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Abstract

In the passed decade, deep learning has achieved state-of-the-art performance for various
machine learning tasks. The wide applicability of deep learning mainly arises from the
ability of deep neural networks to learn useful features by themselves. By combining
multiple layers in a neural network, hierarchical representations can be created with an
increasing level of abstraction. However, there is one fundamental difficulty in learning
deep neural networks, which is known as the vanishing gradient problem. Today, this
issue has been alleviated by new activation functions and better ways to initialise weights.
Although less severe, also internal covariate shift slows down learning in deep networks.
Several techniques such as batch normalisation have been proposed to counter this issue
by normalising the data in each layer. An alternative approach is to construct the layers
in a network so that their activations have the same mean and variance as the data in
the input. Networks which are capable of doing so are called Self-Normalising neural
networks (SNNs) and can be constructed by enforcing certain characteristics onto the
mappings that each layer induces on the moments of its input data. In this thesis,
we extend the idea of analysing the moments in SNNs to the backward pass, in which
we both theoretically and empirically investigate the backward dynamics. Further, we
extend SNNs to networks with bias units and show that similar dynamics hold as for the
weights. Additionally, we compare the performance and learning behaviour of SNNs with
respect to different data normalization techniques, weight distributions for initialization
and optimisers on several machine learning benchmarking data sets. We find that (1)
the variance of the weights steadily increases with very small steps in networks with
random errors, (2) the architecture affects how the error signal propagates back through
the network and (3) that an error signal with reduced variance in lower layers can
be advantageous for learning. Furthermore, our analysis reveals that SNNs perform
best with whitened data, the choice of the initial weight distribution has no significant
effect on the learning behaviour and that most adaptive learning rate schedules do help,
although they break the conditions for self-normalisation.

i





Zusammenfassung

Im letzten Jahrzehnt hat deep learning verschiedenste machine learning Probleme geknackt.
deep learning verdankt seine vielseitige Anwendbarkeit der Fähigkeit von tiefen neur-
onalen Netzten eigenständig sinnvolle Eigenschaften von Daten zu finden. Durch die
Kombination von verschiedenen Schichten in einem neuronalen Netz können hierarchis-
che Darstellungen in unterschiedlichen Abstraktionsebenen erstellt werden. Das Train-
ieren von tiefen neuronalen Netzen kann jedoch durch ein fundamentales Problem, dem
sogenannten Vanishing Gradient Problem, erschwert werden. Heutzutage wird dieses
Problem weitgehend umgangen mithilfe von neuen Aktivierungsfunktionen und besseren
Methoden zur Initialisierung von den Gewichten der neuronalen Netze. Ein weiterer
Faktor der zur Verlangsamung des Lernvorganges beitragen kann, ist das Problem des
Internal Covariate Shift. Verschiedenste Verfahrensweisen wie etwa Batch Normalisa-
tion, welche dieses Problem durch die Normalisierung von Daten in jeder Schicht zu
lösen versuchen, wurden bereits vorgestellt. Eine alternative Lösung besteht darin, die
Schichten so aufzubauen, dass der Erwartungswert und die Varianz der Eingabewerte
auch die Momente der Ausgabewerte sind. Netzwerke mit solchen Schichten werden
SNNs genannt, und fordern gewisse Eigenschaften für eine Abbildung von Momenten
des Inputs jeder Schicht. In dieser Arbeit erweitern wir die Analyse von Momenten in
SNNs zu dem Fehlerrückfluss, wobei diese Dynamik sowohl theoretisch als auch empir-
isch untersucht wird. Zusätzlich erweitern wir SNNs mit Bias-Units und zeigen, dass
dennoch eine ähnliche Dynamik aufgewiesen wird wie mit Gewichten. Des Weiteren ver-
gleichen wir die Leistung und Lerngeschwindigkeit von SNNs hinsichtlich verschiedener
Methoden für Datennormalisierung, Verteilungen für die Initialisierung von Gewichten
sowie unterschiedlicher Optimierungsmöglichkeiten anhand von verschiedenen machine
learning Benchmarks. Wir stellen fest, dass (1) in Netzwerken mit zufälligen Fehlern die
Varianz der Gewichte in kleinen Schritten ständig zunimmt, (2) die Netzwerkarchitektur
einen Einfluss auf den Fehlerrückfluss hat und (3), dass schneller gelernt werden kann
wenn die Netzwerke in den ersten Schichten weniger Varianz in dem Fehlersignal auf-
weisen. Zusätzlich finden wir heraus, dass SNNs besser arbeiten mit nicht-korrelierten
und normalisierten Daten, die genaue Verteilung der Anfangsgewichte keinen signifik-
anten Einfluss auf das Lernen hat und, dass die meisten komplexen Optimierungsmeth-
oden das Lernen positiv beeinflussen, obwohl sie den normalisierenden Effekt von SNNs
brechen.
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1 Introduction

It has been over a decade since the term deep learning (DL) has been introduced to
prelude a new era of neural network (NN) research (G. E. Hinton, Osindero and Teh,
2006). In these ten years, DLs has grown to become one of the most influential machine
learning (ML) methods by increasingly improving on state-of-the-art models in the most
various fields, e.g. computer vision (He et al., 2016), speech recognition, (Amodei et al.,
2016) and natural language processing (Wu et al., 2016).

One of the most interesting characteristics of DL is that they are representation-
learning methods (LeCun, Bengio and G. E. Hinton, 2015). This means that NNs
are capable of learning useful features from raw data. The time-consuming process of
feature engineering can therefore be skipped. Also domain expertise is not a necessity
any longer, which makes it easier to get started with learning.

None of these properties of NNs are new since DL, however. It was well known
that NNs learn useful representations in hidden layers (Rumelhart, G. E. Hinton and
Williams, 1986). Also the universal function approximation theorem (Hornik, 1991),
which proves that NNs can approximate arbitrary functions has been well known in the
previous century.

The most important aspect that has been changed since DL, is that networks with
multiple layers have become possible. On one side, this is thanks to the improved
performance of available hardware. Without solutions for the vanishing gradient problem
(Hochreiter, 1991), however, the better hardware would not help much. By initialising
the weights in a smarter way and using better activation functions, DL got where it is
today.

This does not mean that all problems are resolved. Recently, the problem of internal
covariate shift has been addressed (Ioffe and Szegedy, 2015). Because the changes in
distributions negatively affect the learning of the network, several techniques to counter
this problem have been suggested. The general approach of most of these techniques is
to normalise the data in each layer to counter the changes in the distribution.

SNNs take a different approach in tackling the internal covariate shift. Rather than
normalising the data, the layers in a SNN seek to keep the moments of the data con-
stant. This is done by analysing how layers in the simplest of networks, i.e. multilayer
perceptrons (MLPs), affect the moments of the data passing through.

In this thesis, we extend this analysis of moments to the backward pass of SNNs.
This allows us to verify that weight updates in a SNN do not break the property of self-
normalisation. Additionally, we find that by initialising the weights so that they have a
variance of 1

n
, with n the number of inputs to the layer, the architecture influences the

back propagation of the error signal. Finally, we also find a correlation between learning
speed and the amount of variance in updates for lower layers.

1



1 Introduction

The rest of this thesis is organised as follows. In chapter 2, we give a short overview
of machine learning with a focus on supervised techniques. Chapter 3 provides a similar
overview for NNs with a focus on MLPs. The problem of internal covariate shift and
SNNs are introduced in chapter 4. We also describe our analysis of the moment dynamics
in this chapter. We present some experiments to empirically verify our theoretical results
in chapter 5. At the end of this thesis, we summarise our conclusions in chapter 6.

2



2 Machine Learning
Machine learning (ML) is the field that studies algorithms that allow computers to
learn. It is generally considered a sub-field of artificial intelligence (AI) where learning
has been a fundamental concept since the very beginning (Turing, 1950). Unlike good
old-fashioned AI (GOFAI), however, also non-symbolic approaches have been welcomed
to machine learning (ML) in the hope of enriching the field (Langley, 2011). This caused
a shift from deductive learning in the symbolic paradigm towards approaches that learn
inductively from data. Also the quest for intelligence in machines has been left aside.
Instead, ML builds upon results from statistics, probability theory and optimization to
improve performance on well-defined tasks (Langley, 2011).

The goal of this chapter is to provide some insight in the rich field of machine learning.
A quick overview can be found in section 2.1. Subsequent chapters introduce the problem
of learning from labelled data (section 2.2.1) and how to solve it in a practical way
(section 2.3). The errors that can arise while learning from labelled data are discussed
in section 2.4. Finally, techniques to assess the errors that have been made during
learning can be found in section 2.5.

2.1 Definition and Taxonomy

Samuel described ML as the study ‘concerned with the programming of a digital com-
puter to behave in a way which, if done by human beings or animals, would be described
as involving the process of learning’ Samuel, 1959. This describes the purpose of ML
precisely, but does not quite tell when a program can be considered to learn. Samuel
does, however, talk about programs that learn from experience (Samuel, 1959).

This idea can also be found in a more formal definition, provided by Mitchell:
A computer program is said to learn from experience E with respect to some
class of tasks T and performance measure P , if its performance at tasks in
T , as measured by P , improves with experience E. Mitchell, 1997

Note that this defines the learning problem rather than the program. After all, there can
be multiple programs that use the same experience for the same tasks and are evaluated
with the same performance measure.

ML is thus about finding new and improving upon old algorithms for well-defined
learning problems. A generic ML algorithm consists of a useful representation for the
experience, some cost function to approximate the performance measure and a model
that is able to capture the progress of learning (Goodfellow, Bengio and Courville,
2016). To this end, ML uses ideas and techniques from fields like information theory,
optimisation and statistics.

3



2 Machine Learning

2.1.1 Taxonomy

Learning problems and their algorithms can be grouped according to the experience they
learn from. The easiest problems are those for which the experience is a fixed set of data.
The two main scenarios in this case are supervised and unsupervised learning. When
the dataset consists of inputs and corresponding output-labels, supervised techniques
can be used to retrieve a mapping from inputs to outputs. If no labels are provided in
the examples, unsupervised learning can be used to retrieve information from the data.
When only a few examples from the dataset are labelled, the term semi-supervised
learning can be used.

There are also ML algorithms that do not require a fixed dataset for learning. The
most important group of such algorithms is known as reinforcement learning. In this
case, the experience comes from a function that assigns a reward to the outputs of the
system (Russell and Norvig, 2010). Variants of this learning paradigm that are less
common include transductive inference as well as on-line and active learning (Mohri,
Rostamizadeh and Talwalkar, 2012).

One field that is very closely related to ML is statistical learning. This subfield of
statistics takes a more formal approach in studying problems and methods that involve
learning from data (James et al., 2013). Another field that has a strong connection with
ML is computational learning theory. It provides theoretical foundations for problems
and algorithms in both statistical and machine learning (Russell and Norvig, 2010).

2.2 Supervised Learning

From the different ML settings discussed in section 2.1.1, supervised learning has the
most solid theoretical foundations (Mohri, Rostamizadeh and Talwalkar, 2012). For this
reason, the rest of this chapter is mainly dedicated to learning from labelled data. This
section provides the basic foundation on which most of supervised learning has been
built.

2.2.1 Labelled Data

A labelled dataset
D = {(X1, Y1), (X2, Y2), . . . , (Xp, Yp)}

consists of feature vectors Xi ∈ X and labels Yi ∈ Y . In case that both input and output
space consist of vectors, i.e. X ⊆ Rm and Y ⊆ Rn, the dataset can be represented by
means of matrices where each row represents one example. Concretely, we consider the
matrices

X =

⎡⎢⎢⎢⎣
x1

x2
...
xp

⎤⎥⎥⎥⎦ ∈ Rp×m Y =

⎡⎢⎢⎢⎣
y1

y2
...
yp

⎤⎥⎥⎥⎦ ∈ Rp×n

4



2.2 Supervised Learning

for inputs and outputs respectively.
If the labels are numerical, e.g. Y = Rn, the learning problem is referred to as

regression. The term classification is used for problems for which the output space is
a finite set of values or classes, e.g. Y = {−1, 1}. Note that although it is easy to
generate all possible inputs, collecting labels generally requires human input and is hard
to automate (Goodfellow, Bengio and Courville, 2016).

Let us assume that the data has been generated by some f : Rm → Y . Given that
there is some random, zero-mean noise ϵ in the available data, the relation between
inputs and labels can be written as

Y = f(x) + ϵ . (2.1)

Supervised ML is about finding an estimate — sometimes also called hypothesis — h for
the hidden function f from the examples in a labelled dataset D to make predictions on
future data, i.e. feature vectors that are not contained in the available dataset (Russell
and Norvig, 2010).

2.2.2 Risk and Loss

The generalisation error or risk for a hypothesis h is defined as

R(h) = Ex

[
C(Y, Ŷ )

]
= Ex [C(f(x) + ϵ, h(x))] , (2.2)

where Y = f(x) + ϵ is the provided label in the data, Ŷ = h(x) the predicted label and
C is a loss function. In words, the generalisation error is the average loss that is to be
expected when using hypothesis h to predict labels.

