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1 Introduction

The relation of dominance between aggregation operators has recently been studied quite inten-
sively [9, 12, 10, 11, 13, 14]. We propose to study its ‘graded’ generalization in the foundational frame-
work of higher-order fuzzy logic, also known as Fuzzy Class Theory (FCT) introduced in [1]. FCT is
specially designed to allow a quick and sound development of graded, lattice-valued generalizations of
the notions of traditional ‘fuzzy mathematics’ and is a backbone of a broader program of logic-based
foundations for fuzzy mathematics, described in [2].

This short abstract is to be understood as just a ‘teaser’ of the broad and potentially very interest-
ing area of graded dominance. We sketch basic definitions and properties related to this notion and
present a few examples of results in the area of equivalence and order relations (in particular, we show
interesting graded generalization of basic results from [6, 12]). Also some of our theorems are, for
expository purposes, stated in a less general form here and can be further generalized substantively.

In this paper, we work in Fuzzy Class Theory over the logic MTL∆ of all left-continuous t-norms
[7]. The apparatus of FCT and its standard notation is explained in detail in the primer [3], which is
freely available online. Furthermore we use X v Y for ∆(X ⊆ Y ).

2 Inner truth values and truth-value operators

An important feature of FCT is the absence of variables for truth values. However, many theorems of
traditional fuzzy mathematics do speak about truth values or quantify over operators on truth values
like aggregation operators, copulas, t-norms, etc. In order to be able to speak of truth values within
FCT, truth values need be internalized in the theory. This is done in [4] by a rather standard technique,
by representing truth values by subclasses of a crisp singleton.4 Thus we can assume that we do have
variables α,β, . . . for truth values in FCT; the class of the inner truth values is denoted by L.

Binary operators on truth values (including propositional connectives &,¬, . . . ) can then be re-
garded as functions c : L×L→ L or as fuzzy relations cv L×L. Consequently, graded class relations
can be applied to such operators, e.g., fuzzy inclusion c⊆ d ≡ (∀α,β)(α c β → α d β). Many crisp
classes of truth-value operators (e.g., t-norms, continuous t-norms, copulas, etc.) can be defined by
formulae of FCT. The apparatus, however, enables also partial satisfaction of such conditions. In the

4 Cf. [15] for an analogous construction in a set theory over a variant of Gödel logic. See [4] for details of the construction
and certain metamathematical qualifications regarding the representation. Observe also a parallel with the power-object
of 1 in topos theory.

11



following, we therefore give several fuzzy conditions on truth-value operators and use them as graded
preconditions of theorems which need not be satisfied to the full degree. This yields a completely new
graded theory of truth-value operators and allows non-trivial generalizations of well-known theorems
on such operators, including their consequences for properties of fuzzy relations.

Definition 1. In FCT, we define the following graded properties of a truth-value operator cv L×L:

Com(c)≡df (∀α,β)(α c β→ β c α)
Ass(c)≡df (∀α,β,γ)((α c β) c γ)↔ (α c (β c α))

MonL(c)≡df (∀α,β,γ)(∆(α→ β)→ (α c γ→ β c γ))
MonR(c)≡df (∀α,β,γ)(∆(α→ β)→ (γ c α→ γ c β))

UnL(c)≡df (∀α)(1 c α↔ α)
UnR(c)≡df (∀α)(α c 1↔ α)

For convenience, we also define

Mon(c)≡df MonL(c) & MonR(c)
wMon(c)≡df MonL(c) ∧MonR(c)

and analogously for Un.

The following theorem provides us with samples of basic graded results.

Theorem 1. FCT proves the following graded properties of truth-value operators:

1. Mon(c) & Un(c)→ (c⊆ ∧)
2. wMon(c) & (∀α)(α c α↔ α)→ (∧ ⊆ c)
3. Mon(c) & Un(c)→ [(α c α↔ α)↔ (∀β)((α c β)↔ (α∧β))]

The three assertions above are generalizations of well-known basic properties of t-norms. Theo-
rem 1.1 corresponds to the fact that the minimum is the greatest (so-called strongest) t-norm. Theorem
1.2 generalizes the basic fact that the minimum is the only idempotent t-norm, while 1.3 is a graded
characterization of the idempotents of c. [8].

