
Institute of Bioinformatics

Johannes Kepler University Linz

Perl
A Short Introduction for Bioinformaticians

Ulrich Bodenhofer, Mihaela Ionescu. Perl: A Short Introduction for Bioinformaticians 2

What is Perl?

Perl is an interpreted (scripting) language

Perl is (almost) platform-independent

Perl is free of charge

Perl is a common standard in bioinformatics, language pro-
cessing, and Web programming

Ulrich Bodenhofer, Mihaela Ionescu. Perl: A Short Introduction for Bioinformaticians 3

Perl’s Advantages

Platform-independent

Free of charge

Only minor hardware and software requirements

Powerful elements for string processing (regular expressions)
and hash tables allow concise algorithms

Quick and easy solutions are possible

Ulrich Bodenhofer, Mihaela Ionescu. Perl: A Short Introduction for Bioinformaticians 4

Perl’s Disadvantages

Richness and compactness of language facilitates difficult-to-
read programs

No stand-alone programs without additional software

Slower than compiled code

Perl is sometimes wasteful with memory

Perl’s built-in strings, lists, and hash tables sometimes hide po-
tential performance problems

Therefore, Perl cannot handle as large problems as some other
programming languages

Ulrich Bodenhofer, Mihaela Ionescu. Perl: A Short Introduction for Bioinformaticians 5

Use Perl for. . .

Small rapid prototyping solutions

Applications that require nifty string processing

Small to medium-sized problems

Applications with moderate performance and memory require-
ments

Ulrich Bodenhofer, Mihaela Ionescu. Perl: A Short Introduction for Bioinformaticians 6

Do Not Use Perl for. . .

Large software projects (performance, stability, quality, main-
tainability)

Applications in which performance and memory consumption
are most important factors

Ulrich Bodenhofer, Mihaela Ionescu. Perl: A Short Introduction for Bioinformaticians 7

Why Perl in Bioinformatics

String processing capabilities and hash tables

Easy, also for biologists and other people outside computer sci-
ence

Ulrich Bodenhofer, Mihaela Ionescu. Perl: A Short Introduction for Bioinformaticians 8

What Else is Perl Used For?

Very common in Web programming (offers very good database
and networking integration)

Perl can also serve as a more powerful replacement of UNIX
shell scripts or DOS/Windows batch files

In this introduction, we concentrate on standard elements that
will be necessary for bioinformatics applications

Ulrich Bodenhofer, Mihaela Ionescu. Perl: A Short Introduction for Bioinformaticians 9

Setting Up Your Perl System

What you need: (1) Perl software, (2) text editor

On UNIX/Linux systems, probably everything is pre-installed

Windows/MacOS

Get ActivePerl and install it:
http://www.activestate.com/Products/

ActivePerl/

Choose your favorite text editor (e.g. UltraEdit, TextPad,
XEmacs)

Make sure that perl is in your default search path

http://www.activestate.com/Products/ActivePerl/
http://www.activestate.com/Products/ActivePerl/

Ulrich Bodenhofer, Mihaela Ionescu. Perl: A Short Introduction for Bioinformaticians 10

Documentation

Online:
http://www.perl.org/docs.html

http://perldoc.perl.org/perlintro.pdf

http://perldoc.perl.org/index-tutorials.html

http://perldoc.perl.org/index-functions.html

Program perldoc that is part of every Perl system

http://www.perl.org/docs.html
http://perldoc.perl.org/perlintro.pdf
http://perldoc.perl.org/index-tutorials.html
http://perldoc.perl.org/index-functions.html

Ulrich Bodenhofer, Mihaela Ionescu. Perl: A Short Introduction for Bioinformaticians 11

First Steps

Comments start with #

For compatibility with UNIX/Linux systems, it is advisable to start the
program with the so-called She’Bang line:

#!/usr/bin/perl

For better checking, you are advised to add the following two lines to
your program (right after the She’Bang line):

use strict;

use warnings;

Statements need to be closed with a semicolon, whitespaces are
irrelevant

In the simplest case, terminal output is issued with the print com-
mand

Ulrich Bodenhofer, Mihaela Ionescu. Perl: A Short Introduction for Bioinformaticians 12

Data — Variables

There are three basic types of variables in Perl. Unlike other pro-
gramming languages, the type is identified with a special character
that prefixes the variable name:

Scalars: prefixed with “$” e.g. $num

Arrays: prefixed with “@” e.g. @list

Hashes: prefixed with ‘%” e.g. %hashtable

If using use strict;, variables have to be declared before they are
used. This is done with my.

The most basic operator is the assignment operator =. It copies the
content of one variable into the other (possibly with a conversion).

Ulrich Bodenhofer, Mihaela Ionescu. Perl: A Short Introduction for Bioinformaticians 13

Scalars

Among scalars, there is no specific kind of type checking!

