
Institute of Bioinformatics

Johannes Kepler University Linz

Unit 1
Introduction to Machine Learning



Unit 1: Introduction to Machine Learning 2

How to Solve These Tasks?



Unit 1: Introduction to Machine Learning 2

How to Solve These Tasks?

Finding solutions of a system of equations



Unit 1: Introduction to Machine Learning 2

How to Solve These Tasks?

Finding solutions of a system of equations

Prediction of trajectory of a space shuttle



Unit 1: Introduction to Machine Learning 2

How to Solve These Tasks?

Finding solutions of a system of equations

Prediction of trajectory of a space shuttle

Diagnosis whether a patient has a certain disease



Unit 1: Introduction to Machine Learning 2

How to Solve These Tasks?

Finding solutions of a system of equations

Prediction of trajectory of a space shuttle

Diagnosis whether a patient has a certain disease

Prediction of outcome of election



Unit 1: Introduction to Machine Learning 2

How to Solve These Tasks?

Finding solutions of a system of equations

Prediction of trajectory of a space shuttle

Diagnosis whether a patient has a certain disease

Prediction of outcome of election

Recognition of handwritten characters



Unit 1: Introduction to Machine Learning 2

How to Solve These Tasks?

Finding solutions of a system of equations

Prediction of trajectory of a space shuttle

Diagnosis whether a patient has a certain disease

Prediction of outcome of election

Recognition of handwritten characters

Identification of customer target groups



Unit 1: Introduction to Machine Learning 2

How to Solve These Tasks?

Finding solutions of a system of equations

Prediction of trajectory of a space shuttle

Diagnosis whether a patient has a certain disease

Prediction of outcome of election

Recognition of handwritten characters

Identification of customer target groups

Prediction of function of protein from its amino acid sequence
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Explicit Models

Traditional disciplines like physics, chemistry, and biology are
usually aiming at exact explicit models, i.e. to know how (and
why) things work in a particular way; then a solution to a new
problem can be found deductively using explicit knowledge

That goal, however, is sometimes too difficult to achieve; rea-
sons may be computational complexity, insufficient knowledge,
insufficient information, etc.
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Machine Learning = Inductive Learning

Machine learning tries to elicit models/knowledge from previ-
ously observed data with the following two main goals:

1. Getting insight

2. Being able to predict future outcomes

Putting it simple, machine learning is about learning from data
(often called inductive learning)
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What Do We See Here?
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And Here?
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... ... ... ... ... ... ...
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Supervised vs. Unsupervised Machine
Learning

Supervised ML: an explicit target (output) value is given for each
(input) data item; the goal is to identify the relationship between
input and output

Unsupervised ML: no target value is given, the goal is to identify
structure in the data
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Supervised Machine Learning

Classification: the output value is a class label

Regression: the output value is numerical

Supervised ML is sometimes called predictive modeling. This is
due to the fact that the goal is most often to predict the output value
for future input values.
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Unsupervised Machine Learning

Projection methods: down-projection of data to lower-
dimensional space in order to concentrate on the essence of
the data

Clustering: grouping of similar data objects

Density estimation: estimate the probability distribution of the
data

Generative model: building a model that produces data that are
distributed as the observed data
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Miscellaneous Topics

Reinforcement learning: learning by feedback from the environ-
ment in an online process

Feature extraction: computation of features from data prior to
machine learning (e.g. signal and image processing)

Feature selection: selection of those features that are rele-
vant/sufficient to solve a given learning task

Feature construction: construction of new features as part of the
learning process
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Terminology

Model: the specific relationship/representation we are aiming at

Model class: the class of models in which we search for the model

Parameters: representations of concrete models inside the given
model class

Model selection/training: process of finding that model from the
model class that fits/explains the observed data in the best way

Hyperparameters: parameters controlling the model complexity
or the training procedure
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Prior Knowledge
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Basic Data Analysis Workflow

Question/Task + Data

Preprocessing

Choose Features

Choose Model Class

Train Model

Evaluate Model

Final Model + Answer

Prior Knowledge

Question/Task + Data

Preprocessing

Choose Features

Choose Model Class

Train Model

Evaluate Model

FAIL

Prior Knowledge
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Some Words of Enthusiasm

Machine learning methods are able to solve some tasks for
which explicit models will never exist

Machine learning methods have become standard tools in a
variety of disciplines (e.g. signal and image processing, bioin-
formatics)
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But . . . Some Words of Caution

Machine learning is not a universal remedy

Quality of models is depending on quality and quantity of data

What cannot be measured/observed can never be identified by
machine learning

Machine learning complements explicit/deductive models in-
stead of replacing them

Machine learning is often applied in a naive way
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Goals of This Course

To understand the underlying principles of machine learning

To understand what can go wrong in machine learning

To be able to evaluate the quality of a model created by ma-
chine learning

To gain deeper insight to the fields of support vector machines
and neural networks
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Introductory Example: Fish Recognition

Example borrowed from
R. O. Duda, P. E. Hart, and D. G. Stork. Pattern Classification. Sec-
ond edition. John Wiley & Sons, 2001. ISBN 0-471-05669-3.

Automated system to sort fish in a fish-packing company:
salmons must be distinguished from sea bass optically

Given: a set of pictures with known fish, the training set

Goal: automatically distinguish between salmons and sea
bass for future pictures
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Two Sample Images

Salmon: Sea bass:
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Two Sample Images

Salmon: Sea bass:

How can we distinguish these two kinds of fish visually?
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Basic Workflow

Camera image

Preprocessing

Feature Extraction

Classification
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Basic Workflow

Camera image

Preprocessing

Feature Extraction

Classification

Salmon Sea Bass

Preprocessing: contrast and
brightness correction, seg-
mentation, alignment

Features:

1. Length

2. Brightness
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Using One Feature
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Questions:

1. Which is the better feature?

2. Where should we put the threshold?
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Using Two Features:
Linear Separation
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Using Two Features:
Highly Nonlinear Separation
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Using Two Features:
Moderately Nonlinear Separation
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Questions

Which is the best result and why?

What is the best way to measure the quality of a classifier?

Which methods for constructing classifiers are available?

Is there a theoretical basis (instead of a purely intuitive one) to
answer these questions?
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Questions

Which is the best result and why?

What is the best way to measure the quality of a classifier?

Which methods for constructing classifiers are available?

Is there a theoretical basis (instead of a purely intuitive one) to
answer these questions?

These questions will be the point of departure of this course.
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