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Publications supporting the
thesis

“Computational Synteny Block: A Framework to Identify
Evolutionary Events”, (IEEE Transaction in Nano Bioscience, 2015)

“Refining borders of genome-rearrangements including
repetitions”, (BMC Genomics, 2016)

“Computational workflow for the fine-grained analysis of
metagenomic samples”, (BMC Genomics, 20106)

“A multiple comparison framework for Synteny Block
detection” ( IWBBIO, 2017 )

“Ancestral sequence reconstruction: A framework to detect
Synteny Blocks and revert rearrangements” (in progress)

arjona@uma.es



Overview

Introduction
Background
Methods
Results

Conclusions and future work

arjona@uma.es



Introduction

Synteny Blocks,
Large-Scale Genome
Rearrangements and

Break Points

General Overview




Synteny Blocks

e The idea: Conserved blocks that share the
same order and strand

Genome 1: M. bovis PG45

High Score segments Pairs
(HSPs) produced by GECKO

Genome 0: M. agalactiae 5632
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Large-Scale Genome
Rearrangement

* A LSGR is an operation that changes the
order or the strand of a SB

.-==> Inversion
/ Change the strand

Transposition

change the Ql{der: moves the block to
‘ another position within the chromosome

Duplication
copy the block
\ Translocation

change the order: moves the block to
/ another position in another chromosome

/

N
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Break Point

* The point (or the region) in the sequence
between two SBs that have suffered a LSGR

IS / The SB in the middle has suffered a LSGR
| ' ' (inversion)
B .
Dots represent BPs in the sequence

A
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HSPs
GECKO

General Overview

(Torrefio and Trelles,

2015)

SB and

rearrangements

pairwise detection

}

Starting
point

GECKO-CSB

Arjona and Trelles,

i

2015

GECKO-MGV
Diaz del Pino, Arjona,
Torrefio, Benavides and
Trelles, 2016

Refining SB
borders and BPs
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|_repects

ccccc
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GECKO-Refinement
Arjona and Trelles,
2016

Rearrangements
reconstruction (multi
comparison)
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(in progress)
GECKO-Evol
Arjona, Perez and
Trelles, 2018?

Meta-GECKO
Perez, Arjona, Torrefio,
Ulzurrun and Trelles,
2016



Objectives

Formal definition of and detection of SBs
Detection of LSGR and BP

Refinement of SBs borders

Reversion of LSGR
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Background

“If I have seen further, it is
by standing on the shoulders
of giants”
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State of the art

e SB and BP detection

— No formal definition (difficult to compare methods)
— The granularity problem

— The BP contradiction

— Dealing with repetitions

e Methods to reverse LSGR

— Oriented to the “sorting permutation problem”
— Reference depended
— Not designed for dealing with repetitions

arjona@uma.es
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The granularity problem

Granularity SB BP
Fine-grained Many (shorter ~ Many (shorter
and well and better
conserved) quality)
Coarse Few Few

(larger and low
percentage of
identity)

Many short SB
are included)
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(larger and noisy:

LSGR

Small subset
of total LSGR
(short cycles)

Small subset
of total LSGR

(Big picture)
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An example
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The break point coniradiction

* Rearrangements do not occur randomly

* Fragile regions in the sequence, predispose
to suffer a LSGR (hotspots)

— BP should not be defined as a relation between two
genomes

— Although comparison is the only way (so far) to
detect them

— Most methods to refine SB take for granted that BPs
are not conserved regions.
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Dealing with repetitions

* Driven the evolution in many ways
* Mostly associate with mobile elements

* Repetitions increase the model complexity

— Most methods to detect SBs avoid repetitions
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The sorting permutation problem

* Transform one sequence into another (the
reference) through operations.

e Proven to be NP-hard

— A reference 1s needed
— No “natural” way to include repetitions in the model

— No use of inside-block information
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Methods 7" ‘

Pair-wise comparison method, |
refining blocks and multiple @
comparison framework:
definitions and methods




Methods Overview

* 1) Pairwise SB and LSGR detection
(GECKO-CSB)

* 2) SB refinement

* 3) Multi-genome SB and LSGR detection
and reconstruction
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1-Computational Synteny Blocks: A
pair-wise framework to detect LSGR

— e J— — e ® Set Of properties to
Simple Linearity Simple bi-Linearity
detect SBs
— D> DT e—
Complete Linearity Complete bi-Linearity ° AI‘ rfows represen t
o L L R R N R p
w—A D |e—
Simple (‘;olinearlty SimgleAbl-Collnearg J‘l‘i"ﬂﬂ&l]
A S5 > A >{8 >{T >
S s
Complete Colinearity Complete bi-Colinearity
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1-Computational
Synteny Blocks: A pair-
wise framework to
detect LSGR