Considering that the goal of ML is prediction, the optimal estimate h∗ for f is the
hypothesis that leads to the smallest risk, i.e.

h∗ = argmin
h

R(h) . (2.3)

A cost or loss function C : Y×Y → R+ is a measure for computing how far apart two
predictions are in the output space Y . It is a measure for the quality of a predicted label
w.r.t. the true target label for a specific feature vector. A simple, well-known example
loss function for classification is the zero-one loss

Czo(Y, Ŷ ) =

{
0 Y = Ŷ

1 Y ̸= Ŷ
. (2.4)

The expected value of the zero-one loss equals the number of times the predictor pre-
dicted the wrong class and is therefore closely related to the error rate.

In practice, however, classes are often encoded with a one-hot coding, where each
entry in the output vector represents the probability for one of the possible classes. This
means that Y = [0, 1]n if there are n classes. In this setting, the cross-entropy loss

Cce(y, ŷ) = −
n∑

i=1

yi ln(ŷi) (2.5)

5



2 Machine Learning

is a popular choice. In case of regression, the squared loss

Csq(y, ŷ) =
1

2

n∑
i=1

(ŷi − yi)
2 (2.6)

generally proves useful.

2.2.3 Bayes Classifier

For a binary classification task, evaluated with zero-one loss (2.4), the risk is minimised
by the so-called Bayes optimal classifier (James et al., 2013)

h∗
zo(x) =

{
1 p(Y = 1 | x) > p(Y = −1 | x)
−1 p(Y = 1 | x) < p(Y = −1 | x)

. (2.7)

The generalisation error for this classifier is given by

R(h∗
zo) =

∫
Rm

p(x, Y ̸= h∗
zo(x)) dx

=

∫
Rm

p(Y ̸= h∗
zo(x) | x)p(x) dx .

Here, p(Y ̸= h∗
zo(x) | x) is the minimum of p(Y = −1 | x) and p(Y = 1 | x) due to

the definition of h∗
zo (2.7). Although this solution is provably optimal, it is impossible to

compute. After all, this would require knowledge about the distribution p(Y | x), which
is not available in practice (James et al., 2013).

2.3 Practical Risk Minimisation

Although the solution to supervised learning is as simple as minimising the risk, it is
generally impossible to express the risk or its minimum in terms of known properties
of the data. Therefore, an approximation of the generalisation error is minimised in
practice, rather than the true risk. In this section, we list the two most commonly
known techniques to minimise the risk practically.

2.3.1 Empirical

The easiest technique is known as empirical risk minimisation (ERM). The empirical risk
is nothing more than the risk (2.2), where the expectation is taken over the available
training data instead of over the entire input space. Mathematically, the empirical risk
for a hypothesis h on a dataset with p independently and identically distributed (i.i.d.)
examples is given by

R̂(h) =
1

p

p∑
i=1

C(Yi, h(xi)) . (2.8)
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2.3 Practical Risk Minimisation

It can be shown that for an increasing number of available samples, p→∞, the empirical
risk converges to the generalisation error (Mohri, Rostamizadeh and Talwalkar, 2012).
A practical estimate for f can thus be found by minimising this empirical risk to get

ĥ = argmin
h

R̂(h) . (2.9)

An estimate that results from (2.9), is not guaranteed to minimise the true risk (James
et al., 2013). It would be easy to construct a function that predicts correct labels for
all examples in the dataset, but produces wrong results everywhere else. This function
would have a zero empirical risk, but probably a very high generalisation error. Apart
from the poor prediction capabilities of this classifier, it is infeasible to consider all
possible functions X → Y in order to find the estimate ĥ.

2.3.2 Hypothesis Space

In order to resolve the problems of bad generalisation and infeasibility in empirical risk
minimisation (ERM) (see section 2.3.1), it suffices to limit the search space of hypotheses.
Concretely, we consider a fixed hypothesis space H with hypotheses that are expected
to generalise well (Goodfellow, Bengio and Courville, 2016). This generalisation can be
enforced by choosing a space with hypotheses with a limited complexity.

Infeasibility could be tackled by using a finite hypothesis space, but this is often too
much of a constraint. Therefore, spaces with parametrised functions are interesting in
practice, since it is generally easier to estimate parameters than to fit an entire function
(James et al., 2013). Often, a hypothesis space uses parameters to specify the structural
form of its functions that can generally not be learnt. We will denote a hypothesis space
with so-called hyperparameters θ by Hθ.

A typical example for a hypothesis space with a hyperparameter is the set of polyno-
mial functions

Hd = {f(x ;w) = w0 + w1x+ w2x
2 + . . .+ wdx

d | wi ∈ R} .

In this case, the coefficients wi are the parameters to be learnt and the degree of the
polynomial d is the only hyperparameter. Note that the complexity of the hypotheses
in Hd can be controlled by the hyperparameter d.

This makes ERM a two-phase process. The first phase is about choosing a hypothesis
space and its hyperparameters. This process is commonly referred to as model selection.
Once a hypothesis space or model class has been selected, the parameters for the final
hypothesis or model can be optimised in the second phase. The search for parameters is
known as training or fitting and comes down to minimising the empirical risk, i.e. the
final model is given by

ĥH = arg min
h∈Hθ

R̂(h) . (2.10)

Note that the choice for Hθ is crucial to find models that generalise well.
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2 Machine Learning

Empirical Risk

Complexity

Bound

Figure 2.1: Illustration of the error bound that is minimised in SRM (Mohri, Rostamiz-
adeh and Talwalkar, 2012).

2.3.3 Structural

Structural risk minimisation (SRM) is the best known alternative to ERM. It is based
on the fact that the sum of the empirical risk and a complexity term for the hypothesis
space H form an upper bound on the generalisation error (2.2) (Mohri, Rostamizadeh
and Talwalkar, 2012). By minimising this upper bound over an infinite sequence of
increasingly complex hypothesis spaces, i.e.

H1 ⊂ H2 ⊂ . . . ⊂ Hn ⊂ . . . ,

SRM allows to do the model selection together with the training of the model. An
illustration of SRM can be found in figure 2.1. The final hypothesis is given by

ĥ = arg min
h∈Hn
n∈N

R̂(h) + complexity(Hn, |D|) . (2.11)

Although it is theoretically possible to compute every part in SRM, it is rarely used in
practice. After all, SRM requires to solve a possibly large number of ERM problems to
get to a solution (Mohri, Rostamizadeh and Talwalkar, 2012). One type of practical ML
models that is often considered to be an example of SRM, are support vector machines
(SVMs). The reason for this is that a SVM minimises the training error together with
a margin, which can be interpreted as a measure for the complexity of the model.

2.4 A Bunch of Errors

The true goal in supervised ML algorithms is to minimise the generalisation error. Be-
cause this turns out to be impossible, an approximation of the risk is minimised instead.
This and other approximations that are used in the process of ERM form entry points
for various distortions. A discussion of the consequences and origins of these errors is
the topic of this section.
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2.4 A Bunch of Errors

2.4.1 Excess Error

The first error is introduced by limiting the hypothesis space to some Hθ in the first
phase of ERM (see section 2.3.2). This limitation causes the best possible hypothesis to
be

h∗
H = arg min

h∈Hθ

R(h), (2.12)

rather than the optimal hypothesis h∗ (2.3). The discrepancy between the risks of the
suboptimal and the optimal hypotheses, i.e.

Eapp = E [R(h∗
H)−R(h∗)] , (2.13)

is known as the approximation error (Mohri, Rostamizadeh and Talwalkar, 2012).
A second error is introduced by using the empirical risk as an estimate for the gen-

eralisation error. The expected difference in performance between the result of ERM
(2.10) and the suboptimal (2.12) hypothesis, i.e.

Eest = E
[
R(ĥH)−R(h∗

H)
]
, (2.14)

is the estimation error (Mohri, Rostamizadeh and Talwalkar, 2012).
The third error comes from the fact that minimisation procedures rarely lead to exact

solutions. Instead, the result is rather a sufficiently good approximation h̃H so that

R̂(h̃H) < R̂(ĥH) + ρ

for some tolerance ρ ≥ 0. The optimisation error is then given as

Eopt = E
[
R(h̃H)−R(ĥH)

]
, (2.15)

which should be comparable to the tolerance ρ in magnitude (Bottou and Bousquet,
2007).

The total error that is made in ERM is called the excess error,

E = E
[
R(h̃H)−R(h∗)

]
, (2.16)

and is simply the sum of the approximation, estimation and optimisation error, i.e.

E = Eopt + Eest + Eapp.

There exist problems for which it is feasible to do the optimisation exactly. We talk
about small-scale learning when Eopt = 0. However, large-scale problems, for which
Eop > 0, are more common in ML (Bottou and Bousquet, 2007).
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Bias

Variance

EPE

Irreducible

Complexity

UNDERFITTING OVERFITTING

Figure 2.2: Illustration of bias variance decomposition together with the phenomena
of under- and overfitting. Inspired by figure in (Goodfellow, Bengio and
Courville, 2016)

2.4.2 Bias vs Variance

Another way of looking at the errors that arise in ERM is the decomposition of the
expected prediction error (EPE) of the squared loss. The EPE is the expected loss of
the prediction in some unseen point, i.e.

EPE(ĥ,x0) = E
[
Csq

(
f(x0) + ϵ, ĥ(x0)

)]
,

in case of the squared loss (2.6).
By using simple rules of expectation and the fact that E [ϵ] = 0 and Var[ϵ] = σ2

ϵ , the
EPE can be decomposed as follows

EPE(ĥ,x0) = E

[(
ĥ(x0)− (f(x0) + ϵ)

)2]
= E

[(
ĥ(x0)− E

[
ĥ(x0)

]
+ E

[
ĥ(x0)

]
− f(x0)

)2]
+ E

[
ϵ2
]

= E

[(
ĥ(x0)− E

[
ĥ(x0)

])2]
+ E

[(
E
[
ĥ(x0)

]
− f(x0)

)2]
+Var [ϵ]

= Var
[
ĥ(x0)

]
+
(
E
[
ĥ(x0)

]
− f(x0)

)2
+ σ2

ϵ ,

where the expectations are computed over the dataset that was used to train ĥ.
The EPE is the sum of the variance of the hypotheses, the bias E

[
ĥ
]

of the predictions
and the variance of the noise in the data. This formulation is therefore best known as
the bias-variance decomposition. The bias,

E
[
ĥ(x0)

]
− f(x0) ,
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2.5 Risk assessment

(a) d = 1 (b) d = 3 (c) d = 10

Figure 2.3: Illustration of bias and variance for the polynomial hypothesis space, Hd,
from section 2.3.2. The bias for each point is indicated by the distance
between the darker, solid line and the black, dashed line. The variance is
encoded by the area covered by the lighter, solid lines. The degree, d, of
the polynomials is a measure for the complexity of Hd. Inspired by figure in
(James et al., 2013)

indicates how far predictions of ĥ are expected to be from the truth. A high bias indicates
that no hypothesis can be found that comes close enough to f . This is generally the
case if the hypothesis space is not complex enough, in which case the problem is said to
suffer from underfitting.

By increasing the complexity, the model is normally able to adapt better to the specific
data and therefore the bias decreases. The variance of the hypotheses, on the other
hand, increases with the complexity. The reason for this is that complex hypothesis
spaces allow to model the smallest changes in the data, which can lead to very different
predictions for slightly altered data. When the hypothesis space is so complex that
trained hypotheses are very susceptible to noise, the model is said to suffer overfitting.

Because the noise can not be changed, the variance of the noise is often referred to as
the irreducible error. This variance that is inherent to the data, provides a lower bound
on the EPE. In other words, the prediction accuracy can only be improved by reducing
both the bias and variance of the hypothesis space up to a certain point. From the
diagram in figure 2.2, it should be clear that this is an act of balancing the complexity
of the model. An illustration of bias and variance in a practical example is provided in
figure 2.3.

2.5 Risk assessment

More important than the knowledge that the process of ERM introduces several errors,
is the possibility to get an idea of the magnitude of the excess error. This justifies the
addition of a third phase in the process of ERM: risk assessment. In this section, we
tackle some well-known techniques to get an idea of how good a hypothesis actually is.
The general idea is to withhold some part of the data from training and use this part as
unseen data to get an idea of the predictive performance of a model.
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(a) test set (b) 5-fold cross validation

Figure 2.4: Illustration of possible splits when using a test set or cross validation. The
part with the brightest colour is the data used for training the model, the
darkest colour indicates the test set and the rest make up the validation set.
The 5 blocks in the illustration of cross validation represent exactly the same
dataset. Note that, in the illustration, cross validation is only used for model
selection. For the risk assessment, the test set method is used.

2.5.1 Test Set

The easiest way to do quality assessment is to use the so-called test set method, in
which the available data D is split into two parts. The first part of the data is used to
train a model and is therefore called the training set. The second part is used to test
the predictive performance of the trained model and is known as the test set. When
splitting the data, it is important that both training and test set have approximately
the same distribution as the original data (Goodfellow, Bengio and Courville, 2016).

