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Motivation

So far, we have not discussed where a model g(.;w) may come
from.

Most of the time, we have assumed that the model (repre-
sented by its parameter vector w) is determined from the train-
ing data Z and that the resulting generalization error is esti-
mated by considering a test set of withheld samples (or by
cross-validation).
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Questions

If a model explains the training samples well, does it also gen-
eralize well to future examples?

Do more training data lead to better models?

How can we ensure that model selection/training minimizes the
generalization error and not only the training error?
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Empirical Risk Minimization (ERM)

Minimizing the training error is called empirical risk minimization.

Given a training set Zl, empirical risk minimization is concerned
with finding a parameter setting w such that the empirical risk

Remp(g(.;w),Zl) =
1

l
·

l∑
i=1

L(yi, g(xi;w))

is minimal (or at least as small as possible).
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Underfitting and Overfitting

Underfitting: our model is too coarse to fit the data (neither train-
ing nor test data); this is usually the result of too restrictive
model assumptions (i.e. too low complexity of model).

Overfitting: our model works very well on training data, but gener-
alizes poorly to future/test data; this is usually the result of too
high model complexity.
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Notorious Situation in Practice
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Questions/Issues

What are the sources/reasons for under-/overfitting and how to
they relate to complexity?

It is somehow clear what “complexity” means intuitively (flexi-
bility of model class, number of degrees of freedom, etc), but
how can we actually define it more formally and use it to de-
duce useful results?

It is somehow clear that empirical risk minimization is problem-
atic if we do not take model complexity into account, but how?
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Bias-Variance Decomposition for
Quadratic Loss (1/3)

We are interested in the expected prediction error for a given x0 ∈
X (assuming that the size of the training set is fixed to l examples):

EPE(x0) = Ey|x0,Zl

(
Lq(y, g(x0;w(Zl)))

)
= Ey|x0,Zl

(
(y − g(x0;w(Zl)))

2
)

Since y | x0 and the selection of training samples are independent
(or at least this should be assumed to be the case), we can infer
the following:

EPE(x0) = Ey|x0

(
EZl

(
(y − g(x0;w(Zl)))

2
))
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Bias-Variance Decomposition for
Quadratic Loss (2/3)

Using basic properties of expected values, we can infer the follow-
ing representation:

EPE(x0) =Var(y | x0)

+
(

E(y | x0)− EZl

(
g(x0;w(Zl))

))2

+ EZl

((
g(x0;w(Zl))− EZl

(g(x0;w(Zl)))
)2)
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Bias-Variance Decomposition for
Quadratic Loss (3/3)

1. The first term, Var(y | x0) is nothing else but the average amount to
which the label y varies at x0. This is often termed unavoidable error.

2. The second term,

bias2 =
(

E(y | x0)− EZl

(
g(x0;w(Zl))

))2
measures how close the model in average approximates the average
target y at x0; thus, it is nothing else but the squared bias.

3. The third term,

variance = EZl

((
g(x0;w(Zl))− EZl

(g(x0;w(Zl)))
)2)

is nothing else but the variance of models at x0, i.e.
VarZl

(g(x0;w(Zl))).
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Bias-Variance Decomposition for
Quadratic Loss: Simplifications

Assume that y(x) = f(x) + ε holds, where f is a deterministic
function and ε is a random variable that has mean zero and
variance σ2

ε and is independent of x. Then we can infer the
following:

Var(y | x0) = σ2
ε ,

E(y | x0) = f(x0),

bias2 =
(
f(x0)− EZl

(
g(x0;w(Zl))

))2
.

In the noise-free case (σε = 0), consequently, we get Var(y |
x0) = 0, i.e. the unavoidable error vanishes and the rest stays
the same.
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Bias-Variance Decomposition for Binary
Classification

Now assume that we are given a binary classification task, i.e. y ∈
{−1,+1} and g(x;w) ∈ {−1,+1}. Since Lzo = 1

4Lq holds, we can
infer the following:

EPE(x0) = Ey|x0,Zl

(
Lzo(y, g(x0;w))

)
=

1

4
· Ey|x0

(
EZl

(
(y − g(x0;w(Zl)))

2
))

=
1

4
·
(
Var(y | x0) + bias2 + variance

)
Note that, in these calculations, g is the final binary classification
function and not an arbitrary discriminant function. If the latter is
the case, the above representation is not valid! (see literature)
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Bias-Variance Decomposition for Binary
Classification (cont’d)

With the notations pR = p(y = +1 | x0) and

pO = pZl
(g(x0;w(Zl)) = +1),

we can infer further

Var(y | x0) = 4 · pR · (1− pR),

bias2 = 4 · (pR − pO)2,

variance = 4 · pO · (1− pO),

hence, we obtain

EPE(x0) = pR · (1− pR)︸ ︷︷ ︸
unavoidable error

+ (pR − pO)2︸ ︷︷ ︸
squared bias

+ pO · (1− pO)︸ ︷︷ ︸
variance

.
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The Bias-Variance Trade-Off

It seems intuitively reasonable that the bias decreases with
model complexity.
Rationale: the more degrees of freedom we allow, the easier
we can fit the actual function/relationship.

