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Optimality of LSTD and its Relation to MC

Steffen Griinewdlder, Sepp Hochreiter and Klaus Obermayer

Abstract-In this analytical study we compare the risk of
the Monte Carlo (MC) and the least-squares TD (LSTD)
estimator. We prove that for the case of acyclic Markov Reward
Processes (MRPs) LSTD has minimal risk for any convex loss
function in the class of unbiased estimators. When comparing
the Monte Carlo estimator, which does not assume a Markov
structure, and LSTD, we find that the Monte Carlo estimator is
equivalent to LSTD if both estimators have the same amount of
information. Theoretical results are supported by an empirical
evaluation of the estimators.

I. INTRODUCTION

One of the important theoretical issues in reinforcement
learning are rigorous statements on convergence properties
of so called value estimators (e.g. [12], [14], [4], [3]) which
provide an empirical estimate of the expected future reward
for every given state. Most of these convergence results so far
were restricted to the asymptotic case rather than providing
statements about the deviation of the estimate from the true
value for the case of a finite number of observations. In
practice, however, one wants to choose the estimator which
yields the best result for a given number of examples or in
the shortest time.

Current approaches to the finite example case are mostly
empirical and few non-empirical approaches exist. [6] present
upper bounds on the generalization error for Temporal Dif-
ference estimators (TD). They use these bounds to formally
verify the intuition that TD methods are subject to a "bias-
variance" trade-off and to derive schedules for estimator
parameters. Comparisons of different estimators with respect
to the bounds were not performed. The issue of bias and
variance in reinforcement learning is also addressed in other
works ([9], [8]). [9] provide analytical expressions of the
mean squared error (MSE) for various Monte Carlo (MC)
and TD value estimators. They further provide a software
that yields the exact mean squared error curves given a
complete description of a Markov Reward Process (MRP).
The method can be used to compare different estimators
for concrete MRPs and concrete parameter values. But it
is not possible to prove general statements with this method.
In [8] a MC like estimator was analyzed and a second
order approximation of the expectation and the covariance
was given, but a comparison between estimators was not
performed.

In this paper we follow a new approach to the finite
example case using tools from statistical estimation theory
(e.g. [11]). Rather than relying on bounds, approximations
or on results to be recalculated for every specific MRP this
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allows us to derive rigorous and more general statements -
applicable to at least the class of acyclic MRPs. The most
important result of our work is that for acyclic MRPs the
least-squares temporal difference (LSTD) estimator from [3]
has the lowest risk for any convex loss function in the class of
unbiased estimators (Section III-A). This is intuitive because
LSTD is the estimator which makes optimal use of the
underlying Markov structure. We further show that Monte
Carlo estimation, which does not use the Markov structure, is
equivalent to LSTD, if the Markov structure does not provide
additional information (Section III-B).

Symbols are explained at their first occurrence. Proofs are
presented in Appendix VI.

II. ESTIMATION IN REINFORCEMENT LEARNING

Reinforcement learning methods typically consist of a
value estimation and a policy update step (value/policy
iteration, [13]). A common assumption underlying the value
estimation is that the environment can be described by a
Markov Decision Process (MDP). This assumption allows us
to improve estimation performance beyond these of general
estimators like the sample mean (Monte Carlo) estimator.

In our work, we focus on systems which are modeled
as Markov Reward Processes (MRP). The difference of a
MRP to a MDP is that only one action exists. Therefore,
there is only one policy and "learning" is restricted to the
estimation of the value function. Results obtained for the
different estimators, however, apply to general MDPs, as long
as the policy remains the same (e.g. no online update). The
reason for this is that it is possible to account for the policy
through the transition distribution. For example, if we got
a deterministic policy then the transition probabilities of the
MRP at a state are given by the transition probabilities of the
MDP corresponding to that state and to the action choosen
by the policy at that state.

A. Markov Reward Processes and Value Estimators

A Markov Reward Process (MRP) consists of a state
space $ (in the following we will consider a finite state
space), starting probabilities pi for the initial states, transition
probabilities Pi,j between states si and sj, and a reward
function r: $ x $ >-R2, which maps a state transition to a
real valued random variable. The random variables r(s, s')
can have an arbitrary distribution, for example Gaussian,
binomial or simply be deterministic. We assume that r(s, s')
has finite expectation and variance.

