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Abstract

The forward dynamics in neural networks for various activation functions has been
studied extensively in the context of initialisation and normalisation strategies, by
mean field theory, edge of chaos theory, and fixed point analysis. However, the
study of the backward dynamics appears to be largely disconnected to the insights
obtained from the forward analysis. We argue that many of the ideas from the
forward analysis could and should be applied to backward dynamics. We show that
the ideas of mean field theory and fixed point analysis apply to the backward pass
and allow to characterise activation functions.

Introduction. The importance of how the variance of data is propagated through the forward pass
of a deep neural network (DNN) has been acknowledged already well before the hype of deep learning
(DL) took off (LeCun et al., 1998). Glorot et al. (2010) derive an initialisation strategy which aims
at preserving variance propagated through a tanh network. He et al. (2015) build upon this idea
to find a proper initialisation scheme for networks with ReLUs, neglecting the backward analysis.
Normalisation techniques (Ioffe et al., 2015; Salimans et al., 2016; Ba et al., 2016) aim at controlling
the mean and variance of the propagated data. As an alternative, Klambauer et al. (2017) introduced
SELUs with corresponding initialisation scheme to create self-normalising neural networks (SNNs).
This combination of initialisation and activation function gives rise to a stable fixed point in mean and
variance propagation. Poole et al. (2016), Schoenholz et al. (2017), and Yang et al. (2017) analyse
the fixed points in covariance and correlation propagation using mean field theory. Their works build
upon the edge-of-chaos (EOC) (Langton, 1990), which was introduced to DNNs by Natschläger et al.
(2005). However, most of the recent works on initialisation schemes, normalisation, and random
networks focus mainly on the forward pass. In this work, we analyse both the fixed point spectrum
that different activation functions induce and connect it with an analysis of the backward dynamics
(Hoedt, 2017). Concretely, we analyse networks with logistic sigmoid, tanh, ReLU, SiLU (Elfwing
et al., 2018; Ramachandran et al., 2018), ELU (Clevert et al., 2016) and SELU (Klambauer et al.,
2017) activation functions.

Fixed points in the forward pass. We found that different activation functions give rise to norm
propagation functions with particular properties. A norm propagation function Fφ is a function that
maps the second moment of activations of the lower layer to the second moment of the activations of
the next layer:

Fφ : R+ → R+ : qx 7→ Fφ(qx ; g, σb) = EZ

[
φ

(
Z
√
σ2
b + g2qx

)2
]
, (1)

where φ is the activation function, qx is the second moment of the input layer, g is the variance of the
weights scaled by the reciprocal of the number of units in the lower layer, σb is the variance of the
bias weights, and Z is a standard Gaussian random variable. For details on the norm propagation
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function, see Appendix A. We use the norm propagation functions to characterise activation functions
because these functions determine how information is propagated through the forward pass. A stable
fixed point at zero indicates that the second moment of activations vanishes through layers and thus
information is lost. A stable fixed point above zero means that through layers, a certain amount of
information is kept. More specifically, from Figure 1, it seems that norm propagation is either linear,
convex or concave for most commonly used activation functions. These convexity properties of Fφ
and Hφ obviously have an effect on the fixed point spectrum.

Backward dynamics around forward fixed points. Using back-propagation, the weights and
biases in each layer can be updated to minimise some loss function L. Each layer receives an error
signal δ = ∂L

∂s ∈ RM from its upper layer and passes it through to its lower layer. More specifically,
the error at neuron j in the preceding layer is computed by means of the errors in the current layer:

δ/j = φ′(s/j )

M∑
i=1

δiwij ,

where we used ·/ to denote entities from the preceding layer. Just as in the forward propagation, we
can consider the entities in the backward propagation as random variables (Schoenholz et al., 2017).
The assumptions on the pre-activations and weights can be taken from the forward propagation. For
the errors, on the other hand, it is not possible to give much details on the distribution. For the mean
of error, µd = 0 is a reasonable assumption, since µw = 0 and thus the mean of the error cannot
propagate through the network. A more troublesome assumption that needs to be made, is that the
errors are independent of the pre-activations and weights. It should be noted, however, that a product
with some random Gaussian matrix tends to decorrelate inputs and outputs. With these assumptions,
we can introduce norm propagation of the errors in the backward pass:

Bφ(qd ; qs, h) = h2qd E
[
φ′(Z

√
qs)

2
]
, (2)

where h2 =Mσ2
w = g2MN and qs is the variance of the pre-activations. This formulation immediately

reveals that the error norm propagation is linear. The effect of the norm of the pre-activations, however,
appears to be non-linear. Assuming that qs converges to some stable fixed point q∗s , which are closely
related to the fixed points of Fφ (see Appendix B), we can observe how the error propagates backwards
through the network. Figure 2 illustrates Bφ for various common activation functions. The main
findings are under the assumptions that we have a DNN with σb = 0 and qs = 1 at the input layer
(we refer to Appendix C for lemmata with proofs):

ReLU: has linear norm propagation functions. In the special case of g =
√
2, there is a manifold

of fixed points with q ≥ 0 that are neither stable nor unstable (see Figure 1a). The error
norm propagation exhibits the exact same behaviour as the forward propagation and is
independent of qs (see Figure 2a).

