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Chapter 1
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The present paper introduces an approach to construct lexicographic
compositions of similarity-based fuzzy orderings. This construction is
demonstrated by means of non-trivial examples. As this is a crucial fea-
ture of lexicographic composition, the preservation of linearity is studied
in detail. We obtain once again that it is essential for meaningful re-
sults that the t-norm under consideration induces an involutive (strong)
negation.

1.1. Introduction

Lexicographic composition is a fundamental construction principle for or-
dering relations. The most important feature of this construction is that
the composition of two linear orderings again yields a linear ordering. Given
two orderings ≤1 and ≤2 on non-empty domains X1 and X2, respectively,
the lexicographic composition is an ordering ≤′ on the Cartesian product
X1 ×X2, where (x1, x2) ≤′ (y1, y2) if and only if

(x1 6= y1 ∧ x1 ≤1 y1) ∨ (x1 = y1 ∧ x2 ≤2 y2). (1.1)

Rewriting x1 6= y1 ∧ x1 ≤1 y1 as x1 <1 y1 (i.e. the strict ordering induced
by ≤1) and taking into account that x1 = y1 ∨ x1 6= y1 is a tautology and
that ≤1 is reflexive, we obtain that (1.1) is equivalent to

(x1 ≤1 y1 ∧ x2 ≤2 y2) ∨ x1 <1 y1. (1.2)

The study of fuzzy orderings can be traced back to the early days of
fuzzy set theory.1–4 Partial fuzzy orderings in the sense of Zadeh,1 how-
ever, have severe shortcomings that were finally resolved by replacing the

1
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crisp equality by a fuzzy equivalence relation, thereby maintaining the well-
known classical fact that orderings are obtained from preorderings by fac-
torization.5–9

In previous works of the author,7,10 several methods for constructing
fuzzy orderings are presented, including Cartesian products. How to trans-
fer lexicographic composition to the fuzzy framework, however, remained
an open problem. The reason why this remained an open issue for a rel-
atively long time is that there was no meaningful concept of strict fuzzy
ordering in the similarity-based framework so far. As this issue is solved
now,11 we are able to give a solution in this paper. For proof details, the
reader is referred to upcoming publications.

1.2. Preliminaries

For simplicity, we consider the unit interval [0, 1] as our domain of truth
values in this paper. Note that most results, with only minor and obvious
modifications, also hold for more general structures.5,9,12,13 The symbols
T , T̃ , etc., denote left-continuous t-norms.14 Correspondingly, T

→
denotes

the unique residual implication of T . Furthermore, we denote the residual
negation of T with NT (x) = T

→
(x, 0).

Definition 1.1. A binary fuzzy relation E : X2 → [0, 1] is called fuzzy
equivalence relationa with respect to T , for brevity T -equivalence, if the
following three axioms are fulfilled for all x, y, z ∈ X:

(1) Reflexivity: E(x, x) = 1
(2) Symmetry: E(x, y) = E(y, x)
(3) T -transitivity: T (E(x, y), E(y, z)

)
≤ E(x, z)

Definition 1.2. A binary fuzzy relation L : X2 → [0, 1] is called fuzzy
ordering with respect to T and a T -equivalence E : X2 → [0, 1], for brevity
T -E-ordering, if it fulfills the following three axioms for all x, y, z ∈ X:

(1) E-reflexivity: E(x, y) ≤ L(x, y)
(2) T -E-antisymmetry: T

(
L(x, y), L(y, x)

)
≤ E(x, y)

(3) T -transitivity: T (L(x, y), L(y, z)
)
≤ L(x, z)

aNote that various diverging names for this class of fuzzy relations appear in literature,

like similarity relations, indistinguishability operators, equality relations, and several

more.1,13,15,16
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Definition 1.3. A fuzzy relation R : X2 → [0, 1] is called strongly complete
if max(L(x, y), L(y, x)) = 1 for all x, y ∈ X.2,4,17 R is called T -linear if
NT (L(x, y)) ≤ L(y, x) for all x, y ∈ X.5,17

Definition 1.4. A binary fuzzy relation S : X2 → [0, 1] is called strict
fuzzy ordering with respect to T and a T -equivalence E : X2 → [0, 1],
for brevity strict T -E-ordering, if it fulfills the following axioms for all
x, x′, y, y′, z ∈ X:

(1) Irreflexivity: S(x, x) = 0
(2) T -transitivity: T (S(x, y), S(y, z)

)
≤ S(x, z)

(3) E-extensionality: T (E(x, x′), E(y, y′), S(x, y)) ≤ S(x′, y′)

As already mentioned above, it is of vital importance for lexicographic
composition how to “strictify” a given fuzzy ordering. The following theo-
rem summarizes the most important facts.