Our goal is to estimate the value V, of each state s, i.e.
the expected future reward received after visiting the state.
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This value function is given by

Vs = Epss' (7Vs' + E[r(s, s')])
s/Cs

where a is a discount factor, r is the vector of the expected
reward (ri = E, E[r(si, s')]), and P the transition matrix
of the Markov process.
We compare different value estimators with respect to their

risk (not the empirical risk)

E[l(VS IVs)],

where Vs is the estimator of the value of state s and
1 (Vs, Vs) the loss function, which penalizes the deviation of
the estimator from the true value Vs. We will mainly use the
mean squared error

E[(Vs-Vs)2], (1)

which can be split into a bias and a variance term

mse(Vs) = V[Vs] +(E[Vs- Vs])2
Variance Bias

The MSE used here corresponds to the value obtained by
averaging the empirical mean-squared-error values from an
infinite number of learning tasks on a given problem. An
estimator is called unbiased if the bias term is zero.

B. Monte Carlo Estimation

The Monte Carlo estimator is the sample mean es-
timator of the future reward. In [13] it is defined as
1/n En 1 Returns(i), where n is the number of trajectories
for a given MRP and Returns(i) the cumulated future reward
for a given trajectory i. The Monte-Carlo estimator can be
interpreted as a special case of TD(A) with A = 1 and
aj = 1/i. The estimator is unbiased [10], converges almost
sure and in the average to the correct value.

III. COMPARISON OF ESTIMATORS: THEORY

The structure of MRPs, given by the transition matrix
P, introduces dependencies between the values of different
states. These dependencies can be used to improve estimation
performance. The linear least squares temporal difference
estimator (LSTD) [3] optimally utilizes "structure" at the
expanse of a high numerical cost (O( $ 3), compared to
MC with a cost of O( S )). We prove that firstly, LSTD is
the optimal unbiased estimator for acyclic MRPs for any
convex loss (Section III-A) and secondly, that Monte Carlo
estimation is equivalent to LSTD, if the Markov structure
provides no further information (Section III-B).

A. Linear Least-Squares Temporal Difference Learning
The LSTD estimator was first introduced by [3] and exten-

sively analyzed in [1] and [2]. Empirical studies showed that
LSTD often outperforms massively the TD and the Monte
Carlo estimator with respect to convergence speed per sample
size. An analytical statement for the higher convergence
speed of LSTD, however, is missing. Here, we prove that -

for acyclic MRPs and for any convex loss function 1 (Vs, V,)
- the LSTD estimator has the minimal risk of all unbiased
estimators. We derive the optimality not directly for LSTD,
but for a maximum likelihood estimator which is equivalent
to LSTD (for equivalence see Section III-A.5).

1) Maximum Likelihood: Let Oij be the transition prob-
ability of si to sj,0i the probability to start in si and x a
sample consisting of n iid state sequences X1, Xn. The
log-likelihood of the sample is given by

n

log p[X 0, nd log IP[Xk 0, )]
k=1

The corresponding maximization problem is given by
n :$ :$

maxlogJ7J [i[0x~, d], s.t.: Oij Z = 1.
0,79i=1 ~J=1 J=1

The unique solution for 0 and ) (Lagrange multipliers) is
given by

Oij js p:pssj and di = 11si',s =: Psi

(2)
where Ks denotes the number of visits of state s, ps,s, the
number of direct transitions from s to s', Pss' the estimate
of the true transition probability Pss' and P-s the estimate of
the true starting probability Ps. Using the Markov structure
it is possible to calculate state values in a manner similar
to dynamic programming, where the true probabilities are
replaced by maximum likelihood parameter estimates. We
start by defining an estimator for P, for path probabilities,

Px Jlp7ri 17ri (3)

with w being a path and wi the ith state in the path. An
estimator for the probability of reaching state s' from state
s (through different state sequences) is given by

(4)Pss/ := E P7F
PssIs.5

where H5,, is the set of paths from s to s'. In general, we
have no probability model for the reward of a state transition,
hence maximum likelihood is not applicable. As a natural
alternative we use the sample mean estimator,