In order to assess the generalisation error by means of the test set, it suffices to
compute the empirical risk (2.8) over the test set once learning has finished. This leads
to a good estimate for the risk, provided that the model was not influenced by any
information from the test set (Goodfellow, Bengio and Courville, 2016). As soon as the
slightest bit of information is used for pre-processing, model selection or training, the
estimate for the risk will look better than it actually is. Therefore, it is generally a good
idea to lock away the test set until the model is fully trained. Note that when applied
correctly, the test set is used only once on a single fully-trained model.

During model selection, risk assessment is often a useful idea to find out if the hy-
potheses in a space Hn suffer from under- or overfitting. As mentioned above, the test
set can not be used for this purpose. Therefore, the training set is often split into two
parts once more to get a new, smaller set of training samples and a so-called validation
set. Again, the empirical risk (2.8) is computed over the validation set to get an idea
of how well each of the hypothesis spaces generalise. Rules for how the data should
be partitioned into training, validation and test sets depend on the problem and the
available data (James et al., 2013).
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2.5 Risk assessment

2.5.2 Cross Validation

One of the main disadvantages of the test set method is that the entire test set is only
used once. Also the validation set is used only a limited number of times. On top of that,
the choice of how the data is partitioned can affect the resulting risk estimates (James
et al., 2013). Both of these issues can be alleviated by using a technique called cross
validation. k-fold cross validation involves the partitioning of the data D in k disjoint
sets, also known as folds. Each fold is used as a test or validation set once while the
other k − 1 folds are used to train the model.

In practice, this requires each model to be trained k times. This leads to k different
hypotheses of the form

ĥCV,i = arg min
h∈Hθ

1

p− |Di|
∑

(x,Y )∈D\Di

C(Y, h(x)) , (2.17)

where p = |D| and Di represents fold i of k. The estimate for the risk is then computed
by averaging over test or validation errors of the k different hypotheses, i.e.

R̂CV(Hθ) =
1

k

k∑
i=1

1

|Di|
∑

(x,Y )∈Di

C
(
Y, ĥCV,i(x)

)
. (2.18)

Note that cross validation provides an average risk estimate for all hypotheses in Hθ,
rather than for one specific hypothesis. Also, each of the hypotheses ĥCV that are trained
in the process of cross validation are biased towards the folds they have been trained
on. This makes these hypotheses unsuited to serve as final models and renders cross-
validation impractical for assessing the quality of some final model. For the purpose of
model selection, however, cross validation can be a very useful tool to resolve the need
for a separate validation set.
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3 Neural Networks

Neural networks (NNs) are the result of connecting simple computational units, known
as neurons. In biology, a neuron is just a specific kind of cell that can be found in
the brain (Raven et al., 2014). In order to get a better understanding of the brain,
researchers created mathematical abstractions for these neurons and their connections
(McCulloch and Pitts, 1943). These ideas found their way into the field of ML, where
they became a powerful tool for learning (Schmidhuber, 2015).

Currently, artificial neural networks (ANNs) are one of the most popular and successful
ML methods due to state-of-the-art performance on various tasks in e.g. computer
vision (He et al., 2016), speech recognition (Amodei et al., 2016) and natural language
processing (Wu et al., 2016). Another important reason for the popularity of ANNs
is the fact that they are representation learning methods (LeCun, Bengio and G. E.
Hinton, 2015). This means that a NN is capable of finding useful features from raw data
for the task at hand. This alleviates the need for domain expertise and careful feature
engineering, which is one of the main challenges for a lot of other methods.

In this chapter, we give an introduction on how ANNs can be useful for supervised
learning. The fundamental structure of NNs and the notation for the different entities
in these networks are introduced in section 3.1. Some examples of some practical, more
advanced networks is provided in 3.2. How these models are able to learn from labelled
data is explained in sections 3.4 and 3.5.

3.1 Basic Structure

The basic structure of artificial neural networks (ANNs) is based on the human brain,
which is an example of a biological neural network (BNN). The goal of this section is
to reveal the similarities as well as the differences in the structure of these two types
of NNs. We will especially focus on multilayer perceptrons (MLPs), which is a specific
type of ANN, because it is the easiest kind of networks to study. The notation that
is introduced here, and used in the rest of this thesis, might therefore not be ideal to
describe more complex models.

3.1.1 Neurons

Each neuron in the brain is a cell with a soma or cell body, and a nucleus (Raven et al.,
2014). Dendrites are branched extensions to the soma that allow neurons to receive
information from different sources. The surface of the soma integrates the incoming
impulses from the dendrites and triggers an impulse by itself if the excitation from the
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Figure 3.1: Schematic illustrations of neurons in a biological neural network and a arti-
ficial neural network with an emphasis on the structural similarities.

integrated impulses reaches a certain threshold. This triggered impulse is broadcast to
dendrites of other neurons by means of the axon. Synapses form the connections between
axon terminals and dendrites and are believed to be the basis of learning and memory
(Raven et al., 2014). These components are schematically illustrated in figure 3.1a.

Neurons in a ANN, on the other hand, are rather mathematical functions of the form
(Russell and Norvig, 2010)

neuronf : Rn ×W → R : x ;W ↦→ a = neuronf (x ;W ) .

Each of these neurons receives a vector x of inputs xi and computes a single activation
a as output. So-called synaptic weights w ∈ W are used to weight the incoming signals
from other neurons. f is the so-called activation function of the neuron and is responsible
for computing the outgoing activations, i.e. f models the threshold logic. A visual
representation of the elements in an artificial neuron is given in figure 3.1b.

A simple, concrete example of a neuron is

neuronf : Rn × Rn → R : x ;w ↦→ a = neuronf (x ;w) . (3.1)

In this case, each input has a corresponding weight to indicate the strength of its con-
nection. By computing the dot product

s = w · x =
n∑

i=1

wixi ,

the weighted inputs can be integrated and the activation of the neuron is given by

a = neuronf (x ;w) = f(s) = f(w · x) .

This neuron has been used to visualise the ANN in figure 3.1 with n = 5.

16



3.1 Basic Structure

3.1.2 Layers with Bias

The simple neuron from (3.1) has exactly one weight for each input and is therefore not
able to control the activation for zero inputs. A simple work-around is to add a constant
input unit x0 = 1 with a special weight b = w0, which is known as the bias, i.e.

neuronf : Rn × Rn × R→ R : x ;w, b ↦→ a = neuronf (x ;w, b) . (3.2)

The only difference in the computation of the activations is that the bias b appears in
the integration of the weighted inputs:

s = w · x+ b =
n∑

i=1

wixi + b .

This simple modification allows to shift the activation function left and right, which
allows for a more flexible threshold.

In ANNs, neurons are typically organised in layers. Each layer can be seen as a vector
of neurons with the same activation function. Concretely, given a neuron of the form
(3.1.1), we can define a layer of width N , i.e. with N neurons, as

layerf,N : Rn ×W → RN : x ;W ↦→ a = layerf,N(x ;W ) .

Note that a layer is in fact a parametrised transformation from Rn to RN (Goodfellow,
Bengio and Courville, 2016).

A layer with neurons of the form (3.2) would look like

layerf,N : Rn × RN×n × RN → RN : x ;W, b ↦→ a = layerf,N(x ;W, b) . (3.3)

Instead of computing the dot product

si =
n∑

j=1

wijxj + bi

for each neuron in the layer explicitly, the integrated inputs can be computed at once
by using a single dot product

s = W · x+ b .

The final activations are the result of applying the activation function element-wise to
s, i.e.

a = layerf,N(x ;W, b) = f(s) = f(W · x+ b) ,

where ai = f(si).
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hidden layers

input layer output layer

Figure 3.2: Graphical representation of a simple multilayer perceptron with an input,
output and hidden layers. According to our notation, this network has a
depth of L = 4 (three hidden and one output layer). The number of units in
each layer are given by N0 = 4, N1 = N2 = N3 = 5, N4 = 3.

3.1.3 A Network of Connected Layers

The result of stacking different layers on top of each other, is a ANN. Formally, we can
write

netθ : Rn ×W → Rm : x ↦→ y = netθ(x ;W ) , (3.4)

where θ is the set of hyperparameters and W is the set of parameters for the NN.
A network with L layers is said to be of depth L and when using layers of the form

(3.3), a concrete example for a ANN is given by

netθ(x ;W ) = layerfL,NL
◦ layerfL−1,NL−1

◦ . . . ◦ layerf2,N2
◦ layerf1,N1

(x)

= layerfL,NL

(
. . . layerf1,N1

(
x ;W(1), b(1)

)
. . . ;W(L), b(L)

)
.

In this case, the set of hyperparameters would be θ = {L, f1, N1, f2, N2, . . . , fL, NL} and
W = {W(1), b(1),W(2), b(2), . . . ,W(L), b(L)} are the parameters to be learnt. A network
with this architecture is illustrated in figure 3.2.

Because the input layer does not apply any transformation to the data, we have ignored
it in our formulation. It can be useful to refer to the input layer, however. Therefore,
we reserve the layer-index zero to refer to the input layer: e.g. the number of inputs of
the network in (3.4) is N0 = n. The last layer (L) in the network is commonly referred
to as the output layer. The layers that are not at the input or at the output, i.e. layer 1
to L− 1 are called hidden layers. These three different kinds of layers in a network are
illustrated in figure 3.2.

3.2 Alternative Architectures

Although we depicted NNs as one hypothesis space in the introduction of this chapter,
it can also be seen as a collection of different hypothesis spaces. Because neurons and
layers can be made arbitrarily complex and combined in numerous ways, there exists a
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wide variety of possible architectures of ANNs. The architecture with fully connected
layers (3.3) from section 3.1, corresponds to a multilayer perceptron (MLP) and is one
of the easiest possible networks (Goodfellow, Bengio and Courville, 2016).

If there are no connections to previous layers, the data can only flow from the input
to the output layer. Networks that have no cycles in their connections, e.g. MLPs, are
called feedforward neural networks (FNNs). The class of ANNs where cycles are allowed
are known as recurrent neural networks (RNNs). By means of the cycles in a RNN,
the neurons that are triggered by one input can influence activations for the next input,
exhibiting memory-like behaviour (Graves, 2012).

In this section, we provide some examples of more complex architectures that are
very popular for solving practical ML problems. Rather than to provide a thorough
discussion of these architectures, the goal of this section is to provide some insights in
what the possibilities are when moving away from simple MLPs.

3.2.1 Convolutional Neural Network

A famous example of a FNN that has been designed with a focus on image recognition
tasks, is the convolutional neural network (CNN) (LeCun, Bottou, Bengio et al., 1998).
On top of the fully connected layers that can be found in a MLP, CNNs make use of
convolutional and pooling layers.

Convolutional layers compute convolutions of the incoming signal with a set of small
kernels, instead of using the dot product in (3.3). This greatly reduces the number of
parameters that need to be learnt. Additionally, the weights of the kernel are shared for
different local patches in the input image, which enables better generalisation (Good-
fellow, Bengio and Courville, 2016). Another advantage of the convolution operation is
that it is able to take into account information from neighbouring pixels due to its local
receptive fields.

Pooling layers reduce the size of the image by combining groups of neighbouring
pixels. This is done by taking the maximum or average pixel value, for example. These
techniques are known as max pooling and average pooling respectively. Other pooling
strategies include the L2 norm and weighted averaging, but many more exist (Goodfel-
low, Bengio and Courville, 2016).

Most CNNs are built using convolutional and pooling layers alternately, followed by
one or more fully connected layers. In each convolutional layer, the image at the input is
convolved with a set of kernels that make up the parameters of that layer. This results
in a feature map for each kernel, which is the result of the convolution with that kernel.
The output of the convolutional layer is the element-wise application of the activation
function on that feature map.

By regularly inserting a pooling layer, the images become smaller and therefore the
computational costs of the convolution decrease and the network becomes less variant
to scaling. An alternative way to reduce the computational effort for the network is to
use convolutional layers with larger strides (Springenberg et al., 2015).
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3.2.2 Long Short-Term Memory

A popular example of a RNN architecture is the long short-term memory (LSTM) net-
work (Hochreiter and Schmidhuber, 1997). LSTMs have particularly complex neurons,
called memory cells, that have been designed to alleviate the vanishing gradient problem
(see section 3.4.1). The key part of a memory cell is its cell state, which explicitly models
the memory of a neuron.

Each cell also has a set of gates to manipulate the cell state and to control the
activation. The most important gates are the input and output gate. The former
controls whether the cell state is updated with the current input signal, whereas the
latter decides whether its neuron should fire or not. Another useful gate is the forget
gate (Gers, Schmidhuber and Cummins, 2000), which allows to reset the cell state and
thus clears the memory of the neuron.

On top of the weights w and b that can be found in almost every neuron, e.g. (3.2), a
memory cell also requires wgate, bgate for each of its gates. This means that the number
of parameters is quadrupled in case all three of the above mentioned gates are used.
Concretely, the additional parameters are win and bin, for the input gate, wout and bout
for the output gate and the forget gate requires wforget and bforget.

