
Institute of Bioinformatics

Johannes Kepler University Linz

Unit 5
Artificial Neural Networks

Unit 5: Artificial Neural Networks 301

Introduction

The most universal and versatile classifier is still the human
brain

Starting in the 1940ies, ideas for creating “intelligent‘” systems
by mimicking the function of nerve/brain cells have been devel-
oped

An artificial neural network is a parallel processing system
with small computing units (neurons) that work similarly to
nerve/brain cells

Unit 5: Artificial Neural Networks 302

Neurophysiological Background

Every neuron (nerve or brain cell) has a certain electric charge

Electric charge of connected neurons may raise or lower this
charge (by means of transmission of ions through the synaptic
interface)

As soon as the charge reaches a certain threshold, an electric
impulse is transmitted through the cell’s axon to the neighbor-
ing cells

In the synaptic interfaces, chemicals called neurotransmitters
control the strength to which an impulse is transmitted from
one cell to another

Unit 5: Artificial Neural Networks 303

Neurophysiological Background (cont’d)

[public domain; from Wikimedia Commons]

http://en.wikipedia.org/wiki/Image:Complete_neuron_cell_diagram.svg

Unit 5: Artificial Neural Networks 304

Feed-Forward Neural Networks

Note that this is only a very brief and superficial overview of the
topic!

We restrict to feed-forward neural networks, i.e. simple static
input-output systems without any feedback loops between neu-
rons or system dynamics

Within this class, we consider perceptrons and multi-layer per-
ceptrons (along with the backpropagation algorithm)

Unit 5: Artificial Neural Networks 305

Perceptrons

A perceptron is a simple threshold unit with the following I/O
function:

g(x;w, θ) =

+1 if
d∑
i=1

wi · xi > θ

−1 otherwise
(1)

In analogy to the biological model, the inputs xi correspond
to the charges received from connected cells through the den-
trites, the weights wi correspond to the properties of the synap-
tic interface, and the output corresponds to the impulse that
is sent through the axon as soon as the charge exceeds the
threshold θ

Unit 5: Artificial Neural Networks 306

The Perceptron Learning Algorithm

1. Given: data set Z = {(xi, yi) | i = 1, . . . , l}, where xi ∈ Rd, yi ∈
{+1,−1}; learning rate σ; initial weight vector w

2. For k = 1, . . . , l do:

If g(xk;w, θ) = −1 and yk = +1

w := w + σ · xk

θ := θ − σ
Else if g(xk;w, θ) = +1 and yk = −a

w := w − σ · xk

θ := θ + σ

3. Return to 2. if stopping condition not fulfilled

4. Output: vector of weights w ∈ Rd, threshold θ

Unit 5: Artificial Neural Networks 307

Perceptrons and Linear Separability

In case that the data set Z is linearly separable in Rd, the
perceptron learning algorithm terminates and finally solves the
learning task

Note that the solution is not unique and that the learning algo-
rithm just gives one arbitrary solution

Perceptrons cannot solve classification tasks that are not
linearly separable!

Unit 5: Artificial Neural Networks 308

Multi-Layer Perceptrons

The only solution to the limitation of linear separability is to in-
troduce intermediate layers

A multi-layer perceptron is a feed-forward artificial neural net-
work consisting of a certain number of layers of perceptrons

The output of such a network is computed in the following way:
The outputs of the first layer are initialized with the net input
(x1, . . . , xd), then the outputs of the other neurons are com-
puted layer by layer using Formula (1)

The “only problem” is how to find appropriate weights and
thresholds that solve a given classification problem

Unit 5: Artificial Neural Networks 309

Multi-Layer Perceptrons (cont’d)

INPUT LAYER

HIDDEN LAYER

OUTPUT LAYER

Unit 5: Artificial Neural Networks 310

Some Historical Remarks

Minsky and Papert, the pioneers of perceptrons, conjectured
in the late 1960ies that a training algorithm for multi-layer
perceptrons—even if one could be found—is computationally
infeasible and that, therefore, the study of multi-layer percep-
trons is not worthwhile

Because of this conjecture, the study of multi-layer perceptrons
was almost halted until the mid of the 1980ies

Unit 5: Artificial Neural Networks 311

Some Historical Remarks (cont’d)

In 1986, Rumelhart and McClelland first published the back-
propagation algorithm and, thereby, proved Minsky and Papert
wrong

It turned out later that the backpropagation algorithm had al-
ready been discovered by Werbos in 1974 in his dissertation

Unit 5: Artificial Neural Networks 312

Continuous Activation Functions

The first important idea is to replace the discontinuous thresh-
old function in (1) by a differentiable threshold-like (sigmoid)
function ϕ. Then the output of a neuron is computed as

g(x;w, θ) = ϕ
(d∑
i=1

wi · xi + θ
)