SiLU: has convex norm propagation functions which can only have an unstable fixed point for
q > 0 (see Figure 1b). The error norm vanishes more in deeper layers than at the input layer
if the unstable fixed point is greater than one (see Figure 2b).

σ: has concave norm propagation functions with a stable fixed point q > 0. There is no fixed
point at q = 0 (see Figure 1c). The error norm is vanishing during back-propagation (see
Figure 2c).

tanh: has concave norm propagation functions with a point q > 0. There is a stable fixed point at
q = 0 (see Figure 1d). The error norm propagation is the identity function in layers where
the fixed point q∗s = 0 is attained and h = 1. Higher h leads to a slightly exploding error
norm when q∗s = 0 is reached, but much better propagation in early layers (see Figure 2d).

ELU: has concave norm propagation functions that can have a stable fixed point q > 0. There is a
stable fixed point at q = 0 (see Figure 1e). Similar to tanh, error norm propagation can be
the identity function. For higher h, however, the fixed point is more realistic to attain and
only slightly exploding (see Figure 2e).

SELU: has concave norm propagation functions that can have a stable fixed points at q = 1. There
is a also stable fixed point at q = 0 (see Figure 1f). The error norm propagates similarly
as for ELUs. The main difference appears to be that the error norm propagation is close
to identity for any choice of h and has an attainable fixed point q∗s > 0 by default (see
Figure 2f).
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(a) ReLU (b) SiLU

(c) σ (d) tanh

(e) ELU (f) SELU

Figure 1: Norm propagation functions Fφ for various common activation functions with different
gain parameters for weights and σb = 0. The x-axis displays the norm of the neurons in the lower
layer, whereas the y-axis displays the norm in the higher layer. ReLU: The variance is transformed
linearly from one layer to the next, where a gain parameter of g =

√
2 corresponds to the so-called

He-initialisation (He et al., 2015), yields the identity function. SiLU: The norm propagation function
is convex and can only induce a fixed point > 0 that is unstable. tanh and σ: The norm propagation
function is concave and can yield stable fixed points > 0. The norm propagation function is bounded.
Note that Fσ(0) > 0, since σ(0) = 1

2 . ELU and SELU: The norm propagation function is concave
and can induce a stable fixed point > 0. For SELU, the fixed point is exactly at 1.
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(f) SELU

Figure 2: Norm propagation functions for the error propagation of various common activation

functions with different choices for h = g
√

M
N . The x-axis displays the norm of the error signal in

the upper layer, whereas the y-axis displays the norm at the lower layer. The solid and dot-dashed
lines correspond to the norm mapping for the error signal at the stable fixed point in pre-activation
norms, qs = q∗s , resp. the pre-activation variance in the first layer, qs = 1.
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A Fixed points in the forward pass

Consider a DNN consisting of L fully connected layers. Each layer maps inputs x ∈ RN to
activations a ∈ RM , using some activation function φ. The mapping of each layer is specified by its
weight matrix W ∈ RM×N and bias vector b ∈ RM . Concretely, the activation of neuron i can be
computed using:

si = bi +

N∑
j=1

wijxj ai = φ(si),

where we use s ∈ RM to denote the pre-activations.

In analogy with (Poole et al., 2016) and (Schoenholz et al., 2017), we will consider biases and weights
to be random variables with mean µb = µw = 0 and variances σ2

b resp. σ2
w = g2 1

N , where g is the
gain factor for the weights (cfr. Saxe et al., 2014). Furthermore, a single input unit x is assumed to
have mean µx and variance σ2

x. Assuming that N is large, the central limit theorem can be applied
to conclude that the pre-activations S ∼ N (0, σs). With the necessary independence assumptions,
it can easily be verified that σ2

s = σ2
b + g2(σ2

x + µ2
x), since g2 = Nσ2

w and µw = µb = 0. We will
reserve the random variable Z ∼ N (0, 1) to denote standard Gaussian Variables.

Propagation of the first moment of activations We first introduce the concept of the mean
propagation function, which maps the mean of the activations in one layer to the average activation
in the next layer. Using the Gaussianity of the pre-activations and their variance, the mapping can be
defined as:

Mφ : R→ R : m 7→Mφ(m ; σx, g, σb) = EZ
[
φ

(
Z
√
σ2
b + g2(σ2

x +m2)

)]
, (3)

where µx and σx are the mean resp. variance of the inputs — or the activations from the previous
layer — and φ is the activation function.