Theorem 1.1 (Bodenhofer & Demirci, 200511). Consider a T -equiv-
alence E : X2 → [0, 1] and a T -E-ordering L : X2 → [0, 1]. Then the
following fuzzy relation is a strict T -E-ordering on X:

S(x, y) = min(L(x, y), NT (L(y, x)))

Moreover, S is monotonic with respect to L in the following sense (for all
x, y, z ∈ X).

T (L(x, y), S(y, z)) ≤ S(x, z)

T (S(x, y), L(y, z)) ≤ S(x, z)

S is the largest strict T -E-ordering contained in L that fulfills this kind of
monotonicity.

For intersecting T -transitive fuzzy relations, the concept of dominance
of t-norms is of vital importance.14,18,19

Definition 1.5. A t-norm T1 is said to dominate another t-norm T2 if, for
every quadruple (x, y, u, v) ∈ [0, 1]4, the following holds:

T1

(
T2(x, y), T2(u, v)

)
≥ T2

(
T1(x, u), T1(y, v)

)
Lemma 1.1 (De Baets & Mesiar, 199818). Consider two t-norms T1

and T2. The T1-intersection of any two arbitrary T2-transitive fuzzy rela-
tions is T2-transitive if and only if T1 dominates T2.
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1.3. Starting the Easy Way: One Crisp and One Fuzzy Or-
dering

Let us first consider the case where the primary ordering is crisp and the
secondary ordering is fuzzy. As the strict ordering is only needed for the
primary ordering, we do not need to take any strict fuzzy ordering into
account.

Proposition 1.1. Let us consider a crisp ordering L1 : X2
1 → {0, 1}, a

T -equivalence E2 : X2
2 → [0, 1], and a T -E2-ordering L2 : X2

2 → [0, 1].
Then the fuzzy relation L : (X1 ×X2)2 → [0, 1] defined as

L((x1, x2), (y1, y2)) =


1 if x1 6= y1 and L1(x1, y1) = 1,

L2(x2, y2) if x1 = y1,

0 otherwise,

is a fuzzy ordering with respect to T and the T -equivalence E : (X1×X2)2 →
[0, 1] defined as

E((x1, x2), (y1, y2)) =

{
E2(x2, y2) if x1 = y1,

0 otherwise.

Note that, if both components L1 and L2 are crisp orderings, then L as
defined above is equivalent to the constructions (1.1) and (1.2). Moreover,
E as defined above is nothing else but the Cartesian product of the crisp
equality with E2.

Example 1.1. Consider X1 = X2 = [0, 4], let L1 be the classical linear
ordering of real numbers, and assume that L2 is defined as follows:

L2(x, y) = max(min(1− x + y, 1), 0)

It is easy to see that L2 is a strongly complete fuzzy ordering with respect to
the  Lukasiewicz t-norm TL(x, y) = max(x+y−1, 0) and the TL-equivalence
E2(x, y) = max(1− |x− y|, 0). Figure 1.1 shows a cut view of the fuzzy or-
dering L that is obtained when applying the construction from Proposition
1.1. The cut view has been obtained by plotting the value L((2, 2), (y1, y2))
as a two-dimensional function of y1 and y2.

The following proposition clarifies in which way linearity of the two
component orderings L1 and L2 is preserved by the construction in the
previous proposition.
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Fig. 1.1. Cut view of a lexicographic composition of a crisp linear ordering and a fuzzy
ordering according to Proposition 1.1.

Proposition 1.2. Let us make the same assumptions as in Proposition
1.1. If L1 is a crisp linear ordering and L2 is strongly complete, then L is
also strongly complete. If L1 is a crisp linear ordering and L2 is T -linear,
then L is also T -linear.

1.4. Lexicographic Composition of Two Non-Trivial Fuzzy
Orderings

The results of the previous section have been known to the author since
1998, but they were not published so far, as they cannot be considered a
full-fledged solution of the problem. So let us now consider the general
case, where both components are fuzzy orderings without any further as-
sumptions. The following theorem gives a general construction inspired by
the classical construction (1.2).

Theorem 1.2. Consider two T -equivalences E1 : X2
1 → [0, 1], E2 : X2

2 →
[0, 1], a T -E1-ordering L1 : X2

1 → [0, 1], and a T -E2-ordering L2 : X2
2 →

[0, 1]. Moreover, let T̃ be a t-norm that dominates T . Then the fuzzy
relation LexT̃ ,T (L1, L2) : (X1 ×X2)2 → [0, 1] defined as

LexT̃ ,T (L1, L2)((x1, x2),(y1, y2)) =

max
(
T̃ (L1(x1, y1), L2(x2, y2)), (1.3)

min(L1(x1, y1), NT (L1(y1, x1)))
)

is a fuzzy ordering with respect to T and the T -equivalence CartT̃ (E1, E2) :
(X1 ×X2)2 → [0, 1] defined as the Cartesian product of E1 and E2:

CartT̃ (E1, E2)((x1, x2), (y1, y2)) = T̃ (E1(x1, y1), E2(x2, y2))
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Note that, if L1 is a crisp ordering, then LexT̃ ,T (L1, L2) defined as in
Theorem 1.2 coincides with the fuzzy relation L defined in Proposition
1.1. Consequently, if both components L1 and L2 are crisp orderings, then
LexT̃ ,T (L1, L2) is equivalent to the constructions (1.1) and (1.2).

