomerase for: Human Monkey Mouse Rat Cow Pig Goose Chicken Zebrafish Fruit FLY Rye
5.3.5 Distance Measures5.4 Maximum Likelihood	 Corn Soybean Bacterium
5.5 Examples	Bioinformatics 1: Biology, Sequences, Phylogenetics

Bioinformatics 1: Biology, Sequences, Phylogenetics

Examples

- 5.1 Motivation 5.1.1 Tree of Life 5.1.2 Molecular Phylogenies 5.1.3 Methods
- 5.2 Maximum Parsimony 5.2.1 Tree Length 5.2.2 Tree Search 5.2.3 Weighted
- Parsimony 5.2.4 Inconsistency
- 5.3 Distance-based 5.3.1 UPGMA
- 5.3.2 Least Squares
- 5.3.3 Minimum Evolution
- 5.3.4 Neighbor Joining
- 5.3.5 Distance Measures
- 5.4 Maximum Likelihood

Bioinformatics 1: Biology, Sequences, Phylogenetics

Three Anwers