Propagation of the second moment of activations Similarly, we can calculate the second moment
of the activations in the higher layer, to which Poole et al., 2016 also refer as the normalised squared
length of a vector. The effect of a fully connected layer on the second moment of its inputs,
qx = σ2

x + µ2
x, is given by the norm propagation function:

Fφ : R+ → R+ : qx 7→ Fφ(qx ; g, σb) = EZ

[
φ

(
Z
√
σ2
b + g2qx

)2
]
. (4)

This mapping computes the norm of the activations from the second moment of the inputs to the
layer. SNNs are the result of analysing the fixed points of mean and norm propagation functions
simultaneously (Klambauer et al., 2017).

Propagation of the second moment of pre-activations Instead of studying the moments of inputs
and activations, Poole et al. (2016) focused on how the correlation of pre-activations in one layer
affect those in the next. Translating this approach to the moments of the pre-activations, we find a
second norm propagation function:

Hφ : R+ → R+ : qs 7→ Hφ(qs ; g, σb) = σ2
b + g2 EZ

[
φ(Z
√
qs)

2
]
. (5)

This mapping keeps the effect of the g and σb outside of the non-linearity. The advantage of this
second norm propagation function compared to its activation-level counterpart, is that it allows to
derive results even when the expectation can not be written down analytically, as is the case for e.g.
φ = tanh. We show that the fixed points of Fφ and Hφ are connected and that the stability of the
fixed points is the same, see Lemma 1 in appendix B.

B Fixed Point Equivalence on Activation and Pre-activation Levels

A few simple insights follow directly from the definitions of the propagation functions:
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Figure 3: Norm propagation functions for both Fφ, for activation norms, and Hφ, for pre-activation
norms. This illustrates the results obtained in lemma 1

Proposition 1. For σb = 0 and g = 1, both norm propagation functions (4) and (5) are equivalent,
i.e. Fφ(q ; 1, 0) = Hφ(q ; 1, 0).
Proposition 2. Let φ be an activation function satisfying φ(0) = 0 and σb = 0, then the norm
propagation functions (4) and (5) have a trivial fixed point, Fφ(q∗ ; g, 0) = q∗ = Hφ(q

∗ ; g, 0), at
q∗ = 0.

A more interesting result is illustrated in Figure 3 and formulated in the following lemma:
Lemma 1. q∗x is a fixed point of Fφ if and only if q∗s = σ2

b +g
2q∗x is a fixed point of Hφ. Furthermore,

the stability of both fixed points is the same.

Proof. Let q∗x be a fixed point of Fφ, then q∗x = E
[
φ(Z

√
σ2
b + g2q∗x)

2
]

and thus

Hφ(σ
2
b + g2q∗x ; g, σb) = σ2

b + g2 E

[
φ

(
Z
√
σ2
b + g2q∗x

)2
]
= σ2

b + g2q∗x,

i.e. q∗s = σ2
b + g2q∗x is a fixed point of Hφ. In the opposite direction, the proof is equally straightfor-

ward, once it is has been observed that a fixed point of Hφ can not be smaller than σ2
b .

For the stability of the fixed point, consider the derivatives

H ′φ(qs ; g, σb) = g2 E
[
φ′(Z

√
qs)

2 + φ(Z
√
qs)φ

′′(Z
√
qs)
]

F ′φ(qx ; g, σb) = g2 E
[
φ′(Z

√
σ2
b + g2qx)

2 + φ(Z
√
σ2
b + g2qx)φ

′′(Z
√
σ2
b + g2qx)

]
and observe that,

H ′φ(q
∗
s ; g, σb) = H ′φ(σ

2
b + g2q∗x ; g, σb) = F ′φ(q

∗
x ; g, σb),

i.e. the stability of both fixed points is the same.

For the sake of comparison and completeness, we re-compiled Figure 1 using Hφ instead of Fφ in
Figure 4.
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(a) ReLU (b) SiLU

(c) σ (d) tanh

(e) ELU (f) SELU

Figure 4: Norm propagation functions Hφ for various common activation functions with different
gain parameters for weights and σb = 0, cf. Figure 1.
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C Convexity

Lemma 2. The linear and ReLU activation functions give rise to linear norm propagation functions.

Proof. Consider the propagation functions for g = 1 and σb = 0:

Fid(q ; 1, 0) = q FReLU(q ; 1, 0) =
1

2
q.

Since squeezing by a factor g2 and/or shifting with a term σ2
b either horizontally (Fφ) or vertically

(Hφ) preserves this linearity, we can conclude that Fid and FReLU must be linear.