(5)

where H, denotes the summed reward of state transitions
from state s. The maximum likelihood value estimator is
then given by

Vs := Rs + L PsS,RS,.
s es

(6)

In this section we define an estimator which is based
on a maximum likelihood estimate of the MRP parameters.
The approach results in the same estimator as a maximum
likelihood estimator that is briefly sketched in [12].Our
definition is especially useful to proof the theorems 3.1, 3.4
and to evaluate the relation of LSTD.
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2) Sufficient Statistics for the MRP Parameters: Informa-
tion about a sample is typically available through a statistic
S of the data (for example S = Eixi, where x is a
sample). A statistic which contains all information about a
sample is called sufficient. Important properties of sufficient
statistics are minimality and completeness. The minimal
sufficient statistics is the sufficient statistic with the smallest
dimension (typically the same dimension as the parameter
space). Formally, suppose that a statistic S is sufficient for a
parameter 0. Then S is minimally sufficient if S is a function
of any other statistic T that is sufficient for 0. Formally, a
statistic S is complete if Eo [h(S)] = 0 for all 0 implies h = 0
almost sure. The theorem from Rao and Blackwell [11] states
that for a complete and minimal sufficient statistics S and any
unbiased estimator A of a parameter 0 the estimator E[AcS]
is the optimal unbiased estimator with respect to any convex
loss function and hence the unbiased estimator with minimal
MSE.

The maximum likelihood solution is a sufficient statistics
for the MRP parameters. We demonstrate this with the help
of the Fisher-Neyman factorization theorem [11]. It states
that a statistic is sufficient if and only if the density f(x0)
can be factored into a product g(T, O)h(x). For an MRP
we can factor the density as needed by the Fisher-Neyman
theorem (h(x) = 1 in our case),

original estimator, A = E[A1S]. If the estimator A is further
unbiased then it is due to the Rao-Blackwell theorem the
optimal unbiased estimator. The defined maximum likelihood
estimator is a function of a minimal and complete sufficient
statistic. It is further unbiased and therefore the optimal
unbiased estimator.

Theorem 3.1 (Unbiased): Given an acyclic MRP with fi-
nite state space and n iid sequences, the maximum likelihood
estimator is unbiased, i.e. for n > 0

E[Vs5Ks = n] = E[rs] + Z Pss I.E[rs'.
s es

Corollary 3.1 (Optimality): The maximum likelihood es-
timator is optimal with respect to any convex loss function in
the class of unbiased estimators, especially for any unbiased
estimator Vs of the state value it holds that

MSE[Vs] < MSE[Vs]
4) The LSTD Estimator: The LSTD algorithm computes

analytically the parameters which minimize the empirical
quadratic error for the case of a linear system. [3] show
that the resulting algorithm converges almost sure to the true
solution. In [1] a further characterization of the least-square
solution is given. This turns out to be very useful to establish
the relation to the maximum likelihood estimator. According
to this characterization, LSTD finds the solution for which
the equation

n LiHLIs 7

IP'(x 0), i9) = J(lx(~i,) 171 0x(i,j- l)x (ij)d) Ks + C KsVs(7)
i=l j=2

n 1$1 N 1$1 holds.
=06(Xi,i 2 Ik)6(xij 11) 5) Equivalence between the Maximum Likelihood Estima-11SE~(i )SJkyoSjl j=1l2 k,l tor and LSTD: The maximum likelihood estimator defined

(KH/vs-S Ms ) - K,p,,, through eq. (2) to (6) is equivalent to LSTD.
-1lOS SS/11Us Theorem 3.2: Given a MRP with a finite state space $,
sC s,s C s, s' C $ and iid sequences, the following equality holds for

where X is an enumeration of the visited states in the
trajectories (q(i, j) is the jth state in the ith trajectory), d
is the Dirac delta function, n the number of trajectories and
Li the length of the ith trajectory. K5,pi5/ is sufficient for 0,,
and because sufficiency is sustained by one-to-one mappings
[11] this holds true also for p,,,. The sufficient statistics is
minimal because the maximum likelihood solution is unique
[11].The sufficient statistic is also complete because the
sample distribution induced by an acyclic MRP forms an

exponential family of distributions (Lemma 6.1, Appendix
VI). Due to [7] any exponential family of distributions is
complete.