Scalars can have three different kinds of meanings:

1. Numbers

2. Strings

3. References

Ulrich Bodenhofer, Mihaela Ionescu. Perl: A Short Introduction for Bioinformaticians 14

Numbers

There is no explicit distinction between integer and floating
point numbers, this is handled implicitly

Examples:

$num = 3;

$pi = 3.141592654;

$mio = 1.e6;

Arithmetic operators: +, −, ∗, /, %, may be used in conjunction
with assignments, i.e. + =, − =, ∗ =, / =, % =

Increment/decrement operators: ++, −−

Ulrich Bodenhofer, Mihaela Ionescu. Perl: A Short Introduction for Bioinformaticians 15

String Constants

Double quotes or single quotes may be used around strings:

’Hello world’

"Hello world"

The difference is that strings with single quotes are taken lit-
erally. Strings with double quotes are interpreted, i.e. variable
names and special characters are translated first

Common operator: concatenation operator ., may also be
used in conjunction with assignments .=

Ulrich Bodenhofer, Mihaela Ionescu. Perl: A Short Introduction for Bioinformaticians 16

Arrays

Arrays need not have a predefined size

Assignment operators work on individual elements (scalars) or with
whole lists, e.g.

@list = ("Zicke", "Zacke", 123);

The index starts with 0

Memory allocation is done on demand; Be aware: when you first
create the fifth element, the whole list from the first to the fifth element
is allocated (i.e. elements 0. . . 4)

Accessing single elements:

$elem = $list[2];

Accessing multiple elements is also possible, e.g. @list[0,1],
@list[1..3]

Ulrich Bodenhofer, Mihaela Ionescu. Perl: A Short Introduction for Bioinformaticians 17

Arrays (cont’d)

Assignments also work in the following way:

($firstelem, @remaining) = @list;

Special operators:

Assignment to scalar gives number of elements, e.g.
$no = @list;

Index of last element:
$index = $#list;

$elem = $list[$#list];

Note that lists are always flattened, e.g.

@list = ("a", "b", ("c", "d"));

is the same as

@list = ("a", "b", "c", "d");

Ulrich Bodenhofer, Mihaela Ionescu. Perl: A Short Introduction for Bioinformaticians 18

Arrays: Stacks and Queues

Special functions for adding/removing elements from arrays:

push appends (a) new element(s) at the end of the array, e.g.
push(@list, "tralala");

push(@list, ("hui", 1));

pop returns the last element and removes it from the list, e.g.
$elem = pop(@list);

shift returns the first element and removes it from the
$elem = shift(@list);

unshift inserts (a) new element(s) at the beginning of an array
unshift(@list, "tralala");

unshift(@list, ("hui", 1));

“Killing” an array: @list = ();

Ulrich Bodenhofer, Mihaela Ionescu. Perl: A Short Introduction for Bioinformaticians 19

Arrays: The splice Function

The splice function allows to remove a part of an array or to replace it
by another list.

Example with four arguments:
my @list = ("u", "v", "w", "x", "y", "z", "0", "1", "2");

splice(@list, 3, 4, ("a", "b"));

removes the four elements from no. 3 on (i.e. elements [3..6]) and
replaces them by two elements, "a" and "b". Finally, @list is (“u”,
“v”, “w”, “a”, “b”, “1”, “2”).
Example with three arguments:

my @list = ("u", "v", "w", "x", "y", "z", "0", "1", "2");

splice(@list, 3, 4);

removes the four elements from no. 3 onwards. Finally, @list is (“u”,
“v”, “w”, “1”, “2”).

Ulrich Bodenhofer, Mihaela Ionescu. Perl: A Short Introduction for Bioinformaticians 20

Arrays: The splice Function (cont’d)

Example with two arguments:
my @list = ("u", "v", "w", "x", "y", "z", "0", "1", "2");

splice(@list, 3);

removes all elements from no. 3 onwards. Finally, @list is (“u”, “v”,
“w”).

A negative offset −i as second argument means to start from the i-th
to the last element.

See also
http://perldoc.perl.org/functions/splice.html

http://perldoc.perl.org/functions/splice.html

Ulrich Bodenhofer, Mihaela Ionescu. Perl: A Short Introduction for Bioinformaticians 21

Hashes

Like arrays, hashes are collections of scalars, however, with the dif-
ference that they are not ordered; individual elements can be ac-
cessed by arbitrary scalars, so-called keys

Assignment operators work on individual elements (scalars), e.g.,

$color{"apple"} = "red";

or with whole lists, e.g.

%color = ("apple", "red", "banana",

"yellow");

which is equivalent to the more readable

%color = (apple => "red", banana =>

"yellow");

Ulrich Bodenhofer, Mihaela Ionescu. Perl: A Short Introduction for Bioinformaticians 22

Hashes (cont’d)

Memory allocation is done on demand

Special functions:

List of keys:
@keylist = keys %color;

List of values:
@vallist = values %color;

Deleting a hash entry:
delete $color{’apple’};

Checking whether a hash entry exists:
exists $color{’apple’}

Ulrich Bodenhofer, Mihaela Ionescu. Perl: A Short Introduction for Bioinformaticians 23

Control Structures: if and unless

Single if:

if (〈expression〉)
{

...

}

unless (expression negated):

unless (〈expression〉)
{

...