(2)

For -1/+1 data, a common choice of the activation function
is the hyperbolic tangent ϕ(x) = tanh(βx) (which is nothing
else but a transformation of the sigmoid function to the interval
[−1,+1]; β is a steepness parameter)

Unit 5: Artificial Neural Networks 313

Network Topology (1/3)

Assume that the network has m distinct layers. Let us denote
the set of neurons in the j-th layer with Uj

The first layer (input layer) has |U1| = d neurons. The output
of the k-th input neuron is just the k-th component of the input
vector. So, input neurons just propagate the input leaving it
unchanged.

The output layer has |Um| = K neurons

Unit 5: Artificial Neural Networks 314

Network Topology (2/3)

Given a neuron u, the set of preceding neurons it receives input
from is denoted with U(u) and the set of consecutive neurons
it sends output to is denoted with U(u)

For the sake of simplification, we can interpret the bias θ as a
weight as well: let us introduce an auxiliary neuron ũ that al-
ways produces a constant output 1; assume that ũ sends out-
put to every neuron in the network except the ones in the input
layer

Denote U = U1 ∪ · · · ∪ Um ∪ {ũ}

Unit 5: Artificial Neural Networks 315

Network Topology (3/3)

Special properties:

if u ∈ U1, U(u) = ∅
if u ∈ Um, U(u) = ∅
if u ∈ Uj (for some j = 1, . . . ,m− 1), U(u) = Uj+1

if u ∈ Uj (for some j = 2, . . . ,m), U(u) = Uj−1 ∪ {ũ}
U(ũ) = U\U1, U(ũ) = ∅

Given two neurons u, v such that v ∈ U(u) (and, therefore, u ∈
U(v), the weight connecting u and v is denoted with W (u, v)

Unit 5: Artificial Neural Networks 316

Computing the Output

Assume we are given an input vector x = (x1, . . . , xd)

Let us denote the output of a neuron u with ou

Then the output is computed layer by layer in the following way:

if u is the k-th neuron in the input layer U1, then ou = xk

oũ = 1

if u ∈ Uj for some j = 2, . . . ,m:

ou = ϕ(netu), where netu =
∑

v∈U(u)

ov ·W (v, u)

Unit 5: Artificial Neural Networks 317

The Backpropagation Algorithm
(Basic Variant, aka “Vanilla Backprop”)

1. Given: data set Z = {(xi,yi) | i = 1, . . . , l}, where xi ∈ Rd and yi ∈ [−1,+1]K ,
learning rate σ, some network topology (with initial weights), activation function ϕ

2. Select a sample (x,y) ∈ Z and propagate it through the network to compute all
outputs ou (u ∈ U)

3. For all uk ∈ Um (uk is the k-th output neuron) do:

δuk := ϕ′(netuk) · (yk − ouk)

4. For j = m− 1, . . . , 2, step −1 do:

For all u ∈ Uj do:
δu := ϕ′(netu) ·

∑
v∈U(u)

δv ·W (u, v)

5. For all v ∈ U2 ∪ · · · ∪ Um and all corresponding u ∈ U(v):

W (u, v) :=W (u, v) + σ · ou · δv
6. Return to 2. if stopping condition not fulfilled

7. Output: set of weights

Unit 5: Artificial Neural Networks 318

Interpreting the Backpropagation
Algorithm

The term backpropagation is motivated by the fact that the er-
rors (yk − ouk) are backwards propagated through the network
(by means of the values δu)

This trick solves the problem that we do not know a desired
output for neurons in intermediate layers

It can be shown that one backpropagation step is one gradient
descent step to minimize the error measure

Ez =
K∑
k=1

(yk − ouk)
2,

i.e. the squared error w.r.t. sample z

Unit 5: Artificial Neural Networks 319

The Backpropagation Algorithm
(Batch Variant)

1. Given: data set Z = {(xi,yi) | i = 1, . . . , l}, where xi ∈ Rd and yi ∈ [−1,+1]K , learning rate σ, some
network topology (with initial weights), activation function ϕ

2. Set all ∆W (u, v) = 0 (u ∈ U\Um and v ∈ U2 ∪ · · · ∪ Um)

3. For all x ∈ X
(a) propagate x through the network to compute all outputs ou (u ∈ U)

(b) For all uk ∈ Um (uk is the k-th output neuron):
δuk

:= ϕ′(netuk
) · (yk − ouk

)

(c) For j = m− 1 · · · , 2, step−1, do:
For all u ∈ Uj do

δu := ϕ′(netu) ·
∑

v∈U(u)