* These properties also
describe rearrangements

— J — | 2|
Simple Linearity Simple bi-Linearity

o D

Complete Linearity Complete bi-Linearity

J—

s - o o R

e— f— je— LI'LB_H_Q_I—
Simple Colinearity

=

l—‘/ W
Complete Colinearity

ESESE
BT

Complete bi-Colinearity

Inversion Y
N \
YT o >
[ V] h
Transposmon JE
/B
| /D
Y—cz>—z> »i: e
- —X
Inverted Transposition /E
RN
Y=z m>~<CEHED |, /C.Z_ y
Duplication Y
y -
Yl el > A
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2-Synteny Block refinement

* Using repetitions to refine (if any)

* Does not force the BP to be a point or region

hub1-sk76

Inversion

000000

777777

666666

777777

777777

777777

666666

777777

000000
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Refining based on transitions
including repeats

Rol

]
s
AN -

2
4 [ \J
, OFFSET]

B Virtual / C c

CSB B

Virtval
CSB A
SBB

Rol
repeats
CsB

rl

NN

OFFSET

Rol x Start Rol x End
min(Ax,Bx,r1x,r2x,..rnx)  max(Ax,Bx,r1x,r2x,...,rnx)

Rol x Start Rol x End
min(Ax,Bx,r1x,r2x,..rmx)  max(Ax,Bx,r1x,r2x,...,mx)

ﬁ f—
CSB A CSB B
ROI
repeats

Identity

", | vectors

-

Vector
difference

Illustrative representation of the Region of Interest (ROI). a ROI region in an inversion
event (CSB B). (b) Virtual CSBs and repetitions. (c) Same representation but including

identity vectors and vector difference graphs
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Finite State Machine to detect
identity transitions

Repetitions

FSM detects the coordinates where K’\
the vector difference value was the Nr—NQ (V== ()
last time at a certain threshold (U1) ©) ® @ G @

eeeeeeeeeeee

before reaching the second
threshold (U2) P \_/ \j \_/
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Result of the refinement

1 — CSB A ROI CSB B
’ Virtual CSB B
Virtual CSB A
3 — Refined CSBA : "™ | Bp1 GAP BP2 | ™% : Refined CSB B —
N AR P A MR
La=ly i L=l

CSBs before and after the refinement. At the end of the refinement process, we
detect BPs. We also extract PRASB and GAP sequences to analyse accuracy of
the method. PRASB and BP have the same length
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3-Multiple comparison framework

* Motivation
— Formal SB definition
— Solve the BP contradiction
— Solve the granularity problem
— No reference-based

— Combine sequence information and rearrangements
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The Synteny Block concept

* SB has two categories
— Block: The sequence
— Synteny: The relation with other blocks
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Block Element

* Subsequence in the sequence

1. oa"<a
2. la|=a —a"

3. || = 0 (As a consequence of 1 and 2)

ah at

Block Element a

arjona@uma.es

28



Unitary Block Element

* A Block Element that does not overlap with
others Unitary Block Elements

Unitary Block Elements



Unitary Conserved Element

* A Block Element originate from comparison

l |
ha | APN
]
]
i
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The Unitary Conserved Element
problem

/ / / /

AN/ e s

A) Two overlapped HSPs.

B) Result of the trimming process. Two fragments are still overlapped.

C) New overlapped Conserved Elements trigger a new trimming process.
D) Final result of the recursive trimming process.

The final pairs of Conserved Elements do not overlap.

arjona@uma.es
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The Unitary Conserved Element
problem (li)

N

Cutting points from CB __|
comparison, originated
in AB comparison

SN

c—

N

E A

B

Cutting points from
AB comparison

A B C
/ /
B C D
Representation of the trimming
process in a multiple comparison.

In the comparison AB there is an
inversion, that triggers a trimming
process in the comparison BC.