}

Ulrich Bodenhofer, Mihaela Ionescu. Perl: A Short Introduction for Bioinformaticians 24

Control Structures: if and unless (cont’d)

Note that the curly braces are obligatory; conditional statements,
however, can also be written in single lines:

... if (〈expression〉);

... unless (〈expression〉);

Ulrich Bodenhofer, Mihaela Ionescu. Perl: A Short Introduction for Bioinformaticians 25

Control Structures: if/else

if/else

if (〈expression〉)
{

...

}

else

{

...

}

Ulrich Bodenhofer, Mihaela Ionescu. Perl: A Short Introduction for Bioinformaticians 26

Control Structures: if/elsif/else

if/elsif/else:

if (〈expression1〉)
{

...

}

elsif (〈expression2〉)
{

...

}

else

{

...

}

Ulrich Bodenhofer, Mihaela Ionescu. Perl: A Short Introduction for Bioinformaticians 27

Control Structures: while and until

while:

while (〈expression〉)
{

...

}

until (expression negated):

until (〈expression〉)
{

...

}

Ulrich Bodenhofer, Mihaela Ionescu. Perl: A Short Introduction for Bioinformaticians 28

Control Structures: while and until
(cont’d)

Note that the curly braces are obligatory; while and until loops, how-
ever, can also be written in single lines:

... while (〈expression〉);

... until (〈expression〉);

Ulrich Bodenhofer, Mihaela Ionescu. Perl: A Short Introduction for Bioinformaticians 29

Control Structures: for and foreach (1/3)

for (the same as in C):

for (〈init〉; 〈condition〉; 〈increment〉)
{

...

}

foreach:

foreach $variable (@list)

{

...

}

Ulrich Bodenhofer, Mihaela Ionescu. Perl: A Short Introduction for Bioinformaticians 30

Control Structures: for and foreach (2/3)

foreach with fixed list:

foreach $key ("tralala", 3, 2, 1, 0)

{

...

}

Simple repetions:

foreach (1..15)

{

...

}

Ulrich Bodenhofer, Mihaela Ionescu. Perl: A Short Introduction for Bioinformaticians 31

Control Structures: for and foreach (3/3)

Note that the curly braces are obligatory; foreach loops, how-
ever, can also be written in single lines:

... foreach $variable (@list));

Not allowed for for loops!

Ulrich Bodenhofer, Mihaela Ionescu. Perl: A Short Introduction for Bioinformaticians 32

Expressions

Logical operators: &&, ||, !

Numeric comparison: ==, !=, <, >, <=, >=

String comparison: eq, ne, lt, gt, le, ge

Truth and falsehood:

0, ’0’ , ”, () and undef are interpreted as false if they are the
result of the evaluation of an expression, all other values are
interpreted as true

Ulrich Bodenhofer, Mihaela Ionescu. Perl: A Short Introduction for Bioinformaticians 33

Special Variables

$_: default input; many (if not most) built-in Perl functions use this vari-
able as default input if no argument is specified; also used as default
variable in foreach loops

@_: list of input arguments in sub-routines (see later)

@ARGV: list of command line arguments; NOTE: unlike in C, $ARGV[0]
is the first command line argument, not the program name

$0: the name of the program being executed (like argv[0] in C)

$1, $2, . . . : pattern matches (see later)

Note that there are a whole lot more special variables, but they are not

important for us at this point.

Ulrich Bodenhofer, Mihaela Ionescu. Perl: A Short Introduction for Bioinformaticians 34

Control Structures: sub-routines

Subroutines are simply written as follows:

sub 〈name〉
{

...

}

Recursions are allowed

Note that there is no typechecking, not even the number of argu-
ments needs to be fixed

Arguments are passed through the special list @_

Return values are optional and need to be passed with return

Ulrich Bodenhofer, Mihaela Ionescu. Perl: A Short Introduction for Bioinformaticians 35

Control Structures: sub-routines (cont’d)

Calls of sub-routines can be prefixed with &

Arguments need to be separated by commas and can (but
need not!) be embraced with parentheses; however, the use
of parentheses is highly recommended

Like in C, Perl uses call by value

Ulrich Bodenhofer, Mihaela Ionescu. Perl: A Short Introduction for Bioinformaticians 36

Control Structures: sub-routines example

#!/usr/bin/perl -w

use strict;

sub divide

{

my ($enumerator,$denominator) = @_;

return $enumerator/$denominator;

}

...

my $quotient = ÷(4, 2);

...

Ulrich Bodenhofer, Mihaela Ionescu. Perl: A Short Introduction for Bioinformaticians 37

Variable Scoping

Declaring/using a variable in the main program outside any block cre-
ates a global variable

Declarations inside a sub-routine create a local variable

Declaring/using a variable in a block creates a temporary variable

Use use strict to enforce declarations

Try to use temporary/local variables where possible and avoid the
use of global variables where possible

Local variables are destroyed/de-allocated as soon as the execution
of their scope (block/sub-routine) is finished (with the only exception
if there are references to this local variable)

Ulrich Bodenhofer, Mihaela Ionescu. Perl: A Short Introduction for Bioinformaticians 38

Contexts

Every operation that you invoke in a Perl script is evaluated in a
specific context. How the operator behaves may be determined by
the respective context. Note that the context is determined by how
the return value is used. There are two major contexts in Perl, the
scalar and the list context

Scalar context:

Numerical context

String context

Boolean context

List context

Ulrich Bodenhofer, Mihaela Ionescu. Perl: A Short Introduction for Bioinformaticians 39

References

A reference is a scalar that “points” to a scalar, list or hash.