δv ·W (u, v)

(d) For all v ∈ U2 ∪ · · · ∪ Um and all corresponding u ∈ U(v):
∆W (u, v) := ∆W (u, v) + σ · ou · δv

4. For all v ∈ U2 ∪ · · · ∪ Um and all corresponding u ∈ U(v):

W (u, v) := W (u, v) + ∆W (u, v)

5. Return to 2. if stopping condition not fulfilled

6. Output: set of weights

Unit 5: Artificial Neural Networks 320

Interpreting the Backpropagation
Algorithm (cont’d)

It can be shown that the batch variant of the backpropagation algo-
rithm performs a gradient descent with respect to the global error
measure

E =
∑
z∈Z

Ez =
∑
z∈Z

K∑
k=1

(yk − ouk)
2,

i.e. the sum of squared errors w.r.t. the training set Z.

Unit 5: Artificial Neural Networks 321

Multi-Layer Perceptrons Applied to
Classification

Assume we are given a data set data set Z = {(xi, yi) | i =
1, . . . , l}

If we have a binary classification problem, i.e. yi ∈ {−1,+1},
we can solve it with a single output neuron (K = 1),

If we are given a problem with K > 2 classes, i.e. yi ∈
{1, . . . ,K}, we can use a network with K output neurons. The
labels have to be mapped to K-dimensional output vectors yi

in the following way:

yij =

+1 if yi = j

−1 otherwise

Unit 5: Artificial Neural Networks 322

Multi-Layer Perceptrons Applied to
Classification (cont’d)

The approach proposed above corresponds to a one-versus-
the-rest approach (compare with Unit 4); the final classification
is determined in a winner-takes-it-all fashion

The weights connecting the m − 1-st layer to individual output
neurons are optimized independently of each other; however,
as the discriminant functions are on the same scale, this is not
posing a difficulty

Unit 5: Artificial Neural Networks 323

Multi-Layer Perceptrons Applied to
Regression

Assume we are given a data set data set Z = {(xi, yi) | i =
1, . . . , l}, where xi ∈ Rd and yi ∈ RK (in the simplest case
K = 1)

There are two ways to make multi-layer perceptrons usable for
regression:
1. Transforming/scaling all desired output vectors yi to [−1,+1]K

2. Using so-called linear neurons in the output layer, i.e., for u ∈ Um,
ϕ(x) = x is used, while the other neurons remain unchanged; in
this case, the outputs of the m− 1-st layer can be understood as
basis functions; the output is a linear combination of these basis
functions

Unit 5: Artificial Neural Networks 324

Multi-Layer Perceptrons Applied to
Regression (cont’d)

The backpropagation algorithm works for both variants without
any modification

Multi-layer perceptrons are universal approximators, however,
this is only a theoretical result with minor practical value

Unit 5: Artificial Neural Networks 325

Complexity of Neural Networks

In the architecture presented here, the numbers of hidden lay-
ers and neurons have to be fixed a priori

The complexity of a neural network increases with an increas-
ing number of hidden layers/neurons

There are several regularization methods (e.g. early stopping,
weight decay, noise injection) to additionally control/limit the
complexity of a neural network

In principle, cross-validation can be used to estimate optimal
design parameters, but this may be tedious because of longer
training times and higher dimensionality of design parameters

Unit 5: Artificial Neural Networks 326

Pro’s and Con’s of
Artificial Neural Networks

Advantages:

Universal

Easy to apply

Disadvantages:

Black box

Large effort for training

Solution is not guaranteed to be a global minimum, but only a
local one

	bioazUnit 5
	Introduction
	Neurophysiological Background
	Neurophysiological Background (cont'd)
	Feed-Forward Neural Networks
	Perceptrons
	The Perceptron Learning Algorithm
	Perceptrons and Linear Separability
	Multi-Layer Perceptrons
	Multi-Layer Perceptrons (cont'd)
	Some Historical Remarks
	Some Historical Remarks (cont'd)
	Continuous Activation Functions
	Network Topology (1/3)
	Network Topology (2/3)
	Network Topology (3/3)
	Computing the Output
	The Backpropagation Algorithm (Basic Variant, aka ``Vanilla Backprop'')
	Interpreting the Backpropagation Algorithm
	The Backpropagation Algorithm (Batch Variant)
	Interpreting the Backpropagation Algorithm (cont'd)
	Multi-Layer Perceptrons Applied to Classification
	Multi-Layer Perceptrons Applied to Classification (cont'd)
	Multi-Layer Perceptrons Applied to Regression
	Multi-Layer Perceptrons Applied to Regression (cont'd)
	Complexity of Neural Networks
	Pro's and Con's of Artificial Neural Networks