As a result, another trimming
process is triggered in comparison
DC.
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Unitary Synteny Element

* A set of Unitary Conserved Elements from
different sequences

— More than one block #={a,d,a",...8,8",B",..7,7.7"s-...0"}
— Same length  la|=|d|=a"|=..=|B|=|B'|=|B"|= ... = @]

— Every Unitary Conserved Block belong to one and only one
Unitary Synteny Element

Vri,mieIl,j#i:miNnj=0

and
mUmUmU...UrN,; = A, UBp, UTp U...UQs,

arjona@uma.es
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Unitary Synteny Element

ic representation

* Graph
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Fig. 3.6 Graphic representation of three Synteny Elements. Synteny Element 7y links (1,1

and y; Unitary Conserved Elements.
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Break Point

* Defined as the region (or point) between two
Unitary Conserved Elements

BPaq, BPa,
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The transitivity property of
Synteny Block: Inferred HSP

* This method does not increase the number of Unitary
Conserved Blocks

* Itjust reveals synfeny relations that have not been
detected by the chosen comparison method.

— Hence, this supports the evidence why SBs must be defined
in a N-dimensional space.

| N4

A A B
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Synteny Block concatenation

If the succession is the same
M(ag+i) =(Bo+i) = (Y4i) = ... =l(@p+i) = mi 1 i = {—1,0,+1}
All these Unitary Conserved Elements conform each a Unitary

Synteny Element:
-1 =0g-1 UBp1 UY—1 U... Udp-1
T =0, UB Uy U. U,
T4l =0gs1 UBpi1 U¥er1 U... UGyt
and the sign relation between them 1s the same along adjacent

Elementary Conserved Blocks

sign(aa—1,Pp—1) =sign(aa,Bp) = sign(ca+1,Ppi1)
Sign(Og—1,%-1) =sign(ca,Y,) = sign(Oas1,%+1)
sign(Bo—1,Ye-1) =sign(Pp.Ye) = sign(Po+1.%+1)

Sign(Yp—1,Wp—1) =Sign(Yp,@,) = Sign(Yp1,@p41)
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SB concatenation: Example (l)

co N n | -Illl
0 1 2 34 5 B 0 1" 13 14
G‘- i 7 ia 1 18 B
34 5 0 6 7 5 1" 10 12 13 14
G2 | i B H N (I
0 1 2 34 5 8 7 8 3 10 1|12 13 14
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Synteny Block concatenation

* Then, Unitary Synteny Elements 7T —1,7T and 7T +1
can be merged into a single one by concatenating their
Unitary Conserved Elements as follows:

where
Opew = (aﬁlaail)
Bnew =(B£|aﬁi|)

Wnew =(‘° @' 1)
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SB concatenation: Example (Il)

0 c1 B 0 " Cc2
P =mm 5 1 Imm
c1 Q & 7 9 1 10 c2
~comm I =m
0 c1 6 7 8 9 0w n c2
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Inversions

o If

M(og-1) = M(Bp—1) =M(y-1) =..= M(ap-1) =4
I(ayg) = TI(Bp) =H(73) =..= I(w,) =T
(aa+1) = OBe+1) =M(Y%+1) =...= (@o+1) =ms

* And

sign(og—1,Bp—1) =sign(ogy1,Bp1) = —sign(og,Pp)
sign(Og—1,%-1) = sign(Oa+1,Ye+1) = —sign(0ca,Ys)

sign(Bp-1.Ye—1) =sign(Bo+1,Ye+1) = sign(Bp.Yz)

SIgN(Yp-1,@51) = Sign(Ypi1,0p11) = sign(yp, )
* Then, either & or S, Ygyeeey W, are
inversions

arjona@uma.es
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Detection of an Inversion:

Example

0 C1 Ca 10 N1

- I A .

c1 0 Cca 11 10

Cc2

-« B (.

0 1 c4 1w M

arjona@uma.es
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Transpositions

e If
M{og-1) = NO(Be-1) =(yp-1) =..= IN(@o-1) =7
O(aa) = NBp+1) =(Y%41) =...= (@p41) =7y
e And
M(ai-1) = M(Bj-1) =M(k-1) =..= M(O-1) =7m-1
M) = IBp) =My =..= e, ==

M{air1) = M(Bj+1) =T %+1) (@r+1) = Tm+t

e Then, either & or B ,,Y.,..., (W are
transpositions

arjona@uma.es
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Detection of a Transposition:
Example

0 C1 C5

C1 0 c5
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Insertions and deletions

* When concatenating, not detected inserted
blocks can be inferred if the length of the
new Synteny Element is not the same.