A reference is created by prefixing with a backslash “\”, e.g.

$ref_to_scalar = \$scalar;

$ref_to_array = \@array;

$ref_to_hash = \%hash;

De-referencing, i.e. getting back the value, is done by prefixing the
reference with the appropriate prefix, e.g.

$scalar = ${$ref_to_scalar};

@array = @{$ref_to_array};

%hash = %{$ref_to_hash};

The curly braces may also be omitted when de-referencing.

Ulrich Bodenhofer, Mihaela Ionescu. Perl: A Short Introduction for Bioinformaticians 40

References (cont’d)

With references more complex data structures can be builded, e.g.
multidimensional arrays and hashes.

References are useful to realize call by reference in sub-routines.
This allows for passing references to arrays and hashes to sub-
routines.

Since Perl5 references are used for objectoriented programming in
order to access the methods (functions and sub-routines) and the
properties (variables) of an object.

Accessing items in de-referenced arrays and hashes
may be clumsy, therefore ${$ref_to_array}[2] and
${$ref_to_hash}{"key"} may also be written as
$ref_to_array->[2] and $ref_to_hash->{"key"}

Ulrich Bodenhofer, Mihaela Ionescu. Perl: A Short Introduction for Bioinformaticians 41

Matrices (1/2)

A matrix can be created by arrays which contain references to arrays,
e.g.

@row1 = (1, 2, 3);

@row2 = (4, 5, 6);

@row3 = (7, 8, 9);

@array = (\@row1, \@row2, \@row3);

print "$array[0]"; # prints 1 2 3

print "$array[1]->[2]"; # prints 6

This can be written more easily because perl automatically includes
an arrow operator between tow subsequent brackets, e.g.

print "$array[1][2]"; # prints 6

Ulrich Bodenhofer, Mihaela Ionescu. Perl: A Short Introduction for Bioinformaticians 42

Matrices (2/2)

Brackets create a reference to an anonymous array; by this trick,
matrices can be realized easily, e.g.

$array[0] = [1, 2, 3];

$array[1] = [4, 5, 6];

$array[2] = [7, 8, 9];

print "$array[1][2]"; # prints 6

More easily:

@array = ([1, 2, 3], [4, 5, 6], [7, 8, 9]);

This also works without a one-for-all assignment, only by assigning
values to individual elements, e.g.

$array[1][2] = 7;

Ulrich Bodenhofer, Mihaela Ionescu. Perl: A Short Introduction for Bioinformaticians 43

Hashes of Hashes

Curly braces create a reference to an anonymous hash; by this trick,
hashes of hashes can be realized relatively easily, e.g.

%hash = (j => {a=>1, b=>2, c=>3},

k => {d=>6, e=>5, f=>10});

This also works without a one-for-all assignment, only by assigning
values to individual elements, e.g.

$hash{j}{a} = 1;

$hash{k}{e} = 5;

Note that, in such a case, $hash{j} is not a hash, but a reference;
therefore, something like keys $hash{j} will not work. To get the
keys of the entries in the second level, one has to use something like

keys %{$hash{j}}

Ulrich Bodenhofer, Mihaela Ionescu. Perl: A Short Introduction for Bioinformaticians 44

A Note on the Lifetime of Local Variables

Usually, local variables are destroyed/de-allocated as soon as
the execution of their scope (block/sub-routine) is finished

This means that references to local variables would point to
nirvana after their scope’s execution is finished

That is not how it works; instead, Perl uses a reference counter
for each variable. A local variable remains existing until there
is no reference pointing to it anymore

Ulrich Bodenhofer, Mihaela Ionescu. Perl: A Short Introduction for Bioinformaticians 45

A Note on the Lifetime of Local Variables
(cont’d)

Consider the following example:
my @matrix;

for(my $i = 0; $i < 10; $i++)

{

my @line = (0..9);

$matrix[$i] = \@line;

}

The full 10 × 10 matrix can be used safely, even if the array’s lines
are lists created as local variables.

Ulrich Bodenhofer, Mihaela Ionescu. Perl: A Short Introduction for Bioinformaticians 46

File/Console IO (1/5)

Similar to other programming languages, Perl uses file handles

The open function is used to open a file handle:

open(INPUT, "< $filename1"); # open for reading

open(OUTPUT, "> $filename2"); # write new content

open(LOGFILE, ">> $filename2"); # append

open returns 0 on failure and a non-zero value on success

The following file handles are open and usable by default: STDIN,
STDOUT, STDERR

Ulrich Bodenhofer, Mihaela Ionescu. Perl: A Short Introduction for Bioinformaticians 47

File/Console IO (2/5)

File handles are closed with close, e.g.

close(INPUT);

close(OUTPUT);

close(LOGFILE);

close returns 0 on failure and a non-zero value on success

After writing to a file it is advisable to check whether the writing suc-
ceeded or not

Ulrich Bodenhofer, Mihaela Ionescu. Perl: A Short Introduction for Bioinformaticians 48

File/Console IO (3/5)

The print function can be used to write to a file, e.g.

print OUTPUT "Tralala";

Note the missing comma after the file handle!