It also seems intuitively clear that the variance increases with
model complexity.
Rationale: the more degrees of freedom we allow, the higher
the risk to fit to noise.

This is usually referred to as the bias-variance trade-off. sometimes
even bias-variance “dilemma”.
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The Bias-Variance Trade-Off (cont’d)
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The Bias-Variance Trade-Off (cont’d)
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The Bias-Variance Trade-Off (cont’d)
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The Bias-Variance Trade-Off (cont’d)
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The Bias-Variance Trade-Off (cont’d)
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The Bias-Variance Trade-Off (cont’d)
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Bias-Variance Decomposition: Summary

We can state that minimizing the generalization error (learning)
is concerned with optimizing bias and variance simultaneously.

Underfitting = high bias = too simple model

Overfitting = high variance = too complex model

It is clear that empirical risk minimization itself does not in-
clude any mechanism to assess bias and variance indepen-
dently (how should it?); more specifically, if we do not care
about model complexity (in particular, if we allow highly or even
arbitrarily complex models), ERM has a high risk to produce
over-fitted models.
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Fundamental Question

Does the empirical risk converge to the real risk if we increase
the number of training samples?

If so, we could be certain that ERM produces better and better
models for increasing sizes of the training set, right?

If not, ERM seems to have a major problem, because it opti-
mizes according to a wrong quality measure (as the “real” gen-
eralization risk is our target).

This question is central in Vladimir N. Vapnik’s Statistical
Learning Theory, the most common concepts and results of
which we will address now.
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Complexity vs. Estimating Empirical Risk:
A Simple Setting

Assume that our training algorithm has to choose from a finite set
of models {g1, . . . , gM}, i.e. complexity is limited. Further assume
L(., .) ∈ [0, c] (in the case of zero-one loss, this holds for c = 1).

Theorem. The inequality

|R(g)−Remp(g,Zl)| ≤ ε(l,M, δ)

holds for all g ∈ {g1, . . . , gM} with a probability of at least 1 − δ over all
possible training sets with l elements, where

ε(l,M, δ) = c ·
√

lnM + ln(2/δ)

2l
.
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Complexity vs. Estimating Empirical Risk:
A Simple Setting (cont’d)

Definition. Let (Xi)i∈N be a sequence of random variables. We
say that the sequence (Xi)i∈N converges to a value x in probability
if

lim
i→∞

p(|Xi − x| > ε) = 0

for all ε > 0. We denote this with Xi
P−−−→

i→∞
x.

Corollary. For all g ∈ {g1, . . . , gM}, we have

Remp(g,Zl)
P−−−→

l→∞
R(g),

i.e. the empirical risk uniformly converges to the actual risk in prob-
ability.
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Finite Sets of Models?

There are situations in practice, where model classes are finite, e.g.
if all input variables are categorical or discretized (e.g. as in some
decision tree architectures or other rule-based approaches).

The more common case, however, is that the model class is infinite
(in particular, for support vector machines and neural networks).

The above results state that the empirical risk can only be a good
estimate of the generalization error on a finite set of functions, but
it cannot necessarily estimate the generalization error for infinitely
many functions simultaneously, not even if we can enlarge the train-
ing set arbitrarily.
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Consistency of ERM (1/4)

We already know that empirical risk minimization is concerned with mini-
mizing the empirical error, which means that, for a given training set Zl, it
determines a parameter setting ŵ(Zl) such that

Remp(g(.; ŵ(Zl)),Zl) = min
w

Remp(g(.;w),Zl) .

We may also write this in the following way:

ŵ(Zl) = arg min
w

Remp(g(.;w),Zl)



Unit 3: Statistical Learning Theory 134

Consistency of ERM (1/4)

We already know that empirical risk minimization is concerned with mini-
mizing the empirical error, which means that, for a given training set Zl, it
determines a parameter setting ŵ(Zl) such that

Remp(g(.; ŵ(Zl)),Zl) = min
w

Remp(g(.;w),Zl) .