3) Optimality: The Rao-Blackwell theorem [11] states
that for any unbiased estimator A the estimator E[A S] is
the optimal unbiased estimator, given S is a minimal and
complete sufficient statistic. For the case of value estimation
this means that we can use any unbiased value estimator (e.g.
the Monte Carlo estimator) and condition it with the statistic
induced by the maximum likelihood parameter estimate to
get the optimal unbiased value estimator.

If an estimator is a function of the sufficient statistic (e.g.
A = f(S)) then the conditional estimator is equal to the

the maximum likelihood estimator:
Vs = Rs + EPstVt. (8)

tC$
This theorem follows from Lemma 6.2 (Appendix VI-B).
Notice the similarity to the classical consistency condition
of value functions [13]: Vs = Rs + Es,PssjVs, (Here, Vs
denotes the true value). The equivalence to LSTD (eq. 7)
becomes apparent by substituting the definitions of Pst and
Rs:

Corollary 3.2: The maximum likelihood estimator defined
through equations (2) to (6) is equivalent to LSTD.

B. Monte Carlo Estimation

The estimation approaches of LSTD and Monte Carlo are
at the first glance quite different. LSTD makes massively use
of the underlying MRP structure to propagate information
from successor states whereas the Monte Carlo estimator
uses only the sequences which visit the state of interest.
The increased amount of information is actually the only,
and also the major advantage of structure using estimators
like LSTD. Both estimators are equivalent if the following
criterion is fulfilled for the corresponding state.



Criterion 3.1 (Full Information): We say that a state s has
full information if every path to the successors of s includes
s itself and if the starting probability for the successors is
zero.
We call the criterion the full information criterion because all
information-containing trajectories must hit state s. To proof
the equivalence we first transform the Monte Carlo estimator
into a form suitable for comparison with LSTD.

Theorem 3.3 (MC Reformulation): Given an acyclic MRP
with a finite state space S and a sample x of n iid sequences,
then the Monte Carlo estimator is equal to Vs, where V, is
defined as

Vs :=EPSS, Rs' S
s/ es

Hs, s

RSIIs :=KKs is
where Ks/ls denotes the number of visits to state s', which
followed visits of state s (conditional). Similarly, Hs, Is
denotes the sum of the direct reward for which only examples
are used which visited s. Hence Pss/ is the sample mean
estimator of the transition probability from s to s' and RSI Is
the sample mean estimator of the reward in s', where for
estimation only samples are used which contain state s.
In this notation the Monte Carlo estimator looks already very
similar to the maximum likelihood estimator (eq. 6). The
difference lies in the transfer and reward estimators (Pss,,
Rs,s). For the special case that the Monte Carlo estimator
considers all trajectories, these estimators are equivalent to
the ones of LSTD and Monte Carlo estimation is optimal.

Theorem 3.4 (Equality Theorem): Given an acyclic MRP
with finite state space $, if the full information criterion (3.1)
is fulfilled for state s it holds that

PSs, (x) = Pss, (x)
Finally, we get the optimality of Monte Carlo estimation for
this case because the estimator Rs, s (x) is equal to Rs (x).
The estimators are equal because every path to s' contains
s.

Corollary 3.3: With s being like in theorem 3.4 and with
the assumptions of that theorem

Vs (x) = Vs (x),

and the Monte Carlo estimator in state s is the estimator
with minimal risk for any convex loss function in the class
of unbiased estimators.

IV. SIMULATIONS

We performed three experiments for analyzing the esti-
mators. In the first experiment we measured the MSE in
dependence on the number of trajectories. In the second
experiment we analyzed how the MRP structure effects the
estimation performance. As we can see from the equality
theorem (Theorem 3.4) the difference of the performance
between LSTD and MC depends strongly on the ratio be-
tween the number of sequences hitting state s itself and
the number of sequences entering the subgraph of successor

states without hitting s. We varied this ratio in the second
experiment and measured the MSE.