Construction (1.3) is based on one specific formulation of lexicographic
composition, namely (1.2). This is just one possible way of defining lexi-
cographic composition. It is unknown whether there are other meaningful
ways to define lexicographic composition on the basis of a different formu-
lation that is equivalent to (1.2) in the classical Boolean case.

Example 1.2. Consider again the domain X = [0, 4] and consider the
following three fuzzy relations on X:

L3(x, y) = max(min(1− 1
2 (x− y), 1), 0)

L4(x, y) = min(exp(y − x), 1)

L5(x, y) = min(exp(3(y − x)), 1)

L3 is a TL-E3-ordering with E3(x, y) = max(1 − 1
2 |x − y|, 0). L4 is a TP-

E4-orderingb with E4(x, y) = exp(−|x− y|) and, since TL ≤ TP, a TL-E4-
ordering as well. L5 is a TP-E5-ordering with E4(x, y) = exp(−3|x−y|) and
a TL-E5-ordering as well. Thus we can define the following fuzzy relations
from the fuzzy orderings L2 (from Example 1.1), L3, L4, and L5:

La = LexTM,TL
(L2, L2)

Lb = LexTL,TL
(L3, L2)

Lc = LexTP,TL
(L4, L2)

Ld = LexTP,TL
(L5, L5)

Theorem 1.2 then ensures that all these four fuzzy relations are fuzzy order-
ings with respect to the  Lukasiewicz t-norm TL and TL-equivalences defined
as the corresponding Cartesian products. Figure 1.2 shows cut views of the
four lexicographic compositions, where we keep the first argument vector
constant (we choose (x1, x2) = (2, 2)) and plot the value L∗((2, 2), (y1, y2))
as a two-dimensional function of y1 and y2.

Now the question arises whether the lexicographic composition of two
linear fuzzy orderings is again linear. Note that there are several notions
of linearity of fuzzy orderings.17 Let us first consider strong completeness.

bHere TP denotes the product t-norm; note that TP dominates TL.19
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Fig. 1.2. Cut views of the four lexicographic compositions from Example 1.2.

Example 1.3. All fuzzy orderings considered in Examples 1.1 and 1.2 are
strongly complete. Note, however, that none of the lexicographic compo-
sitions defined in Example 1.2 is strongly complete. To demonstrate that,
consider the plots in Figure 1.3. These two plots show the values

max
(
La((2, 2), (y1, y2)),La((y1, y2), (2, 2))

)
max

(
Ld((2, 2), (y1, y2)),Ld((y1, y2), (2, 2))

)
as two-dimensional functions of y1 and y2. If La and Ld were strongly
complete, these two functions would have to be the constant 1, which is
obviously not the case. The same is true for the two other lexicographic
compositions Lb and Lc.

After this negative answer, let us relax the question a bit and attempt
the question whether the lexicographic composition of two strongly com-
plete fuzzy orderings is T -linear.

Proposition 1.3. Let us make the same assumptions as for Theorem 1.2.
If L1 and L2 are strongly complete fuzzy orderings and the residual negation
NT is involutive (i.e. NT (NT (x)) = x holds for all x ∈ [0, 1]), then the fuzzy
ordering LexT̃ ,T (L1, L2) is T -linear.

Note that Proposition 1.3 also proves that all the four lexicographic
compositions defined in Example 1.2 are TL-linear.
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Fig. 1.3. Plots of the functions max
�
La((2, 2), (y1, y2)),La((y1, y2), (2, 2))

�
(left) and

max
�
Ld((2, 2), (y1, y2)),Ld((y1, y2), (2, 2))

�
(right).

The proof of Proposition 1.3 does not work if we do not assume that NT

is an involution. The question arises, of course, whether this condition is
not only sufficient, but also necessary. The answer is that this is the case,
as the following example demonstrates.