We may also write this in the following way:

ŵ(Zl) = arg min
w

Remp(g(.;w),Zl)

But what do we actually want to optimize? Obviously, the objective value
we want to minimize is

R(g(.;w)) .
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Consistency of ERM (2/4)

Definition. We say that empirical risk minimization is consistent for
a given model class g(.; .) (and a given learning task) if the following
two convergence statements hold:

R(g(.; ŵ(Zl)))
P−−−→

l→∞
inf
w
R(g(.;w))

Remp(g(.; ŵ(Zl)),Zl)
P−−−→

l→∞
inf
w
R(g(.;w))

In a weak sense, the first assertion means that our sequence of
solutions

(
ŵ(Zl)

)
l→∞ actually converges to an optimal solution

arg min
w

R(g(.;w)). The second one states that the empirical risk

observed for ŵ(Zl) converges to the minimal risk for l→∞.
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Consistency of ERM (3/4)

It is trivial that the consistency of ERM does not hold in general.
Consider, for instance, 1-nearest neighbor classification. The em-
pirical risk

Remp(g1-NN(.;Zl),Zl)

is always zero, no matter what the values R(g1-NN(.;Zl)) are and
no matter what

inf
ZT⊆Z

ZT finite

R(g1-NN(.;ZT )),

the risk of the best 1-nearest neighbor solution, is.
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Consistency of ERM (4/4)

inf
w

R(g(.;w))

Remp(g(.; ŵ(Zl)),Zl)

R(g(.; ŵ(Zl)))

l
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Strict Consistency of ERM

Definition. We say that empirical risk minimization is strictly con-
sistent for a given model class g(.; .) (and a given learning task) if
the convergence

inf
w∈Λg(c)

Remp(g(.;w),Zl)
P−−−→

l→∞
inf

w∈Λg(c)
R(g(.;w))

holds for every c ≥ 0, where

Λg(c) = {w | R(g(.;w)) ≥ c}.

Lemma. Strict consistency implies consistency.
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Agenda

Question: Under which condition(s) can we guarantee that
ERM is (strictly) consistent?

ERM is strictly consistent for finite model classes (see above),
but that does not help too much.

We have seen already (even though only intuitively) that the
complexity of the model class is a major factor.
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Shattering Coefficient

Let us assume from here on, that we are dealing with binary classi-
fication, i.e. g(.; .) ∈ {−1,+1}. For convenience, we will sometimes
identify the model class g(.; .) with the set of functions it contains, i.e.
g = {g(.;w) | w}.

Definition. Given a model class g(.; .) and a family of l sample inputs
(x1, . . . ,xl) ∈ X l, the shattering coefficient of g for (x1, . . . ,xl) is defined
as

Ng(x1, . . . ,xl) =
∣∣{(g(x1;w), . . . , g(xl;w)) | w

}∣∣,
i.e. the number of possible labelings of {x1, . . . ,xl} that the model class

g(.; .) is able to realize (for any parameter setting w).
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Shattering Coefficient (cont’d)

Obviously, if Ng(x1, . . . ,xl) = 2l, g(.; .) can model any labeling of the
inputs {x1, . . . ,xl}. In this case, we say that g(.; .) shatters {x1, . . . ,xl}.

Example: Consider X = R2 and

glin((x1, x2); (w1, w2, b)) =

1 if w1x1 + w2x2 ≥ b,
−1 otherwise,

i.e. linear separation. Then, for any three points x1,x2,x3 that are not

collinear, we have Nglin(x
1,x2,x3) = 8. For four points x1, . . . ,x4 ar-

ranged as a general tetragon, we obtain Nglin(x
1, . . . ,x4) = 14.
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Shattering Coefficient Example #1
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Shattering Coefficient Example #2
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Entropy and Annealed Entropy

Definition. Given a model class g(.; .) and an input distribution
p(x), the entropy of the model class g(.; .) for a given number of
points l is defined as

Hg(l) = E(x1,...,xl)

(
lnNg(x1, . . . ,xl)

)
.

The annealed entropy of the model class g(.; .) for a given number
of points l is defined as

Hann
g (l) = ln E(x1,...,xl)

(
Ng(x1, . . . ,xl)

)
.
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Growth Function

Definition. Given a model class g(.; .), the growth function of the
model class g(.; .) for a given number of points l is defined as

Gg(l) = ln max
(x1,...,xl)

Ng(x1, . . . ,xl).

Proposition. The following inequalities always hold:

Hg(l) ≤ Hann
g (l) ≤ Gg(l)
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Examples

Consider again X = R2. If we assume that p(x) is some uniform
distribution over a non-degenerate area Ω ⊂ R2, we can infer

Hglin(3) = Hann
glin

(3) = Gglin(3) = ln 8 = 3 ln 2.