The output of a gate is generally computed by means of a logistic sigmoid (3.6), which
is a value between zero and one. By multiplying a signal with the output of a gate, it
can be blocked, i.e. set to zero, if the output is close to zero or flow through if the gate
output is close to one. The input gate is used to control the flow of the weighted sum
of inputs. The output gate decides whether the current cell state Ct makes it to the
output of the cell. Finally, the forget gate allows to clear the cell state and therefore the
memory of the cell.

Using the index t to denote the time step t of the signal, the activation of a memory
cell at each time step can be computed by

it = σ (win · xt + bin)

ot = σ (wout · xt + bout)

ft = σ (wforget · xt + bforget)

Ct = ftCt−1 + ith(w · xt + b)

at = otg(Ct) .

Here, h and g are activation functions that do not act as gates. Note that we did not
distinguish between forward and recurrent connections to keep this overview on LSTMs
short. For a more in-depth look into LSTMs and RNNs, we refer to (Graves, 2012).

3.3 Hyperparameters

One of the main disadvantages of NNs is the high number of hyperparameters that have
to be chosen. Only for the structure of a simple MLP, the number of layers and neurons
in each layer, etc. have to be chosen. Additionally, a decision has to be made on which
activation function to use in each layer and how to initialise the weights.
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In general, a grid search or cross-validation (see section 2.5.2) is too expensive for
ANNs. Especially when considering deep networks, these techniques require too much
computational resources to be practical. A random hyperparameter search turns out to
be one of the most efficient ways to find good hyperparameters (Bergstra and Bengio,
2012). Also Bayesian optimisation is an efficient, but still costly way to find good
hyperparameters (Snoek, Larochelle and Adams, 2012).

In order to start a search for hyperparameters, possible values have to be known. In
this section, we provide an overview of commonly used activation functions and weight
initialisation strategies that can be used for configuring a ANN.

3.3.1 Activation Functions

Although the activation function of a layer could be anything, there are certain choices
that are more common than others. A great example of a theoretically sound activation
function that is not particularly practical, is the identity, i.e.

id(x) = x id′(x) = 1 . (3.5)

The identity function can be interesting to study the learning dynamics of a ANN
(Saxe, McClelland and Ganguli, 2014), but the resulting model will always be a linear
classifier, irrespective of the number of layers. Therefore, it is important to use non-
linear activation functions to construct ANNs that can model more complex relations.
Another interesting property for activation functions that the identity does have, is
differentiability. This is particularly useful when the weights of the network are updated
by some variant of gradient descent (section 3.4).

Based on the firing mechanism of neurons in a BNN, non-differentiable threshold func-
tions were a popular choice in the early days (Russell and Norvig, 2010). Unfortunately
these functions are not differentiable and therefore useless in gradient based learning.
The family of sigmoid functions provided a set of differentiable, non-linear alternatives.
The logistic sigmoid

σ(x) =
1

1 + exp(−x)
σ′(x) = σ(x)(1− σ(x)) , (3.6)

which results in activations between zero and one, has been a popular choice for quite
some time.

Due to its small derivatives and the fact that it is not zero-centred, the logistic sigmoid
does not facilitate fast learning (LeCun, Bottou, Orr et al., 1998). The hyperbolic
tangent

tanh(x) =
exp(x)− exp(−x)
exp(x) + exp(−x)

tanh′(x) =
(
1− tanh(x)2

)
(3.7)

has zero mean outputs and greater derivatives. Therefore, it is to be preferred over
logistic sigmoids (LeCun, Bottou, Orr et al., 1998).

21
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An interesting activation function for the purpose of classification is the softmax

σ(x) =
exp(x)∑
j exp(xj)

(3.8)

σ′(x) = σ(x)(1− σ(x)) . (3.9)

In some sense it is a generalisation of the logistic sigmoid for vectors. The output of a
softmax is a vector of probabilities that sum up to one. This makes it especially useful
as output activation function to predict one-hot encoded labels.

Another popular family of activation functions has been built around the rectified
linear unit (ReLU)

ReLU(x) =

{
0 x < 0

x x ≥ 0
ReLU′(x) =

{
0 x < 0

1 x ≥ 0
. (3.10)

ReLUs are biologically inspired and promote sparsity, which results in faster learning
(Glorot, Bordes and Bengio, 2011). The hard zero for negative inputs with its zero deriv-
ative, however, can prevent the network from propagating errors (see section 3.4.2) and
leads to a rather unfavourable distribution of activations for learning (LeCun, Bottou,
Orr et al., 1998).

This is why several variants of ReLUs have been constructed. One activation function
that allows the network to learn for negative input and has a more centred activation
distribution, is the exponential linear unit (ELU) (Clevert, Unterthiner and Hochreiter,
2015)

ELU(x ;α) =

{
α(exp(x)− 1) x < 0

x x ≥ 0
ELU′(x ;α) =

{
ELU(x) + α x < 0

1 x ≥ 0
. (3.11)

3.3.2 Weight Initialisation

When using an activation function of the sigmoid family, the greatest gradients appear
for inputs close to zero. Because a small gradient can have negative effects on learning
(see section 3.4.1), it is generally a good idea to initialise weights with values that are
close to zero (LeCun, Bottou, Orr et al., 1998). It would not make sense to initialise
all values with zero because this is equivalent to ignoring all inputs. Also using the
same initial value for all weights does not lead to interesting networks. Therefore, the
initial weights are generally small, randomly generated numbers. Although this is a
good start, it turns out that careful initialisation is crucial for efficient learning in deep
neural networks (DNNs).

The first successful deep architecture was a deep belief network (DBN) (G. E. Hinton,
Osindero and Teh, 2006). Before this time, DNNs were often too hard to train. The
key to the success of DBNs was the unsupervised pre-training. By stacking restricted
Boltzmann machines (RBMs) that have been trained to reproduce their inputs, i.e.
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(a) logistic sigmoid (b) hyperbolic tangent

(c) rectified linear unit (ReLU) (d) exponential linear unit (ELU)

Figure 3.3: Plots of some commonly used activation functions in ANNs.
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without labels, a network can be built that already captures some of the structure of
the data. Unsupervised pre-training can therefore be seen as an expensive, but effective
way to initialise the weights in a ANN.

Xavier- or Glorot-initialisation offers a more efficient alternative to weight initial-
isation. It is the result of studying the moments of the activations and deltas (see
section 3.4.2) in a network with symmetric activation functions that have derivative one
at zero (Glorot and Bengio, 2010). The key of Xavier-initialisation is to generate weights
W (l) from a distribution with zero mean and a variance inversely related to the number
of inputs Nl−1 and neurons in a layer Nl, i.e. so that

E
[
W (l)

]
= 0 Var

[
W (l)

]
=

2

Nl−1 +Nl

.

By initialising the networks in this way, the variance of both activations and back-
propagated gradients can be kept approximately constant.

He-initialisation offers an alternative initialisation method that is better suited for
ReLUs. After all, a ReLU (3.10) is not symmetric and therefore it does not work
well with Glorot-initialisation (He et al., 2015). More specifically, ReLUs annihilate
the variance due to negative values, which is about half the variance of symmetrically
distributed inputs. Therefore, He-initialisation suggests to initialise the weights so that

E
[
W (l)

]
= 0 Var

[
W (l)

]
=

2

Nl−1

.

Additionally, the biases b(l) are initialised with zeros.
For both Xavier- en He-initialisation it does not matter what the actual distribution

is, as long as it has the appropriate mean and variance. Generally, the weights are
generated from a uniform or truncated normal distribution in order to prevent outliers
for the initial values. Another interesting initialisation technique is to use orthogonal
weight matrices. This has the interesting property that its transformation as well as its
Jacobian preserve norm (Saxe, McClelland and Ganguli, 2014).

3.4 Learning

Although the structure of a NN forms the foundation of these models, it would not
be interesting for the purpose of ML without a learning algorithm. The number one
technique for training a network is backpropagation (BP) (Werbos, 1974), which is a
form of gradient descent. It thanks its popularity to a study (Rumelhart, G. E. Hinton
and Williams, 1986) that experimentally showed that meaningful patterns emerge in the
hidden layers of a backpropagation (BP)-trained ANN (Schmidhuber, 2015). Although
it can be used in unsupervised settings, (Baldi, 2012), BP is predominantly a supervised
learning algorithm (see section 2.2).

The BP algorithm consists of two steps, or passes. In the forward pass, the network
predictions ŷ = netθ(x ;W ) for each feature vector x are computed. In the backward
pass, the gradients of the empirical risk (2.8) with respect to the weights are computed
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to update each weight. The forward pass is as simple as applying (3.4) on the data. In
this section, we give an overview of the backward pass.

3.4.1 Product of Jacobians

An important part of BP is thus to compute the gradients

∂C(y, ŷ)

w
,

for all weights w ∈ W in the network. Because ŷ = netθ(x ;W ), the chain rule gives

∂C(y, ŷ)

∂w
=

∂C(y, ŷ)

∂ŷ

∂ŷ

∂w
,

which leaves us with the computation of the gradients of the network w.r.t. w. Because
we defined a ANN to be a composition of layer functions (3.4), the chain rule applies
again and leads to

∂ netθ(x ;W )

∂w
=

∂layerθL(x
(L) ;WL)

∂x(L)

∂layerθL−1
(x(L−1) ;WL−1)

∂x(L−1)
· · ·

∂layerθl(x
(l) ;Wl)

∂w
,

assuming that w is a weight in layer l. This reveals that the gradient of the entire
network w.r.t. a weight w is simply the product of derivatives of a set of layers.

There are different gradients to be considered for a fully-connected layer in a MLP
(3.3). The first gradient is the Jacobian of the layer and is given by

∂ layerf,N(x ;W, b)

∂x
=

∂f(s)

∂s

∂(W · x+ b)

∂x
= diag(f ′(s)) ·W , (3.12)

where · is the inner product and diag(x) is a diagonal matrix from the values in x.
The gradients that are necessary to compute the weight updates in a MLP are given

by

∂ layerf,N(x ;W, b)

∂W
=

∂f(s)

∂s

∂(W · x+ b)

∂W
= f ′(s)⊗ x (3.13)

∂ layerf,N(x ;W, b)

∂b
=

∂f(s)

∂s

∂(W · x+ b)

∂b
= f ′(s) , (3.14)

where ⊗ denotes the outer product.
The derivative of the entire MLP with respect to some weight w in layer l can then

be written as a product of the Jacobians of layers l + 1 up to L and the corresponding
weight update

∂ netθ(x ;W )

∂w
=

⎛⎝ ∏
i∈(L,L−1,...,l+1)

diag(f ′
i(s

(i))) ·W(i)

⎞⎠ · ∂a(l)

∂w
. (3.15)
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This formula reveals one fundamental problem of BP.
Rewriting (3.15) for a single entry at position i, j in the result of the matrix product

above, cf. (Hochreiter, 1998), gives

NL−1∑
yL−1=1

· · ·
Nl+1∑

yl+1=1

[
f ′
L

(
s
(L)
i

)
w

(L)
i,yL−1

(
L−1∏

x=l+2

f ′
x

(
s(x)yx

)
w(x)

yx,yx−1

)
f ′
l+1

(
s(l+1)
yl+1

)
wyl+1,j

]
.

This clearly shows that if |f ′(si)wij| < 1 for all i and j in each layer, the entries in
the result of the product can become very small. For DNN, where L can be very large,
this causes the updates for lower layers to become approximately zero, hence the term
vanishing gradient problem (Hochreiter, 1991). It is also possible that weights become
too large and cause so-called exploding gradients.

3.4.2 Delta propagation

The equations above could be used to implement the backward pass in BP, but that
would be rather inefficient. Instead of computing a product of Jacobians, the backward
pass is generally implemented by means of the derivatives

δ(l) =
∂C(y, ŷ)

∂s(l)
. (3.16)

The first interesting aspect of this approach is that for certain pairs (fL(·), C(·, ·)) of
output activations and cost functions, the delta for the last layer can be simply computed
as

δ(L) = ŷ − y .

For the squared loss (2.6), this requires a linear output activation (3.5) and the cross-
entropy loss (2.5) plays well with the logistic sigmoid (3.6) and softmax (3.8) activations.
If the output activation and cost function do not make up such a pair, δ(L) is just the
product of the derivatives of the loss and the output activation.

Starting from the last layer, the deltas in a MLP can be computed recursively, using

δ(l) = δ(l+1) · ∂s
(l+1)

∂s(l)
= δ(l+1) ·W(l+1) · f ′(s(l)) , (3.17)

which is once more a result that is derived from the chain rule. In order to compute the
weight updates from the deltas, we can simply use

∂ layerfl,Nl
(x ;W(l), b(l))

∂W(l)
= δ(l) ⊗ x (3.18)

∂ layerfl,Nl
(x ;W(l), b(l))

∂b(l)
= δ(l) . (3.19)
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3.5 Optimisation

There are several ways to use the gradients of the loss for updating the weights. The
most straightforward way is to do gradient descent on the weights with a fixed step size
or learning rate η, i.e.

w ← w − η
∂R̂(netθ)

∂w
. (3.20)

This can also be considered a form of stochastic gradient descent (SGD) given that the
empirical risk is already an estimate for the risk, which is generally the true goal. We
will refer to this update as gradient descent, however, in order to distinguish between
cases where not all examples of the training data are used to compute the gradient.