a) Basic Experimental Setup: We generated randomly
acyclic MRPs for the experiments. The generation process
was the following: First, we defined a state s for which we
want to estimate the value. Then we generated randomly a
graph of successor states. We used different layers with a ran-
dom number of states in each layer. Connections were only
possible between adjacent layers. Given these constraints,
the transition matrix was generated randomly (uniform dis-
tribution). For the different experiments, a specific number
of starts in state s was defined. Beside that, a number of
starts in other states were defined. Starting states are all
states in the first layers (typically the first 4). Other layers
which are further apart from s were omitted as trajectories
starting in these contribute few to the estimate, but consume
computation time. The distribution over the starting states
was chosen to be uniform. Finally, we defined randomly
a reward for the different transitions (between 0 and 1),
while a small percentage (1 to 5 percent) got a high reward
(reward 1000). Beside the reward definition, this class of
MRPs contains a wide range of acyclic MRPs. We tested
the performance (empirical MSE) of the LSTD and MC
estimator. The simulations were repeated 10000 times.
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Fig. 1. MSE of LSTD and MC in relation to the number of trajectories.
The state space consisted of 10 layers with 20 states per layer.

1) Experiment 1: MSE in Relation to the Number of
Trajectories: In the first experiment, we analyzed the effect
of the number of trajectories given a fixed rate of 0.2 for
starts in state s. The starting probability for state s is high
and beneficial to MC (The effect of P(s) is analyzed in
the second experiment). LSTD is even for few trajectories
strongly superior and already produces a good estimate for
10 trajectories. Due to the scale the improvement of LSTD
is hard to observe.

2) Experiment 2: MSE in Relation to the Starting Prob-
ability: In the second experiment we tested how strong the
different estimators use the Markov structure. To do so, we
varied the ratio of starts in state s (the estimator state) to
starts in the subgraph. The trajectories which start in the
subgraph can only improve the estimation quality of state s
if the Markov structure is used. Figure 2 shows the results of

Ks, s (x)Pss/ :=
Ks
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Fig. 2. MSE of LSTD and MC in relation to the starting probabilit
the estimated state. State space: 10 layers with 20 states per layer.

the simulations. The x-axis gives the number of starts in
subgraph while the number of starts in state s was set to
We increased the number exponentially, while on the x-a
the exponential factor is printed. x=0 is equivalent to alw
start in s. One can see that the MC and LSTD estimator
equivalent if in each run the trajectory starts in s (k = 0

V. SUMMARY

In this work, we explored the relation of estimation ba
on the MRP structure (model based estimation) to model f
estimation with the help of statistical estimation theory.
proved that the optimal unbiased estimator, with respect
any convex loss and for acyclic MRPs, is a model ba
estimator (the LSTD estimator). The core ingredients of
proof are that LSTD is unbiased in the acyclic case z

that it is a function of a complete and minimal suffici
statistics of the MRP parameters. Monte Carlo estimat
is unbiased and can therefore have at best the same risk
LSTD1. Interestingly, in the special case where the Mo
Carlo estimator "observes" all relevant trajectories it is eq
to LSTD for acyclic MRPs. This can be interpreted in
sense that it is not the way the estimate is computed but
amount of information that makes model based estimat
superior.

APPENDIX

VI. PROOFS

A. Markov Reward Process

Lemma 6.1: An acyclic MRP with finite state space z

iid sequences forms an s-dimensional exponential fam
where s is the number of free MRP parameters.

Proof: A family {Po} of distributions is said to fc
an s-dimensional exponential family if the distributions
have densities of the form

pO (x) = exp( Ti (O)Ti (x) -A(O)) h(x)

with respect to some common measure ,u [7]. Here, the
and A are real-valued functions of the parameters and the

'Demonstrated only for acyclic MRPs.

are real-valued statistics, and x is a point in the sample space.
The q's are called naturalparameters. It is important that the
natural parameters are not functionally related, for example,
that no f exists with 2 f=f(&l). Otherwise, the family forms
only a curved exponentialfamily [7]. Firstly, we demonstrate
that the transition distribution forms an exponential family.
The density can be written as