Lemma 3. Let fφ(x) := φ(x)2 satisfying f (4)φ ∈ L2, then the norm propagation functions (4) and (5)

are convex (concave) if f (4)φ (x) has a strictly positive (negative) Fourier transform, f̂ (4)φ (ω). Under

mild conditions on the lower order derivatives of fφ, also the positivity (negativity) of f̂φ(ω) or the
negative Fourier transform of f ′′φ (x) can be used.

Proof. Without loss of generality, let g = 1 and σb = 0 so that propagation functions (4) and (5) are
equivalent. Since

∂ E
[
f(Z
√
q)
]

∂q
=

1√
2π

∫ ∞
−∞

1
√
q
f ′(z
√
q)ze−

z2

2 dz

=
1√
2πq

([
−f ′(z√q)e− z2

2

]∞
−∞

+
√
q

∫ ∞
−∞

f ′′(z
√
q)e−

z2

2 dz

)
=

1√
2π

∫ ∞
−∞

f ′′(z
√
q)e−

z2

2 dz

if
lim

x→±∞
f ′(x)e−x

2

= 0,

the convexity of Fφ is entirely specified by:

F ′′φ (q ; 1, 0) =
1√
2π

∫ ∞
−∞

1

4
f
(4)
φ (
√
qz)e−

z2

2 dz.

Using Plancherel’s identity, i.e.∫ ∞
−∞

f(x)g(x) dx =

∫ ∞
−∞

f̂(ω)ĝ(ω) dω,

where f̂(ω) is the Fourier transform of some square-integrable function f(x) ∈ L2(R), the curvature
can also be written in terms of the Fourier transform of f (4)φ :

F ′′φ (q ; 1, 0) = C0

∫ ∞
−∞

f̂
(4)
φ (ω)e−q

ω2

2 dω,

with C0 some (irrelevant) positive constant.

Additionally, if the functions f (k)φ for k ∈ {0, 1, 2, 3} are integrable and differentiable in the sense of
distributions, the curvature of Fφ can be expressed by means of the Fourier transform of f ′′φ or fφ:

F ′′φ (q ; 1, 0) = −C1

∫ ∞
−∞

ω2f̂ ′′φ (ω)e
−q ω2

2 dω = C2

∫ ∞
−∞

ω4f̂φ(ω)e
−q ω2

2 dω,

with C1 and C2 positive constants.

Therefore, if f̂ (4)φ (ω) or f̂φ(ω) are positive (negative), F ′′φ will be positive (negative), making Fφ
convex (concave). Alternatively, convexity (concavity) is guaranteed by negativity (positivity) of
f̂ ′′φ (ω), which is equivalent to positivity (negativity) of the Fourier transform of −f ′′φ (x).
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Lemma 4. The tanh and logistic sigmoid activation functions give rise to concave moment propaga-
tion functions.

Proof. Consider the Fourier transform, f̂ ′′tanh(ω), of the second derivative of ftanh(x):

f̂ ′′tanh(ω) =
8π4ω3

sinh(ωπ2)
.

Since −f̂ ′′tanh(ω) =
−8π4ω3

sinh(ω) is strictly negative, we can conclude that Ftanh must be concave (cfr.
lemma 3).

The logistic sigmoid can be written as σ(x) = tanh(x/2)+1
2 , and since

E

[(
tanh(X/2) + 1

2

)2
]
=

1

4
E
[
tanh(X/2)2

]
+
1

2
E [tanh(X/2)]+

1

4
=

1

4
E
[
tanh(X/2)2

]
+
1

4
,

Fσ must have the same convexity properties as Ftanh. Note that E [tanh(X)] = 0 since tanh is
odd.

Lemma 5. The ELU and SELU activation functions give rise to concave norm propagation func-
tions.

Proof. Consider the Fourier transform, f̂ (4)ELU(ω), of the generalised function, f (4)ELU(x):

1

(4π2ω2 + 1) (π2ω2 + 1)

(
−24π4ω4 + 4πω

[
1 + 7π2ω2

]
i
)
.

First of all, note that the imaginary part of the transform,

4πω
[
1 + 7π2ω2

]
(4π2ω2 + 1) (π2ω2 + 1)

,

is an odd function and therefore disappears when integrated over from −∞ to∞— we refer to the
use of Plancherel’s identity in the proof of lemma 3. Since the denominator is non-negative and
−24π4ω4 ≤ 0, the real part of the Fourier transform must be negative. Using lemma 3, we can
conclude that the norm propagation function for the ELU activation function is concave.

Because SELU is nothing more than a scaled version (with positive scale factor), FSELU must also
be concave.

Proposition 3. If the norm propagation functions are convex and σb = 0, there are no stable fixed
points q∗ > 0.

Proposition 4. If the norm propagation functions are concave and F ′φ(0 ; g, 0) > 1, there is exactly
one stable fixed point q∗ > 0.
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