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Abstract

The present paper introduces an
approach to construct lexicographic
compositions of similarity-based
fuzzy orderings. This construc-
tion is demonstrated by means of
non-trivial examples. As this is
a crucial feature of lexicographic
composition, the preservation of
linearity is studied in detail. We
obtain once again that it is essential
for meaningful results that the
t-norm under consideration induces
an involutive (strong) negation.
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1 Introduction

Lexicographic composition is a fundamental
construction principle for ordering relations.
The most important feature of this construc-
tion is that the composition of two linear or-
derings again yields a linear ordering. Given
two orderings ≤1 and ≤2 on non-empty do-
mains X1 and X2, respectively, the lexico-
graphic composition is an ordering ≤′ on the
Cartesian product X1×X2, where (x1, x2) ≤′

(y1, y2) if and only if

(x1 6= y1 ∧ x1 ≤1 y1) ∨ (x1 = y1 ∧ x2 ≤2 y2). (1)

Rewriting x1 6= y1 ∧ x1 ≤1 y1 as x1 <1 y1

(i.e. the strict ordering induced by ≤1) and
taking into account that x1 = y1 ∨ x1 6= y1 is

a tautology and that ≤1 is reflexive, we obtain
that (1) is equivalent to

(x1 ≤1 y1 ∧ x2 ≤2 y2) ∨ x1 <1 y1. (2)

The study of fuzzy orderings can be traced
back to the early days of fuzzy set theory
[12, 17, 18, 22]. Partial fuzzy orderings in
the sense of Zadeh [22], however, have se-
vere shortcomings that were finally resolved
by replacing the crisp equality by a fuzzy
equivalence relation, thereby maintaining the
well-known classical fact that orderings are
obtained from preorderings by factorization
[7, 2, 3, 11,14].

In [1, 3], several methods for construct-
ing fuzzy orderings are presented, including
Cartesian products. How to transfer lexico-
graphic composition to the fuzzy framework,
however, remained an open problem. The rea-
son why this remained an open issue for a rel-
atively long time is that there was no mean-
ingful concept of strict fuzzy ordering in the
similarity-based framework so far. As this is-
sue is solved by [4] now, we are able to give
a solution in this paper. Detailed proofs are
omitted, as they are long and technical. De-
tails are available from the author upon re-
quest (and the reader is also referred to up-
coming publications).

2 Preliminaries

For simplicity, we consider the unit interval
[0, 1] as our domain of truth values in this
paper. Note that most results, with only
minor and obvious modifications, also hold



for more general structures [11, 13–15]. The
symbols T , T̃ , etc., denote left-continuous t-
norms [16]. Correspondingly, T

→
denotes the

unique residual implication of T . Further-
more, we denote the residual negation of T
with NT (x) = T

→
(x, 0).

Definition 1. A binary fuzzy relation E :
X2 → [0, 1] is called fuzzy equivalence re-
lation1 with respect to T , for brevity T -
equivalence, if the following three axioms are
fulfilled for all x, y, z ∈ X:

1. Reflexivity: E(x, x) = 1

2. Symmetry: E(x, y) = E(y, x)

3. T -transitivity:

T (E(x, y), E(y, z)
)
≤ E(x, z)

Definition 2. A binary fuzzy relation L :
X2 → [0, 1] is called fuzzy ordering with re-
spect to T and a T -equivalence E : X2 →
[0, 1], for brevity T -E-ordering, if it fulfills the
following three axioms for all x, y, z ∈ X:

1. E-reflexivity: E(x, y) ≤ L(x, y)

2. T -E-antisymmetry:

T
(
L(x, y), L(y, x)

)
≤ E(x, y)

3. T -transitivity:

T (L(x, y), L(y, z)
)
≤ L(x, z)

Definition 3. A fuzzy relation R :
X2 → [0, 1] is called strongly complete if
max(L(x, y), L(y, x)) = 1 for all x, y ∈ X
[5,12,17]. R is called T -linear if NT (L(x, y)) ≤
L(y, x) for all x, y ∈ X [5, 14].