3.5.1 Variations on Gradient Descent

When there are too much examples, it is often computationally too costly to consider
all samples at once. In this case, smaller groups of examples Bi ⊆ D called mini-batches,
are used to estimate the gradient of the empirical risk so that the update becomes

w ← w − η∇BC(y, ŷ) . (3.21)

Here, we used ∇BC(y, ŷ) to denote a gradient computed over a batch B, i.e.

∇BC(y, ŷ) =
1

|B|
∑

(x,ŷ)∈B

∂C(y, ŷ)

∂w
.

When all mini-batches contain exactly one example, the algorithm is said to learn on-
line. The other extreme, when there is only one mini-batch that contains all examples,
i.e. B = D, is known as batch learning. Note that what we refer to as gradient descent
is the same as batch learning, because R̂(netθ) = ∇DC(y, ŷ).

Instead of only using the gradient of the loss function, learning can be accelerated
by taking into account old gradients as well. In momentum-based SGD, this is done
by computing an exponential moving average over the past gradients with coefficient µ
(Goodfellow, Bengio and Courville, 2016). The momentum update is then computed as
follows

v ← µv − η∇BC(y, ŷ)

w ← w + v , (3.22)

where v represents the average. This simple upgrade of SGD amplifies changes in low-
curvature directions, which happens to have the same effect as second-order methods
(Sutskever et al., 2013).

Nesterov momentum is an alternative to the method described above that performs
the update in two steps. In the first step, the weights are updated with the velocity
that has been gathered thus far. These updated weights are then used to compute a
lookahead gradient that makes up the update in the second step. This makes it possible
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to make up for wrong directions faster (Sutskever et al., 2013). The updates are given
by

w ← w + µv

v ← µv − η∇BC(y, ŷ)

w ← w − η∇BC(y, ŷ) , (3.23)

where the gradients are computed w.r.t. the weights after the first update. Nesterov
momentum has slightly better convergence properties than the classical method and
works with greater values for µ (Sutskever et al., 2013).

3.5.2 Next-Level Gradient Descent

Another popular family of SGD variants use per-parameter, adaptive learning rates
instead of the global and fixed variants discussed thus far. A first example of such an
algorithm is AdaGrad (Duchi, Hazan and Singer, 2011), which gradually decreases the
learning rate for each weight individually as the model learns. One main disadvantages
of AdaGrad is that the learning rate converges to zero. Adadelta is a method that
tries to improve on the pitfalls of AdaGrad (Zeiler, 2012). This is done by replacing
the sum of squared gradients by an exponential moving average. This introduces an
extra hyperparameter ρ, but keeps the learning rate from disappearing. Another famous
algorithm in this family is Adam (Diederik P. Kingma and J. Ba, 2015), which combines
exponential moving averages to estimate both the first and the second raw moments of
the gradients. It is often seen as a combination of Adadelta and momentum.

All of the above algorithms use only first order derivatives to update the weights.
There are a several second order methods that require the Hessian to be either computed
or estimated, e.g. Newton’s method, CG, BFGS, etc. Because this is often a costly
computation and does not provide significant advantages over the methods above, they
are not commonly used in practice. For a more thorough and complete discussion on the
different optimisation algorithms, we refer to (Goodfellow, Bengio and Courville, 2016).

28



4 Self-Normalisation

It has long been known that it is easier for layers in a ANN to learn from whitened,
i.e. decorrelated, zero mean and unit variance, features (LeCun, Bottou, Orr et al.,
1998). Therefore, a common strategy to facilitate learning in ANNs, is to apply a
whitening transform on the data during pre-processing. Unfortunately, the benefits
of whitened input features get lost as the data passes through the learning network.
Different techniques have recently been proposed to assure normalised inputs at each
layer to speed up learning.

In this chapter, we will focus on a technique that is known as Self-Normalising neural
networks (SNNs) (Klambauer et al., 2017). In section 4.1, we discuss the negative impact
of the changes in the distributions of the data in a ANN. We also touch upon a set of
normalisation techniques that alleviate this negative impact. The basic ideas of self-
normalisation are introduced in section 4.2 as well as an extension of SNNs that takes
into account the effect of bias units. How scaled exponential linear units (SELUs) help
to create SNNs is discussed in section 4.3. Finally, our analysis of the backward pass in
BP is described in section 4.4.

4.1 Internal Covariate shift

In order to accelerate learning in a ANN, it is considered good practice to normalize or
whiten the data during pre-processing (LeCun, Bottou, Orr et al., 1998). As the data
propagates through the different layers of the network, however, it undergoes various
layer transformations. On top of that, the weights, which form the linear part of these
layer transformations, are updated repeatedly. This causes each transformation to alter
the data differently after each update. As a consequence, the beneficial properties of
whitened data at the input of a ANN gets lost as it propagates through the network.

The actual problem is not that the data is transformed, but rather that each transform
generally affects the distribution of the data. The term internal covariate shift has been
defined as ‘change in the distribution of network activations due to the change in network
parameters during training’ Ioffe and Szegedy, 2015. Here, we extend this definition to
also incorporate the changes in distribution that are a consequence of applying layer
transformations on the data (see figure 4.1). We will refer to these latter changes as
static internal covariate shift and those due to parameter updates will be referred to as
dynamic internal covariate shift.
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(a) with (b) without

Figure 4.1: Visualisation of (static) internal covariate shift in a ANN. The curve after
each layer sketches the probability density function of each layer. Ideally, the
distribution stays about the same (right), but in practice, the distribution
changes (left). The dynamic internal covariate shift would denote the changes
due to parameter updates.

4.1.1 Regular Normalisation

To preserve the moments of data with zero mean and unit variance input, LeCun et al.
suggest to use a scaled version of the hyperbolic tangent (LeCun, Bottou, Orr et al.,
1998)

stanh(x) = 1.7159 · tanh
(
2

3
x

)
stanh′(x) = 1.7159 · 2

3

(
1− tanh

(
2

3
x

)2
)

.

By initialising the weights so that

E
[
W (l)

]
= 0 Var

[
W (l)

]
=

1

Nl−1

,

the inputs to the scaled tanh have unit variance and the outputs in each layer should
be normalised. It turns out, however, that the scaling merely gets the variance of its
outputs closer to one than the original tanh. Instead of the promised unit variance, it
can easily be verified experimentally that it is rather around 0.75.

A more recent normalisation technique that has gained plenty of attention, is batch
normalisation (Ioffe and Szegedy, 2015). By adding a per-batch, per-feature normalising
transformation

BN : R× R× R→ R : si ; γ, β ↦→ γ
si − Ex∈B [si]√

Ex∈B
[
(si − Ex∈B [si])

2] + β
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in front of the activation function in each layer, the internal covariate shift can be
effectively countered. In order to prevent the normalisation from damaging the repres-
entational power of the NN, parameters γ and β are introduced. γ and β explicitly allow
the network to undo the normalisation, which is necessary to allow neurons to saturate.
Both γ and β can be learnt with BP because the normalising transformation is entirely
differentiable.

Layer normalisation is a technique that applies the basic ideas of batch normalisa-
tion in a different way to make it suitable for RNNs and also more efficient (L. J. Ba,
Kiros and G. E. Hinton, 2016). Instead of computing the statistics for each neuron
individually, one mean and standard deviation are computed for each layer. Another
important difference with batch normalisation is that mean and variance are computed
for each sample individually, rather than for the entire batch. Mathematically, the layer
normalisation transform is given by

LN : RN × RN × RN → RN : s ;γ,β ↦→ γ ⊙ s− Esi∈s [si]√
Esi∈s [(si − Esi∈s [si])]

+ β

A completely different approach is taken in weight normalisation (Salimans and Diederik
P Kingma, 2016). By re-parametrising the weights in each neuron using

w =
g

∥v∥
v ,

the norm g and direction v of each weight vector are decoupled. By carefully initialising
parameters g and the bias terms b with mini-batch statistics, the inputs to the activation
function s = w · x + b can be efficiently normalised. This technique turns out to be
especially effective when combined with mean-only batch normalisation (Salimans and
Diederik P Kingma, 2016).

4.2 Self-Normalisation

Self-Normalising neural networks (SNNs) make up a collection of networks in which each
layer intrinsically transforms the data so that its moments are preserved (Klambauer et
al., 2017). Unlike the techniques from section 4.1.1, where the inputs to the activation
function si are normalised, SNNs focus on normalising the activations ai of each layer.
On top of providing inputs in the non-saturating region of the activation function, this
avoids the direction of weight updates to be biased, which should improve learning even
more (LeCun, Bottou, Orr et al., 1998).

4.2.1 Contraction Mapping

In order to understand self-normalisation, we need to take a look at the moment mapping

MF : [a, b]× [c, d]→ [a, b]× [c, d] :
(
µX , σ

2
X

)
↦→
(
µA, σ

2
A

)
,
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4 Self-Normalisation

that is induced by each layer transformation. Here, X and A are random variables
representing one of the inputs xi and one of the activations ai in one layer and [a, b] ⊆ R
and [c, d] ⊆ R+.

SNNs are capable of preserving the moments of the data by using layers that induce
a contraction mapping on the moments (Klambauer et al., 2017). This means that for
the layers in a SNN, the Jacobian of MF ,

JF =

( ∂µA

∂µX

∂µA

∂σ2
X

∂σ2
A

∂µX

∂σ2
A

∂σ2
X

)
,

does not have eigenvalues with an absolute value larger than one, i.e.⏐⏐⏐⏐12
(
JF 11 + JF 22 ±

√
(JF 11 + JF 22)

2 − 4 (JF 11JF 22 − JF 12JF 21)

)⏐⏐⏐⏐ < 1 , (4.1)

for any point in the domain of the mapping.
Such a contraction mapping is known to have a unique fixed point and converges to this

fixed point when applied iteratively (Banach, 1922). This means that the moments of
activations in the end of a SNN for which all layers induce the same contraction mapping,
will converge to the fixed point of that contraction mapping. Additionally, SNNs can
effectively normalise the data to have zero mean and unit variance by constructing the
layers so that the fixed point of their moment mapping is (0, 1).

4.2.2 Self-Normalising Layers

Assuming that inputs X, weights W and biases B are all independent random variables,
the moments of the weighted inputs S in a fully connected layer (3.3) are given by

µS = E

[
B +

n∑
i=1

WX

]
= µB + nµWµX

σ2
S = E

⎡⎣(B +
n∑

i=1

WX

)2
⎤⎦− µ2

S = σ2
B + n

(
σ2
Wσ2

X + µ2
Wσ2

X + σ2
Wµ2

X

)
.

(4.2)

If n, the number of inputs to a layer, is large, the central limit theorem applies and
therefore S is approximately normally distributed.

This information allows us to compute the moments of the activations as

µA = E [f(S)] =

∫ ∞

−∞
f(s)pN (s ;µS, σS) ds

σ2
A = E

[
f(S)2

]
− µ2

A =

∫ ∞

−∞
f(s)2pN (s ;µS, σS) ds− µ2

A ,

(4.3)

where pN (x ;µ, σ) = 1√
2πσ2

exp
(
− (x−µ2)

2σ2

)
.
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Given expressions for the moments of the activations, a specific fixed point (µ, σ2) can
be enforced by solving the fixed point equations{

µX = µA = µ

σ2
X = σ2

A = σ2
. (4.4)

For a fully connected layer (3.3), the unknowns in these equations are the moments of
weights and biases as well as possible parameters for the activation function. If the fixed
point equations can be solved for one or two of these unknowns, the fixed point of MF

will be (µ, σ2). By setting the fixed point to (µ, σ2) = (0, 1), SNNs effectively alleviate
what we refer to as the static internal covariate shift.

Once the equation system (4.4) is solved in some fixed point (µ, σ2), the unknowns
that are left in the fixed point equations can be assigned any possible value. In order for
MF to be a contraction mapping, however, the stability conditions (4.1) have to be taken
into account. If these are satisfied in the fixed point (µ, σ2), MF is a contraction mapping
in the area around the fixed point for which the stability conditions hold. Otherwise,
the moments might diverge away from the fixed point.

4.3 Scaled Exponential Linear Units

The SELU

SELU(x ;α, γ) = γ ELU(x ;α) SELU′(x ;α, γ) = γ ELU′(x ;α) , (4.5)

is one possible activation function that allows to construct self-normalising layers (Klam-
bauer et al., 2017). The parameters α and γ allow to control the changes to both mean
and variance in a fully connected layer with SELU activations. By choosing appropriate
values for these parameters and the initial weights, a fully connected layer induces a
contraction mapping on the moments, which leads to self-normalisation.