In scalar context, the input operator <> reads one line from the spec-
ified file handle, e.g.

$line = <INPUT>;

reads one line from the file handle INPUT, whereas

$line = <STDIN>;

reads one line from the console input.

Note that, in the above examples, $line still contains the trailing
newline character; it can be removed with the chomp function, e.g.

chomp $line;

Ulrich Bodenhofer, Mihaela Ionescu. Perl: A Short Introduction for Bioinformaticians 49

File/Console IO (4/5)

In list context, the input operator <> reads the whole file at once, e.g.

@whole = <INPUT>;

reads the whole file INPUT line by line, where each line is one item
in the list @whole is one line

All lines in @whole still contain the the trailing newline characters;
they can be removed with the chomp function, e.g.

chomp @whole;

removes the trailing newline character from all lines in @whole

This way of reading a file may be very comfortable. Note, however,
that it requires reading the whole file into the memory at once, which
may be infeasible for larger files

Ulrich Bodenhofer, Mihaela Ionescu. Perl: A Short Introduction for Bioinformaticians 50

File/Console IO (5/5)

If the input operator <> is used without specifying a variable, the next
line is placed in the default variable $_

Of course, $_ still contains the trailing newline character; it can be
removed with the chomp function, this time without any arguments
(because chomp takes $_ by default anyway)

Example of a program fragment that reads input from the console
input line by line:

while (<STDIN>)

{

... # $_ contains last input line with newline

chomp;

... # $_ contains last input line without newline

}

Ulrich Bodenhofer, Mihaela Ionescu. Perl: A Short Introduction for Bioinformaticians 51

Regular Expressions: Basics (1/3)

Regular expressions are a powerful tool for string pattern matching
and replacement

Simple regular expressions are embraced with slashes /.../

Regular expression are most often used in conjunction with the two
operators =˜ and !˜; the former checks whether a pattern is found
and the latter checks whether the pattern is not present, e.g.

(’Hello world’ =˜ /Hell/) # evaluates to true

(’Hello world’ !˜ /Hell/) # evaluates to false

Ulrich Bodenhofer, Mihaela Ionescu. Perl: A Short Introduction for Bioinformaticians 52

Regular Expressions: Basics (2/3)

The examples on the previous slide show how to search for
certain constant string parts (“Hell” in these examples)

The search pattern can also (partly) be a variable

Search patterns, however, need not be string constants; there
is a host of meta-characters for constructing more advanced
searches: {}[]()ˆ$.|*+?

Using meta-characters as ordinary search expressions re-
quires prefixing them with a backslash

Ulrich Bodenhofer, Mihaela Ionescu. Perl: A Short Introduction for Bioinformaticians 53

Regular Expressions: Basics (3/3)

A regular expression can also be written synonymously as the
search operator m//, e.g. /world/ and m/world/ mean the
same thing. The m// operator has the advantage that other
characters for embracing the regular expression can also be
used (instead of only slashes), e.g. m!!, m{}

Ulrich Bodenhofer, Mihaela Ionescu. Perl: A Short Introduction for Bioinformaticians 54

Regular Expressions: Character Classes

Character classes can be defined between brackets; as a simple ex-
ample, /[bcr]at/ matches “bat”, “cat” and “rat”

Character classes may also be ranges in the present character cod-
ing (e.g. ASCII), e.g. /index[0-2]/ matches “index0”, “index1” and
“index2”; /[0-9a-fA-F]/ matches a hexadecimal digit

Using the meta-character ˆ in the first place of a character class
means negation, e.g. /[ˆ0-9]/ matches all non-numerical charac-
ters

Ulrich Bodenhofer, Mihaela Ionescu. Perl: A Short Introduction for Bioinformaticians 55

Regular Expressions: Predefined
Character Classes

\d: numerical character, short for [0-9]

\D: non-numerical character, short for [ˆ0-9], equivalently [ˆ\d]

\s: whitespace character, short for [\t\r\n\f]

\S: non-whitespace character, short for [ˆ \t\r\n\f], equivalently
[ˆ\s]

\w: word character (alphanumeric or _), short for [0-9a-zA-Z_]

\W: non-word character, short for [ˆ0-9a-zA-Z_], equivalently [ˆ\w]

The period . matches every character except the newline character \n

\b: matches a boundary between a word and a non-word character or be-
tween a non-word and word character; this is useful for checking whether a
match occurs at the beginning or end of a word

Ulrich Bodenhofer, Mihaela Ionescu. Perl: A Short Introduction for Bioinformaticians 56

Regular Expressions: Matching
Beginnings and Ends

The ˆ meta-character is used to require that the string begins with
the search pattern, e.g.

(’Hello world’ =˜ /ˆHell/) # matches

(’Hello world’ =˜ /ˆworld/) # does not match

The $ meta-character is used to require that the string ends with the
search pattern, e.g.