Definition 4. A binary fuzzy relation S :
X2 → [0, 1] is called strict fuzzy ordering with
respect to T and a T -equivalence E : X2 →
[0, 1], for brevity strict T -E-ordering, if it ful-
fills the following axioms for all x, x′, y, y′, z ∈
X:

1. Irreflexivity: S(x, x) = 0
1Note that various diverging names for this class

of fuzzy relations appear in literature, like similarity
relations, indistinguishability operators, equality rela-
tions, and several more [6, 15,20,22]

2. T -transitivity:

T (S(x, y), S(y, z)
)
≤ S(x, z)

3. E-extensionality:

T (E(x, x′), E(y, y′), S(x, y)) ≤ S(x′, y′)

As already mentioned above, it is of vital im-
portance for lexicographic composition how to
“strictify” a given fuzzy ordering. The follow-
ing theorem summarizes the most important
facts.
Theorem 5. [4] Consider a T -equivalence E :
X2 → [0, 1] and a T -E-ordering L : X2 →
[0, 1]. Then the following fuzzy relation is a
strict T -E-ordering on X:

S(x, y) = min(L(x, y), NT (L(y, x)))

If T does not have zero divisors, the equal-
ity S(x, y) = min(L(x, y), NT (E(y, x))) holds.
Moreover, S is monotonic w.r.t. L in the fol-
lowing sense (for all x, y, z ∈ X).

T (L(x, y), S(y, z)) ≤ S(x, z)
T (S(x, y), L(y, z)) ≤ S(x, z)

S is the largest strict T -E-ordering contained
in L that fulfills this kind of monotonicity.

For intersecting T -transitive fuzzy relations,
the concept of domination between t-norms is
of vital importance [9, 16,19].
Definition 6. A t-norm T1 is said to domi-
nate another t-norm T2 if, for every quadruple
(x, y, u, v) ∈ [0, 1]4, the following holds:

T1

(
T2(x, y), T2(u, v)

)
≥ T2

(
T1(x, u), T1(y, v)

)
Lemma 7. [9] Consider two t-norms T1 and
T2. The T2-intersection of any two arbitrary
T1-transitive fuzzy relations is T1-transitive if
and only if T2 dominates T1.

3 Starting the Easy Way: One
Crisp and One Fuzzy Ordering

Let us first consider the case where the pri-
mary ordering is crisp and the secondary or-
dering is fuzzy. As the strict ordering is only
needed for the primary ordering, we do not
need to take any strict fuzzy ordering into ac-
count.



Proposition 8. Let us consider a crisp or-
dering L1 : X2

1 → {0, 1} and a T -E2-ordering
L2 : X2

2 → [0, 1] (with E2 : X2
2 → [0, 1] be-

ing a T -equivalence). Then the fuzzy relation
L : (X1 ×X2)2 → [0, 1] defined as

L((x1, x2), (y1, y2)) =

8>>><>>>:
1 if x1 6= y1 and

L(x1, y1) = 1,

L2(x2, y2) if x1 = y1,

0 otherwise,

is a fuzzy ordering w.r.t. T and the T -
equivalence Ẽ : (X1 × X2)2 → [0, 1] defined
as

E((x1, x2), (y1, y2)) =

{
E2(x2, y2) if x1 = y1,

0 otherwise.

Note that, if both components L1 and L2 are
crisp orderings, then L as defined above is
equivalent to the constructions (1) and (2).

Example 9. Consider X1 = X2 = [0, 4], let
L1 be the classical linear ordering of real num-
bers, and assume that L2 is defined as follows:

L2(x, y) = max(min(1− x + y, 1), 0)

It is well-known that L2 is a fuzzy order-
ing with respect to the  Lukasiewicz t-norm
TL(x, y) = max(x + y − 1, 0) and the TL-
equivalence E2(x, y) = max(1 − |x − y|, 0).
Figure 1 shows a cut view of the fuzzy or-
dering L that is obtained when applying the
construction from Proposition 8. The cut
view has been obtained by plotting the value
L((2, 2), (y1, y2)) as a two-dimensional func-
tion of y1 and y2.

The following proposition clarifies in which
way linearity of the two component orderings
L1 and L2 is preserved by the construction in
the previous proposition.

Proposition 10. Let us make the same as-
sumptions as in Proposition 8. If L1 is a crisp
linear ordering and L2 is strongly complete,
then L is also strongly complete. If L1 is a
crisp linear ordering and L2 is T -linear, then
L is also T -linear.
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Figure 1: Cut view of a lexicographic compo-
sition of a crisp linear ordering and a fuzzy
ordering according to Proposition 8

4 Lexicographic Composition of
Two Non-Trivial Fuzzy
Orderings

The results of the previous section have been
known to the author since 1998, but they were
not published so far, as they cannot be con-
sidered a full-fledged solution of the problem.
So let us now consider the general case, where
both components are fuzzy orderings without
any further assumptions so far. The following
theorem gives a general construction inspired
by the classical construction (2).
Theorem 11. Consider two T -equivalences
E1 : X2