Note that the equalitiesHglin(3) = Hann
glin

(3) = 3 ln 2 hold even though
there are configurations (when the three points are collinear or if
two or more points coincide), for which Nglin(x1,x2,x3) < 8 holds.
Since these are a null set (having probability zero) in the set of pos-
sible triples {(x1,x2,x3)}, they do not influence the expectations in
the definitions of the entropy and annealed entropy.
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Examples (cont’d)

With the same assumptions as above, we obtain the following:

Hglin(4)
!

= Hann
glin

(4)
!

= Gglin(4) = ln 14︸︷︷︸
≈2.64

< 4 ln 2︸ ︷︷ ︸
≈2.77

If the model class consists of a finite set of classification functions
{g(.; 1), . . . , g(.;M)}, then we trivially have that the inequalities

Hg(l)

Hann
g (l)

Gg(l)

 ≤ min(lnM, l ln 2) ≤ lnM

hold for all l ∈ N.
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Consistency of ERM vs. Complexity (1/3)

Theorem (Sufficient Condition for Consistency of ERM). Con-
sider a given learning task and a model class g(.; .). If

lim
l→∞

Hg(l)

l
= 0

holds, then ERM is consistent.

Corollary. The ERM procedure to select the best classification
function from a finite set of functions according to the empirical
error is consistent.
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Consistency of ERM vs. Complexity (2/3)

Definition. We say that ERM procedure has a fast (exponential) rate
of convergence if there exist positive real constants b, c such that, for all
ε > 0, there exists an l0 ∈ N such that the following holds for all l ≥ l0:

p(sup
w
|R(g(.;w))−Remp(g(.;w),Zl)| > ε) ≤ b exp(−cε2l).

Theorem (Sufficient Condition for Consistency of ERM and Fast Rate
of Convergence for Given Distribution). Consider a given learning task
and a model class g(.; .). If

lim
l→∞

Hann
g (l)

l
= 0

holds, then ERM is consistent and has a fast rate of convergence.
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Consistency of ERM vs. Complexity (3/3)

Theorem (Characterization of Consistency of ERM and Fast
Rate of Convergence for Any Distribution). Consider a given
learning task and a model class g(.; .). Then ERM is consistent
and has a fast rate of convergence if and only if the following holds:

lim
l→∞

Gg(l)

l
= 0

Note that, in the above theorem, the distribution p(x) does not
occur. Hence, the growth function allows us to draw conclusions
about the consistency and fast convergence of ERM for a given
model class independently of the learning task.
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The Vapnik-Chervonenkis (VC) Dimension

Definition. The Vapnik-Chervonenkis dimension (VC dimension)
of a model class g(.; .) is defined as

dvc(g) = sup
{
l ∈ N | Gg(l) = l ln 2

}
.

From the definition of the growth function, it is easy to see that

dvc(g) = sup{l ∈ N | ∃((x1, . . . ,xl) ∈ X l) Ng(x1, . . . ,xl) = 2l},

i.e. the VC dimension is the largest number l for which a configu-
ration of l samples can be found that can be shattered by a model
from the model class g. If this works for all l, the VC dimension
is∞.
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VC Dimension: Examples

For X = R2, we have dVC(glin) = 3.

For X = Rd, we have dVC(glin) = d + 1 (where glin is generalized to
the p-dimensional case in the obvious way).

For X = R and any model class that contains only non-decreasing
functions, we have dVC(g) = 1, regardless of how many parameters
are necessary to parametrize g.

For X = R and gsin(x,w) = sign(sin(wx)), we obtain dVC(gsin) = ∞,
although gsin only depends on one parameter.

We conclude that there is not necessarily a dependency between the VC

dimension and the number of parameters which describe a model class.
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The VC Dimension Bounds the Growth
Function

Theorem. The following holds for a given model class g(.; .):

Gg(l)

= l ln 2 if l ≤ dVC(g)

≤ min
(
l ln 2, dVC(g)

(
1 + ln l

dVC(g)

))
if l > dVC(g)

Corollary. If a given model class g(.; .) has a finite VC dimension
dVC(g) <∞, then

lim
l→∞

Gg(l)

l
= 0

holds, hence, ERM is consistent and has a fast rate of conver-
gence.
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The VC Dimension Bounds the Growth
Function (cont’d)

l ln 2

Gg(l)

ldVC(g)

dVC(g)
(
1 + ln l

dVC(g)

)
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Error Bounds

Theorem. If we consider all possible l-element training sets Zl, the
following holds with a probability of at least 1− δ:

R(g(.;w(Zl))) ≤ Remp(g(.;w(Zl)),Zl) +
√
ε(l, g, δ)

With a probability of at least 1− 2δ, the following holds:

R(g(.;w(Zl))) ≤ inf
w
R(g(.;w)) +

√
ε(l, g, δ) +

√
− ln δ

l
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Error Bounds (cont’d)

Theorem (cont’d). In the inequalities above, we can use the fol-
lowing functions ε(l, g, δ):

ε(l, g, δ) =


8
l

(
Hann

g (2l) + ln(4/δ)
)

for given p(x)

8
l

(
Gg(2l) + ln(4/δ)

)
8
l

(
dVC(g)(1 + ln(2l/dVC(g))) + ln(4/δ)

)
}

for any p(x)

Note that numerous bounds of this flavor are available in literature,
some tighter, some looser, some making special assumptions. All
results have in common that they provide bounds for the deviation
of the empirical error from the actual risk. Such bounds are often
termed capacity terms or VC confidence.
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Error Bounds Visualized
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Structural Risk Minimization (SRM)

Structural Risk Minimization (SRM) is an alternative learning
scheme proposed by Vapnik.

Instead of considering only the empirical error as in ERM, the
idea is to minimize an estimate of the test error (given as sum
of empirical error and a capacity term).

We consider a nested family of model classes

g1 ⊂ g2 ⊂ · · · ⊂ gn ⊂ . . .

such that

dVC(g1) ≤ dVC(g2) ≤ · · · ≤ dVC(gn) ≤ · · ·
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Structural Risk Minimization (SRM)
(cont’d)

For each n = 1, 2, . . . , we select a model from the model class
gn according to ERM, i.e., we determine solutions such that

ŵn(Zl) = arg min
w

Remp(gn(.;w),Zl).

Finally, we select the level n̂ such that the sum of the empiri-
cal error Remp(gn(.; ŵn(Zl)),Zl) and the capacity term for gn is
minimal. The finally selected model is then gn̂(.; ŵn̂(Zl)).

In the case of very low (or even zero) empirical error, SRM is
concerned with minimizing complexity (compare with Occam’s
razor).
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Structural Risk Minimization Visualized
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Consistency of Structural Risk
Minimization

Theorem. The convergence

R(gn̂(Zl)(.; ŵn̂(Zl)(Zl)))
P−−−→

l→∞
inf
g∈ḡ

R(g)︸ ︷︷ ︸
=Rmin

holds, where ḡ =
⋃

n∈N
gn. The asymptotic rate of convergence is

V (l) = | inf
g∈gn̂(Zl)

R(g)−Rmin|+
√

dVC(gn̂(Zl)) · ln l

l
,

i.e.
p
(

lim
l→∞

supV −1(l)
∣∣R(gn̂(Zl)(.; ŵn̂(Zl)(Zl)))−Rmin

∣∣ <∞) = 1

holds provided that
dVC(gn̂(Zl)

)·ln l

l

l→∞−−−→ 0 (even if n̂(l)
l→∞−−−→ ∞, otherwise this is

trivially fulfilled).
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Structural Risk Minimization: Remarks
and Caveats

SRM does nothing else but ERM for each model class gn from
a family of model classes g1, g2, . . . (since the VC confidence
term is constant if we fix a model class gn).

The choice of the complexity level n̂(Zl), however, is not based
on the risk itself (which we normally do not know), but on a
bound that may be rather loose. Thus, for a given training set
Zl, the chosen complexity level n̂(Zl) need not be optimal.

Consistency only tells us that SRM produces solutions that
converge to an optimal one.
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Statistical Learning Theory: Summary

We introduced entropies, growth functions, and the VC dimen-
sions as meaningful measures of complexity of a given model
class.

We were able to formulate the consistency of ERM and suffi-
cient (and necessary) conditions for consistency on the basis
of the complexity of the model class considered.

Structural Risk Minimization (SRM) has been introduced as a
means to explicitly address the bias-variance trade-off on the
basis of the empirical error only.
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Statistical Learning Theory: General
Caveats

All the results formulated here are restricted to binary classification.
For regression problems, generalizations of the complexity measures
have to be used (fat shattering, ε-covers).

The model class g has always been considered a black box. In partic-
ular, we have not addressed the question how powerful/appropriate
the model class g is. The reference to which we compared all esti-
mates was Rmin = inf

w
R(g(.;w)), but we have no results that actually

tell us how good Rmin is, i.e. how well the model class is actually able
to fit the data.

Almost all results hold “in probability”. There may always exist data
sets for which the worst possible case occurs (No Free Lunch).
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