3 Graded dominance

Definition 2. The graded relation � of dominance between truth-value operators is defined as fol-
lows:

c� d≡df (∀α,β,γ,δ)((α d γ) c (β d δ)→ (α c β)d (γ c δ))

Theorem 2. FCT proves the following graded properties of dominance:

1. ∆Com(c) & Ass4(c) & Mon(c)→ (c� c)
2. Un(c) & Un(d) & (c� d)→ (c⊆ d)
3. ∆Com(c) & Ass4(c) & Mon2(c) & (dv c) & (c⊆ d)→ (c� d)
4. ∆Com(d) & Ass4(d) & Mon2(d) & (dv c) & (c⊆ d)→ (c� d)
5. Mon(c) & (&� c) & ((α→ β) c (γ→ δ))→ ((α c γ)→ (β c δ))
6. Mon(c) & (&� c) & ((α↔ β) c (γ↔ δ))→ ((α c γ)↔ (β c δ))
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Theorems 2.1 and 2.2 are generalizations of two basic facts, namely that every t-norm dominates
itself and that dominance implies inclusion / pointwise order. Theorems 2.3 and 2.4 have no corre-
spondences among known results; they provide us with bounds for the degree to which (c� d) holds,
where the assumption (d v c) & (c ⊆ d) would be obviously useless in the crisp non-graded frame-
work (as it necessitates that c and d coincide anyway). Theorem 2.5 provides us with strengthened
monotonicity of an aggregation operator c provided that c fulfills Mon(c) and dominates the conjunc-
tion of the underlying logic. Theorem 2.6 is then a kind of “Lipschitz property” of c (if we view↔ as
a kind of generalized closeness measure).

Theorem 3. FCT proves the following graded properties of dominance w.r.t. ∧:

1. Mon(c)→ (c�∧)
2. ∆Mon(c) & ∆Un(c)→ ((∧� c) = (∧ ⊆ c))
3. wMon2(c)→ ((∧� c)↔ (∀α,β)((α c 1)∧ (1 c β)↔ (α c β)))

Theorem 3.1 is a graded generalization of the well-known fact that the minimum dominates any
aggregation operator [12]. Theorem 3.2 demonstrates a rather surprising fact: that the degree to which
a monotonic binary operation with neutral element 1 dominates the minimum is nothing else but the
degree to which it is larger. Theorem 3.3 is an alternative characterization of operators dominating the
minimum; for its non-graded version see [12, Prop. 5.1].

Example 1. Assertion 2. of Theorem 3 can easily be utilized to compute degrees to which standard
t-norms on the unit interval dominate the minimum. It can be shown easily that

(∧ ⊆ c) = inf
x∈[0,1]

(x⇒ c(x,x))

holds, i.e. the largest “difference” of a t-norm c from the minimum can always be found on the diag-
onal. In standard Łukasiewicz logic, this is, for instance, 0.75 for the product t-norm and 0.5 for the
Łukasiewicz t-norm itself. So we can infer that the product t-norm dominates the minimum with a de-
gree of 0.75 (assuming that the underlying logic is standard Łukasiewicz!); with the same assumption,
the Łukasiewicz t-norm dominates the minimum to a degree of 0.5.

4 Graded dominance and properties of fuzzy relations

The following theorems show the importance of graded dominance for graded properties of fuzzy
relations. Theorem 4 is a graded generalization of the well-known theorem that uses dominance to
characterize preservation of transitivity by aggregation [12, Th. 3.1] (compare also [6]).

Theorem 4. FCT proves:

Mon(c)→ ((∀E,F)(∆Trans(E) & ∆Trans(F)→ Trans(Opc(E,F))↔ (&� c)))

where Opc is the class operation given by c, i.e., 〈x,y〉 ∈ Opc(E,F)≡ Exy c Fxy.

The following theorem provides us with results on the preservation of various properties by sym-
metrizations of fuzzy relations.
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Theorem 5. FCT proves the following properties of the symmetrization of relations:

1. Com(c)→ (Sym(Opc(R,R−1)))
2. (&⊆ c) & Refl2 R→ (Refl(Opc(R,R−1)))
3. (&⊆ c)→ AntiSym(Opc(R,R−1)) R
4. Mon(c) & (&� c) & ∆TransR→ (Trans(Opc(R,R−1)))

In the crisp case, the commutativity of an operator trivially implies the symmetry of symmetriza-
tions by this operator. In the graded case, Theorem 5.1 above states that the degree to which a sym-
metrization is actually symmetric is bounded below by the degree to which the aggregation operator
c is commutative. Theorems 5.2–4 are also well-known in the non-graded case [5, 6, 16]. Obviously,
5.4 is a simple corollary of Theorem 4.
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