1 → [0, 1], E2 : X2
2 → [0, 1], a T -

E1-ordering L1 : X2
1 → [0, 1], and a T -E2-

ordering L2 : X2
2 → [0, 1]. Moreover, let T̃ be

a t-norm that dominates T . Then the fuzzy
relation LexT̃ ,T (L1, L2) : (X1 ×X2)2 → [0, 1]
defined as

LexT̃ ,T (L1, L2)((x1, x2), (y1, y2)) =

max
(
T̃ (L1(x1, y1), L2(x2, y2)), (3)

min(L1(x1, y1), NT (L1(y1, x1)))
)

is a fuzzy ordering w.r.t. T and the T -
equivalence CartT̃ (E1, E2) : (X1 × X2)2 →
[0, 1] defined as the Cartesian product of E1

and E2:

CartT̃ (E1, E2)((x1, x2), (y1, y2)) =

T̃ (E1(x1, y1), E2(x2, y2))

Note that, if L1 is a crisp ordering, then
LexT̃ ,T (L1, L2) defined as in Theorem 11 co-



incides with the fuzzy relation L defined in
Proposition 8. Consequently, if both compo-
nents L1 and L2 are crisp orderings, then LT̃
is equivalent to the constructions (1) and (2).

Construction (3) is based on one specific
formulation of lexicographic composition,
namely (2). This is just one possible way
of defining lexicographic composition. It is
unknown whether there are other meaning-
ful ways to define lexicographic composition
on the basis of a different formulation that is
equivalent to (2) in the classical Boolean case.

Example 12. Consider again the domain
X = [0, 4] and consider the following three
fuzzy relations on X:

L3(x, y) = max(min(1− 1
2
(x− y), 1), 0)

L4(x, y) = min(exp(y − x), 1)
L5(x, y) = min(exp(3(y − x)), 1)

L3 is a TL-E3-ordering with E3(x, y) =
max(1− 1

2
|x− y|, 0). L4 is a TP-E4-ordering2

with E4(x, y) = exp(−|x−y|) and, since TL ≤
TP, a TL-E4-ordering as well. L5 is a TP-E5-
ordering with E4(x, y) = exp(−3|x − y|) and
a TL-E5-ordering as well. Thus we can define
the following fuzzy relations from the fuzzy
orderings L2 (from Example 9), L3, L4, and
L5:

La = LexTM,TL
(L2, L2)

Lb = LexTL,TL
(L3, L2)

Lc = LexTP,TL
(L4, L2)

Ld = LexTP,TL
(L5, L5)

Theorem 11 then ensures that all these four
fuzzy relations are fuzzy orderings with re-
spect to the  Lukasiewicz t-norm TL and
TL-equivalences defined as the corresponding
Cartesian products. Figure shows cut views of
the four lexicographic compositions, where we
keep the first argument vector constant (we
choose (x1, x2) = (2, 2)) and plot the value
L∗((2, 2), (y1, y2)) as a two-dimensional func-
tion of y1 and y2.

Now the question arises whether the lexico-
graphic composition of two linear fuzzy order-

2with TP denoting the product t-norm

ings is again linear. Note that there are sev-
eral notions of linearity of fuzzy orderings [5].
Let us first consider strong completeness.

Example 13. All fuzzy orderings considered
in Examples 9 and 12 were strongly com-
plete. Note, however, that none of the lexico-
graphic compositions defined in Example 12 is
strongly complete. To demonstrate that, con-
sider the plots in Figure 3. These two plots
show the values

max
(
La((2, 2), (y1, y2)),La((y1, y2), (2, 2))

)
max

(
Ld((2, 2), (y1, y2)),Ld((y1, y2), (2, 2))

)
as two-dimensional functions of y1 and y2. If
La and Ld were strongly complete, these two
functions would have to be the constant 1,
which is obviously not the case. The same is
true for the two other lexicographic composi-
tions Lb and Lc.

After this negative answer, let us relax the
question a bit and attempt the question
whether the lexicographic composition of two
strongly complete fuzzy orderings is T -linear.

Proposition 14. Let us make the same as-
sumptions as for Theorem 11. If L1 and
L2 are strongly complete fuzzy orderings and
the residual negation NT is involutive (i.e.
NT (NT (x)) = x holds for all x ∈ [0, 1]), then
the fuzzy ordering

LexT̃ ,T (L1, L2)

is T -linear.