(’Hello world’ =˜ /Hell$/) # does not match

(’Hello world’ =˜ /rld$/) # matches

The two meta-characters ˆ and $ can also be used together

Ulrich Bodenhofer, Mihaela Ionescu. Perl: A Short Introduction for Bioinformaticians 57

Regular Expressions: Variants and
Grouping

The stroke character | is used as the so-called alternation meta-
character, e.g. /dog|cat|rat/ matches “dog”, “cat” and “rat”, and
so does /dog|[cr]at/

Parentheses that serve as so-called grouping meta-characters can
be used for grouping alternatives in parts of the search pattern, e.g.
/house(dog|cat)/ matches “housedog” and “housecat”

Alternatives may also be empty, e.g. /house(cat|)/ matches
“housecat” and “house”

Groupings may also be nested, e.g. /house(cat(s|)|)/ matches
“housecats”, “housecat” and “house”

Ulrich Bodenhofer, Mihaela Ionescu. Perl: A Short Introduction for Bioinformaticians 58

Regular Expressions: Quantifiers

So far, we were only able to search only for patterns with a relatively
fixed structure, but we were not able to deal with repetitions in a flex-
ible way; that is what quantifiers are good for

The following quantifiers are available:

? match 1 or 0 times

* match any number of times

+ match at least once

{n,m} match at least n and at most m times

{n,} match at least n times

{n} match exactly n times

Ulrich Bodenhofer, Mihaela Ionescu. Perl: A Short Introduction for Bioinformaticians 59

Regular Expressions: Quantifiers (cont’d)

Examples:

/0x[0-9a-fA-F]+/ matches hexadecimal numbers

/[\-\+]?\d+/ matches integer numbers

/[\-\+]?\d+\.\d+/ matches numbers

/\d{2}\.\d{2}\.\d{4}/ matches dates in DD.MM.YYYY format

Ulrich Bodenhofer, Mihaela Ionescu. Perl: A Short Introduction for Bioinformaticians 60

Regular Expressions: Extracting Matches
(1/3)

Parentheses also serve for a different purpose: they allow extracting
the relevant part of the string that matched; for that purpose, the
special variables $1, $2, etc. are employed

More specifically, Perl seeks the first match in the string and puts
those parts into the special variables $1, $2, etc. that match

Example: after evaluating

(’Hello you!’ =˜ /Hello (world|you.)/)

$1 has the value “you!”

Another example: after evaluating

(’AGCTTATATGCATATATAT’ =˜ /T(.T|.A)T(.T|A)/)

$1 has the value “TA” and $2 has the value “AT”

Ulrich Bodenhofer, Mihaela Ionescu. Perl: A Short Introduction for Bioinformaticians 61

Regular Expressions: Extracting Matches
(2/3)

Assigning an evaluation of a regular expression to a list stores the
matching parts in the list (i.e. the regular expression is evaluated in
list context)

Example: after

@list = (’Hello you!’ =˜ /Hello (world|you.)/)

@list has the value (“you!”) and after
@list = (’AGCTTATATGCATATATAT’ =˜ /T(.T|.A)T(.T|A)/)

@list has the value (“TA”, “AT”)

Ulrich Bodenhofer, Mihaela Ionescu. Perl: A Short Introduction for Bioinformaticians 62

Regular Expressions: Extracting Matches
(3/3)

Note that the extraction of matches discussed until now only con-
cerns the first match of the regular expression in the string — ex-
tracting all matches is a different story (see later)!

Example: after

$string = ’red = 0xFF0000, blue = 0x0000FF’;

@list = ($string =˜ /0x([0-9a-fA-F]{6})/)

@list will have the value (“FF0000”), but there is presently no way
to access the second match

Further note that quantifiers are greedy in the sense that they try to
match as many items as possible; example: after

(’My homepage’ =˜ /<(.*)>/)

$1 has the value “B>My homepage</B”

Ulrich Bodenhofer, Mihaela Ionescu. Perl: A Short Introduction for Bioinformaticians 63

Regular Expressions: Quantifiers
Revisited

Suffixing quantifiers by “?” makes them non-greedy

?? match 1 or 0 times, try 0 first

*? match any number of times, but as few times as possible

+? match at least once, but as few times as possible

{n,m}? match at least n and at most m times, but as few times as
possible

{n,}? match at least n times, but as few times as possible

{n}? is allowed, but obviously it has the same meaning as {n}

Example: after

(’My homepage’ =˜ /<(.*?)>/)

$1 has the value “B”

Ulrich Bodenhofer, Mihaela Ionescu. Perl: A Short Introduction for Bioinformaticians 64

Regular Expressions: Modifiers

A modifier can be appended to a regular expression to alter its inter-
pretation; the following are the most important modifiers:

i case-insensitive matching

m treat string as collection of individual lines; interpret \n as newline
character, ˆ and $ match individual lines

s treat string as one line; . meta-character also matches \n

x whitespaces and comments inside regular expression are not in-
terpreted

g allow extraction of all occurrences (see later)

Example: /a/i matches all strings containing ‘a’ or ‘A’

Ulrich Bodenhofer, Mihaela Ionescu. Perl: A Short Introduction for Bioinformaticians 65

Regular Expressions: Extracting All
Matches (1/3)

If the g modifier is specified, Perl internally keeps track of the string
position