— A multiple alignment is needed

e An insertion can be detected as follows:

O(og—1) = NBp-1) =N(Y%-1) =..= (@,—1) =74
Oag) = MNBy) =M(r) =..= IHw) ==

O(Bp+1) =T(Y+1) = Tin
M{oa+1) = MN(Be+2) =I(Y+2) =..= I(@or1) =741

arjona@uma.es

45



Detection of an Insertion/
deletion: Example




Duplications

o If
7':{‘11,32,73,---,04}
* And
n(aa—l) = H(Bb—l) =l’I(}'g_|) = ...=
M) = NB) =0 =..-
M(oat1) = M(Bps1) =M(Y+1) =..=

* Then, o is a duplication

arjona@uma.es

M(w,—1) =n_
() =7
M(wo+1) =741

#I(ag_y)
=TII(a})

A C
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How to select the genome to
perform the reversion?

Building a phylogenetic tree, using the block
information (subsequences)

o N §E3
Ca C3
B =
c4 c3 c2
Y Il =0 B, «
c4 c3 c2 c3 c3

c2

c3

arjona@bioinf.jku.at
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How to select the genome to
perform the reversion?

Building a phylogenetic tree, using the block
information (subsequences)

ac?) f)C?) YCS wC3
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Summary

* 1) Pairwise SB and LSGR detection
(GECKO-CSB)

* 2) SB refinement

* 3) Multi-genome SB and LSGR detection
and reconstruction

arjona@uma.es
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Results and
discussion
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Experiments

* Our methods were compared with state-of-
art methods, implemented by
progressiveMauve, GRIMMsynteny and

CASSIS.

* Data set of 68 Mycoplasmas, 2.278 pairwise
genome comparisons.

arjona@uma.es
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Pairwise framework

Better % coverage at all levels of similarity,

especially in the less related genomes

GECKO-CSB for Closely
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GECKO-CSB for poorly related

ProgressiveMauve for poorly related

length
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¢ 20000
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Pairwise framework

* More coverage over both types of regions
— For coding regions, around 90% against 75%

—For non-coding regions 76% against 60%o

arjona@uma.es
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Pairwise framework

* Differences of SB detection for a certain region in the
genomes using Gecko-CSB and progressiveMauve methods

A 8
/ I o

(e ) .

/r—" c
GECKO-CSB |p/|';grosslvoMauvo |GECKO-CSB |progressiveMauve
(a) Gecko-CSB detects one SB. (b) (a) Gecko-CSB detects three SBs (A,B
progressiveMauve detects three SBs (B,C and C). (b) progressiveMauve detects
and D). one large SB.
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Refining Synteny Blocks

In a massive comparison, around 70% of the BPs detected by

our method are sized below 100 bps and 95% below 300 bps.

Distribution Frequency of breakpoint length
300

250
200

150

100
50
0

0 50 100

|H||||II||-|II||II||.I ....... .1
150 250 300

200 350 400 450 500

— In a particular example of two genomes (~800Kbps) highly
related, our method reports BPs sized below 100bps whereas
CASSIS reports BPs sized up to 86.000 bps.

arjona@uma.es
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Result of the refinement

1 CSBA ROI CsB B
2 Virtual CSB B
Virtual CSB A
3 Refined CSBA | "™ | BP1 BP2 | "° : Refined CSB B —
= Ly Pl L L
L=l L=Lg

CSBs before and after the refinement. At the end of the refinement process, we
detect BPs. We also extract PRASB and GAP sequences to analyse accuracy of
the method. PRASB and BP have the same length
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Reconsiruction of LSGR solves
the granularity problem

co [N [ O 1
0 o 8 10 1 c2
A . TR
o1 0 6 7 9 |1 10 c2
c2 [N il ni .
0 C1 6 7 & 9 0 M1 c2
S O L
0 c1 8 c3 c2
N =— @ 1 N
1 0 6 7 E c3 c2
Iy e BN
0 c1 8 7 8 9 c3 c2



Reconsiruction of LSGR solves
the granularity problem

arjona@bioinf.jku.at
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Conclusions,
confiributions
and future
work




Advances in the State of the art

* SB and BP detection
— Formal definition of SB
— The granularity problem solved
— The BP contradiction solved
— Repetitions included in the model

* Methods to reverse LSGR
— Combined with the SB detection
— No Reference depended
— Designed for dealing with repetitions

arjona@uma.es
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Conclusions and contributions

Motre coverage

Formal definition of SB and rearrangements

I.SGR reversion and SB concatenation as
solution for the granularity problem

Method to refine SB and BPs

arjona@uma.es
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Open Research Lines

Frequencies of LSGR to improve inter-genome
distances and phylogenetic organizations

The rearrangement history reconstruction could
also be helpful for ancestral genome
reconstruction.

Refined BPs can be used as input to find hidden
patterns or extract features in order to set up a
formal definition of BP.

BPs may help the understanding of LSGR and the
prediction of future LSGRs
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