4.3.1 Finding parameters

The moments of SELU activations in a MLP are given by (Klambauer et al., 2017)

µA = γ

(
α(E1 − E0) +

σS√
2π

e
− µ2S

2σ2
S + µS(1− E0)

)
(4.6)

σ2
A = γ2

(
α2(E2 − 2E1 + E0) +

σSµS√
2π

e
− µ2S

2σ2
S + (µ2

S + σ2
S)(1− E0)

)
− µ2

A , (4.7)

where, for notational brevity, we use

Ek = EX<0

[
ekX
]
=

∫ 0

−∞
ekx

1√
2πσ2

S

e
− (x−µS)2

2σ2
S dx =

1

2
ek(µS+

k
2
σ2
S) erfc

(
µS + kσS√

2σ2
S

)
.
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Figure 4.2: Plot of the scaled exponential linear unit (SELU) activation function. The
brighter line is the plot of the exponential linear unit (ELU), i.e. without
scaling.

For a fixed point at (µ, σ2) = (0, 1), the fixed point equations (4.4) lead to the following
expressions for the SELU hyperparameters

α = −
(√

ω

2π
e−

µ2
B

2ω + µB(1− E ′
0)

)
(E ′

1 − E ′
0)

−1 (4.8)

γ2 =

(
α2(E ′

2 − 2E ′
1 + E ′

0) + µB

√
ω

2π
e−

µ2B
2ω + (µ2

B + ω)(1− E ′
0)

)−1

, (4.9)

with E ′
k =

1
2
ek(µB+ k

2
ω) erfc

(
µB+k

√
ω√

2ω

)
and ω = σ2

B + n(σ2
W + µ2

W ).

4.3.2 The Role of Initialisation

The variables in the expressions for α (4.8) and γ (4.9) that lead to a fixed point at
(µ, σ2) = (0, 1), are the moments of the parameters in the layer. If the biases are
initialised to zeros, i.e. (µB, σ

2
B) = (0, 0), and the initial weights satisfy (µW , σ2

W ) =
(0, 1

n
), these variables are known and the SELU parameters are given by

α = −
√

2

π

(√
e erfc

(
1√
2

)
− 1

)−1

≈ 1.67326

γ = ±
√
2

(
α2

(
e2 erfc

(√
2
)
− 2
√
e erfc

(
1√
2

)
+ 1

)
+ 1

)− 1
2

≈ ±1.05070 .
(4.10)

These are the same values as presented in (Klambauer et al., 2017), where the biases
are not explicitly taken into account.

In (Klambauer et al., 2017) an extensive proof is provided that the moment mapping
of a fully connected layer with SELU activations and the aforementioned parameters,
leads to a moment contraction mapping

MF : [−0.1, 0.1]× [0.8, 1.5]→ [−0.1, 0.1]× [0.8, 1.5] : (µX , σ
2
X) ↦→ (µA, σ

2
A) ,
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4.4 Moment Dynamics

with fixed point at (µX , σ
2
X) = (0, 1). The domain of this function makes up the region

for which a SELU is guaranteed to pull activations towards its fixed point. An important
condition for this result to hold is that the mean of the weighted inputs is close to zero and
the variance stays close to one, i.e. µS ∈ [−0.01, 0.01] and σ2

S ∈ [0.76, 1.65] (Klambauer
et al., 2017). In case the biases are ignored, this is satisfied if µW ∈ [−0.1, 0.1] and
σ2
W ∈ [0.95

n
, 1.1

n
] (Klambauer et al., 2017). Otherwise, there is a trade-off between the

moments of biases and weights.
Note that it is also possible to find parameters for non-contraction mappings with

SELUs. If the biases would have been initialised so that σ2
B = 1 or σ2

W = 2
n

holds for
the weights, the SELU parameters would be

α = − 2√
π

(
e erfc

(
1√
2

)
− 1

)−1

≈ 8.20875

γ = ±
√
2

(
α2

(
e4 erfc

(√
2
)
− 2e erfc

(
1√
2

)
+ 1

)
+ 2

)− 1
2

≈ ±0.12881 .

However, this is not a contraction mapping, because the stability conditions (4.1) are
not satisfied. This can also be derived from the fact that σ2

S would be σ2
B +σ2

Xσ
2
W = 2 ̸∈

[0.76, 1.65] in both cases.

4.4 Moment Dynamics

After initialisation, the moments of weights and biases are known and it can be assured
that layers induce a moment mapping. As the network is learning, however, the weights
and biases are updated and their distributions change. If the moments of these para-
meters stay within a certain range, e.g. as discussed in section 4.3.2, there is generally
no problem. However, if they get out of that range, the fixed point become unstable,
which might cause the moments to diverge.

In this section, we analyse the moments in the BP algorithm to get an idea of how the
moments of the weights change during learning. We apply our analysis to SNNs with a
SELU activation function and parameters as discussed in section 4.3. Finally, also the
influence of momentum to the changes is discussed.

4.4.1 Moments of Deltas

In order to get an idea how the learning updates influence the moments of weights
and biases, we analyse the deltas (3.16) and their distributions in the course of BP.
Concretely, we will consider the backward moment mapping

MB : [a, b]× [c, d]→ [a, b]× [c, d] :
(
µD, σ

2
D

)
↦→
(
µD− , σ

2
D−

)
,

which maps the moments of deltas D in layer l onto the mean and variance of deltas D−
in layer l − 1.
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4 Self-Normalisation

For a fully connected layer, the deltas are propagated according to equation (3.17).
Under the assumption that deltas, weights and the weighted inputs of the previous layer
are independent, the moments are mapped onto

µD− = E

[
f ′(S−) ·

N∑
i=1

WD

]

= NµWµD

∫ ∞

−∞
f ′(s)pN (s ;µS− , σS−) ds

σ2
D− = E

⎡⎣f ′(S−)
2 ·

(
N∑
i=1

WD

)2
⎤⎦− µ2

D−

= N
(
σ2
Wσ2

D + µ2
Wσ2

D + σ2
Wµ2

D +Nµ2
Wµ2

D

) ∫ ∞

−∞
f ′(s)2pN (s ;µS− , σS−) ds− µ2

D− .

(4.11)

Here, S− represents the summed inputs of layer l − 1 and N is the number of units
in layer l. From these expressions, it becomes immediately clear that the errors are
expected to have zero mean if the weights are centred.

When using simple gradient descent (3.20), the moments of the weights after one
update are

µW
′ = µW − ηµDµX

σ2
W

′
= σ2

W + η2(σ2
Dσ

2
X + µ2

Dσ
2
X + σ2

Dµ
2
X) .

(4.12)

For the biases, we find
µB

′ = µB − ηµD

σB
′ = σ2

B + η2σ2
D .

(4.13)

Note that in (4.12), the dependency between the weights and the deltas are ignored for
simplicity.

The most important observations at this point are that the weights stay approximately
centred if the inputs have zero mean. Also if the errors have zero mean, the biases and
weights will not undergo a shift. The variance, on the other hand, tends to increase with
every update for both weights and biases. This seems to form the most important threat
to a moment mapping with a stable fixed point. Also note that the variance increases
faster in a network with bias units than for a ANN without biases.

4.4.2 Backprop with SELUs

In order to get an idea of the magnitude of the variance increase due to updates, we can
take a look at what happens in a fully connected layer with SELU (4.5) for an activation
function. In this case, the moments of the deltas (4.11) are

µD− = NµWµDγ(αE1− − E0− + 1)

σ2
D− = N

(
σ2
Wσ2

D + µ2
Wσ2

D + σ2
Wµ2

D +Nµ2
Wµ2

D

)
γ2(α2E2− − E0− + 1)− µ2

D− .
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Here, Ek− = 1
2
e
k(µS−+ k

2
σ2
S−

)
erfc

(
µS−+kσS√

2σ2
S−

)
, cf. section 4.3.1.

Using the settings that lead to a contraction mapping with fixed point in (µX , σ
2
X) =

(0, 1) from section 4.3.2, i.e. (µW , σ2
W ) = (0, 1

n
), (µB, σB) = (0, 0) with parameters

α ≈ 1.67326 and γ ≈ 1.05070, we find

µD− = 0

σ2
D− ≈ 1.07157

N

n
· (σ2

D+
+ µ2

D+
) .

(4.14)

With the recurrence for computing the deltas (3.17), the variance can also be reformu-
lated to

σ2
DL−l

= 1.07157l · (σ2
DL

+ µ2
DL

)
L−1∏
i=L−l

Ni+1

Ni

,

where µDL
and σDL

are the moments of the error in the last layer.
Both formulations indicate that each layer scales the variance by a factor 1.07157N

n

with n, the inputs dimension and N , the number of units in that layer. On top of that,
this scaling is exponential in the number of layers L in the network. The variance of the
back-propagated error will thus generally increase, unless the number of units per layer
gradually decreases towards the end of the network so that N ≤ 1.07157n.

4.4.3 The Role of Momentum

There is more than just gradient descent to do the optimisation in BP. One easy exten-
sion to standard gradient descent is to use momentum (3.22). This introduces an extra
random variable V for the velocity of the gradient that changes with every update as
well. Assuming that V is independent from the inputs and the deltas, the changes to
the moments of the weights are given by

µW
′ = µW + µV

′ µV
′ = µµV − ηµDµX

σ2
W

′
= σ2

W + σ2
V
′

σ2
V
′
= µ2σ2

V + η2(σ2
Dσ

2
X + σ2

Dµ
2
X + µ2

Dσ
2
X) .

Mean and variance of the biases are altered according to

µB
′ = µB + µV

′ µV
′ = µµV − ηµD

σ2
B
′
= σ2

B + σ2
V
′

σ2
V
′
= µ2σ2

V + η2σ2
D .

Assuming that the initial velocity is zero, i.e. (µV , σ
2
V ) = (0, 0), the first update with

momentum will lead to the same changes as if it would be trained with plain gradient
descent. However, the changes due to each subsequent update will be amplified by a
factor µ of previous changes. Because common choices for µ are values close to one,
the use of momentum can significantly speed up the variance increase and thus cause
unstable fixed points sooner.
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4 Self-Normalisation

Similar observations can be made in case Nesterov momentum (3.23) has been used.
In this case, the updates lead to the following moment changes for the weights

µW
′ = µW + µµV − ηµD

′µX µV
′ = µµV − ηµD

′µX

σ2
W

′
= σ2

W + µ2σ2
V + η2σ2

D′X σ2
V
′
= µ2σ2

V + η2σ2
D′X ,

where σ2
D′X = (σ2

D
′
σ2
X + σ2

D
′
µ2
X + µ2

D
′
σ2
X). For the biases, it can be found that

µB
′ = µB + µµV − ηµD

′ µV
′ = µµV − ηµD

′

σ2
B
′
= σ2

B + µ2σ2
V + η2σ2

D
′

σ2
V
′
= µ2σ2

V + η2σ2
D
′
.

In the above expressions, µD
′, σ2

D
′ are the moments of the deltas D′ computed with the

parameters after the first update step, i.e. w + µv and b+ µv.
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5 Empirical Results

This chapter provides the results for a set of experiments with the main purpose to
empirically justify our analysis. On top of that, we try to gain a better understanding
of the distributions of data and how these change in SNNs with SELU activations. The
basic settings of the experiments are sketched in section 5.1. In section 5.2, we take a
look at how pre-processing affects the performance of SNNs. The effect of weights and
biases is discussed in section 5.3 with the empirical justification of our analysis of the
moment dynamics. Section 5.4 provides results that lead to some interesting insights
concerning the influence of the architecture on the backward pass in BP. Finally, we
compare the outcomes of using different optimisers in section 5.5.

5.1 Experiment Settings

For our experiments, we chose to test our theory on image classification problems because
it is a well-known task with a wide variety of easily accessible datasets. The models that
we use to solve these tasks, are simple SNNs with SELU activation functions. For the
implementation of the different networks, we chose to use the Keras framework (Chollet,
2015) in python. Training was done on a NVIDIA Tesla K40C GPU using the tensorflow
(Abadi et al., 2015) back-end of Keras with 32-bit precision.

In this section, we introduce the different datasets that we used for our experiments.
We also introduce the baseline model for each dataset. The settings of these networks are
the same for the models that are compared against this baseline. Finally, we also provide
some details on the visualisations that are used to visualise the changes of moments in
the network.

5.1.1 Datasets

We used two families of datasets for our experiments: grey-scale images of handwritten
digits (MNIST) and pictures of objects with RGB colours (CIFAR). The raw pixel values
for the images in all datasets are unsigned integers in the range [0, 255]. For feeding the
data to the networks, the 2D images were rearranged to create a 1D feature vector of
concatenated pixel rows.