Example 1.4. Consider a left-continuous t-norm for which a value z ∈
]0, 1[ exists such that NT (NT (z)) 6= z. Since NT (NT (z)) ≥ z always holds,
we can infer, in this case, that NT (NT (z)) > z must hold. Now let us
consider two simple strongly complete fuzzy orderings on the sets X1 =
{a, b} and X2 = {c, d}, respectively:

L6 a b

a 1 1
b z 1

L7 c d

c 1 1
d 0 1

Then we can infer the following for any choice of T̃ :

LexT̃ ,T (L6, L7)((a, d), (b, c)) = NT (L6(b, a)) = NT (z)

LexT̃ ,T (L6, L7)((b, c), (a, d)) = L6(b, a) = z

Hence we obtain that

NT

(
LexT̃ ,T (L6, L7)((a, d), (b, c))

)
= NT (NT (z))

> z = LexT̃ ,T (L6, L7)((b, c), (a, d)),

which shows that LexT̃ ,T (L6, L7) is not T -linear.

Note that the condition of involutiveness of NT in particular excludes
all t-norms without zero divisors. Therefore, lexicographic compositions
of non-trivial (i.e. non-crisp) fuzzy orderings with respect to the popular
minimum and product t-norms are problematic, if not meaningless. The
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reason for this is simple. It is known11 that the only strict fuzzy ordering
included in a fuzzy ordering that is strictly greater than zero (e.g. like L4

and L5 from Example 1.2) is the trivial zero relation. When it comes to
lexicographic composition, the strict fuzzy ordering induced by the first
component relation plays a crucial role. If it vanishes, no meaningful lexi-
cographic composition that preserves linearity properties can be expected.
As an example, see Figure 1.4. It shows a cut view of the fuzzy ordering
LexTP,TP

(L5, L4). It is easy to see that LexTP,TP
(L5, L4) is nothing else

but the Cartesian product of L5 and L4, which is of course not TP-linear.
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Fig. 1.4. A cut view of LexTP,TP
(L5, L4).

The final and most important question is whether the lexicographic com-
position of two T -linear fuzzy orderings is again T -linear. Strong complete-
ness always implies T -linearity,17 thus, strongly complete fuzzy orderings
are a sub-class of T -linear fuzzy orderings (no matter which T we choose).
If the involutiveness of NT is a necessary condition for meaningful results
in Proposition 1.3, there is no point in considering a t-norm that does not
induce an involutive negation any further.

Theorem 1.3. Let us again make the same assumptions as for Theorem
1.2. If L1 and L2 are T -linear fuzzy orderings and the residual negation
NT is involutive, then the following fuzzy ordering is T -linear:

LexTM,T (L1, L2)((x1, x2),(y1, y2)) =

max
(

min(L1(x1, y1), L2(x2, y2)),

min(L1(x1, y1), NT (L1(y1, x1)))
)

Obviously, Theorem 1.3 does not allow any choice of the aggregating
t-norm T̃ as in the original construction in Theorem 1.2, but enforces the
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choice of the minimum t-norm (i.e. T̃ = TM). This is not an arbitrary re-
striction, but a necessary condition, as the following example demonstrates.

Example 1.5. Consider an arbitrary left-continuous t-norm T that induces
an involutive negation NT and assume that T̃ < TM. Then there exists a
y ∈ ]0, 1[ such that T̃ (y, y) < y. Now let us consider the following two fuzzy
relations:

L8 a b

a 1 y

b 1 1

L9 c d

c 1 y

d NT (y) 1

It is easy to see that L8 and L9 are T -linear fuzzy orderings with respect to
T and some T -equivalences (the exact definition of them is not important
at this point). Now we can compute:

LexT̃ ,T (L8, L9)((a, c), (b, d)) = max(T̃ (y, y), min(y, NT (1)) = T̃ (y, y)

LexT̃ ,T (L8, L9)((b, d), (a, c)) = max(T̃ (1, NT (y)), min(1, NT (y)) = NT (y)

If LexT̃ ,T (L8, L9) was linear, the following inequality would be fulfilled:

NT

(
LexT̃ ,T (L8, L9)((b, d), (a, c))

)
≤ LexT̃ ,T (L8, L9)((a, c), (b, d))

However, we obtain:

NT

(
LexT̃ ,T (L8, L9)((b, d), (a, c))

)
= NT (NT (y))

= y > T̃ (y, y)

= LexT̃ ,T (L8, L9)((a, c), (b, d))

Therefore, LexT̃ ,T (L8, L9) can never be T -linear if T̃ < TM. This example,
therefore, justifies the assumptions of Theorem 1.3.

1.5. Conclusion

In this paper, we have introduced an approach to lexicographic composi-
tion of similarity-based fuzzy orderings. This construction, in principle,
works for all choices of t-norms. However, the essential property of lexico-
graphic compositions—that the lexicographic composition of linear order-
ings is again a linear ordering on the product domain—is only maintained
if the underlying t-norm T induces an involutive negation (in particular,
including nilpotent t-norms and the nilpotent minimum). This once more
confirms the viewpoint that such t-norms are most adequate choices in fuzzy
relations theory, fuzzy preference modeling and related fields.11,17,20–22
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