If a regular expression is applied to the same string again, the search
starts at that position where the last search stopped

This can be repeated until the last search has been found

Before the regular expression is evaluated first, the string position is
undef

If the string is changed between the regular expression is applied,
the position is also set to undef

In scalar context, a regular expression with g modifier returns false if
the pattern has not been found and true if it has been found

Ulrich Bodenhofer, Mihaela Ionescu. Perl: A Short Introduction for Bioinformaticians 66

Regular Expressions: Extracting All
Matches (2/3)

Example:

while ($string =˜ /0x([0-9a-fA-F]+)/g)

{

print "$1\n";

}

This loop extracts all hecadecimal numbers from $string and prints
them line by line without the “0x” prefix

For special purposes, the actual position can be determined with the
function pos; however, note that, after each occurrence, the position
points to the next character after the previous match (if counting of
characters starts at 0)!

Ulrich Bodenhofer, Mihaela Ionescu. Perl: A Short Introduction for Bioinformaticians 67

Regular Expressions: Extracting All
Matches (3/3)

In list context, the g modifier can be used to extract all matches and
store them in a list

If there are no groupings, all matches of the whole regular expression
are placed in the list

If there are nested groupings, all matches of all groupings are placed
in the list in the order in which they are matched, where matches of
outer groups precede matches of inner groups

Example: after

@list = ("AGC GAT TGA GAG" =˜ /(G(A(T|G)))/g);

@list has the value (“GAT”, “AT”, “T”, ‘GAG”, “AG”, “G”)

Ulrich Bodenhofer, Mihaela Ionescu. Perl: A Short Introduction for Bioinformaticians 68

Regular Expressions: Replacements

Regular expressions also facilitate powerful replacement
mechanisms; this is accomplished with the s/// operator

The s/// operator returns the number of replacements

Example: after

$sequence = "AGCGTAGTATAGAG";

$sequence =˜ s/T/U/;

$sequence has the value “AGCGUAGTATAGAG”

Ulrich Bodenhofer, Mihaela Ionescu. Perl: A Short Introduction for Bioinformaticians 69

Regular Expressions: Replacements
(cont’d)

Modifiers as introduced above work analogously; not surprisingly, the
g modifiers allows to replace all occurrences of the search string, e.g.
after

$sequence = "AGCGTAGTATAGAG";

$sequence =˜ s/T/U/g;

$sequence has the value “AGCGUAGUAUAGAG”

The special variables $1, $2, $3, etc. allow very tricky replacements,
e.g. with

s/(\d{2})\.(\d{2})\.(\d{4})/$3\-$2\-$1/g

one can convert all dates from DD.MM.YYYY format to YYYY-MM-
DD format

Ulrich Bodenhofer, Mihaela Ionescu. Perl: A Short Introduction for Bioinformaticians 70

Regular Expressions: Transliteral
Replacements

The operators tr/// and y/// (both are equivalent) are available
to perform so-called transliteral replacements, i.e. the translation of
single characters according to a replacement list

Example: tr/AB/BC/, at once, replaces all “A”s with “B”s and all
“B”s with “C”s

Note that this functionality cannot be realized easily with the replace-
ment operator s///

It is also possible to specify ranges, e.g. tr/a-f/0-5/

Ulrich Bodenhofer, Mihaela Ionescu. Perl: A Short Introduction for Bioinformaticians 71

Regular Expressions: The split

Function

The highly useful split function can be used to split a string into
parts that are separated by certain characters or patterns; it returns
a list of split strings

Example: after

@fragments = split(/TGA/, "GCATGACGATGATATA");

@fragments has the value (“GCA”, “CGA”, “TATA”)

As obvious from the above example, the first argument is a regular
expression at which the string is split; note that the split pattern is
omitted in the split list

Nor surprisingly, there is no restriction to fixed search patterns, e.g.

split(/\s+/, $string);

splits $string into single words

Ulrich Bodenhofer, Mihaela Ionescu. Perl: A Short Introduction for Bioinformaticians 72

Regular Expressions: The split

Function (cont’d)

The split function has an optional third argument with which the max-
imal number of splits can be controlled

Example: after

@fragments = split(/TGA/, "GCATGACGATGATATA", 2);

@fragments has the value (“GCA”, “CGATGATATA”)

The join function is the converse function, i.e. it assembles a list
of strings into one large string, where a separating character can be
inserted; e.g. after

@list = ("tri", "tra", "tralala");

$string = join(’:’, @list);

$string has the value “tri:tra:tralala”.

Ulrich Bodenhofer, Mihaela Ionescu. Perl: A Short Introduction for Bioinformaticians 73

Useful Functions Not Previously
Mentioned

abs, atan2, cos, exp, log, sin, sqrt: usual mathematical functions

int: converts a floating point number to an integer number (truncates!)

printf: allows more flexibility for formatted output than print

length: get the length of a string

reverse: reverse a string or array

sort: sort an array

system: run external program

time: get system time (mostly the number of seconds since Jan 1, 1970)

localtime: convert system time into the actual local time

Ulrich Bodenhofer, Mihaela Ionescu. Perl: A Short Introduction for Bioinformaticians 74

Programming Style (1/2)

Programming styles deal with improving the readability and
therefore the maintainability of the program

Declare the variables at the beginning of the sub-function,
block or program. You should clearly separate the declaration
part from the rest

In order to avoid unnecessary errors declare all your variables
before using them. By using use strict; you are forced to
do so

For a detailed warning report use the use warnings;

pragma

Ulrich Bodenhofer, Mihaela Ionescu. Perl: A Short Introduction for Bioinformaticians 75

Programming Style (2/2)

Avoid the use of global variables where possible

Put repetitive code segments into sub-routines

Try to find meaningful names for the variables and sub-routines

Try not to use non-local variables in sub-routines. Control the
sub-routine by the input parameters.