Note that Proposition 14 also proves that all
the four lexicographic compositions defined in
Example 12 are TL-linear.

The proof of Proposition 14 does not work if
we do not assume that NT is an involution.
The question arises, of course, whether this
condition is not only sufficient, but also nec-
essary. The answer is that this is the case, as
the following example demonstrates.

Example 15. Consider a left-continuous t-
norm for which a value z ∈]0, 1[ exists such
that NT (NT (z)) 6= z. Since NT (NT (z)) ≥ z
always holds, we can infer that, in this case,
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Figure 2: Cut views of the four lexicographic compositions from Example 12
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Figure 3: Plots of the functions max
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(left) and
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(right)



NT (NT (z)) > z must hold. Now let us con-
sider two simple strongly complete fuzzy or-
derings on the sets X1 = {a, b} and X2 =
{c, d}, respectively:

L1 a b

a 1 1
b z 1

L2 c d

c 1 1
d 0 1

Then we can infer the following for any choice
of T̃ :

LexT̃ ,T (L1, L2)((a, d), (b, c)) = NT (L1(b, a))

= NT (z)
LexT̃ ,T (L1, L2)((b, c), (a, d)) = L1(b, a) = z

Hence we obtain that

NT

(
LexT̃ ,T (L1, L2)((a, d), (b, c))

)
= NT (NT (z)) > z

= LexT̃ ,T (L1, L2)((b, c), (a, d)),

which shows that LexT̃ ,T (L1, L2) is not T -
linear.

Note that the condition of involutiveness in
particular excludes all t-norms without zero
divisors. Therefore, lexicographic composi-
tions of non-trivial (i.e. non-crisp) fuzzy or-
derings with respect to the popular minimum
and product t-norms are problematic, if not
meaningless. The reason for this is simple.
As shown in [4], the only strict fuzzy order-
ing included in a fuzzy ordering that is strictly
greater than zero (e.g. like L4 and L5 from Ex-
ample 12) is the trivial zero relation. When it
comes to lexicographic composition, the strict
fuzzy ordering induced by the first component
relation plays a crucial role. If it vanishes,
no meaningful lexicographic composition that
preserves linearity properties can be expected.
As an example, see Figure 4. It shows a cut
view of the fuzzy ordering LexTP,TP

(L5, L2).
It is easy to see that LexTP,TP

(L5, L2) is noth-
ing else but the Cartesian product of L5 and
L2, which is of course not TP-linear.

The final and most important question is
whether the lexicographic composition of
two T -linear fuzzy orderings is again T -
linear. Strong completeness always implies

0

1

2

3

4

0

1

2

3

4 0

0.25

0.5

0.75

1

1

2

3

4

Figure 4: A cut view of LexTP,TP
(L5, L2)

T -linearity [5], thus, strongly complete fuzzy
orderings are a sub-class of T -linear fuzzy or-
derings (no matter which T we choose). If the
involutiveness of NT is a necessary condition
for meaningful results in Proposition 14, there
is no point in considering a t-norm that does
not induce an involutive negation any further.

Theorem 16. Let us again make the same
assumptions as for Theorem 11. If L1 and
L2 are T -linear fuzzy orderings and the resid-
ual negation NT is involutive, then the fuzzy
ordering

LexTM,T (L1, L2)((x1, x2), (y1, y2)) =
max(min(L1(x1, y1), L2(x2, y2)),

min(L1(x1, y1), NT (L1(y1, x1))))

is T -linear.

Obviously, Theorem 16 does not allow any
choice of the aggregating t-norm T̃ as in the
original construction in Theorem 11, but en-
forces the choice of the minimum t-norm (i.e.
T̃ = TM). This is not an arbitrary restriction,
but a necessary condition, as the following ex-
ample demonstrates.

Example 17. Consider an arbitrary left-
continuous t-norm T that induces a strong
negation NT and assume that T̃ < TM. Then
there exists a y ∈]0, 1[ such that T̃ (y, y) < y.
Now let us consider the following two fuzzy
relations:

L1 a b

a 1 y
b 1 1

L2 c d

c 1 y
d NT (y) 1



It is easy to see that L1 and L2 are T -linear
fuzzy orderings with respect to T and some
T -equivalences (the exact definition of them
is not important at this point). Now we can
compute:

LexT̃ ,T (L1, L2)((a, c), (b, d))

= max(T̃ (y, y), min(y, NT (1)) = T̃ (y, y)
LexT̃ ,T (L1, L2)((b, d), (a, c))