MNIST

The first dataset that we used is MNIST (LeCun, Cortes and Burges, n.d.). It consists of
60 000 training and 10 000 test samples, where each sample is a 28×28 image representing
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5 Empirical Results

(a) MNIST

(b) MNIST-BG-IMG

(c) MNIST-BG-RAND

Figure 5.1: Examples from the training sets of different datasets in the MNIST fam-
ily: standard MNIST, MNIST with background images and MNIST with a
random background.

some digit between zero and nine. In our experiments, we used the entire training set
for learning and ignored the test set. One problem with the MNIST dataset is that it
has some pixels with zero variance over the entire dataset. This makes it impossible to
rescale the data so that the variance of all pixels is one.

In addition to the traditional MNIST dataset, we also ran our experiments on vari-
ations of MNIST with backgrounds (Larochelle, Dimitru Erhan and Aaron, n.d.). These
alternatives to MNIST contain the same images of digits, but the plain black background
is replaced with images in one dataset (MNIST-BG-IMG) and white noise in the other
(MNIST-BG-RAND). This assures that each pixel has some variance and therefore it is
easier to satisfy the assumptions on which SNNs are built. Another remarkable difference
is that there are 12 000 samples for training and 50 000 for testing in these variations.
For the experiments, we chose to use the 50 000 test samples for learning and ignored
the training set for both datasets.

CIFAR

Finally, we also used the CIFAR datasets (Krizhevsky, Nair and G. Hinton, 2009). Each
CIFAR dataset consists of 32 × 32 images with three colour channels: red, green and
blue. CIFAR-10 contains images representing ten classes and CIFAR-100 has hundred
different labels, arranged in twenty super-classes. For both datasets, the training set
holds 50 000 samples and the test set counts 10 000 images. Again, we used the training
sets for fitting the model and ignored the test sets.

40



5.1 Experiment Settings

Figure 5.2: Examples from the training set of the CIFAR-10 dataset. The classes are
airplane, automobile, bird, cat, deer, dog, frog, horse, ship and truck.

Figure 5.3: Examples from the training set of the CIFAR-100 dataset for ten of the
hundred classes. These examples represent the classes apple, aquarium fish,
baby, bear, beaver, bed, bee, beetle, bicycle and bottle.

5.1.2 Base Model

The basic model that has been used as a baseline throughout the different experiments,
is a simple MLP with L = 6 layers, i.e. five hidden layers. We chose to use a rectangular
architecture, where the number of neurons in each hidden layer is the same. The exact
numbers depend on the family of images from which the model has to learn.

The networks that learn from a MNIST-like dataset have 784 input units, 10 outputs
and 500 neurons in each hidden layer. For the CIFAR datasets, we used models with
3072 inputs and hidden layers of 1000 neurons. The number of outputs depends on the
class count of the dataset and is thus either 10 or 100 for CIFAR-10 and CIFAR-100
respectively.

The activation function for the networks is a SELU with the parameters from (4.10)
and the weights are initialised by drawing samples from a uniform distribution so that
(µW , σ2

W ) = (0, 1
n
). The baseline network does not have biases and by whitening the

data during pre-processing, the layers in the network push moments towards the fixed
point (µ, σ2) = (0, 1).

The only loss that has been used in all of the experiments is the cross-entropy loss
(2.5). Therefore, the labels of the data are one-hot encoded and the networks have as
many outputs as there are classes. To exclude influence from other updating dynamics,
we used plain SGD (3.21) as the default optimiser. The data has been processed in
batches of 64 samples with a default learning rate of η = 0.001.

Rationale

The general idea behind these architectural choices was to have networks that are
deep and wide enough without requiring too much computational resources. Especially
memory was a valuable resource during the experiments because for each network, sev-
eral internal values were monitored during learning. Concretely, we have tracked the
distributions of weighted inputs s and activations a in the forward pass and deltas δ in
the backward pass. Also the values of the weights in each layer have been monitored
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(a) s (b) a

(c) δ (d) w

Figure 5.4: Distributions of the weighted inputs s, activations a, deltas δ and weights w
in the CIFAR-10 baseline model before the first update.

during learning. This led to the visualisations in figure 5.4.
Some of the theory from chapter 4 has been taken into account when making these

design choices as well. In order for the central limit theorem to hold (see section 4.2.2), it
is important that the number of neurons in each layer are large enough. The rectangular
architecture has been chosen because of the amount by which the variance of the deltas
increases in each layer. By enforcing that N = n, the influence of the factor N

n
in (4.14),

is cancelled out.

5.1.3 Visualisations

In order to limit the amount of concrete numbers for interpretation, we chose to visualise
the distributions of the different entities that have been tracked during these experiments.
In order to make these visualisations comprehensible, we shortly introduce the semantics
of our figures. We use the distributions for different entities in the baseline models as
an example.

In figure 5.4, we find the visualisations for the activations a, the weighted inputs s,
the deltas δ and the weights w in the baseline model. Each colour in these visualisations
represents one layer in the network. Brighter colours correspond to layers closer to the
output and a layer that is situated in the beginning of the network has a darker colour.

The left side panel in each visualisation represents the probability density function
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of the entity as a histogram. These are constructed by stacking the density function of
the entity from all layers. The contribution of each layer to the histogram is indicated
by the colour coding. The black line that is drawn over these histograms represents the
probability density function of a standard Gaussian distribution, i.e. with zero mean
and unit variance, and serves simply as a reference.

The panel on the right visualises the moments of the entity in each layer. The white
circles that are connected by a white line, represent the mean and the width of the
coloured bar is an indication for the amount of variance. The coloured bar is scaled
so that it fits within the available region. This has the advantage that the changes in
variance throughout different layers are clearly visible, but makes it hard to compare
the moments from different figures. This also causes the means that are greater than
the variance (in absolute value) to be outside of the plot. This phenomena can be seen
in figure 5.4c.

The plots with loss curves only show training losses because our analysis concerns
learning behaviour rather than generalisation. Each curve in the plot is the average
of three individual runs, where one run embodies the building, initialising and training
of the network. The differences between the different runs are indicated by a semi-
transparent region around the curve. The minima and maxima of the training loss in
each epoch were used to construct this region.

5.2 Pre-processing

The idea behind normalisation is to bring moments of data towards a certain point
that defines normalisation. For SNNs, this is only guaranteed to work if the input
data is already normalised. In section 4.3.2, we provided the particular parameters to
push the moments towards the fixed point (µ, σ2) = (0, 1), which has also been used to
configure our baseline model. In order to get an idea of what happens in a SNN when
the moments of the input data do not lie in the domain of the contraction mapping, we
tried out different pre-processing strategies in this experiment.

The optimal pre-processing would be a whitening transform, which assures zero mean,
unit variance and decorrelated features. Also normalisation, i.e. centring and scaling,
provides moments within the domain of the contraction mapping, but in this case, the
features are not decorrelated. A more negligent way to pre-process the data is to ignore
the variance and only centre the data. Finally, we also provided the network with the raw
data, which has pixel values in the range [0, 255] and a more standardised form, where
pixels are scaled to be in the range [0, 1]. How these various pre-processing strategies
affect the moments of the datasets that we consider, is summarised in table 5.1.

In figure 5.5, it can be seen that for normalisation and whitening, the network pre-
serves the moments (µ, σ2) = (0, 1) of the data as it is propagated through the different
layers. The variance for both the centred and standardised, i.e. ∈ [0, 1], data is much
smaller than the ideal σ2 = 1 and thus is not in the domain of the contraction map-
ping. Nonetheless, the variance seems to increase towards one as the data is propagated
through the network in both cases. Also for the raw data, which has very high variance,
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pre-processing raw standardised centred normalised whitened

MNIST 33 0.131 -2.18e-6 -5.34e-6 -1.48e-6
MNIST-BG-IMG 139 0.545 -1.69e-5 -6.24e-5 -5.89e-6
MNIST-BG-RAND 142 0.556 -9.55e-6 -3.18e-5 -1.20e-5
CIFAR-10 121 0.473 -3.07e-7 -6.18e-7 2.42e-8
CIFAR-100 122 0.478 -1.11e-7 -3.55e-7 -4.31e-8

(a) Mean
pre-processing raw standardised centred normalised whitened

MNIST 6173 0.10 0.07 0.91 0.88
MNIST-BG-IMG 4878 0.08 0.07 1.00 1.00
MNIST-BG-RAND 5992 0.09 0.08 1.00 1.00
CIFAR-10 4115 0.06 0.06 1.00 0.97
CIFAR-100 4677 0.07 0.07 1.00 0.98

(b) Variance

Table 5.1: Moments of the different datasets with the various sorts of pre-processing.

(a) raw (b) standardised (c) centred

(d) normalised (e) whitened

Figure 5.5: Distributions of activations a in the MNIST-BG-IMG baseline model for
different pre-processing strategies. Note how the variance in- or decreases if
it is respectively too small or too large.
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(c) MNIST-BG-RAND
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(d) CIFAR-10
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Figure 5.6: Training loss for models trained on differently pre-processed data. The pre-
processing techniques that have been used are (from dark to bright): raw,
standardise, centre, normalise, whiten. Note that for MNIST background
datasets, the network did not start learning from the raw data and for
CIFAR-10 it learnt only once from three runs.

the moments seem to move towards zero mean and unit variance.
These observations make clear that normalised and whitened data do have a theor-

etical advantage. When looking at the learning behaviour for our different datasets in
figure 5.6, this theoretical advantage turns out to be a practical one. Also the decorrela-
tion from the whitening transform does help learning compared to simple normalisation.
Centring the features seems to provide little to no advantage over the standardised data.

SNNs do seem to learn quite well from raw data, although the raw data has moments
that are significantly different from zero and one. Although it sometimes learns nothing
at all, e.g. for MNIST with backgrounds and two out of three runs for CIFAR-10, it
almost seems to lead to learn faster than any other method when it does. This is likely
due to the high input values, which causes the updates to be greater and thus leads to
the faster learning.

5.3 Weights

One of the main contributions of this thesis is the analysis of the moment dynamics
in SNNs (see section 4.4). The most important conclusion from that analysis is that
the variance of the weights will steadily increase with every update (4.12). In this
experiment, we try to empirically verify that the moments of the weights do increase
and by how much. Additionally, we used different distributions to draw initial weights
from to verify that our analysis does indeed only depend on the moments of the weights.

45



5 Empirical Results

5.3.1 Initialisation

In section 4.2, we described what makes a network self-normalising. To do this, we only
needed assumptions on the first two moments of the data. Also the distribution of the
weights has been summarised by mean and variance. To show that the exact distribution
from which the initial weights are drawn, does not really matter, we initialised our
baseline models in four different ways.

The most popular distributions for random number generation are probably the uni-
form and the normal distribution. Apart from these standard distributions, we also
initialised the weights with values drawn from a truncated normal. This is practically
the same as sampling from a regular normal distribution where each value outside a
certain range has been re-sampled. This forces the weights to be in a well-defined range
and prevents outliers from leading to saturation. Lastly, we also initialised the weights
by using random orthogonal matrices. This should lead to better starting conditions,
similar to what can be achieved by unsupervised pre-training (Saxe, McClelland and
Ganguli, 2014).

For the experiment, we initialised all weights so that (µW , σ2
W ) = (0, 1

n
), as discussed in

section 4.3.2. A visualisation of the weight distributions in the resulting networks before
the first update, can be found on the left side in figure 5.7. Note that the input layer
has more units than the hidden layers in the baseline model and therefore the variance
is smaller in the first layer of the network. Another noteworthy observation is that the
variance of the truncated normal is not quite 1

n
. This is due to a faulty implementation

in Keras and/or tensorflow.
From the training loss curves in figure 5.9, there seem to be no significant differences

between the various distributions. Only the truncated normal distribution seems to
perform worse, especially for the CIFAR datasets, but this can be explained by the im-
plementation issue discussed earlier. This merely illustrates the effect of having weights
outside of the range to get a stable fixed point with SELUs. Orthogonalisation does
seem to exhibit slightly different behaviour, but does not consistently perform better or
worse than the models that are initialised with different distributions.

5.3.2 Dynamics

The conclusion that can be drawn from section 4.4 is that the mean of the weights stays
roughly the same for centred inputs, but that their variance will increase steadily. The
amount by which it increases in every update is defined mainly by the moments of the
deltas (4.11). To get an idea of the changes, we compare the distributions of the weights
at initialisation time to those after hundred epochs of learning (figure 5.7).

When looking at the learning curves in figure 5.9, it is clear that the parameters
in the network must have changed. These changes do not seem to be reflected in the
distributions of the weights before and after training (figure 5.7), however. Only for
the uniform weights and the truncated normal, there is a visible difference between the
distributions. The moments even look exactly the same.

Although it seems as if nothing has changed, the variance has most certainly increased.
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5.3 Weights

(a) uniform

(b) normal

(c) truncated

(d) orthogonal

Figure 5.7: Distributions of weights w in the CIFAR-100 baseline model for different
weight initialisation strategies. The left-hand side shows the distributions be-
fore learning and the right-hand side represents the weights after 100 epochs.
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layer l = 1 l = 2 l = 3 l = 4 l = 5

µW 0.269e-5 1.326e-5 0.119e-5 -1.126e-5 -2.135e-5
µW

′ -0.992e-5 5.370e-5 3.512e-5 0.762e-5 -2.125e-5

σ2
W 0.326e-3 1.001e-3 0.997e-3 1.003e-3 1.000e-3

σ2
W

′ 0.329e-3 1.012e-3 1.009e-3 1.017e-3 1.016e-3

Table 5.2: Values for moments of the normally distributed weights w depicted in fig-
ure 5.7, before (µW , σ2

W ) and after (µW
′, σ2

W
′) learning for hundred epochs.