'(X1 = rl :Xn = fi,") = Tm(i 1: **in CO ..**pCL

m(i, .,in) exp(c0log0Po +... + CL log PWL)

with w being the observed paths, m an input dependent
function (for example multinomial), L the number of paths in
the MRP, ci the number of times path i has occurred and P
the probability of the path. The parameters P7, are redundant
with this representation. We explore now the MRP structure
to find natural parameters that are not functionally dependent.
The size of this set of parameters is the number of necessary
MRP parameters, that is

tStarting States -1 + S(:Direct Successors of s -1).
seC

We have per state as many y's as outgoing connections (-
1 if not a starting state, respectively for the first starting
state). We reformulate the exponential expression to reduce
the number of parameters. We first define the expression for
one specific starting state that has no predecessors. For this
state the following expression is used:

n log(L9lplo(1)) + E /11i(j) log (l91P1l)(!) (10)

where n is the total number of runs, ) the starting probability,
p the transition probability and i(1) an enumeration of the
direct successors of state 1 (0(1) is the first successor state
with respect to the enumeration). The term A(O) of the
exponential family is -nlog(tjlpjo(,)) and the first y's are

the log (to , terms. Notice that the parameter p10(l) has
a coefficient of n -ZE li(l) and 01 a coefficient of n. In
the end the coefficient for p10(l) needs to be ni Z /lli(l)
and for 01 it must be ni, where ni is the number of starts in
state 1. Further, ni = n -Ek>1 nk, where k enumerates all
starting states. This leads us directly to the following term
which must be included for every other starting state

ni log -(tlPo(l)) (1 1)

We now have the problem that the number of visits of a state
depends on the taken paths (the data). This is at first viewing
problematic as the straight forward approach

(9) nj log(L9jpjo(J)) + 1 lii(j) log (%o(J))'
i(j) >OQ) Opoj

(12)

introduces one q too much, as nj is data dependent. The
solution to the problem is that nj equals the ,u's of the
incoming connections, nj = El ilj where I enumerates the



direct predecessors. Hence, we can remove the nj term by
modifying the incoming terms, as follows

ijj log (I'P1) jlj log (0lPlj)(0j)(j) (13)

The exponential term is defined by the terms (10), (11), (12)
and by the modification (13). U

B. Maximum Likelihood Approach
Theorem 3.1 Proof: The sample mean estimators p
and R are unbiased [5]. The main problem is to show that
Pss' is unbiased (eq. (4) and (6)). For this we start with

E[Pss' Ks = n] E[Pi-1i Ks n

The last of these estimators (denote it with p9 is con-
ditionally independent of the others given the number of
visits of state s (Ks) This is also the main point where
acyclicity is needed. Using this together with the law of
total probability and the fact that p is unbiased, leads to the
following statement (with L being the length of the path w):

L

E [t| Pr- l Ks = n]

where /, g equals the reward received through the transition
from state s' in run i if the path includes state s or is 0. U
Theorem 3.4 Proof: We make an inductive proof. To be
able to do so we first enumerate the states of SUCC(s) U{s}
through y N -> $ with i < j = (i) , SUCC(y(j)).
Here, SUCC(s) denotes the set of successor states of s.
This way q(1) is state s itself.
Induction Step (n-i -> n): Denote the direct predecessors of
q(n) with a(1),...,a(k) and let zg := Is9(n) For s being
no direct predecessor of 5(n) (4 Psp(n) 0, other case is
similar):

KqO(n) Za(l) Za(k)
PS (n)- Z( Ka(l +Z,g(/)Ka(k)

Za(lal)a + + sKa(k)
Ka(l) K(1) Ka(k) K

Ka(l) Psa(l) + ...+ Ka(k Psa(kc)
I.H. Zaf I ) - Za(k)

. (1) Psa(l) + + Psa(k)

Psa(l) * Pa(1)X(n) + ... + Psa(k) *Pa(k)O(n)
Lem 6.2 -

= PsC)(n):

whileKs- = Psg holds, because the full information criterion

Zm[J7JPTi l K5 = n,Kf5 =]IP[K5 = I Ks = n] md applies to state s.
E
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n, K5 = I] p1P[K5 = I1K, = n] =

2] (14)

We used that for I = 0 the last estimator p in the product
is zero. The procedure has to be repeated for every p-. As a
result the expectation of this estimator is equal to the path
probability. R can be handled similarly a
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