Comments!

Ulrich Bodenhofer, Mihaela Ionescu. Perl: A Short Introduction for Bioinformaticians 76

Final Remarks

The present slides are only an overview tutorial that concen-
trates on elements of Perl that are useful for small bioinformat-
ics applications

Perl actually offers a lot more possibilities

For more details, discover the world of Perl at
http://www.perl.org/

Theory is good, but not sufficient — a programming language
can only be learned by experience

http://www.perl.org/

Ulrich Bodenhofer, Mihaela Ionescu. Perl: A Short Introduction for Bioinformaticians 77

References and Further Reading

1. Robert Kirrily: perlintro — a brief introduction and overview of Perl
http://perldoc.perl.org/perlintro.html

2. perlsyn — Perl syntax (author unknown)
http://perldoc.perl.org/perlsyn.html

3. Mark Kvale: perlretut — Perl regular expressions tutorial
http://perldoc.perl.org/perlretut.html

4. Ian Truskett: perlreref — Perl regular expressions reference
http://perldoc.perl.org/perlreref.html

5. Perl Functions A–Z (multiple unknown authors)
http://perldoc.perl.org/index-functions.html

http://perldoc.perl.org/perlintro.html
http://perldoc.perl.org/perlsyn.html
http://perldoc.perl.org/perlretut.html
http://perldoc.perl.org/perlreref.html
http://perldoc.perl.org/index-functions.html

Ulrich Bodenhofer, Mihaela Ionescu. Perl: A Short Introduction for Bioinformaticians 78

References and Further Reading (cont’d)

1. Rex A. Dwyer: Genomic Perl: From Bioinformatics Basics to
Working Code. Cambridge University Press, 2003.

2. Martin Kästner: Perl fürs Web. Galileo Press, Bonn, 2003.

	Perl
	What is Perl?
	Perl's Advantages
	Perl's Disadvantages
	Use Perl for…
	Do Not Use Perl for…
	Why Perl in Bioinformatics
	What Else is Perl Used For?
	Setting Up Your Perl System
	Documentation
	First Steps
	Data --- Variables
	Scalars
	Numbers
	String Constants
	Arrays
	Arrays (cont'd)
	Arrays: Stacks and Queues
	Arrays: The splice Function
	Arrays: The splice Function (cont'd)
	Hashes
	Hashes (cont'd)
	Control Structures: if and unless
	Control Structures: if and unless (cont'd)
	Control Structures: if/else
	Control Structures: if/elsif/else
	Control Structures: while and until
	Control Structures: while and until (cont'd)
	Control Structures: for and foreach (1/3)
	Control Structures: for and foreach (2/3)
	Control Structures: for and foreach (3/3)
	Expressions
	Special Variables
	Control Structures: sub-routines
	Control Structures: sub-routines (cont'd)
	Control Structures: sub-routines example
	Variable Scoping
	Contexts
	References
	References (cont'd)
	Matrices (1/2)
	Matrices (2/2)
	Hashes of Hashes
	name locallifetimeXYZA Note on the Lifetime of Local Variables
	A Note on the Lifetime of Local Variables (cont'd)
	File/Console IO (1/5)
	File/Console IO (2/5)
	File/Console IO (3/5)
	File/Console IO (4/5)
	File/Console IO (5/5)
	Regular Expressions: Basics (1/3)
	Regular Expressions: Basics (2/3)
	Regular Expressions: Basics (3/3)
	Regular Expressions: Character Classes
	Regular Expressions: Predefined Character Classes
	Regular Expressions: Matching Beginnings and Ends
	Regular Expressions: Variants and Grouping
	Regular Expressions: Quantifiers
	Regular Expressions: Quantifiers (cont'd)
	Regular Expressions: Extracting Matches (1/3)
	Regular Expressions: Extracting Matches (2/3)
	Regular Expressions: Extracting Matches (3/3)
	Regular Expressions: Quantifiers Revisited
	Regular Expressions: Modifiers
	Regular Expressions: Extracting All Matches (1/3)
	Regular Expressions: Extracting All Matches (2/3)
	Regular Expressions: Extracting All Matches (3/3)
	Regular Expressions: Replacements
	Regular Expressions: Replacements (cont'd)
	Regular Expressions: Transliteral Replacements
	Regular Expressions: The split Function
	Regular Expressions: The split Function (cont'd)
	Useful Functions Not Previously Mentioned
	Programming Style (1/2)
	Programming Style (2/2)
	Final Remarks
	References and Further Reading
	References and Further Reading (cont'd)