To see this, we need to take a look at the exact values of the moments before and after
learning. Let us take the normally distributed weights, which seem to have changed
the least, as an example. Table 5.2 lists the moments before and after training for this
example. Note that we trained on CIFAR-100, which has 50 000 training samples, for
100 epochs in batches of 64. This means that the network has been trained in 78 200
updates.

The first thing that can be noted is that the mean of the weights does change, but
the changes do not seem to be consistent and could therefore be explained by the fact
that the deltas and/or means do not have exactly zero mean. The more interesting
part is that the variance does seem to increase consistently, as we have shown in theory.
Because the variance of the deltas happens to be very small, i.e. ≈ 1e-7, the variance
increase in every update is very limited. This makes that a MLP with SELUs keeps its
self-normalising properties even after a large number of updates.

5.3.3 Biases

We also described the effect of adding bias units to the original SNNs, from Klambauer
et al., 2017. In section 4.3.2, we found that the standard SELU parameters (4.10) can be
used if the biases are initialised to be all zeros. Just as for the weights, the variance of
biases steadily increases as the network is updated. Because the moments of the weighted
inputs (4.2) have to stay in the range [0.76, 1.65], this additional variance increase could
cause the network to get out of its self-normalising regime.

To see how this has an impact on the network, we extended the baseline model with
bias units. If we look at the distributions of the biases in figure 5.8, we see that the
variance does increase significantly. The updates are small enough again, however, not to
hurt the self-normalising properties of the network. The learning curves for the networks
with bias are practically exact to those in figure 5.9.
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(a) before learning (b) after learning

Figure 5.8: Distributions of the biases b in the MNIST baseline network with bias units
before and after learning.

5.4 Architecture

In section 4.4.2, we found an expression for the factor by which the variance of the deltas
is scaled as it is propagated backwards through some layer (4.14):

1.07
N

n
· (σ2

D+
+ µ2

D+
) .

This indicates that the architecture of the network, more specifically the ratio of widths,
i.e. the number of neurons, N

n
in neighbouring layers, has a certain impact on the back

propagation of the deltas. In order to get an idea of how this factor influences learning,
we have trained several networks with a different width ratio.

5.4.1 Set-up

For our baseline model, we explicitly chose to have a rectangular network, i.e. n = N ,
to cancel out the effect of the architecture on the propagation of the deltas (see section
5.1.2). In this case, the variance of the deltas increases as it is propagated through the
network. To get a comparison with a model for which the variance of the deltas does
not increase, we also considered a conic network with a decreasing number of neurons
in each layer to get a ratio N

n
= 1

1.07
= 0.93. We also trained the opposite network, with

an increasing number of neurons so that N
n
= 1.07 to get an idea of what happens when

the factor is amplified. The actual number of neurons that has been used for each factor
can be found in table 5.3.

The models discussed thus far, have steady or increasing variance as deltas propagate
back through the network. Intuitively, this should help lower layers to learn faster.
Because abstract features that are learnt by layers later in the network build upon
the low-level features in the lower layers, this should make learning easier. Despite
the intuitive disadvantages, we also considered networks for which the variance would
decrease. Concretely, we tested two decreasingly conic networks with factors N

n
= 1

1.5
=

0.67 and N
n
= 1

2
= 0.5 on the MNIST family. For the CIFAR datasets, we also used a

network with N
n
= 1

2
= 0.5 and the opposite cone where N

n
= 2.
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Figure 5.9: Training loss for networks with initial weights drawn from different distri-
butions. The considered distributions are (from dark to bright): uniform,
normal, truncated normal and orthogonal.
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Figure 5.10: Training loss for networks with biases. This is the same experiment as in
figure 5.9 with bias units, which do not seem to make a difference.

factor N1 N2 N3 N4 N5

1.00 500 500 500 500 500
0.93 572 535 500 467 436
1.07 436 467 500 535 572
0.67 1125 750 500 333 222
0.50 2000 1000 500 250 125

(a) MNIST

factor N1 N2 N3 N4 N5

1.00 1000 1000 1000 1000 1000
0.93 1144 1070 100 934 873
1.07 873 934 1000 1070 1144
0.50 4000 2000 1000 500 250
2.00 250 500 1000 2000 4000

(b) CIFAR

Table 5.3: Number of neurons in each hidden layer for the different factors in the archi-
tecture experiment.
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5.4.2 Observations

The left-hand side of figure 5.11 shows that the deltas propagate through the network
as theorised with the initial parameters. For a rectangular SNN, the variance of the
deltas increases. Also a stronger increase can be found for the conic network with factor
1.07. The model with a slowly decreasing number of neurons (factor 0.93), preserves the
variance through the network and the other networks lead to a decreasing variance. As
the network is learning, the factor increases due to the variance increase of the weights,
causing the delta propagation to change. How the deltas look after hundred epochs of
learning is illustrated in the right-hand side of figure 5.11. Note that in all cases the
variance propagation towards lower layers has increased.

From the learning curves in figures 5.12 and 5.13, we can draw some interesting con-
clusions. Although we expected networks with a steady or increasing variance towards
the lower layers to be better, we find that exactly those networks with lower variance
in the first layers outperform all of the other models. It could even be stated that it
is better to have low-variance deltas in lower layers. This statement is backed by the
observation that for models where the variance in lower layers is even more amplified
(factor 2), training is consistently slower than for the other models in our experiments.

5.4.3 Learning from the Back

These observations suggest that having lower variance deltas in the first layers enables
faster learning. One possible explanation for this phenomenon could be that it is easier
for the network to start learning from the back. By reducing the variance of the error
signal towards the first layers, the network can focus on updating the last layer. As
training proceeds, the variance of the weights increases and thus also the factor (4.14)
by which the variance of the deltas (4.11) changes. This way, the variance dampening
disappears and the lower layers of the network can be updated as well.

Ideally, the network would be able to start learning by focusing on the first layer, so
that it gets a chance to build solid, low-level features. However, in a MLP, the back
propagation of large deltas to the first layer, forces the network to learn in all layers at
once. This is due to the fact that there is no other way to get the information from an
error, which is made in the last layer, to the first layer without propagating it through
the other layers of the network.

5.5 Optimisers

We shortly discussed the influence of momentum on the moment changes due to weight
updates in section 4.4.3. Theoretically, we found that the variance of the weights should
increase faster when using momentum. In table 5.4, we listed the variances of weights
before and after learning for a network trained with plain SGD, regular momentum (3.20)
and the variant from Nesterov (3.23) with µ = 0.9. From the numbers in the table, we
can conclude that the variance of the weights does indeed increase faster. However,
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(a) rectangular

(b) conic 0.93

(c) conic 1.07

(d) conic 0.67

(e) conic 0.5

Figure 5.11: Distributions of deltas δ in the MNIST-BG-RAND baseline model with
different architectures. The left-hand side shows the deltas for the first
update and the right-hand side represents the deltas after 100 epochs.52
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Figure 5.12: Training loss for different network architectures. The factors for the archi-
tectures are (from dark to bright): factor 1, factor 0.93, factor 1.07, factor
0.67 and factor 0.50. For the concrete number of neurons in the hidden
layers for each factor, see table 5.3
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(a) CIFAR-10
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Figure 5.13: Training loss for different network architectures. The factors for the archi-
tectures are (from dark to bright): factor 1, factor 0.93, factor 1.07, factor
0.50 and factor 2.00. For the concrete number of neurons in the hidden
layers for each factor, see table 5.3
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layer l = 1 l = 2 l = 3 l = 4 l = 5

SGD σ2
W 0.326e-3 1.001e-3 1.000e-3 1.000e-3 0.999e-3

σ2
W

′ 0.328e-3 1.007e-3 1.007e-3 1.007e-3 1.007e-3

momentum σ2
W 0.325e-3 1.001e-3 1.001e-3 1.000e-3 1.000e-3

σ2
W

′ 0.342e-3 1.044e-3 1.041e-3 1.032e-3 1.028e-3

Nesterov σ2
W 0.326e-3 0.999e-3 1.001e-3 1.000e-3 0.999e-3

σ2
W

′ 0.342e-3 1.042e-3 1.041e-3 1.032e-3 1.027e-3

Table 5.4: Values for variance of weights w in networks trained with SGD, momentum
and Nesterov momentum, before (σ2

W ) and after (σ2
W

′) learning for hundred
epochs.

both regular and Nesterov momentum still do not break the self-normalisation for quite
a number of updates.

The effect of the momentum terms and other optimisers on learning speed is shown in
figure 5.15. First of all, it makes clear that momentum can improve the learning speed of
self-normalising networks significantly. Also, there seems to be no significant difference
between regular and Nesterov momentum in our experiments.

Apart from the momentum, we also considered some commonly used adaptive learning
rate schedules. For the MNIST family, these more complex forms of gradient descent
seem to outperform SGD and both variants of momentum. However, for the CIFAR
models, interesting things seem to be happening. First thing to be noted is that Adagrad
did not learn at all. Also RMSProp and Adam seem to lead to degeneration, although
they do seem to learn pretty well in the beginning. The only optimisers that seem to
learn fast and steady are Adadelta and Adamax.

When taking a look at figure 5.14, we find that the variance of the weights increases
significantly for adaptive learning rate schedules. Especially for Adam and RMSProp,
the variance of the weights has grown by a factor of ten. However, also for the other
adaptive learning rate schedules, the weights grow outside of the range that is required
for self-normalisation (see section 4.3.2).
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(a) SGD (b) momentum (c) Nesterov

(d) Adagrad (e) Adadelta (f) RMSProp

(g) Adam (h) Adamax

Figure 5.14: Distributions of weights w in the CIFAR-10 baseline model with different
optimisers after 100 epochs of learning.
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Figure 5.15: Training losses for models that have been trained using different optimisers.
The optimisers are (from dark to bright): SGD, SGD with momentum,
SGD with Nesterov momentum, Adagrad, Adadelta, RMSProp, Adam and
Adamax.

55





6 Conclusion

In this thesis, we have analysed the moment dynamics in SNNs. By making assumptions
on the moments of the error signal in neural networks, we were able to express how the
moments change in a MLP. One of the main conclusions of this analysis, is that the
variance of the weights steadily increases. We empirically justified these results for
SNNs with SELU activations. We also found that due to the little variability in the
error signal, the variance of the weights increases very slowly. This allows SNNs to stay
in their self-normalising regime for a massive amount of updates.

We also extended the SNNs with bias units and included these in our analysis. We
came to the conclusion that they introduce another source of variance increments. This
means that a SNN with bias units generally gets out of its self-normalising regime faster
than an equivalent network without biases. Although adding bias units does not seem
to harm learning in our experiments, there is no indication that it could provide any
benefits for training.

In the analysis of the dynamics, we also considered the effect of momentum. It turns
out that both regular and Nesterov momentum increase the variance of the weights
faster than SGD. We empirically verified these results and considered a collection of
adaptive learning rate schedules. Whereas the momentum terms keep SNNs in their
self-normalising regime, the effectiveness of adaptive learning rate schedules causes the
weights to get outside of the self-normalising range. Although we did not include a
theoretical analysis and only observed this empirically for RMSProp and Adadelta, it
seems that there is a chance that adaptive learning rate schedules degenerate during
training. Adagrad, on the other hand, does not seem to learn anything at all for certain
tasks.

The architecture of the network, more specifically the ratio of neuron counts in neigh-
bouring layers, was also found to have an impact on the variance of the back propagated
errors in SELU networks. In our experiments, we found that conic architectures with
a decreasing number of neurons towards the outputs, perform significantly better. We
also came to the remarkable decision that exactly this kind of architecture causes the
variance of the deltas to be dampened in lower layers. Networks for which the error
variance was amplified in the first layers, also learned slightly slower. This seems to
indicate that learning benefits from low-variance updates in lower layers.
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Acronyms

AI artificial intelligence
ANN artificial neural network

BNN biological neural network
BP backpropagation

CNN convolutional neural network

DBN deep belief network
DL deep learning
DNN deep neural network

ELU exponential linear unit
EPE expected prediction error
ERM empirical risk minimisation

FNN feedforward neural network

GOFAI good old-fashioned AI

i.i.d. independently and identically dis-
tributed

LSTM long short-term memory

ML machine learning
MLP multilayer perceptron

NN neural network

RBM restricted Boltzmann machine
ReLU rectified linear unit
RNN recurrent neural network

SELU scaled exponential linear unit
SGD stochastic gradient descent
SNN Self-Normalising neural network
SRM structural risk minimisation
SVM support vector machine
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