= max(T̃ (1, NT (y)), min(1, NT (y))
= NT (y)

If LexT̃ ,T (L1, L2) was linear, the following in-
equality would be fulfilled:

NT

(
LexT̃ ,T (L1, L2)((b, d), (a, c))

)
≤ LexT̃ ,T (L1, L2)((a, c), (b, d))

However, we obtain:

NT

(
LexT̃ ,T (L1, L2)((b, d), (a, c))

)
= NT (NT (y)) = y > T̃ (y, y)
= LexT̃ ,T (L1, L2)((a, c), (b, d))

Therefore, LexT̃ ,T (L1, L2) can never be T -
linear if T̃ < TM. This example, therefore,
justifies the assumptions of Theorem 16.

5 Conclusion

In this paper, we have introduced an approach
to lexicographic composition of similarity-
based fuzzy orderings. This construction, in
principle, works for all choices of t-norms.
However, the essential property of lexico-
graphic compositions—that the lexicographic
composition of linear orderings is again a lin-
ear ordering on the product domain—is only
maintained if the underlying t-norm T in-
duces an involutive negation (in particular,
including nilpotent t-norms and the nilpo-
tent minimum). This once more confirms
the viewpoint that such t-norms are most
adequate choices in fuzzy relations theory,
fuzzy preference modeling and related fields
[4, 5, 8, 10,21].
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Universitätsverlag Rudolf Trauner, 1999.

[2] U. Bodenhofer. A similarity-based gen-
eralization of fuzzy orderings preserving
the classical axioms. Internat. J. Un-
certain. Fuzziness Knowledge-Based Sys-
tems, 8(5):593–610, 2000.

[3] U. Bodenhofer. Representations and
constructions of similarity-based fuzzy
orderings. Fuzzy Sets and Systems,
137(1):113–136, 2003.

[4] U. Bodenhofer and M. Demirci. Strict
fuzzy orderings in a similarity-based set-
ting. In Proc. Joint 4th Conf. of the Eu-
ropean Society for Fuzzy Logic and Tech-
nology and 11 Recontres Francophones
sur la Logique Floue et ses Applica-
tions, pages 297–302, Barcelona, Septem-
ber 2005.

[5] U. Bodenhofer and F. Klawonn. A for-
mal study of linearity axioms for fuzzy
orderings. Fuzzy Sets and Systems,
145(3):323–354, 2004.

[6] D. Boixader, J. Jacas, and J. Recasens.
Fuzzy equivalence relations: Advanced
material. In D. Dubois and H. Prade,
editors, Fundamentals of Fuzzy Sets, vol-
ume 7 of The Handbooks of Fuzzy Sets,
pages 261–290. Kluwer Academic Pub-
lishers, Boston, 2000.
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[14] U. Höhle and N. Blanchard. Partial or-
dering in L-underdeterminate sets. In-
form. Sci., 35:133–144, 1985.

[15] F. Klawonn and J. L. Castro. Similarity
in fuzzy reasoning. Mathware Soft Com-
put., 3(2):197–228, 1995.

[16] E. P. Klement, R. Mesiar, and E. Pap.
Triangular Norms, volume 8 of Trends
in Logic. Kluwer Academic Publishers,
Dordrecht, 2000.

[17] S. V. Ovchinnikov. Similarity relations,
fuzzy partitions, and fuzzy orderings.
Fuzzy Sets and Systems, 40(1):107–126,
1991.

[18] S. V. Ovchinnikov and M. Roubens. On
strict preference relations. Fuzzy Sets and
Systems, 43:319–326, 1991.

[19] S. Saminger, R. Mesiar, and U. Bo-
denhofer. Domination of aggrega-
tion operators and preservation of
transitivity. Internat. J. Uncertain.
Fuzziness Knowledge-Based Systems,
10(Suppl.):11–35, 2002.

[20] E. Trillas and L. Valverde. An inquiry
into indistinguishability operators. In
H. J. Skala, S. Termini, and E. Trillas,
editors, Aspects of Vagueness, pages 231–
256. Reidel, Dordrecht, 1984.

[21] B. Van de Walle, B. De Baets, and E. E.
Kerre. A plea for the use of  Lukasiewicz
triplets in the definition of fuzzy prefer-
ence structures. (I). General argumenta-
tion. Fuzzy Sets and Systems, 97(3):349–
359, 1998.

[22] L. A. Zadeh. Similarity relations and
fuzzy orderings. Inform. Sci., 3:177–200,
1971.


